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Abstract

In this article, we are interested in the existence and uniqueness of solutions for
quasilinear parabolic equations set in the whole space IR". We consider in particular
cases when there is no restriction on the growth or the behaviour of these solutions
at infinity. Our model equation is the mean curvature equation for graphs for which
Ecker and Huisken have shown the existence of smooth solutions for any locally
Lipschitz continuous initial data. We use a geometrical approach which consists in
seeing the evolution of the graph of a solution as a geometric motion which is then
studied by the so-called “level-set approach.” After determining the right class of
quasilinear parabolic pdes which can be taken into account by this approach, we
show how the uniqueness for the original pde is related to “fattening phenomena”
in the level-set approach. Existence of solutions is proved using a local L*°-bound
obtained by using in an essential way the level-set approach. Finally we apply these
results to convex initial datas and prove existence and comparison results in full
generality, i.e. without restriction on their growth at infinity.
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1 Introduction

In a serie of works (see [7] for an introductive paper, [8], [6] and [9]), we are interested in
quasilinear parabolic equations set in the whole space IR" and, more precisely, in existence
and uniqueness properties for solutions with general growth at infinity.

The starting point is this work and our main motivation comes from a result of Ecker
and Huisken [16] for the so-called mean curvature equation for graphs

ou (D?*uDu, Du) N
—A At Rt e i 1
5 u+ T+ [Dup? 0 in R" x (0,00), (1)
with the initial data
u(z,0) = ug(z) in IRY, (2)

where u : IR x [0,00) — IR is the solution, Du and D?u denote respectively the gradient
and the Hessian matrix of u with respect to the space variable, uy : IRY — IR is a given
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function and | - | (respectively (-, -)) stands for the classical Euclidean norm (respectively
inner product) in RY.

Ecker and Huisken proved the following very surprising result: for any initial data
uy € Wi (IRN), there exists a solution u of (1)-(2) in C®°(IRN x (0, 00))NC (RN x [0, 00)).
This result was even extended to initial data in C(IRY) by Angenent [1]. The intriguing
point is that no assumption is made on the growth of u, at infinity and therefore the
solution u can have also an arbitrary behavior at infinity.

This result rises up a lot of challenging questions: the first one concerns the uniqueness
of the solution they build. In general, the difficulty for obtaining a uniqueness result for
a pde comes from the fact that one uses a notion of weak solution: this is not at all the
case here since the solutions are known to be regular, even C'*°. The difficulty is really to
take into account any behaviour for the solution at infinity.

A second question is related to the existence result itself: Ecker and Huisken proved it
by using differential geometry and the maximum principle and it would be interesting to
have a purely analytical proof of it. Again the lack of prescribed behavior of the solutions
at infinity creates an unusual difficulty. In particular, to get a local L* bound on u is a
priori a key point but to obtain local L*> bound on Du is also a rather difficult task.

Finally, one can wonder to which type of quasilinear parabolic equations the result of
Ecker and Huisken can be extended. For the reader, this may seem to be a question to
be investigated later but, in fact, in order to provide interesting results for (1), one has
to understand the main underlying structure of the equation which allow such a strange
result to hold.

Our answer to this question is the geometrical interpretation of (1) by motion by
mean curvature for graphs. Motions of hypersurfaces with general curvature dependent
velocities were studied recently by the so-called “level-set approach,” a weak notion for
the evolution which allows to define these motions past the development of singularities.
The level-set approach was first introduced by Osher and Sethian [31] for numerical com-
putations and then studied from a theoretical point of view by Evans and Spruck [18] in
the case of motion by mean curvature and by Chen, Giga and Goto [13] for more general
normal velocities. Later, more singular cases were investigated by Ishii [27], Ishii and
Souganidis [28] and properties of the level-set approach were obtained by Barles, Soner
and Souganidis [10].

In the case of equation (1), as for any suitable quasilinear parabolic equations, the
level-set approach arises when we consider the motion in dimension N + 1. To do so, one
has to introduce the function v : RN+ x [0, +0c0) — IR defined by

v(z,y,t) =y — u(z,t).
For (1), the function v is a solution of

v N (D*vDv, Dv)
ot | Dv|?



which is the equation in the level-set approach corresponding to motion by mean curva-
ture.

In order to give a suitable sense of solution for this singular equation and related ones
in non-divergence form, we use the notion of viscosity solutions: we refer the reader to
the Users’ guide of Crandall, Ishii and Lions [15] or the books of Fleming and Soner [20],
Bardi and Capuzzo Dolcetta [2], Barles [5] or Bardi et al. [3] for an introduction and/or
a detailed presentation of this notion of solutions.

The most classical result concerning (3) is the well-posedness in the space of bounded
uniformly continuous functions (BUC in short), more precisely: for any vy € BUC (IRN '),
there exists a unique solution v of (3) in BUC(IRN*! x [0,T]) for all T > 0 such that

’(U(CC,y,O) = UO(xay) in RN_H'

At this point, it is worth remarking that boundedness is not an issue: indeed, one of the
key property of (3) is to be invariant by every nondecreasing change of functions: if v is
a solution of (3), then tanh(v), or more generally ¥(v) with ¥’ > 0, is a solution as well.

Therefore it can be thought that the study of (1)—(2) just reduces to the study of (3)
through the changes v(x,y,t) = tanh(y — u(x, t)) and vo(x,y) = tanh(y — uo(z)) and that
all results follow easily from an extension of the above mentioned well-posedness result
to spaces of bounded continuous functions (denoted by C},), v and vy being clearly in Cy,
but not in BUC in general. In particular, the uniqueness of a solution u of (1)—(2) is an
immediate consequence of a uniqueness result for solutions of (3) in Cj,.

Unfortunately, we are unable to prove that the problem is well-posed in C}, and even
the extensions to the well-posedness in BUC' are rather weak. The concrete consequences
of this geometrical approach are, on the one hand, a local L* bound for a large class
of quasilinear parabolic pdes whose proof is rather simple and natural and, on the other
hand, a “generic” uniqueness result for the solutions of (1)—(2) as well as for more general
equations.

It is worth poiting out that the possible non-uniqueness feature for (1)—(2) is related
to the so-called “fattening phenomena” or “nonempty interior difficulty” for (3); despite
of the fact that it seems obvious that no interior can develop because, by the maximum
principle, one has formally

@(x,y,O) >0 in R" = 8—”(ac,y,t) >0 in RY™ x (0, 4+00),
dy oy
but we are unable to prove this property even in a weaker sense.

Now, we turn to a more precise description of the contents of the present paper. It is
devoted to the study of the geometrical approach, explained above in the special case of
the mean curvature equation, for more general pdes like

ou

o [6(Du)D*u] =0 in RY x (0, 00),

u(x,0) = up(z) in RY,

(4)
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where b is a continuous function from /R” into the space of the nonnegative symmetric
matrices Syr. The first question we adress is: when is (4) associated to a geometric pde in
dimension N + 1 to which the level-set approach applies?

In Section 2, we derive formally a geometrical equation from (4) (see (6)). We then
study this equation distinguishing two cases: the “classical” one is the one to which
the classical level-set approach applies and the “very singular” one for which the more
sophisticated arguments of Ishii [27] are necessary. For the reader’s convenience, we show
how the classical results apply in the “classical” case (Section 3). In the “very singular
case” (Section 4), our comparison result enters the framework of [27]. Nevetheless, the
particular singular set we deal with allows a more elementary proof. It has, in particular,
the advantage to use explicit test-functions which permits to extend the proof to the case
when the function b in (4) depends on (z,t, Du). Here, to avoid to much technicalities,
we restrict ourselves to b depending only on Du and address this more general case in the
forthcoming paper [9].

Then we study the consequence of this geometrical approach for (4). At first, we prove
in Section 5 that the level-set approach works. A local L*-bound for the solutions of (4)
follows rather easily (see Section 7) and the existence of discontinuous viscosity solutions
of (4) is an almost immediate consequence of it (see Theorem 8.1 in Section 8). The
existence of smooth solutions requires a local gradient bound and, to prove it, we use the
one of Evans and Spruck [19] for (1) and the ones of Chou and Kwong [14] for the more
general equation (4) (see Section 9).

Uniqueness is an even more difficult issue and we were able to obtain it only in par-
ticular cases: of course the first “generic” uniqueness result we provide in Section 6 is
not satisfactory and most of the results we obtain in this direction are proved by working
directly on (4). However a striking application of the geometrical approach to uniqueness
(and also existence) is the case of convex initial datas (Section 10): under suitable as-
sumptions on b (the same as for the geometrical approach to hold), we prove that there
exists a unique solution u of (4), which is convex in the space variable at each time, and
this for any convex initial data uy without any restriction on its growth at infinity. The
proof relies strongly on the convexity preserving property of Giga, Goto, Ishii and Sato
[21] that we extend to our more singular case. Compared to the result we previously
obtained in [7] by working directly on (1), we do not assume anymore ug to be coercive
and we extend the result to equations like (4).

For completeness, we conclude this introduction by describing the results we obtained
in the next two part of this study. Two types of uniqueness results for the non-convex
case are proved: the first ones [8] concern the case N = 1. We show, not only for (1) but
for a larger class of equations, a uniqueness result without any growth assumptions on
the solutions. Unfortunately, in general, this result is valid only in the class of classical
solutions; however, in the case of (1), using the argument of Section 9 and in particu-
lar Remark 9.1, this uniqueness result for smooth solutions implies a comparison result
between possibly discontinuous sub- and supersolution.



The proof relies upon examining the pde obtained by integrating in z. For (1), this
pde reads

wy — arctan(wg,) =0 in R x (0, +00), (5)

and the key point is that (5) enjoys uniqueness properties in C'(IR), essentially because one
can use a “friendly giants” method, whose consequence is a general uniqueness property
for (1). Of course, this method can be extended to far more general equations. We learn
recently that related results were obtained independently and by rather different methods
by Chou and Kwong [14].

In the second one [6], we use classical viscosity solutions arguments to prove the
uniqueness for solutions of (4) and even more general equations: we obtain a compari-
son result for sub- and supersolutions with polynomial growth but, unfortunately, with
a rather restrictive assumption on the initial data which reads in the locally Lipschitz
continuous case

| Dug(z)| < C(1+|z") in RY,

for some constant C' > 0 and 0 < v < (14 1/5)/2. A strange feature of this result is that
it can be obtained either by working directly on (4) or on the associated geometrical pde
and both proofs lead to the same condition on uy.

As we already mention it above, in a forthcoming paper, we investigate more general
equations, namely

2—1: — Tr [b(z, t, Du)D*u] + H(z,t,Du) =0 in RY x (0,00) .

After we obtained most of the results described above, we learn that representation
formulas for the mean curvature equation (3) (and even more general geometrical equa-
tions) have been established independently by Soner and Touzi [33], [34] and by Buckdahn,
Cardaliaguet and Quincampoix [12]. We tried to prove uniqueness for (1) by showing that
the “non-fattening phenomena” cannot occur for (3) in the case of graphs but we failed.
It is an intriguing question whether it is possible to prove such properties by using these
formulas.

Acknowledgment. This work was partially done while the last author had a post-
doctoral position at the University of Padova. He would like to thank the Department
of Mathematics and especially Martino Bardi for their kind hospitality and fruitful ex-
changes.

2 Derivation of a geometrical pde

As explain in the introduction for the special case of equation (1), we associate a geometri-
cal equation to the quasilinear equation (4) which allows us to use the level-set approach.

6



This method was already used by Evans [17] for the heat equation and by Giga and Sato
[22] in the case of Hamilton-Jacobi equations.

When wu is a solution of (4) we consider, for every ¢ > 0, Graph(u(-,t)) as an hyper-
surface in IRV *! and, to represent it, we follow the ideas of the level-set approach, taking
any function v : RY x IR x [0, +00) — IR such that

v(z,u(z,t),t) =0 for every (z,t) € RY x (0, +00).

Note that, for all ¢ > 0, Graph(u(-,t)) C T, where I'; is the 0-level-set of wv(-,,1).
Differentiating formally the previous inequality, we obtain

8u+81} 0
v — — =
YU ot o ot ’
Dyv + Dyv Du = 0,

D

D2,v+2D2v® Du+ D2 vDu® Du+ DyvD*u = 0,

and it follows that v has to solve, at least formally

ov D, v D,v D,y D,v
— —Tr|p| =2 D? v —2D? I+ D2yt ad =0 6
ot [ < Dy”) ( et @ Dyv i yyUDyU “ Dy”)] ©)

in RN x (0, +00).
This new equation has strong discontinuities when the gradient of the solution, Dv =
(Dgv, Dyv) lies in the subset

D={p=(p, - ,pn+1) € RN : pyi1 =0}, (7)

but (6) satisfies the following first properties which is a motivation to study (4) via the
level-set approach.

Lemma 2.1 We have
(i) Equation (6) is degenerate parabolic outside of D.

(ii) If u € C(IRYN x [0,+00)) is a viscosity subsolution (respectively supersolution) of (4)
with initial data ug € C(IRYN), then the function v(z,y,t) = y — u(z,t) defined for
(z,y,t) € RN x IR x [0,+00) is a viscosity supersolution (respectively subsolution)
of (6) with initial data vo(z,y) =y — ug(x).

(11i) Equation (6) is invariant under every monotone change of function v — Wouv, where
U € C(IR) is a monotone function.



We skip the proofs of these three properties since they do not present any difficulty. Let us
mention that (ii) and (iii) are obvious in the smooth case. Property (ii) is straightforward
using the definition of viscosity solutions for the singular equation (6) we recall in Section
4.1. For (iii), we even prove a discontinuous version of it in Lemma 4.1. Finally it is worth
pointing out that we choose to work with v(z,y,t) = y — u(z,t) instead of u(z,t) — y as
usual.

Remark 2.1 Concerning (ii), one can wonder whether some kind of converse property
is true: if v is a solution of (6) with initial data vo(x,y) = y — ug(z), does there exist a
solution u of (4) such that v(z,y,t) = y — u(x,t)? The answer is not clear and it is the
main issue of our approach. We refer to Section 6 for related discussions and results.

We conclude this section by introducing some notations which are used throughout
the paper. Every point z of RN *! is written z = (z,y) with z € RY and y € R. In a
natural way, every vector p which has the meaning of a gradient is written p = (pg, py)
with p, € RY and p, = py;1 € IR. We decompose every matrix X € Sy, in blocks in
the following way

Xzz me

X;y ‘ Xy?l

where X, € Sy, X,y € RN, Xg; is the transpose of X, (i.e. the row vector whose
coordinates are the ones of X,,) and X,, € IR.

With these notations, the nonlinearity involved in (6) can be written, for every p €
RNt —Dand X € 8N+1,

F(p,X)=-Tr[b(q) (Xzz + 2X2y ® ¢ + Xyyq ® q)] = —Tr[b(p) X] (8)

where ¢ = —p,/p, and

(b(9)0)" | (b(a)g,q)

3 The geometrical equation: the classical framework

A priori the nonlinearity F' is discontinuous on D (see (7)). In this section, we provide
assumptions on b ensuring that we are in the “classical framework,” which means that
the (classical) level-set approach applies readily to (6) (see [18], [13] [21] and [10]). In this



classical framework, F' has to be continuous, except at p = 0. The typical example is the
mean curvature equation (see Example 3.1).

More precisely, we start by recalling the assumptions as they appears in [21]. In the
sequel, || - || is any norm on Sy and SN~ = {& € R" : |¢| = 1} is the unit sphere of R".

(F1) F: (RNt - {0}) x Sy.1 — IR is continuous.

(F2) F(p, X +Y)< F(p,X) forallpe R"*' XY € Sy;1,Y > 0.

(F3) —oo < F,.(0,0) = F*(0,0) < 400 where F, and F* are the semicontinuous envelopes
of F' defined by Fi(p,X) = liminf ){F(p, Y):p#0} and F* = —(—F)..

(p,Y)=(p, X
(F4) For every R > 0, sup{|F(p, X)| : |[p| < R, || X|| < R} < +00.

We have, the following classical result.

Theorem 3.1 Under assumptions (F1)—(F4), for any initial data vo € UC(IRNTY),
there exists a unique solution v of (6) which is in UC(IRNT! x [0,T)) for every T > 0.

Notice that, if F' is continuous, then (F1)—(F4) reduce to (F2) only.
We state now the assumptions on b which permit to extend the F' given by (8) by
continuity in (IR — {0}) x Sy in order to ensure that (F1)-(F4) hold.
(H1) There is a positive constant K; such that ||b(q)|| < K for all ¢ € IRY.
(H2) There is a positive constant K, such that |b(q)q| < K, for every ¢ € IRY.
(H3) There is a positive constant K3 such that |(b(q)q, ¢)| < K3 for every q € IRY.
(H4) For every ¢ € SN™L, )\lim b(Ag) and )\lim b(Aq) exist and are equal. Moreover
—+0o0 ——00
boo(q) :== lim b(\q) is continuous on SN~1.
A—too
(H5) For every g € SV 1, Alim Ab(Aq)q and Alim Ab(Aq)q exist and are equal. Moreover
—+o0 ——00
Coo(gq) == lim Ab(\q)gq is continuous on SV—1.
A—too
(H6) For every q € SN, Alim A%(b(\q)q, q) and )\lim M (b(\q)q, q) exist and are equal.
—+00 ——0Q
Moreover the function a(q) := Jim M2(b(A\q)q, ¢) is continuous on SV~
—T00
Proposition 3.1 Let F be defined by (8) with b € C(IRY;Sy;). Then assumptions (H1)-

(H6) are equivalent to assumptions (F1)-(F4). It follows that, under assumptions
(H1)-(H6), Theorem 3.1 hold.



Proof of Proposition 3.1. We use the notations of Section 2. We start by assuming
(H1)—-(HS6). For every ((ps,0),X) € (D — {0}) X Sy41, we extend F' by setting

F((pz,0), X) = =Tr [beo (pz/ |Pe|) Xz + 2(Co0 P/ |P2]), Xezy) + Xyyoo (p2/ |P])] -

From the assumed continuity of by, (oo and a, on SV~ the extended Hamiltonian F is
clearly continuous in IRN*! — {0}; thus (F1) holds. Assumption (F2) is an immediate
consequence of Lemma 2.1 (i). Finally, from the boundedness conditions (H1), (H2) and
(H3), it is obvious that F,(0,0) = F*(0,0) =0 and |F(p, X)| < KiR+ 2K>R + K3R for
Ip|, || X|| < R. It shows that (F3) and (F4) hold.

Conversely, suppose that (F1)—(F4) hold. (F2) implies easily that b(&) is positive for
all £ € RY. Let £ € SV—1; for any \ # 0, we have

. b(Aq) ‘ Ab(Ag)q
b(g,1/7) = ( ) : (9)

(AN g)T ‘ A2(b(Aq)q, q)

From (F4), we have that b(g,1/)) is bounded for every ¢ € SN~1 and A > 1. It follows
that ||b(€)|], [6(€)€] and [(b(£)E, €)| are bounded for every & € {\q : A # 0,q € SV} =
RN —B(0,1). Since these quantities are obviously bounded in B(0, 1), we get (H1)—(H3).
From (F1), we have that b is continuous in IR¥N** —{0}. On the one hand, it follows easily
that b is continuous in IRY. On the other hand, sending A to 400 in (9), we see that by, (o

and oy are well-defined:

~ ~ boo(q) ‘ (oo (q)
lim b(g,1/A) = b(q,0) = : (10)
A—to0

(Coo (@)™ ‘ oo (q))

Invoking again the continuity of i), (10) implies that b, (» and s are continuous on
SN=1: thus (H4)-(H6) hold. It ends the proof. O

Proposition 3.1 applies of course in the case of the mean curvature equation. The
computations are developed in the following example.

Example 3.1 Mean curvature equation (1).
In this case,

bla) =1 -1

REpRPE for every ¢ € IR". (11)
q

Easy computations show that

F(p, X) = —Tr [(1 - p‘j’f ) X] for every (p, X) € (R™*' = {0}) X Sy11

and then, (6) associated to (11) is the classical geometric mean curvature equation.
The checking of (H1)—(H6) consists in straightforward computations. We obtain
boo(q) = I — ¢ ® ¢, {0(q) = 0 and a(g) = 1 for every g € SV
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4 The geometrical equation: the very singular case

In this section, we study the case when the discontinuities of F' on D cannot be reduced
to a discontinuity at p = 0. This question was adressed by many authors: Goto [23], Ishii
and Souganidis [28], Ishii [27] or Ohnuma and Sato [30].

Ishii [27] deals with the worst set of singularities. Our approach is strongly inspired
by his work: Ishii extends the notion of viscosity by restricting the class of test-functions.
His result applies but we provide a simpler proof which relies on the special form of our
set of singularities.

We refer to the end of the section for examples of pde which is covered by our frame-
work but which does not satisfies the assumptions of Section 3.

4.1 Definitions and first properties

We recall the definition of viscosity solutions for very singular equations as it appears in
Ishii [27].

In the sequel, USC (respectively LSC') denotes the set of upper-semicontinuous (re-
spectively lower-semicontinuous) functions. For any locally bounded function v, v* and
v, are respectively the upper- and lower-semicontinuous envelopes of v and P%*(v*) and
P?~(v,) are its parabolic semijets (see [15] for a definition).

We define semicontinuous envelopes for F, which are adapted to the set of discontinuity
D, by, for every (p, X) € RN™! x Sy,

F*(p,X) = limsup {F(p,Y): (p,Y) € (R""" = D) x Sy},
(pY)—(p,X)
F.(p,X) = liminf {F(p,Y):(p,Y) € (IR"™" —D) x Sy;1}.

(p,Y)—(p,X)

Clearly, F'* and F, inherit the same properties as F': they are still degenerate elliptic and
geometric.

Definition 4.1 A locally bounded function v : RNt x (0,+00) — IR is said to be a
viscosity subsolution (respectively a supersolution) of (6) if and only if

a+ F,(p,X) <0 forall (z,t) € RN x (0, +00) and (a,p, X) € P> (v*)(z, 1)
(respectively
a+F*(p,X) >0 forall (z,t) € R""'x (0,+00) and (a,p, X) € P> (v.)(z,1) ).

A discontinuous function v is a viscosity solution of (6) provided it is both a sub- and a
supersolution.

11



With this definition, all the basic properties of viscosity solutions extend. In particular
the classical stability result for viscosity solutions holds. The proof is the same than the
ones in the classical references given in the introduction.

We continue with the invariance lemma which is a characteristic of geometric equa-
tions (Cf. Section 2).

Lemma 4.1 If u € USC(IRY x [0,+00)) (respectively v € LSC(IRN x [0,+00)) is a
viscosity subsolution (respectively supersolution) of (6), then, for any nondecreasing func-
tion ¥ € USC(IR) (respectively ¥ € LSC(IR)) the function ¥ o u (respectively W ov) is
a viscosity subsolution (respectively supersolution) of the same equation.

Proof of Lemma 4.1. We will prove the assertion in the case of a subsolution; the proof
for supersolutions is analogous. We proceed by approximation of W.

Consider first the case ¥ € C(IR). We construct a increasing familly (¥, ).~ of smooth
strictly increasing functions converging to W. Let ¢ be a C? function and (z,%) be a
local maximum of ¥, (v) — ¢. Without loss of generality, we can suppose that (V.(v) —
®) (g, to) = 0. It follows that, for every z € IRV ™! and ¢ € [0, +00),

U, (v)(z,t) < ¢(z,t) <= v(z,t) < D0 ¢(z,1),

where we set ®, = (¥,) . Thus (z¢, %) is a local maximum of v — ®,_ o ¢ and since v is
a subsolution of (6), we get
¢

' = (w0, to) + F. (' D (xo, to), @' D*¢(0, t9) + ®" D ® Dp) < 0. (12)

Using that F, is geometric and dividing (12) by ®.' > 0, we get

99 (20,t6) + F. (D to), D? t0)) <0

E(x% 0)+ *( ¢(.T0, O)a ¢(.’L‘0, 0)) =
which proves that ¥, o v is a subsolution of (6). From classical results about viscosity
solutions, we have that

limsup* ¥, (v) =sup¥.ov=TVou
e—0 e>0

is a subsolution of (6) which is the desired result.
Next, if one has ¥ € USC(IR), we define an increasing family (U.).s¢ of continuous
increasing functions converging to ¥* = U, by setting

V.(z) = inf {‘Il(y) + M}

y—a/<1 g2

for every x € IR. From the continuous case studied above, we get that ¥, o v is a subso-
lution of (6) for every ¢ > 0 and conclude in the same way. O
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4.2 Comparison result

We turn now to a comparison principle for (6).

Theorem 4.1 Suppose that (H1)-(H4) hold and let vy € UC (IRNTY). If v, € USC(IRN*1x
[0, 4+00)) (respectively v, € LSC(IRN*! x [0,400))) is a subsolution (respectively a super-
solution) of (6), and if v1(-,0) < vo < va(+,0) in RNTL, then vi < vy in RNT! x [0, +00).

Remark 4.1 Note that “bounded” or “unbounded” solutions is not the point in this
theorem. Since the equation is geometric, up to make a change of variable v — tanh(v)
together with Lemma 4.1, we can suppose that the solutions are bounded. Another remark
is that we are able to compare bounded continuous solutions with bounded uniformly
continuous solutions. Of course, it gives uniqueness only in UC (IR *! x [0, +00)).

The difficulty to prove such a result comes obviously from the unusual set of discon-
tinuity D. We begin by some arguments giving an idea of the proof.
Setting

S(D)={X €Sny1: X4 =0,X,, =0} = {( Nea | 0 ) : Xgz € SN}, (13)

0 0

we have

Lemma 4.2 Assume (H1)-(H4). Then, for allp € D — {0} and X € §(D), we have
F*(p, X) = F.(p, X). Moreover F*(0,0) = 0 = F,(0,0).

This lemma is proved at the end of the section. It suggests that we may use in the proof
of the theorem test-functions ¢ such that D?¢ € S(D) when Dy € D. By this way, one
does not see the discontinuities of F' in the proof.

Proof of Theorem 4.1. Without loss of generality, we can assume that v; and vy are
bounded. We recall that we write z for a point z = (z,y) € IR" x IR and by |z| we mean
(|z[2+y?)'/2. We argue by contradiction, assuming that there exists (29, o) € IRV x[0, T)
such that (v; — v9)(20,%9) > 0. We introduce the function

vlt

4
xr1 —
= | . 2' = 90(7«1 —22)

|y1 -
¢(zl’z2) - o4 + et

which is chosen in order to ensure that D?*p(Z) € S(D) when Dyp(Z) € D (for the
definitions of D and S(D), see (7) and (13)). We then set

Ms,a,n = sup {Ul(zla t) - UQ(ZQat) - QS(Zla ZQ) - a/(|21|2 + ‘ZQ|2) - 7775} .

RN+1x RN +1x[0,400)
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At first, it is clear that M, ,, > 0 for «, n sufficiently small since ¢(zp, 29) = 0. Moreover
M, ., is achieved at some (Z1, Z,?) by the boundedness and the semicontinuous properties
of v; and vy. Actually Zz; and Z; depend on «,¢&,n, but we omit this dependence in the
notation for simplicity.

When ¢ = 0, we have

Z1 — T | — B2
gl B gl
Ty — Zo|* | — Do/t
B g B g

0< M.y < v1(2,0) —vy(%,0) — —a(|z” + |2%)

< wo(21) — vo(22) — oz + |2]?)

which leads to a contradiction using the uniform continuity of vy. Thus, it cannot exist
a subsequence of parameters (g, ) going to (0,0) such that £ = 0. Therefore, we can
suppose that ¢ > 0 for € and « sufficiently small.

From the fundamental result of the Users’ guide to viscosity solutions [15, Theorem
8.3], for every p > 0, we get a1, as € IR and X,Y € Sy, such that

(al, DgD(Zl - 22) + 2@21,X + 20[[) € 752’—’—(1)1)(21,7?),
(CLQ, D(,D(Zl — 22) - 20422, Y — 204[) € ’ﬁz’_ (UQ)(ZQ, 7?)
and
1 I 0 X 0 A+2pA% —(A+2pA?)
Canan (g 9)< (5 S ) < (Lt (14)
for some a; —as = n and A = D?*p(z;—2,). We compute, for every Z = (Z,, Z,) € RY xR,

1 4 (27,0 7o+ |Z2T| 0
Do(2) = 5220 7)) and 4= Dp(z) = 5 (PLB T LD

p
Since M; 4, > 0, we get
¢(21, 2, 1) + a(|21* + | 2*) < [loalloe + [[v2]loo

(recall that vy and v are assumed to be bounded). It follows that

ali)rgr oz, ali,%l+ alZ| =0, (15)
|Z1 — Z3| is bounded as a goes to 0. (16)

From (16), (15) and (14), we obtain that X and Y are bounded when « goes to 0. It
follows easily that aq,as are also bounded; thus we can extract subsequences such that
21— Z9 — Z and

(al,Dga(Zl — 22) + 2&21,X + 2011) — (6_1,1, DQO(Z),X) S fp2’+(7)1)(21,i),

(CI,Q, Dap(il — 22) — 20z, Y — 2&[) — (&2, DQO(Z), Y) € ,P2’_(’U2)(22, i),

14



when o goes to 0. Note that X,V satisfy also (14) with A = D?p(Z). Writing that v; is
a subsolution and vy a supersolution of (6), we get

n+ F.(Dp(Z), X) = F*(Dp(Z),Y) <0. (17)

Now, if Dy(Z) ¢ D, then we are done since (14) implies that X < Y and since in this
case I'* = F, = F' is degenerate elliptic.

But, when Dy(Z) € D, we need more information about X,Y in order to get the
contradiction. At first, Dy(Z) € D implies Z, = 0; thus

D2¢(Z):(22w®Z%+‘Zw\QI}8> c 5(D). as)

At this step, we would like to apply Lemma 4.2 but we need first to transfer on X, Y the
suitable property of D*p(Z), namely D?*p(Z) € S(D). To this end, we state

Lemma 4.3 If D*p(Z) € S(D), then there exist X',Y' € S(D) such that
X<X'<y'<v.
Moreover, X' =Y' =0 when Dp(Z) = 0.

We postpone the proof and complete the one of Theorem 4.1. Taking advantage of the
ellipticity of F* and F, together with Lemma 4.2, we get from (17)

n+ F*(Dp(Z),X') — F*(Dyp(Z),Y") <0.

Since X' <Y’ the ellipticity of F** leads to a contradiction. It achieves the proof of the
theorem. 0O

We turn to the proof of the lemmas.

Proof of Lemma 4.2. Let us consider ((p;,0),X) € D x §(D). It suffices to see that
F(p, X +Y) has a limit when (p,Y) — ((ps,0),0), (p,Y) € (BV*! = D) x Sy41. Since
X € §(D), we have

F(p,X+Y) =F(p,X)+ F(p,Y)

Py Py Py Py Py

At first, from (H1), (H2) and (H3), when ||Y|| <&, we obtain

Px Pz Pz _ Pa
Tr|b|—— Ym—2Yz®—+Y—®—>H§Oe — 0. 19
‘ [ < ) < Y Py yypy Py ()5_’0 (19)
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If p, =0, then p = 0 and (19) implies that £*(0,0) = 0 = F,(0,0). If p € D — {0}, then
pz # 0 and from (H4), we get

lim Tr [b <—&> Xm] = T [boo (/| P) Xiza] -
p—+(pz,0) y

It achieves the proof of the lemma. O
Proof of Lemma 4.3. We set A = D?p(Z), B= A+ 2pA? (see (14)) and B; = B + 61

for § > 0. Note that B € S(D) and B > 0 as we can see it with the help of Formula (18).
Moreover, we get from (14) that

(Xp,p) —(Yq,¢) <(Blp—q),p—q) < (Bs(p— q),p — q). (20)

It provides in particular that X < Bj (respectively =Y < Bs); thus (X — Bs) (respectively
(Y + By)) is invertible. We then obtain X' using a sup-convolution. We set, for every
p,r € RNt and £k > 1,

F.(p) = (Xp,p) — (kBs(p —r),p — ) (21)

and consider sup Fy(p) which is well-defined. For every h € IRV,
peRN

(DF.(p), h) = 2(Xp, h) — 2(kB;s(p — ), h)
which provides that the supremum is achieved for
p= (k‘B5 - X)_lkB(jT

(note that (kB; — X) is invertible since X < B; < kBj). Next, an explicite but tedious
computation yields a matrix X’ € Sy, such that

sup Fr(p) = <XIT’ T>'

pEIRN+1

Taking successively the particular value p = r and p = 0 in (21) we get X' > X and
X' > —kBjs. Similarly, we can construct Y’ by setting, for k£ > 1,

inf {(Yp,p)+ (kBs(p — 5),p— )} = (Y's,s).

pcIRN+1

We obtain a matrix Y satisfying Y’ <Y and Y’ < kB;.
From (20), we get
(X'r,r)y — (Y's, s)
< sup {(Bs(p—q),p—q)— (kBs(p —r),p— 1) — (kBs(q — 5),q — )}

p,qERN+1
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for any 7, s € IRV 1. An explicit calculation of this supremum yields
<XIT, T> o <YIS, S) < <B(5(T - 8)’T - S)'

By taking 7 = s, we obtain (X'r,r) — (Y'r,r) < 0 for every r € IRN*L. It follows
—kBs < X' <Y' < kBs. Now, letting § go to 0, up to extract a subsequence, we get two
matrices, still denoted by X', Y’, such that

—kB < X' <Y'<kB. (22)

Recalling that B € S(D), we get first that X; = Y/ = 0. Then, from (22), for any
r € RN*!, we have

(X'r,ry = (XyuTay o) + 2(X,,, 1)y < k(Br,r) < K|rg|?

xyY? T

for some positive constant K. Taking tr, instead of r, for ¢t € IR, we get

tz(Xg'mm, Te) + 26(X,,, T5)Ty < Kt |r,|?

y?

which provides (X,,, ;) = 0 dividing by ¢ and letting ¢ go to 0" or 0~. Since it holds for
any 7, € IRN we are done. The same arguments hold for Y. Finally, if Dp(Z) = 0, then
Zy =0,Z, = 0; it implies A = B = 0. From (22), we get X' = Y’ = 0 which completes
the proof of the lemma. O

4.3 Existence of solutions

Our result is the

Theorem 4.2 Assume (H1)-(H4). For every vy € UC(IRNY), there erists a unique
v € UC (RN x [0,400)) solving (6) with initial data v.

The proof uses the classical Perron’s method, introduced in the framework of viscosity
solutions by Ishii in [26] (see also [2], [5] or [15]). The application of this method in our
case does not present any special difficulties. Nevertheless, we provide a proof for the
readers’ convenience.

Proof of Theorem 4.2. The uniqueness part comes immediately from Theorem 4.1
and because of Lemma 4.1, we can suppose that vy is bounded. We divide the proof in
different steps.

Step 1. We construct a solution v € C(IRN*! x [0, +00)) when the initial data is smooth.
Let vy € C?(RM T )NW2>(IRV*!) and define, for any C > 0, two functions u, v by setting

v(z,t) := —Ct +vy(z) and 7v(z,t) = Ct+ vg(2)
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for any (z,t) € RM™' x [0, +0c). It follows from (H1)—(H3) that the nonlinearity F
appearing in (6) is bounded on bounded subsets. Therefore, C' may be chosen large
enough in order that v and v are respectively sub and super solution of (6).

Consider then the set F of subsolutions of (6) w such that v < w < 7. Set then for
every (z,t) € RN x [0,4+00), v(z,t) = sup,ecrw(z,t). The set F is nonempty and v
is well-defined. Thus, we get from the comparison result and classical arguments of the
Perron’s method that v is a discontinuous solution of (6).

Now, we also have from the definition of v that v*(-,0) = v,.(+,0) = vy. Thus we deduce
from the comparison result that v* = v, = v which is the desired continous solution.

Step 2. We show that the solution v built in Step 1 is actually in BUC(IRN ™! x [0, 400)).
First of all, since the constant functions are smooth solutions of (6), the comparison result
provides that v is bounded, namely ||v|| < ||vo||, where here and below, || - || will denote
the sup norm on continuous functions removing the set where they are defined when there
is no ambiguity.

Next, from the definition of v, for all A > 0, we have

v(-,h) =vy — Ch <wv(-,h) <vg+Ch=70(-,h) in RN (23)

From Theorem 4.1 and since the nonlinearity in (6) depends only on (Du, D?u), the
function v(-, -+ h) is a solution of (6) with initial data v(-, h) and v & C’h are solutions of
(6) with initial data vy = C'h. Thus Theorem 4.1, together with (23), yields

v—Ch<v(-+h) <v+Ch in RN x [0, +0c0).

It provides a modulus of continuity in the time variable which is independent of the space
variable. Arguing in the same way with translation in space ug — ug(- + k) we obtain a
modulus of continuity for the space variable which is independent on the time variable.
It proves that v € BUC(IRN*! x [0, 400)).

Step 3. The general case when vy € BUC(IRY ™). Using a classical convolution proce-
dure, we construct a sequence (v}),env of functions v} € C*(IRNT1) N W2 (IRN*1) such
that [|jvo—vf|| < 1/n. It follows —2/n+v] < vf* < v§+2/n for m > n. According to Steps 1
and 2, we can consider, for every n € IV, the unique solution v" € BUC (IRN*! x [0, +00))
of (6) with initial data v}. Proceeding as in Step 2, we deduce from the previous inequal-
ity that, —2/n +v" < v™ < o™ + 2/n for m > n, Thus (v"),eny converges uniformly in
IRN*! x [0, +0c) to some function v which is still bounded uniformly continuous. From
the stability result, v is a viscosity solution of (6) with initial data v,. It achieves the
proof of the Theorem. O

4.4 Examples

We give some examples of pdes like (4) which enter in the very singular case.
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1. In addition to the mean curvature equation for graphs (1), we can deal with the non
geometric mean curvature equation

ou . Du

T vt =
ot I+ |Duf?

(24)
or equations like

ou Ay
= > 1. 2
o (+Dupe % @2 (25)

These equations lead to a geometrical equation like (6) with a singularity only at |Dv| = 0
and they satisfy the assumptions of the classical framework.

2. Consider a generalization of the mean curvature equation for graphs, namely

0

6—1‘ —Tr [(I - g(Du)Du® Du)D?u] =0, (26)
where ¢ is a continuous function from RY into IR. In this case, b(qg) = I — g(q)g ® ¢
is symmetric nonnegative and satisfies (H1)—(H3) if and only if there exists a positive
constant C such that

1 C 1
W (1 — W) S g(Q) S W for every q € RN_ (27)

Using the notations of Section 3, for every ¢ € S¥~1, we have by, (q) = I — ¢ ® ¢ and
Co(g) = 0; thus (H4) and (H5) are fulfilled and this equation falls into our study.
Concerning (H6), we have

0 < (b(Ag)Ag, Ag) = N*(1 — N%g(\g)) < C.

We cannot conclude for a limit for all functions g; it means that the last assumption does
not hold in general and this equation is not covered by the classical framework in the
whole generality. We relate in detail such a situation below.

3. We turn to an explicit example of pde like (4) which leads to a geometrical equation
whose set of singularity is exactly D and is not removable. Consider

o~ LD phuDu DY) i B x (0,7), (29)

where f: RN — IR is any bounded, nonnegative function. In this case,

_ flg)
b(q) = WCJ X q.
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Assumptions (H1)-(H3) are clearly satisfied and, for every ¢ € R™, b(\g) — 0 as
A — +oo; thus (H4) holds. It follows that this equation is covered by “the very singular
case” of this section. It leads to a geometrical equation like (6) with

_&) Pz ® Py
py) (Ipzl* + p})?
for every p = (pg, py) € RN and X € Syy1.

For simplicity, set N = 1 and f(¢) = 1 + cosq. It follows F*((p,0),X) = 0 and

F.((ps,0),X) = —2X,,, for every p = (p;,0),p, # 0 and X € S, such that X,, > 0.
Therefore, in general

F(p,X)=-Tr [f ( (02 Xz — 20y Xy ® Do + XyyPo © Pz |

F*#F, onD={p:p, =0}

It shows that we cannot remove the singularities of F' oustide 0. Thus (28) does not
satisfy the assumptions of Section 3.

5 The level-set approach

In this section, for the sake of completeness, we recall the basic ideas of the level-set
approach and we apply them to Equation (6) both in the classical and very singular
framework. We refer to [18], [13], [10], etc. for a more complete description of this
approach.

We are given a triplet (T, Qf, Qg ), where Qf, Qg are disjoint open subsets of RYT!
and [y = (QO+ U Qa)c. In general, one has in mind [y = 9Qf = 99, . Note that these
sets form a partition of IRN*! and I’y can be thought as being an hypersurface.

Let vy be any uniformly continuous function whose 0-level-set is exactly 'y, namely,

[y ={z € R"*" : vy(2) = 0}, (29)
and such that
{z€e RN i wy(2) >0} =9Qf and {z€ R :0(2) <0} = Q. (30)

This choice of signs defines an orientation of I'y making possible to distinguish an “inte-
rior,” §)f, and an “exterior,”(); . Secondly, it is always possible to find such a function v
by taking, for example, the signed-distance to I'y defined by

+dist(z,Ty) if 2 € Qf,

d(z,To) := { —dist(z,Ty) if z € Qy, (31)

where dist denotes the usual positive distance. Clearly d(-,T'y) is Lipschitz continuous in
RN+,

We then define the generalized evolution of (T'g, f, Q) by the family (T'y, ", Q7 )0,
using the
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Theorem 5.1 Under the assumptions of Theorem 3.1 or 4.2, there exists a unique solu-
tion v of (6) in UC(IRN*! x (0,400)) with initial data vo. Moreover, if 5y € UC(IRNT!)
satisfies
{’50 = 0} = Fo, {’170 > 0} = Qg— and {T)() < 0} = Qa,
and if v € UC(IRN*! x (0,400)) is the viscosity solution of (6) with initial data ¥y, then
{v(-.t) > 0} = {8(-,) > 0} == O,

{v(-,t) =0} ={o(-,t) =0} :=T.
This results implies that the family (T, ), Q; );>0 exists and is uniquenely defined in-
dependently of the choice of the representant vy € UC(IRVT!) satisfying (29) and (30).
The set U [y x {t} is called the front associated to 'y by (6) and I'; is the front at time
£>0
t. Note that, at least formally, I'; evolves with a normal velocity equal to
Va(2) = —F(DA(-, ') (2), D*d(-, T)(2)),

for z € T';.

Proof of Theorem 5.1. We give a proof inspired by Ishii’s one (see [27]). We only show
that if {vy > 0} C {¥ > 0} then this inclusion remains true for all ¢ > 0, i.e. {v(-,t) >
0} € {o(-,t) > 0}. The other inclusions are obtained by straighforward adaptations. From
Theorem 3.1 or 4.2, v, € UC(IRY ™ x [0, +00)) and we recall that the Hyperbolic Tangent
function (denoted by tanh) is a bounded uniformly continuous increasing function. Then,
using Lemma 4.1, we obtain that tanh(v) is a bounded uniformly continuous solution of
(6) with the bounded initial data tanh(vg). Next, we introduce the uniformly continuous
increasing function 7 (r) := max(r,0) and claim, thanks to Lemma 4.1 once more, that
6+ o0 and #* otanh(v) are both uniformly continuous solutions of (6). Finally, we introduce
the lower-semicontinuous function

O(r) =

+2 if r >0,
0 if <0,

and observe that 6 o 7 o ¢ is a lower semicontinuous supersolution of (6). In fact, the
previous changes are made in order to obtain the suitable initial condition

fo0 ov(-,0) > 6" otanh(v(-,0)),

which follows easily from the assumption {vy > 0} C {%, > 0}. Since 6% o tanh(v) is
uniformly continuous, we apply the comparison result 4.1 and get that, for all ¢ > 0,

600" (o(-,t)) > 6" otanh(v(-,t)).
We obtain {v(-,t) > 0} C {o(-,%) > 0} which ends the proof. O
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6 Connection between geometrical and quasilinear
pdes. Application to uniqueness

In this section, we specify the connections between (4) and (6) initiated in Section 2, and
in particular in terms of uniqueness for (4). Let u be a continuous viscosity solution of (4)
with initial data uy € C'(IR") and v be the solution of (6) with initial data d(-, Graph(u)).
The main question is whether

Graph(u(-,t)) = {(z,y) € RN : y — u(z,t) = 0}
and the front
Iy ={(z,y) € R"*" : v(z,y,t) = 0}

coincide for all £ > 0 or not. If the answer is yes, this obviously provides a uniqueness
result for (4) since the I';’s are uniquely determined because of Theorem 5.1. And one
may think that it is indeed yes by applying Theorem 5.1 together with Lemma 2.1 (ii)
with initial data 9y = tanh(y — ug(x)), which is a particular representation of Graph(uy).
Unfortunately, 9y is not uniformly continuous if ug is not uniformly continuous and, as
we pointed out in the introduction, we do not know how to prove Theorem 5.1 replacing
“By € UC(IRNT)” by “y € Cp(IRNT1)”; we do not know even if such a result is true.

Nevertheless, the inclusion used in Section 2 to derive the geometrical pde is always
true.

Theorem 6.1 Suppose that (H1)—-(H4) hold. Let u be a viscosity subsolution (respec-
tively supersolution) of (4) with initial data ug € C(IRYN) and v be a viscosity solution of
(6) with initial data d(-, Graph(ug)). For every t € [0, +00), we have

Graph(u(-,t)) C {(z,y) € R"*" : v(z,y,t) < 0}

( respectively Graph(u(-,t)) C {(z,y) € RN : v(z,y,t) > 0} ).
If u is a solution of (4), then
Graph(u(-,t)) C Ty for all t € [0, +0),

where (I'y)1>o is the generalized evolution associated to I'o = Graph(uy).

Proof of Theorem 6.1. Suppose that u is a subsolution. Define the nondecreasing
function 6% (r) := max(r,0). For all z = (z,y) € RY x IR, we have,

tanh [0+(y — uo(x))] > tanh [d(z, Graph(u))],
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since, on the one hand, |y — ug(x)| > dist(z, Graph(ug)); and, on the other hand, if y <
uo(z), then d(z, Graph(ug)) < 0 (for the definition of d, see (31)). From Lemma 2.1 (ii)
and from the invariance of supersolution of (6) under nondecreasing changes of variables
(see Lemma 4.1), we know that the function tanh[0" (y — u(z,t))] is a supersolution of (6)
with initial data tanh[#" (y — ug(z))]. Moreover, the function tanh(v) is a solution (thus
a subsolution) of (6) with initial data tanh(wvp). Applying Theorem 4.1 (see Remark 4.1),
we get
tanh [67 (y — u(z,t))] > tanh[v(z,t)].

Thus, y = u(z,t) implies that v(z,t) < 0 which proves the first inclusion. If u is a
supersolution, we repeat the same arguments with 6 _(r) := min(r, 0). We get the another
inclusion. To conclude for the last statement, it suffices to notice, on the one hand, that
u is a solution provided that u is both a sub- and a supersolution and, on the other hand,
that

[, ={z€ R""" :v(z,t) <0}n{z € RN :v(z,t) > 0}.

It achieves the proof of the theorem. O

In fact, the uniqueness for (4) and the so-called “fattening phenomena” for the front
are closely related as shown by the

Theorem 6.2 Assume that (H1)-(H4) hold and let uy € C(IRN). Suppose that the
front U, Ty X {t} associated to Graph(ug) has empty interior in RN x [0, 4+00). Then
(4) has at most one continuous viscosity solution with initial data uy.

We point out that Theorem 6.2 provides uniqueness only in the class of continuous func-
tions. But discontinuous solutions may also exist if the front looks like a rake for instance.
This result says nothing about the existence of solutions; it may be impossible to put any
continuous graph in the front.

In the litterature, the “fattening phenomena” may have different meanings. In The-
orem 6.2, we use the standard topological meaning. We first want to remark that as-
suming that T'; has empty interior in IR+ for all £ > 0 is stronger than assuming that
Ujso It X {t} has empty interior in RN*! x [0, 7). In fact, under our assumptions it turns
out to be equivalent. The proof of this equivalence comes from the preservation of inclu-
sion of sets under motions governed by (6) and the fact that, if we can put a ball in the
front at a time ¢, this ball cannot shrink instantaneously. We skip the proof and refer to
the one of Theorem 7.1 which is similar.

In Barles and Souganidis [11], a “no-interior condition” is considered, namely

UTrex{t}=0 (U Q; x {t}) =9 (U Q7 x {t}). (32)

>0 >0 >0

This condition is stronger than the topological one. When it is satisfied, we have a better
result.
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Theorem 6.3 Assume (H1)-(H4) and let ug € C(IRY). Suppose that (32) holds for the
front associated to Graph(ug). If u and @ are (possibly discontinous) viscosity solutions of
(4), then u, = U, and u* = @* in RN x [0, +00).

Contrarily to Theorem 6.2, this theorem provides a “weak” uniqueness result for discon-
tinuous viscosity solutions of (4). It is worth pointing out that stronger results providing
equalities like u* = @, and u, = @* in IRY X [0, +00) cannot be obtained by such geomet-
rical approach since a discontinuity of u or % can appear or, on the contrary, be removed
by a slight rotation of the axis in JRN*! and therefore such discontinuities have no real
geometrical meaning.

We refer the reader to Barles, Soner and Souganidis [10] and Ilmanen [24] for a more
complete discussion and results about the “fattening phenomena” or “non-empty interior
difficulty”.

We turn to the proofs.

Proof of Theorem 6.2. Suppose that there exist two solutions u;, uy € C(IRY x[0, +00))
of (4) with initial data u and define v to be the solution of (6) with initial data vy =
d(-, Graph(uy)). From the level-set approach, we have I'; = {v(-,t) = 0}. We will see that,
if u; and uy are different, then the front has nonempty interior in IRN*! x [0, +o00). If
u; # Uy, we can suppose that there exists (g, %) € RN x [0, +00) such that

Ul(iﬂo,to) — ’U/Q(,ZE(),t()) =e>0.

By continuity of u; and wus, there exists some ball B(xg, p), p > 0 and some 7 > 0 such
that

uy(z,t) —ug(z,t) > = >0 in B(xg,p) X [to, to + T]- (33)

DN ™

But, from Theorem 6.1,
Graph(uy (-, 1)), Graph(us(-,t)) C {v(-,t) =0} for all ¢ > 0.
To conclude, it suffices to show that

B(zo, p) X [to, to + 7] C | J T x {t}.

>0
We need a lemma whose proof is postponed.

Lemma 6.1 Under Assumptions (H1)-(H4), letv € UC(IRNT!x[0,+00)) be a solution
of (6) with initial data vy. If y — vo(z,y) is nondecreasing for all x € RN, then y —
v(z,y,t) is nondecreasing for all (z,t) € RN x [0, +00). In particular, the result holds if v
is the solution associated to the initial condition vy = d(-, Graph(ug)) where ug € C(IRY).
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From this lemma, we obtain
’U(J), yat) =0 for all (l‘,y,t) € B(anp) X [UZ(xatO)aul(xatO)] X [thtO + T]'

By (33), we obtain that B(xg, p) X [ua(x,ty), ui(x,to)] X [to, to + 7] has nonempty interior
in RN*! x [0, 400) which ends the proof. 0

Proof of Lemma 6.1. By assumption, vo(z,y + h) > vo(z,y) for all z € RNy € R
and h > 0. From the comparison result (see Theorem 4.1) it follows v(-, -+ h,t) > v(-, -, 1)
for all ¢ > 0, since v(-, -+ h,-) is a solution of (6) with initial data vy(-,- + h). It proves
the first part of the lemma.

It remains to show that the function (z,y) — d((z,y), Graph(u)) is nondecreasing
in the y variable when wug is continuous. To this end, consider z € IRM and yy > ;.
We suppose that yo > y; > ug(x). Indeed, the case ug(z) > yo > y; can be treated in
the same way with straightforward adaptations and the case yo > ug(z) > y; is obvious.
Assume by contradiction that

0 <ry:=d((x,ys2), Graph(ug)) < d((z, y1), Graph(ug)) =: 1,

and define uop(,,,,) as the restriction of ug to the ball B(x,71). From the definition of d
as an infimum, the hypothesis y; > ug(x) and the continuity of u, it follows that

Graph(uo 5, ,)) N B((z,y1),m1) C 0" B((z,vy1),71),

where 8~ B((x,y1),71) stands for the part B((z,y1),r1) of the boundary of B((z, 1), 71)
lying in the half-space {y < y;}. Since yo > y; and ro < 71, we get

Graph(uoﬁ(wl)) NB((x,y2),m2) =0
which gives a contradiction. O
Proof of Theorem 6.3. Let us show that u, = 4,. We argue by contradiction, assuming
that there exists (7,7) € IRY x [0, +00) such that u,(Z,t) > @.(%, ). From Theorem 6.1,

we have, for all ¢ > 0, Graph(a(-,t)) C I'y = {v(-,t) = 0}, where v is the solution of (6)
with initial data d(-, Graph(uy)). It follows from (32) that

U Graph(a(, 1) x {t} < |J 9 x {¢} 5

thus, there exists a sequence (Zp,Yn,t,) € RN'' x [0,+00) such that (z,,yn,t,) —
(Z,0.(Z,1t),t) when n — +oo and v(z,, Yn, t,) > 0 for all n > 0. From the nondecrease of
v in y (Lemma 6.1), we have y,, > u(x,,t,) since v(x,, u(z,,t,),t,) = 0. It follows

S i —
ue(2,1) < lim infu(zy, t) < lim infy, = @.(z, )
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which is a contradiction. We prove u* = 4* in the same way. O

The last result of this section is related to the empty interior condition of Theorem 6.2
and is inspired from the related results of Evans and Spruck [19] in the mean curvature
case.

If ug € C(IRY) and if vy = d(-, Graph(ug)), then the subsets {vy = A}, A € IR are the
graphs of functions u) € C(IR"Y). More precisely, for A > 0, the function w(x, ) := u)(z)

respectively w(x, A) := uy " (x)) is the unique viscosity solution o
tivel A 0)‘ is th i i ity soluti f

W A DwE=0 in R x (0,+00),
1))
(respectively

g_;# T DwP =0 in RY x (0,400) ),

We refer to Barles [4] for a simple proof of this claim. Our result is the

Proposition 6.1 Assume (H1)-(H}). Exzcept for a countable subset of values of A, the
fronts associated to the evolution of Graph(u)) has empty interior in RNT! x [0, 4+00).
In particular, there exists at most one continuous viscosity solution u* of (4) with initial
data uj).

We may interpret this result by saying that nonuniqueness for (4) is a “rare” event.

Noticing that u) | uo in C(IRY) as A | 07, we obtain that we can approach any
up € C(IRY) in a monotone way by a sequence of u) for which (4) has at most one
continuous solution. The interest of this result is that the uj)’s have in general the same
behaviour as wug. It means that we have actually uniqueness for a large class of initial
datas including functions with arbitrary growth.

Proof of Proposition 6.1. For the proof of the first part, we refer the reader to Evans
and Spruck [19]. For the second one, we just remark that if v is the unique solution of
(6) with initial data vy = d(-, Graph(ug)). Since, for every A € IR, v — A is the unique
uniformly continuous solution of (6) with initial data vy — A, at each time ¢, the front I')
associated to Graph(uy) coincides with {v(-,#) = A}. In particular, the fronts are disjoint
for different values of A and it follows, from there, that the family of values of A such
that J,so [} x {t} has nonempty interior is countable. To conclude, it suffices to apply
Theorem 6.2. O

7 A local L*° a priori bound

In this section, we use the relations between (4) and (6) to provide a local L*-bound for
the solutions of (4).
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Figure 1: Evolution of a graph with a ball which is put above it

In order to state the main result of this section, we introduce, for any function uy €

C(IRY),
My, (7, R) = max{ug(y),y € B(z,R)} and my,(z, R) = min{uy(y),y € B(z, R)}.
We have the following

Theorem 7.1 Under assumptions (H1)—(H4), if u € C(IR" x [0, +0c)) is a solution of
(4) with initial data uy € C(IRY), then there exists a positive constant C such that, for
allx € RN, t > 0, we have

My (2, V201) — V20t < u(z,t) < My, (z,V2Ct) + V2Ct.

Remark 7.1 This local L*°-bound is a direct consequence of the level-set approach and
it justifies the fact that we need at least some kind of degeneracy on b in the gradient
variable as it is implied by (H1)-(H4); indeed, clearly, such a bound does not hold for
the heat equation and therefore one cannot hope that such an approach applies for this
equation.

Proof of Theorem 7.1. The basic idea is that the geometrical evolution governed by (6)
preserves the inclusion of sets. Thus one can expect that the evolution of balls initially
put “under” (or “over”) the graph of a solution of (4) will provide some control on the
growth. This fact is illustrated in Figure 1 in the case of the mean curvature equation.

We take vg(z) = d(z, Graph(ug)) € UC(IRN*!) (where d is defined by (31)) and let
v be the unique uniformly continuous solution of (6) with initial data vy. In order to
prove the result, we aim at comparing v with subsolutions like those which appear in the
following Lemma whose proof is postponed.
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Lemma 7.1 We suppose that (H1), (H2) and (H3) hold. Fiz Ry > 0, 7o € IR" and
Yo € IR. Let ¥ : IR — IR be any smooth nondecreasing function. Then the function o,
defined for every (z,y,t) € RN x IR x [0, +00), by

(p(xa yat) = \II(R(Q) —2Ct - |$ - $0|2 - (y - y0)2)a
where C' = N(K; + Ko+ K3) + 1, is a (classical) strict subsolution of (6).

Let zp € RNty € (0,+00) and yy = M (x4, /2Cty) + v/2Cty, where C' is taken as in
Lemma 7.1. It follows

B((0,%0), V2Cto) C {(z,y) € RN 1y > ug(x)},

which implies

d (-,E((xo, W), \/20750)) < d(-, Graph(uo)) = vo. (34)
Let us define
(p(x,y,t) = \II(QCtO -2Ct - |£C - $0|2 - (y - yO)z),

with U(z) = 2/21/2Ct, for all z € IR. The function VU satisfies the assumptions of Lemma
7.1. For clarity, we set r = (|z — zo[2 + (y — 10)?)/2. From (34), we get

o, 0) = 7%(\/2% 1) < V20t~ r = d (- Bl(z0,w). v20R)) < o

Now, since ¢ is a function with quadratic growth at infinity and v is uniformly continuous,
we have that

min v —
RN‘HX[O,T}{ (P}

is achieved for every T" > 0 if one assumes that it is positive. Using Lemma 7.1, ¢ is a
strict smooth subsolution of (6); thus the minimum is necessarily achieved at ¢ = 0 which
is a contradiction. Since the previous arguments hold for every 7" > 0, we get finally

¢ <wv in R x [0, 4+00). (35)
By Lemma 6.1, we have
Graph(u(-,t)) C Ty(v) for every ¢t > 0. (36)
From (35) and (36), it follows that, for all ¢ > 0,

{o(t) >0} € {v(-,1) > 0} € {(z,y) € R"" 1 y > u(z,1)}.
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But
QD("E’ Y, t) 2 0= (.’13, y) € E(("Eﬂa yO), 2C(t0 - t))
By letting ¢t — t; and by using the assumed continuity of u, we obtain

u($0,t0) S Yo = M(.TO, \/QCto) + \/ZC’tO

The opposite inequality is obtained with straightforward adaptations. O
We end the section with the proof of the lemma and an example.

Proof of Lemma 7.1. Without loss of generality, we can suppose that o = 0 and

yo = 0. Moreover, from Lemma 4.1, we can suppose that U(z) = z for every z € IR. From
(H1), (H2) and (H3), we get

|F.(Dy, D*¢)| < N(K1 + K + K3)| D*| < 2(C - 1)
where we set C = N(K; + K, + K3) + 1. It follows

)
o + (D¢, D%) < =20 +2(C 1) £ -2 <0,

which achieves the proof. O

Example 7.1 Evolution of balls in the case of the mean curvature equation (1).
We recall that, in the case of (1), b is given by (11). Following the computations of Lemma
7.1, we have

Op [ ( Dw) ( 9 9 Dyp 5 Dgp _ Dyp
LT |b (=22 ) (Do —2D2 0 ® +D2 o ® = —2(C — N).
ot Dyo Y Dy WP Dye — Dyp

By taking C = N, we obtain that ¢ is in fact a classical solution of (6). Thus, by the level-
set, approach, it follows that the 0-level-set of ¢ evolves according to its mean curvature.
An easy computation shows that

Q(—)'— = {QD(U '70) > 0} = B((x07y0)7R0)7 [y = {QD(': '70) = O} = aB(($an0)7RO)7
and, for every ¢t > 0,
O ={p(, 1) > 0} = B((z0, %0), R(t)), Tt ={e(,",t) =0} =0B((z0, %), R(t)),

where R(t) = (R2 — 2Nt)'/2. We recover by this way the well-known result of Evans and
Spruck [18, Section 7.1]: balls remains balls for the mean curvature motion and they
shrink into a point for t* = R%/2N.
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8 The boundary of the front. Existence of discontin-
uous solutions

Theorem 6.1 provides the first connections between the front and the graphs of the solu-
tions of (4) when they exist. In this section, we describe more precisely the structure of
the front and obtain the existence of discontinuous solutions to (4).

For any continuous function ug, we consider the generalized evolution (I';);>o of Graph(uo)
and the uniformly continuous solution v of (6) with initial data vy = d(-, Graph(ug)). For
every (z,t) € RY x [0, +00), we define

ut(z,t) :=sup{y € R:v(zr,y,t) <0} and u (z,t) :=inf{y € R:v(z,y,t) > 0}.

Note that the functions u™(-,¢) and u~(-,¢) are defined such that their graphs are the
“upper-boundary” and the “lower-boundary” of the front I'; at each time ¢: see Figure 2.
We have the first properties

Lemma 8.1 Under assumptions (H1)—(H4), the functions u™ and u™ are locally bounded
in RN x [0, +00)). Moreover u™ € USC(IRYN x [0, +0c0)) and u~ € LSC(IRYN x [0, +00)).

Proof of Lemma 8.1. We make the proof for u™, the one for u~ being similar. We start
by proving that u* is well-defined and locally bounded. Looking at the proof of Theorem
7.1, we see that inequality (35) implies that, for every (x,yo,%) € RN x IR x [0, +00),
there exists a constant M > 0 such that

v>0 in B((zo,y0), M) x [0,%0/2].

Note that M does not depend on y, in the sense that v > 0 in every B((z¢,y), M) x
[0,%0/2] with y > yo, by nondecrease of y — v(z,y,t) for every (z,t) (see Lemma 6.1).
It proves that u™ < y, in a neighborhood of (zg,%y/2). The same reasoning holds with
straightforward adaptations to prove that u* is locally bounded from below.

We turn to the proof of the upper-semicontinuity of u™. Consider any sequence of
points ((Tn, Yn, tn))nemv such that (z,,yn,t,) € H = {(z,y,t) € RN x [0, +00) : y <
ut(z,t)} and (2, Yn, tn) — (x,y,t) as n — +o00. For every n, we have v(z,, Yn,t,) < 0.
Since v is continuous, by sending n to infinity, we get v(z,y,t) < 0 which proves that
(x,y,t) € H; thus H is closed. It ends the proof. O

Theorem 8.1 Suppose that (H1)—-(H4) hold. Let uy € C(IRY) and v be the solution
of (6) associated to the initial data vy = d(-, Graph(ug)). Then u™ and u™ are (possibly
discontinuous) viscosity solutions of (4) with initial data ug. Moreover, ut and u™ are
respectively the mazimal subsolution and the minimal supersolution of (4) with initial
data ug.
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Figure 2: front which fattens at time ¢t > 0

We refer to Figure 2 for an illustration of this theorem. Let us point out that this result
provides only the existence of a discontinuous viscosity solution to (4) for any continuous
initial data. We refer to Section 9 for optimal results of regularity of u™ and u~. We
give a geometrical proof of the theorem using the fact that characteristic functions of sets
which evolve are discontinuous solutions of (6).

We first introduce some notations. For any subset A C IR¥*! int(A) denotes the
interior of A in RN*! and 1 4 is the characteristic function of A defined, for any (z,y) €
RN by Na(x,y) = 1if (z,y) € A and 0 otherwise. For the sake of simplicity of
notations, when the set A = A; depends on ¢, we will denote by 1 4, the function (z,y,t) —

Lu, (.’L‘, y) .
We need the following lemma due to Barles, Soner and Souganidis [10].

Lemma 8.2 Let ug and v as in Theorem 8.1 and consider
Qf ={v(-,t) >0} and T, =int({v(-,?) >0}).

Then the functions g, and L~, are (discontinuous) viscosity solutions of (6).

Proof of Theorem 8.1. We make the proof for u* calling it u for clarity of notations.
The same reasoning holds with easy adaptations for u~. Let us start by showing that u
is a subsolution. Remembering that u is an upper-semicontinuous function by Lemma
8.1, we consider a smooth function ¢(x,t) such that v — ¢ achieves a global maximum of
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0 at (z,7) € RN x (0,400). It follows that u < ¢ and u(Z,t) = @(Z,%). Set ¥(z,y,t) =
tanh(y — ¢(x,t)). We claim that (Ig,). — ¢ achieves a global minimum 0 at (Z, u(Z, t), t).
By continuity of v, we have v(Z, u(Z,t),t) = 0; thus (1g,).(Z, u(Z,t),t) = 0. It implies
((1g,)s — ¥)(Z,u(z,t),t) = 0. It remains to check that ((1g,). — ¥)(z,y,t) > 0 for every
(z,y,t). If (1g,)«(z,y,t) = 0, then (z,y,t) € {v < 0}; thus, from Lemma 6.1, we have
y < u(z,t) < ¢(x,y,t). We obtain y — ¢(x,¢) < 0 and ((1g,). — ¥)(x,y,t) > 0 in this
case. Now, if (1g,).(z,y,t) = 1, then the same inequality holds since tanh < 1. It proves
the claim.
We compute the derivatives of ¥ and get,
o 99

Y —tanh’ - ETE D, = —tanh' - D¢, Dytp = tanh’,

D24 = tanh” - D¢ ® Dy — tanh' - D2,¢, D24 = tanh”, DZ¢ = —tanh” - D .

By Proposition 8.2, (1.g,). is a supersolution of (6); writing the viscosity inequality at the
point (z,u(Z,t),t), a calculation leads to
0
5 ~ T [b(D=4)D3,0] <0,
which shows that u is a viscosity subsolution.

We continue by proving that u, is a supersolution. Consider a smooth function ¢ such
that u, — ¢ achieves a global minimum of 0 at (z,%) € R" x (0, +00). We claim first that
(ILo,)*(Z, us(Z,t),t) = 1. Otherwise, (Z,u.(Z,t),t) lies in the interior of J,5,T's % {t}; it
means that there exists € > 0 such that N

v(z,y,t) =0 for every (z,y,t) € B(Z,¢&) X [u.(Z,1) — &, u.(Z,1) +¢] x [t — e, + €.

By definition of u, it follows that u(z,t) > u.(Z,?) + ¢ for every x € B(Z,¢) and t €
[t —e,t+ ¢]. It leads to a contradiction and proves the claim.

Defining ¢ as above, we observe that the function (1g,)* — 1 achieves a global max-
imum point at ((Z,u.(Z,7)),?). Indeed, if (Lg,)*(z,y,t) = 0, then (Lg,)* — ¢ < 1.
If (1g,)*(x,y,t) = 1, then (z,y,t) € {v>0} = {y > wu.(z,t)}, since u, is lower-
semicontinuous. It follows y > ¢(z,t) and tanh(y — ¢(z,t)) > 0; thus (1g,)* —¢ < 1 and
we are done in any case. Using that (1g,)* is a subsolution of (6) by Proposition 8.2, we
conclude as above.

It remains to check that the initial condition holds. On the one hand, from the
continuity of v, we have v(x, u(z,0),0) = 0. It implies u(z,0) = uy(z) since [y is exactly
the graph of the continuous function ug. On the other hand, looking at the proof of the
supersolution, we see (z,u,(z,t),t) € Q, for every (z,t) € IRN x [0, +00). By continuity
of v, we get v(z,u.(z,t),t) = 0. For t = 0, it means u,(z,0) = ug(x).

Finally, note that from Theorem 6.1, the graphs of all subsolutions of (6) lie in {v < 0}
and in the same way the graphs of all supersolutions of (6) lie in {v > 0}. Therefore, u~
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is the minimal subsolution and u™ is the maximal supersolution of (6); and the proof of
the theorem is complete. O

Remark 8.1 If the “no-interior condition” (32) holds, then Theorem 6.3 implies (u™), =
v~ and (u7)* = ut in RY x [0,+00). But even in this case, we cannot conclude to
the existence of a continuous viscosity solution since the front may look like a Heaviside
function.

9 Fronts with more regularity

As mentioned before, the extremal solutions u* and v~ have no regularity in general. We
give below some conditions under which they are smooth. It is the case, when the front
is associated to (4) and a locally Lipschitz initial data ug, as soon as the solutions u of
this equation satisfy local L*>° and gradient bounds. On one hand, these bounds allows
the construction of smooth solutions for any continuous initial data. On the other hand,
using approximation methods, we see that this regularity holds for the extremal solutions.
We start with a more precise result in the case of the mean curvature equation.

Theorem 9.1 Let ug € C(IRN). Then the extremal solutions u™ and v~ of (1) with initial
data ug are in C°(IRYN x (0,+00)) N C(IRN x [0, +00)).
We recall that the smooth existence for uy € VVli’Coo (IRY) is proved in Ecker and Huisken
[16] (see also Chou and Kwong [14]) using a gradient estimate. Here, following Angenent
[1], we take advantage of an interior gradient estimate of Evans and Spruck [18] to prove
the result for initial data uy which are merely continuous.

In the general case, we have

Theorem 9.2 Assume that b satisfies assumptions (H1)-(H4) and

b(q) > A(|q|)Id (37)

for some nonnegative continuous function A in IRYN. Suppose that for any ug € VVI})’COO(RN)
there exists a smooth solution of (4) with initial data uy satisfying a local gradient bound,

namely
”DUHOO,QR,T < K’

where Qg7 := B(0, R) x [0,T] and K is a positive constant which depends only on R, T,
[ulloo,0pr @nd || Duolloo Bio,rr): with R = R'(R,T) > 0. Then the extremal solution u*
and u~ are smooth.

The above theorem applies to more general quasilinear equations than (1) (see examples
at the end of the section) but it requires the initial data to be locally Lipschitz continuous.
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Remark 9.1 Under the assumptions of Theorem 9.1 or 9.2, if I'; has empty interior
in RN*! for all ¢ > 0 (or equivalently the front | J,., v x {¢t} has empty interior in
RN*! x [0,T)], see Section 6), then the smoothness of the extremal solutions together
with Theorem 6.2 implies u* = u~ in RY x [0, +00). It follows T’y = Q) = 9Q; for all
t > 0. In this case, we have in particular uniqueness and comparison for the discontinuous
solutions of (4). Moreover, the weak notion of propagation given by the level-set approach
coincides with the classical notion in differential geometry.

Before turning to the proof of the theorems, we state a lemma concerning the time
regularity of solutions for which the space regularity is already known. We recall that a
function m : IR™ — IR" is said to be a modulus of continuity if m(0") := lim, ,o+ = 0
and m(s +t) < m(s) +m(t) for any s, > 0.

Lemma 9.1 Let R >0,0<ty < T, zo € RY andu € C(B(zo, R) X [to, T]) be a viscosity
solution of the equation

2_1: + G(z,t, Du, D*u) =0 in Qpyyr = Bz, R) X (0, T), (38)

where G € C(B(xg, R) X [to, T] x RN x Sy) is degenerate elliptic. If m denotes a modulus
of continuity of u(-, o), i.e. if, for every x,y € B(xy, R), we have

u(y, o) — u(z, to)| < m(|y — ),

then there erists a modulus of continuity m depending only on G, m and ||ul|, g, o Such
that, for every t € [ty, T] and x € B(xo, R/2),
|u@,t) — ulx, to)| < M|t —tol). (39)

Moreover, if m(r) = Lr for some L > 0 and if
|G(z,t,p,X)| < M(1+|X|) on B(wg, R) x [ty,T] x B(0,L) x Sy (40)

for some constant M > 0, then there exists a positive constant L = L(L, M, ||ul|
such that m(r) = Lr'/2,

OOaQR,tO,T)

Of course, the key point in Lemma 9.1 is the fact that /m depends only on G, m
and ||u||oo’§R,t0,T. As a by-product of this result, it is clear that a uniform local L*°—
bound together with a uniform local modulus of continuity in space for the solutions of
equations like (38) implies a uniform local modulus of continuity in time if the equations
satisfy also uniform properties. In the statement of Lemma 9.1, for the sake of simplicity
of formulation, we do make precise the dependence with respect to G, except in the second

part of the result; this dependence will appear clearly in the proof.
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Proof of Theorem 9.1. We divide the proof in two steps.

Step 1. We construct a smooth solution for any continuous initial data. Let uy € C(IR")
and (ul) r>o be a sequence of uniformly continuous functions converging to ug, uniformly
on every compact subset. Thanks to classical results for viscosity solutions (see [13]
and references therein), we associate to each ul a continuous viscosity solution uf of
(1) with initial data uf. But the uf satisfy the L* local bound of Theorem 7.1, and,
from Evans and Spruck [19], we learn that the u® are in fact smooth and satisfy the
interior local gradient bounds proved in [19]. From Lemma 9.1 we get then interior
local modulus of continuity for the u%; therefore, up to an extraction argument, we can
suppose that the family (u®)z-o converge locally uniformly in IR" x (0, 4+00) to a function
u € C(IR"N x (0,400)) which is, by a classical stability result, a viscosity solution of (1)
in RY x (0+ o).

It remains to check that the initial condition is continuously satisfied. In view of
Lemma 9.1, the u® admit the same modulus of continuity at time ¢ = 0 and it follows
that u is continuous at time ¢ = 0 with u(-,0) = wuo. Finally, from [19] we get that,
u € C®°(IRN x (0,+00)) as a continuous solution of (1).

Step 2. We show that u™ is smooth; the proof for u~ is the same with straightforward
adaptations. Let ug € C(IRY). Consider, for any A > 0, the function u} defined by

Graph(up) = {d(, Graph(uo)) = A},

and the unique uniformly continuous solution v of (3) with initial data d(-, Graph(uy))
(we recall that (3) is the geometrical equation associated to (1)). By Step 1, we associate
to each A\ > 0 a smooth solution u* of (1) which satisfies, from Theorem 6.1, that, for all
t>0,

Graph(ur(-, 1)) C {v(-,t) = A} C {v(-,t) > 0}. (41)

Now, as in Step 1, the family (u*),s satisfies the interior gradient bound of [19]; thus, us-
ing Lemma 9.1 and the same arguments as above, we can assume that u* converges locally
uniformly to a solution u of (1) with initial data ug. From (41), we get that u > u™ and
thus v = u™. It follows that u™ is continuous and therefore smooth thanks again to [19]. O

Proof of Theorem 9.2. Since the proof is close to the previous one, we only give a
sketch of the proof. We use arguments of Step 2 in the proof of Theorem 9.1. The only
change is that, using the ellipticity condition (37), we get, in addition to the gradient
bound, local bounds for high order derivatives of the u, (see Ladyzenskaja, Solonnikov
and Ural’ceva [29]). It follows that, up to an extraction, we can assume that the family
(ux)aso converges locally uniformly to a smooth function u which is also a solution of (4).
We conclude as in the proof of Theorem 9.1, that v = u™ is actually smooth. O
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It remains to give the proof of the lemma.

Proof of Lemma 9.1. The main step in the proof consists in showing that, for any
1 > 0, one can find positive constants C, K > 0 large enough, depending only on n, G, m
and ||ul|o 6y, » Such that, for any z € B(zo, R/2)

u(y,t) —u(z,ty) <n+Cly — x> + K(t —ty) for every (y,t) € Qry 1, (42)
and
u(y,t) —u(z,tp) > —n— Cly — 2> — K(t —ty) for every (y,t) € Qry7- (43)

We only prove (42), (43) being proved in an analogous way. In the sequel, z is fixed in
B(.I(), R/Q)
First, if we take

8||u||oo,QR,t0,T

R? ’

then (42) is clearly fulfilled on 0B(zq, R) X [to,T], for every n, K > 0 and for every
x € B(xo, R/2). Tt is worth noticing that C' may be taken independent of z.

Next, we would like to ensure that (42) holds for ¢ = ¢;. To this end, we argue
by contradiction assuming there exists 7 > 0 such that, for every C' > 0, there exists
yc € B(zg, R) such that

C> (44)

w(ye, to) — u(z, to) > n+ Clyc — z|*. (45)

2||u| oo
o — o] < ) D= tnsor. (46

Thus |yc — x| — 0 when C' — oco. Coming back to (45), we get

It follows

m(lyc — z]) > u(yc, to) — u(z, o) > n+ Clyc|> > 1.

Using (46), the inequality m(|yc —z|) > n leads to a contradiction as soon as we choose C'
large enough and this choice depends only on 7, ||u||co,0p,,, » and m. Therefore, by choosing
C' large enough, we have that (42) is satisfied on the parabolic boundary (0B(zq, R) X
[to, T]) U (B(x0, R) X {to}).

Finally, using the continuity of G, we can take K large enough in order that the
function (y,t) — u(z,t0) + n+ Cly — x> + K(t — to) := x(y,t) is a (smooth) strict
supersolution of (38). Thus, since v is a viscosity subsolution of (38), by using only the
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definition of viscosity subsolution, it is clear that maxg tO,T{u— X} is necessarily achieved
on the parabolic boundary of Qg 7. And (42) follows.
The first part of the lemma follows by observing that all our constants depend only,
when 7 is fixed, on G, m and ||u[| 0., » but not on z € B(zo, R/2).
If we assume that m(r) = Lr for some positive constant L, the condition (42) at time
t =ty reads
u(y,to) — u(z,ty) < Lly — x| < n+ Cly — z|?,
for every y € B(z, R). Writing that the discriminant of Cly — z|? — Lly — z| + 7 is
nonpositive, we get that it holds if ,
>
= 1
Using (40), x is a supersolution if K > M (1 + 2C'). Introducing these estimates in (42),
we finally obtain for y =z

u(z,t) —u(z,to) <n+ M <1 + g—;) (t — to),

for all ¢ € [tg,T]. An easy optimization with respect to n of the right-hand side term of
the previous inequality gives that, for all ¢ € [ty, T,

u(z,t) — ulz, tg) < LVt — 1o,
for some positive constant L depending on M and L. This concludes the proof of the
Lemma. O

We conclude this section with examples of equations satisfying the assumptions of
Theorem 9.2. The following equations come from the paper of Chou and Kwong [14] (see
Section 4.4 for the precise statement of the equations).

1. The non geometric mean curvature equation (24) and equation (25) are associated to
a front with smooth boundary when ug is locally Lipschitz continuous.

2. Consider equation (26) with g(¢) = ¢(|q|) continuous in IRY. Suppose that

1 C 1

— (1 - —) <g(r)< " for every r > 0, (47)
and, in addition, that ¢ is a C' function such that

!
WETS S T

for every r > 0. Then Chou and Kwong [14] gives the gradient bound the conclusion of
Theorem 9.2 holds. Note that (47) is nothing but (27) with a strict inequality on the
right-hand side. This strict inequality ensures that the condition of ellipticity (37) is
satisfied.
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10 Application to convex solutions

In this section, we are interested in convex solutions of (4). We also derive some properties
for the generalized evolution of convex sets.
Our main result is

Theorem 10.1 Assume (H1)-(H4) and let ug be a convez function in IRY.

(i) Suppose that uy € USC(IRY X [0,+00)) (respectively ug € LSC(IRY X [0, +00))) is
a viscosity subsolution (respectively supersolution) of (4). If ui(-,0) < ug < ug(-,0)
in RN, then uy < uy in RY x [0, +00).

(ii) There exists a unique continuous viscosity solution u to (4) with initial data u.
Moreover u(-,t) is convex for all t > 0.

It is worth pointing out that, in the previous theorem, the existence and comparison
properties hold without any restriction on the growth at infinity of the solutions or the
initial datas. Moreover, they hold both in the classical and very singular framework.
Therefore, we have a complete answer in this case.

In the particular case of the mean curvature equation, the solution is in addition
smooth.

Theorem 10.2 If the initial data uy € C(IRY) is convex, then there exists a unique
continuous solution u of the mean curvature equation for graphs (1); moreover u €
C® (RN x (0,+00)) NC(IRY x [0,+00)) and u(-,t) is convex for any t > 0.

Theorem 10.1 and 10.2 strongly justify the geometrical approach to study (4): in the
case of convex solutions, the existence of solutions follows (rather) easily from the L°°-
bound of Theorem 7.1 since it implies also a gradient bound; the existence proof can be
done either using Theorem 8.1 or directly on (4) as in [7]. For the comparison result,
we point out that working on (6) as we do it here, in particular for the mean curvature
equation, provides better results: in [7], we obtain a comparison result working directly
on (4) by using a Kruzkov change (u — —exp(—u)) but with stronger assumptions on b
and uy which was assumed to be coercive.

Below, we will give a proof which is simpler and essentially based on the preservation
of convexity for geometric motions governed by (6); more precisely, we have

Theorem 10.3 Suppose that (H1)-(H4) hold. Let vy € UC(IRY) be a convex (respec-
tively concave) function and v be the associated solution of (6). Then v(-,t) is conver
(respectively concave) for any t > 0.

Proof of Theorem 10.3. This result is a consequence of the one established by Giga,
Goto, Ishii and Sato in [21] that we extend to the very singular case by using an approx-
imation argument.
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Step 1. We define, for any ¢ > 0 and (p, M) € Rt x Sy,

Fup, M) = {sos(l/py)F(p, M) i py #0

0 if p,=0
where F' appears in (6) and ¢, is a smooth nonnegative real valued function with compact
support in [—2/e,2/¢| and such that ¢ (r) = 1 for r € [—-1/e,1/e]. The F.’s satisfy
assumptions (F1)—(F4) and thus we can apply for each ¢ the results of Giga, Goto, Ishii
and Sato [21] and get for any T > 0 a solution v. € UC(IRN™! x (0,T)) of

v, _
a—”t + F.(Du., D*.) =0 in RN+ x (0,T) (48)

with initial data vy. Moreover, since vy is convex and F; remains linear in the Hessian, we
learn also from [21] that v.(-,t) is convex for any ¢ > 0.

Step 2. Our aim is now to show that the family (v.).~¢ is locally bounded. To this end,
we introduce
x(z,t) = a|z|> + b+ Ct.

Since vy € UC(IRN ™) there exist a, b € IR such that vy < x(-,0) and since v, has at most
linear growth, x is greater than v, at infinity for all € > 0.

Moreover, if follows from (H1) that F is bounded on bounded set and so are the F.’s
uniformly in €. Then, an easy computation of the derivatives of x shows that, up to take
C sufficiently large independent of €, the function x(z,t) = a|z|*> + b + Ct is a smooth
supersolution of (48). It follows that v, < x for all ¢ > 0. Reasoning in the same way
with a subsolution, we get that the family (v.).s¢ is locally bounded independently of .

Step 3. From the previous step we are able to introduce the “half-relaxed-limits” 7 and
v of the family (v.)e>o. Since (F;) tends to F locally uniformly on (IRV*! — D) x Sy,
we obtain, from the stability result, that they are respectively sub- and supersolution of
(6) with initial data vy.

Finally, from the comparison result of Theorem 4.1, we have that ¥ = v = v and there-
fore that the family (v.).~o converges locally uniformly to v as € tends to 0. It follows
that v(-,t) is convex for any ¢ € [0,7T). Since we can repeat the arguments for any 7" > 0
it completes the proof. O

We continue with

Lemma 10.1 Let Ty = Graph(ug). If ug is conver in IRY then the signed-distance
d(-,To) (see (31) for a definition) is concave.
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Proof of Lemma 10.1 It suffice to shown that, for any z; = (z;,y;) € R ", 1 € {1, 2},
we have

% (zl +Zg) > vo(21) +Uo(22)'

5 5 (49)

To this end, we set z = (21 +22)/2 and denote by P, the hyperplane which contains 2’ € Ty
such that vg(z) ==4|z—2'| and is orthogonal to z—2'. At this stage, one has to distinguish
many cases depending on the position of z1, 2z, relatively to ['y. Since their study are
similar, we provides the proof of (49) only in the case z; € {vg > 0}, 22 € {vy < 0} and
vo(2) = —|z — 2|

In this case, since uy is assumed to be convex, P, C {vy < 0}; thus we have

’U(](Zl) = d(Zl, Fo) S diSt(Zl,Pz), ’U(](ZQ) = d(ZQ, Fo) S —diSt(Zz,Pz). (50)
But, using the orthogonal projection on P,, one sees that

[| d(ZQaPz) _d(Zl,Pz)

- ) = —u(2) (51)

and combining (50) and (51), one gets (49) O

|z — 2

We are now able to give the proof of the main result.

Proof of Theorem 10.1. We begin with (i). Let uy be a convex function on RY and
vo = d(-, Graph(ug)). From Lemma 10.1, vy is concave. Therefore, applying Theorem
10.3, the associated solution v of (6) is also concave with respect to the space variable at
any time ¢t > 0.

Assume then by contradiction that yo = ua(x,t) < ui(x,t) = y; for some (z,t) €
RN x [0,+00). It follows from Theorem 6.1 that v(z,ys,t) > 0 and v(z,y;,t) < 0. Thus
from Lemma 6.1, v(z,-,t) = 0 on [y, 1] Since it is a concave function, it implies that
v(z,-,t) =0 on [yz, +00) which is a contradiction with Lemma 8.1.

We turn to the proof of (ii). Applying the previous comparison result to the extremal
solutions u* and u~ we obtain that they are equal to the same continuous function u,
such that {v(-,t) = 0} = Graph(u(-,t)) for all £ > 0, which turns out to be the unique
continuous viscosity solution of (4). Since v(-, ) is concave, u(-,t) is convex for any ¢ > 0.
It completes the proof of (ii) O

We conclude this section with some consequences of Theorem 10.3 for the geometrical
evolution of sets in the convex case.

Theorem 10.4 Let Qf be any open convex subset of RNT' with boundary Ty and let
(4, Q7,0 be the generalized evolution of (U, , o) in the sense of Section 5.
Then, while Q # 0, it remains conver and Ty is its boundary. In particular, Ty has
empty interior in IRNT!,

40



This result is known in the case of motion by mean curvature of compact convex sets
(see Evans and Spruck [18], Soner [32], Ilmanen [24]). Here, the result holds for possibly
noncompact hypersurfaces (like graphs for instance) and for general motions governed by
(6). Note that we get immediate properties of regularity of the front at each time ¢ before
extinction: in the general case the front is locally a Lispchitz continuous graph; in the
case of the mean curvature equation, the front is even a smooth hypersurface (for the
regularity issue, see Evans and Spruck [19] and Imbert [25]).

Proof of Theorem 10.4. Let v be the unique solution of (6) with initial data vy =
d(-,Ty) associated to Ty via the level-set approach. Let ¢t > 0 such that ©; # (. From
Theorem 10.3, v(-, t) is concave; thus Q) is convex. To prove that 99, = T';, we argue by
contradiction, assuming there exists zy € I'; and 7 > 0 such that B(zg,r) N Q" = 0. We
have v(29,t) = 0 and v(-,%) < 0 on B(zy,r). Since v(-,t) is concave, it follows v(-,t) < 0
in IRY*! which is a contradiction with Q; # 0. O
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