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ABSTRACT. We prove the uniqueness of a solution to the mean curvature equation
for graphs
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for any radial continuous initial data u(z,0) = ug(]z|). The existence of a smooth
solution to this problem comes from the work of Ecker and Huisken [18]. We obtain
in addition that the solution is radial. We point out that existence and uniqueness
hold without any growth restriction on the solution or the initial data, a situation
which is rather different to the related stationary problem: in this case, we show
there is a limiting growth above which uniqueness does not hold anymore. An ap-
plication of the uniqueness result to the evolution by mean curvature of entire radial
graphs is given.
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1 Introduction

N

In [18], Ecker and Huisken proved the existence of a classical solution u € C*°(IR" x

(0,4+00)) N C(IRN x [0,+0cc)) of the mean curvature equation for graphs

ou (D?*uDu, Du) N
1.1 — —Au+-—--""-"=0 inR" x(0
() ot St T Dap o (0, +00),
for any initial data ug € Wllo’coo(RN ). This existence result, which can be extended to
merely continuous initial data [6], holds without any growth condition on ug, which
appears to be rather surprising when comparing to the case of the heat equation
(where exponential growth of the initial data has to be required [1]).

Our aim is to study the uniqueness of the solution Ecker and Huisken construct.
This question has been already addressed in some situations: in [6], uniqueness for
convex initial data is shown without any growth condition. This result is extended
in [9] for “convex at infinity” initial data. The case of dimension 1 was completely
solved independently by Chou and Kwong [13] and in [5]. A result in arbitrary
dimension is given in [4] under growth conditions on the gradient of the initial data.
In this paper, we prove the result when ug is radial:

Theorem 1.1 Let ug € C(IRYN) be radial. Then there exists a unique continuous
viscosity solution u to (1.1) with initial data ug. Moreover, u € C®°(IRYN x (0, +00))N
C(RN x [0,+00)) and u(-,t) is radial for any t > 0.

The general case is still open and Theorem 1.1 seems to be the first positive result
in dimension N > 1 for solutions which can oscillate arbitrarily at infinity. As we
said above, this situation, ¢.e. existence and uniqueness without growth condition,
is quite unusual. Let us mention that, to the best of our knowledge, apart from
equations of type (1.1), we know only a few cases where similar features happen
for parabolic pdes: for first-order Hamilton-Jacobi equations for which one has a
“finite speed of propagation” property (see [16], [24], [26]). The same kind of results
appears in presence of absorption [10], thanks to the localization properties of the
equation. But closer to the present situation is the so-called fast-diffusion equation
ug = A(u™), 0 < m < 1 [22, 11], which is purely diffusive and nevertheless offers
existence without any growth restriction.

On the other hand, this context is rather different than the stationary one. In
Section 6, we develop the example of a stationary equation related to (1.1): we prove
uniqueness under exponential-type growth conditions for the solutions and give an
example of non-uniqueness when this limiting growth is not satisfied.

One of the motivations of this work is related to the generalized evolution by
mean curvature of hypersurfaces. The link appears when noticing that, for any ¢t > 0,
the set Graph(u(-,t)) of any solution u of (1.1) can be seen as an hypersurface of
RN+ evolving in time with a normal speed equal to the mean curvature. Now,
it turns out from [6] that the uniqueness result for (1.1) is equivalent to the non
fattening of the generalized evolution of Graph(ug) defined via the level set approach



(see Osher and Sethian [28], Chen, Giga and Goto [12], Evans and Spruck [19] or
[6] and Section 2 for a description of this approach). Therefore, one by-product of
Theorem 1.1 is the non-fattening of the generalized evolution by mean curvature
when starting with an hypersurface which is a continuous radial entire graph (see
Section 7).

Let us now describe our strategy to prove Theorem 1.1. First, we use the level-
set approach to prove that, for any radial initial data ug € C(IRY), the maximal
and minimal solutions to (1.1), noted u* and u~ respectively, are radial. Moreover,
we show that uniqueness for C'! initial data implies also uniqueness for continuous
initial data, a simplification we use to restrict ourselves to regular data.

Then, a standard way to get uniqueness is to apply the maximum principle on
ut —u™, but to do so, one needs to control the behaviour of u™ — u™ as |z| — oo.
The first step in this direction is provided by the following integral estimate: we
denote by ¢ the functions defined by u®(z,t) = ¢*(|z|,t). Then for any T > 0
and ro > 1, there exists C = C(T') such that

“+o0o
(1.2) / (* — o )(rt)dt < C for any t € [0,T].

0

Then, we construct smooth, radial solutions with extremal gradients. More precisely,
if u(z,t) = ¢(|z|, t) is a radial solution of (1.1), the function ¢ is a solution of

a?r‘P Orp . .
(1.3) (9t(p - W - (N - ].) r = 0 1mn (0, +OO) X (0, +OO),

and we prove that there exists u9 " (z,t) = 991 (|z|,t) and u9~ = @9~ (|z|,t) such
that, for any other smooth radial solution u(z,t) = ¢(|z|,t), there holds

O 0?” < 0rp < Grp?t in [0, +00) x (0, +00).

The proof of this result relies upon a comparison argument for the derived equation
satisfied by 1 = 0,¢, namely for any R > 0

(1.4) Opp — 82 (arctanvp) — (N — 1)d, (%) =0 in (0,R) x (0,7).

The comparison for (1.4) is obtained by using the so-called “dual method”, through
the distributional formulation of the equation.

Then, using (1.2), simple arguments show that

uwt=u%" and u” =ufT,

so that 4™ — u~ is nonincreasing. The last step consists in applying the standard
maximum principle in [0, +00) x [0,T] for any 7' > 0 and conclude that

w



The paper is organized as follows: in Section 2, we recall the level set approach
applied to the evolution by mean curvature of entire graphs in RN*! and we con-
struct a minimal and a maximal solution to (1.1), which are proved to be radial
and smooth. We prove the integral estimate in Section 3. Section 4 is devoted to
the construction of the extremal gradient solutions: we prove first a comparison
result for (1.4) on bounded sets and then study a Neumann problem with radial
symmetry which are used in the construction. In Section 5, we conclude with the
proof of Theorem 1.1. We add some remarks concerning the stationary problem in
Section 6 and conclude with an application to the mean curvature flow in Section 7.

Acknowledgment. We are pleased to thank Guy Barles for fruitful discussions.

2 The geometrical approach. Extremal Solutions

Theorem 2.1 Let ug € C(IRY) be radial. Then (1.1) has a mazimal (respectively
minimal) solution ut € C*®(IRYN x (0,+00)) NC(IRY x [0, +00)) (respectively u~ €
C®(RN x (0,4+00)) NC(IRN x [0,+00))) which is radial in = for any t > 0.

This theorem is a consequence of Theorem 8.1 of [6]. Before giving the proof of
Theorem 2.1, we need to recall some facts about the level set method used in [6] to
study quasilinear equations like (1.1) (we refer to this paper for further details).

First, we introduce some notations. In the canonical basis of IRV !, we write any
point z in the form z = (z,y) where = (21, 29,--- ,2zy) € RN and y = zy.1 € R.
By the axis (Oy), we mean the vectorial line spanned by the last vector of the basis.

The geometrical approach consists in seeing the graph of any solution of (1.1) as
an hypersurface evolving (in time) in IRV *!. The geometrical evolution associated
with (1.1) is the motion by mean curvature (see Section 7). An alternative way to
describe this motion is to use the level-set method developed in [28], [19] and [12].
The level-set method applies to the motion of general hypersurfaces I'y ¢ RN T,
here, for simplicity, we restrict ourselves to the motion of graphs. Let u a solution
of (1.1) with initial data ug. Set Ty = Graph(ug) and Qf = {(z,y) € RN*!:y >
ug()}. We consider a uniformly continuous (UC for short) function vy : RV ! — IR
such that

(21) {vo=0}=Tg, {vo>0}=9f and {vg<0}=RN —(Qf UT).

Then, we are looking for a function v : RV 1! x [0, +00) — IR such that, for every
(z,t) € RN x (0,+00) and every solution u of (1.1),

v(z,u(zr,t),t) =0 and wv(z,up(z),0) =0.
It follows that v has to solve the (geometrical) mean curvature equation

D?*vDv, D
(2.2) v _ py 4 {D70Dv, Dy)

o1 Dop =0 BV X (0, 400),
v



with initial data v(z,0) = vp(z) for any z € RN L.

Thanks to the theory of viscosity solutions, (2.2) is well-posed in the class of
uniformly continuous functions : if vg € UC(IRN*1), then there exists a unique
viscosity solution v € UC(IRN*! x [0,4+00) (for viscosity solutions, we refer to
Crandall, Ishii and Lions [14]).

Moreover, the fundamental result of the level set method states that the 0-level
set of v(-,t) at each time ¢ depends only on (I'g,f) and (2.2), but not on the
functions vy and v. This allows to define the generalized motion by mean curvature
of (T, ) by the family (T'y, Q" )i>0, where

Ty :={v(-,t) =0}, Qf :={v(-,t) >0} forallt>0.

The set U Iy x {t} is called the front and I'; the front at time ¢.
0
The evolution is generalized in the sense that the front may develop singularities
or interior (the front is said to “fatten” in this last case) in IRV *! x [0, +00). This
fattening phenomenon is equivalent to the nonuniqueness of solutions of (1.1) for
the initial data wug; we refer to [6] for proofs and precise results.

Proof of Theorem 2.1. The existence extremal solutions u* and u™ is given by
[6, Theorem 8.1] : for any (z,t) € RN x (0, +00),

ut(z,t) =sup{y € R: (z,y) €T} and u (z,t) =inf{y € R: (z,y) € Ty}

(roughly speaking, the graph of u™ is the upper-boundary of the front and the
graph of u™ is the lower-boundary). The regularity is proved in [6, Theorem 9.1].
It remains to show that u™ and u™~ are radial. It is a consequence of the following
lemma the proof of which is postponed.

Lemma 2.2 Let Qg be an open subset of RNT! with boundary Ty = BQBL and
A € Ony1, where Oy is the group of isometries oj]RNH. Consider the generalized
evolution by mean curvature (I'y);>o (respectively (I't)i>0) of To (respectively A(T)).
Then

Ty = A(ly) forallt>0.

This lemma means that the generalized evolution by mean curvature commutes with
isometries.

Now, if ug is radial, then I'y := Graph(up) is invariant by any rotation A of axis
(Oy). Let T, and T'; be the generalized evolutions of 'y and A(Ty) respectively. On
the one hand, I'; = I'; since A(Ty) = Ty, and one the other hand Iy = A(Ty) by
the lemma. It follows that T'; is invariant by A. Therefore u*(-,t) and u ™ (-,t) are
radial. m

Proof of Lemma 2.2. We use the level set method : let vy € UC(IRN'!) such
that (2.1) holds and let v be the unique uniformly continuous viscosity solution of
(2.2) with initial data vo; then, by definition, I'; = {v(-,t) = 0}.



Let 9g(z) := vo(AT 2) for any z € IRN*1. Note that
to(z,y) =0 & (z,y) € A(To) and do(z,y) >0 & (z,y) € A(Qy).
It follows that Ty = {o(-,£) = 0}, where ¥ is the unique UC' viscosity solution of
(2.2) with initial data 9.
Let w(z,t) = v(ATz,t) for every (z,t) € RNt x [0,4+0c). A straightforward
computation gives

@ = a—w, Dv=ATDw and D?*vw = ATD?wA.
ot ot

Since v is a solution of (2.2), it follows that v is a solution of

%1: [ 1 ( I (AT Dw) ® (AT Dw)

For any ¢ € RN*!, since A is an isometry, we have

(A(ATDw) ® (ATDw)AT¢,£) = ((ATDw) ® (AT Dw)AT¢, ATE) = (AT Dw, AT€)*
= (Dw,§)” = ((Dw ® Dw)¢, £).

It proves that w is a solution of (2.2) with initial data w(z,0) = vo(AT2) = 5. By

uniqueness for (2.2) in UC, we obtain that w = 9; thus, I'y = {w(-,t) =0} = {z €
RNt :y(AT2,t) = 0} = A(T;), which completes the proof of the lemma. m

We conclude this section by a result showing that we can restrict ourselves to
C! radial initial data in the proof of Theorem 1.1.

Proposition 2.3 Suppose that Theorem 1.1 holds for radial initial data uy € C*(IRYN).
Then, it holds also for radial initial data uo € C(IRY).

Proof of Proposition 2.3. Let ug € C(IR") be radial and, for any ¢ > 0, let
uf € C'(IRN) such that [[uo — u§lleo mv < €/2. Note that we can choose uf§ to be a
radial function. We define u§ = uf + ¢/2 and u§ = uf — ¢/2. Then

uy Sup < and Uy — o, my < €

Let u (respectively @®, u®) be a solution of (1.1) with initial data uy (respectively
Since the equation (1.1) depends only on the derivatives of the solution and
since, by assumption, we have uniqueness for initial datas ug and uj, we obtain

ﬂ€:u€+§ and f:ug—%.
Thus
(2:3) 17" — 2" [l oo, ¥ x[0,4-00) < €



But, since uniqueness holds for 4* and w* and uj < up < ug, it follows from
the geometrical approach (see [6]) that the generalized evolution I'; of Graph(ug) is
such that

ry C {(ZE,y) € RN :gg(.’l,',t) Ly < ﬂ€($at)}'
Therefore we obtain
||’U,+ - u_||oo,RN><[0,+oo) <€

and we get the result letting € go to 07. m

Remark 2.4 In the proof of the previous proposition, we do not use that wug is
radial. The result is more general: uniqueness for (1.1) for continuous initial datas
holds as soon as we can prove it for smooth initial datas.

3 An integral estimate

Let us first introduce some notations: we define ¢* by u*(z,t) = p*(|z|,t) and set,
for ro > 1 and every (r,t) € [rg, +00) X [0, +00),

(1) = / o (0, 0)dp and o = — .

T0

Then the following integral estimate holds:

Lemma 3.1 Let T > 0. There exists a positive constant C = C(T) such that, for
any r > 1o and t € [0,T], we have

wlrt) = [ (6" = e )p.0)dp <

T0

Proof of Lemma 3.1. Since @' and ¢ are solutions of (1.3), by integrating the
equation, we get that 4" and ¢~ are solutions of

Oy¢ — [arctan 0, ¢(p, t)]7, — (N — 1) /T de =0.

To

We integrate by parts and obtain

Oy¢ — [arctan 0, ¢(p, t)]7, — (N — 1) [W] - (N-1) /T de = 0.

Subtracting the equalities for )" and 14—, one gets that 1 satisfies

e R

T0 To

Therefore, using 9,19 = ¢ — ¢~ > 0 and p? > 2 > 1 in the last integral, we have

for any r > ro,

o — (N — 1)8;¢

—(N-Dy <



Changing 9 in 9 = e (N=Dt4) we obtain that 9 satisfies

O <7 in [rg,400) X [0,+00).
T

Op — (N — 1)

Now, for fixed T > 0, we use a “friendly giant” to get a bound on . Let R >
3+ (N -1)T, C = C(T) = supg 174 (ro, )|, and consider

1
R—(N-1)t—r

Straightforward computations show that ;W — (N — 1)(6,W)/r > =, while the
boundary conditions are ordered: ¥(-,0) =0 < W(-,0), ¥(ro,-) < W(ro,-) and for
any t € [0,T],W(r,t) - 400 as 7 — R — (N — 1)t. It follows that

W(r,t) = + me? + C.

Yp<W in  {(rt) €[ro, +00) x [0,T] : R— (N — 1)t —r > 0}.
Letting R — +o0, we obtain 9 < we?” + C in [ry, +00) x [0,T), and finally
p(r,t) < (we’™ + C(T))eN 1T,

which ends the proof. m

4 Construction of solutions with extremal gradients

In this section, we construct solutions to (1.1) with extremal gradients. More pre-
cisely, we prove

Theorem 4.1 For any radial initial data ug € C'(IRY), there exist two smooth
radial solutions of (1.1), u9*(z,t) = 9 (|z|,t) and u9 (z,t) = @9 (|z|,t) such
that, for any smooth radial solution u(z,t) := ¢(|z|,t), we have

O0r 0?9 (1,t) < Opip(r,t) < Or? T (r,t)  for every (r,t) € [0,4+00) x [0, +00).
Before giving the proof of this theorem, we establish a comparison theorem for (1.4)
in bounded sets and then study a preliminary Neumann problem.

4.1 A comparison result for the derived equation

We state below a comparison result for a slightly more general equation than the
derived equation (1.4). More precisely, for € > 0, we consider

@) Pz o - dnareany) - (V-0 (L) =0

in (0, 400) X (0, +00). The method we employ has been extensively used by a number
of authors in diffusion equations (for instance Aronson, Crandall and Peletier [2],
Dahlberg and Kenig [17], etc.). It relies upon resolution of the dual equation.



Proposition 4.2 Let ¢ > 0, R, T > 0 and 11,72 € C*((0,R) x (0,7)) N C([0, R] x
[0,T7) be respectively classical sub- and supersolution of (4.1) in (0 ,R) x (0,T) such
that

¢1(7 ) ¢2( ’0) on [OaR]a
’lﬁl(t R) 2 t,R) fOT t e [O,T],

<
<
P1(t,0) = 1o(¢,0) =0 for te]0,T].

Then 1 < 92 on [0, R] x [0,T].
Proof of Proposition 4.2. From the definition of 11 and 1o we have,
Pe(1h1) SO Pe(yp2) on (0,R) x (0,7).

Then for p > 0, and 0 < 7 < T, let us consider a nonnegative function x €
C*([p, R — p] x [0,7]), so that

T rR—p
[ [ o) = Pto) (s dra < 0
0 Jp
Integrating by parts on [0,7] X [p, R — p|, we obtain
R—p
@2) [ - gt <
p

/ T / = ) (atx T A 1)Bx — N DO g)arx) drdt + Belpo 7).
0o Jp

T

where A.(r,t) is defined by
arctan 1), — arctan o
Ac(rt) =+ v
1+ (¢1)?

and B.(p, T) contains the various boundary terms due to the integration by parts :

if 91 # o
if 41 = 1o,

R—p T
Be(p, 1) :/ [(1 — o) x(r, )]dr—/o [(arctan ¢, — arctany) -Brx]f_p dt

25,

-I-/ [0, (arctan 11 — arctan 1) -X]f_p dt — (N — 1)/ dt.
0 0

T P

Note that

1+e>A(r,t) = e+ /Ol(arctan)'()\wl(r, t) 4+ (1 — X)a(r, 1)) dX

+/1 d\
T T+ O (r D) + (1= Nea(r, 0))2

1 1
iIlf T 971 . 9 2 € + ?
[p,R—p]x[0,7] { 14927 1443 } g

> e+



where p = p(R) > 0. Moreover, the coefficient A, is as regular as 11 and 1, are.

We will now solve the dual backward equation on x which appears in (4.2),
with special boundary data in order to control B.. We thus need the following
lemma which is a consequence of classical results on linear parabolic equation (see
for example Friedman [20], Ladyzenskaja et al. [25] or Lieberman [27]).

Lemma 4.3 For any fized nonnegative function 8 € Cy([0,R]) and any p > 0
such that supp(f) C (p,R — p) there exists a nonnegative function x = Xe, €
C?*((p, R — p) x (0,7)) N CY([p, R — p] x [0,7]) which is a solution of the linear
backward equation

(1+¢€)orx

Orx + AE(’I“, t)aer - (N - 1) r

=0 on (p,R—p)x(0,7)

satisfying the boundary conditions:

{ X('aT) =0 on [paR_p]a
X(R - P,‘) = X(p") =0 on [O’T]'

Moreover there ezists a positive constant C(R, ) (independent of €) such that
(43)  —O(R,0) <Ox(R—p.t) <0< dx(prt) < O(R6) for te[0,7]

We postpone the proof of this lemma and conclude the proof of the proposition.
Note that for such x = x. ,, we have

R—p
[ W —doxtr i < Ba(py7).
p
Since x = 0 at 7 = p and r = R— p, the remaining boundary terms are the following:
R—p T _
Belp.r) = [ 1061 = velxtr0)ldr + [ [(axctan s — axctan o) -, 00, x( )]t
p 0
We remark that 11 (z,0) < 99(x,0) while xy > 0, so that the boundary term at time
t = 0 is nonpositive. Then we use the bounds on 9, at r = p and r = R — p, which
give
B:(p,7) < C(R,0) [/ (arctan ), — arctan 12)* (p,t)dt +
0

-
/ (arctan ¢y — arctany) (R — p, t)dt] ,
0

where the notation f* stands here for max{f,0}. Since x(r,7) = 0(r), we get the
estimate

R—p
/ (1 — o) (r, 7)0(r)dr
p

< C(R,0) |:I(%a))(('¢1 —1h2) (p,t) + Iggff)i(% —P2) (R — p, t)] :

s T

10



Now we let p decrease to zero, remembering that 11(0,t) = 19(0,f) = 0, and
P1(R,-) < 92(R,-), so that by continuity of both solutions up to the boundary, we
get

R
/0 (1 — o) (r, 7)B(r)dr < 0,

for any 6 € Cy([0, R]) as above.

By continuity of the functions it implies that 11 (-,7) < 92(-,7) on [0, R]. This
is the desired result since 7 is arbitrary in the previous reasoning, which ends the
proof of Proposition 4.2. =

We turn to the proof of the lemma,

Proof of Lemma 4.3. From the definition of A, we know that A, € C*®([p, R —

p] x [0,7]) and that

inf  A(rt) > u(R) > 0.
o0 A1) 2 B(R) >

Therefore, classical results on linear parabolic equation (see [20], [25] or [27] for
example) provide the existence of a classical solution x to the Cauchy-Dirichlet
problem of Lemma 4.3; because of the maximum principle, we have 0 < x < 1 on
[0, R — p] x [0, 7].

It remains to prove the gradient estimates (4.3) using some barrier arguments.

We start with 9,x(R — p,-). Let w(r,t) = C(R—p—7r)(1 —C(R —p —1)) for
(Ta t) € [paR - p] X [OaT]a where

2N — 1)

(44 C=C(R)= Ru(R)

, C:C(R,e)zzmax{zé+1, [s;p]|ara|}.
pyft—p

We claim that w is a strict subsolution of the problem of Lemma 4.3 in [Ro, R —
p] x [0,7], where Ry = R — p—1/(2C). Indeed,

ow=0, Gw=C(-1+2C(R-p—r)), Opw=—20C,

hence

o

r

g

Ow + Acwyr — (N = 1)(1+6) 7Y < —2u(R)CC + (N — 1)(1 + e)g <0,

since we can assume ¢ < 1 and Ry > R/2.

Now, we check the boundary conditions:
— On [Rg, R — p] x {t = 7}. By the mean value theorem, for any r € [Rg, R — p],

0(r) —0(R—p) < sup |3,0/(R—p—r).
[p,R—p]

Using 8(R — p) = 0 and (4.4), we obtain

C(R,0)(R—p—1) < C(ROER —p—r)(1— 1),

0(r) < 5

N =

11



But, since r > Ry = R — p — 1/(2C), we get
~ 1
C(R—p—r1) < 2
thus x(r,t) = 0(r) < w(r,t) on [Ry, R — p] x {t = 7}.
— On {’f‘ = R_p} X [057-]’ UJ(R—p,t) =02 X(R_pat)'
— On {r = Ry} x [0, 7]. We have

20 +1
= =— > 12 x(Ro, 1),
e x(Ro, 1)

’IU(R(), t) =

Sl

so that the claim is proved.
Applying the maximum principle, we get x(r,t) < w(r,t) in [Ry, R — p] X [0, 7],
and it follows
0> X(R - p’t) - X(ra t) > w(R - P t) - w(r,t).
Dividing by R — p —r and letting r — R — p, we obtain the desired gradient bound,
0> 0x(R—p,t) > —-C(R,0), fortel0,7].

The proof of the estimate for d,x(p,-) is much simpler. It is sufficient to consider
w(r,t) = (sup|d,0| + 1)(r — p) which is a strict subsolution in [p, R — p] x [0, 7]. We
have

C(R,0)(r — p) = (sup|0.0| +1)(r — p) = x(r,t) 20 in[p, R — p] x [0,7],

which gives the conclusion dividing by r — p and letting » — p. It completes the
proof of the lemma. m

4.2 A Neumann problem

In this section, we study equation (1.1) in a bounded domain, with Neumann con-
ditions, which is needed to construct extremal gradient solutions in the following
section. In the sequel, R > 1 is a real number and Bg(0) denotes the ball of radius
R centered at £ = 0. For the sake of notation, we denote the diffusion matrix of

(1.1) by

PP N
:I— f .
b(p) T+ ol orp€ R

Proposition 4.4 Let ug € C1(Bg(0)) be a radial initial data, T > 0 and K € IR.
Then there ezists a radial solution u € C%(Bgr(0) x (0,T)) N C*(Br(0) x [0,T]) to
the following problem:

% _ ’I&-(b(Du)D%},) =0 1in BR(O) X (O, +OO),
(4.5) %(x,t) - K on {|z| = R} x (0, 00),
u(z,0) = uo(z) in Br(0) x {t = 0}.
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Remark 4.5 Of course the above problem requires a compatibility of the data at
the boundary {|z| = R} x {t = 0} to be clearly defined, but it is easy to modify a
little bit up near the boundary in order to ensure this compatibility. We skip this
detail for the sake of clarity. This point is not important for our purpose since our
aim is to send R to 400 later on.

Proof of Proposition 4.4. The proof of this proposition will follow from the stan-
dard “vanishing viscosity method”. We introduce an approximate problem, show
some estimates for the solutions and finally extract a subsequence which converges
to a smooth solution of the original problem.

Step 1. The approximate problem.
For any ¢ > 0, we consider:

% —eAu — (b(Du)Dzu) =0 in Bg(0) x (0,+00),
(4.6) %(m) _K on {|z| = R} x (0,00),

u(z,0) = up(z) in Br(0) x {t = 0}.

The starting point is the following result:

Lemma 4.6 For any ¢ > 0, K € IR and uy € C'(Bg(0)) radial, there exists a
classical solution u. of (4.6) which is C in = up to the parabolic boundary and
ue(z,t) is radial in x for any t > 0.

The proof of this Lemma follows from classical parabolic theory since the equation
is not degenerate (see [27]).

Step 2. Uniform estimates for the u,.

We show uniform bounds for the family (uc)e>o and their gradients. To this end,
we introduce a smooth supersolution of the form

W (z,t) = Cylz|?> + Cit + Co,

where C3,C; € IR and Cy = SUPg 5y |u0| in order to ensure that W(-,0) > uc(-,0).
Since
DW (z,t) = 2Cox, D?W =20, 1,

it is sufficient to choose Cy > K in order to have

ow 0
=203R> 22 =K, on 8Bg(0) x [0,T],
On n
and C; > 2N () to ensure that W is a strict supersolution of the problem. Therefore,

the maximum of u, — W on Bg(0) x [0,T] is achieved at ¢t = 0 and it follows that

u: <W < Cy+ CiT+ CoR? in Bg(0) x [0,7].

Since a lower estimate follows by the same way using a subsolution, we get the L
bound (recall that the constants depend only on supz—my |u0\ and K).
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Let us now prove the gradient bound. For any ¢ > 0, define ¢, by uc(z,t) =
©e(|z],t) and 9. = Orp.. Then ). satisfies P.(1):) = 0 (see (4.1)), and let C' =
C(R,K) := max{supm|Duo(ac)|, |K|}. Then by the comparison result obtained
in Proposition 4.2, |1.| < C since C' is a solution of (4.1), which gives the uniform
gradient bound.

Step 3. Extraction of a convergent subsequence.

The previous bounds prove equi-continuity in the z-variable. To show the equi-
continuity in the ¢-variable, we invoke the classical relationship between space con-
tinuity and time continuity for solutions of parabolic equations (see [6, Lemma 9.1]
for example). Thanks to this argument, we obtain a time modulus of continuity for
the ue. Hence the family (u.) is equi-continuous in B (0) x [0, T'] and equi-bounded,
so that we can extract a subsequence (u.,) converging locally uniformly to some
u € C(Bg(0) x [0,T1).

Step 4. The limit function w is a classical solution of (4.5).

In order to prove this result, let us notice first that, by the local uniform convergence,
standard arguments show that u is a viscosity solution of (4.5) (see for example [14]
for a proof). We continue by showing that, using the previous gradient bounds, we
can replace the equation in (4.5) by a uniformly parabolic one such that w is still a
solution of the new equation.

If p € RY,|p| < C and || - || denotes the Euclidean norm in the space Sy of
symmetric matrices, then we have
p®p N|p[? N
ol > 1~ PEPL 5y NS W x50

1+p2 7" 1+]p2 7 1+C°

We then define ¢ : Si; — Sy by ¢(M) = (| M|)M + (1 — 4(||M|)))AI, where
Sy is the space of positive symetric matrices and % : R, — IR; is a smooth
nondecreasing function which is 0 at 0 and 1 in [\, +00). Replacing the diffusion
matrix b in (4.5) by a = ¢ o b € C°(IRV;S};), we obtain that the new equation
is uniformly parabolic. But, since [Du.| < C by the previous gradient bounds, we
have that a(Du.) = b(Du.); thus u is a viscosity solution of the new problem (4.5)
with diffusion a. The theory about uniformly parabolic equations (see [27, Theorem
13.25, p.351]) provides

Lemma 4.7 There exists a unique viscosity solution of the Neumann problem:

Z_": — Tr[a(Du)D%u] =0 in Br(0) x (0,+00),
%(m,t) = f on {|z| = R} x (0, 00),
u(z,0) =ug(z)  in Br(0) x {t =0},

where a is uniformly elliptic, ug € C*(Bg(0)) and f € C(0Bg(0)x[0,T]). Moreover,
the solution u is classical (in particular u is C* in = up to the boundary).

Now, we since uniqueness holds for viscosity solution of the previous problem (see
[3]), u is in fact a classical solution of (4.5). It ends the proof. m
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4.3 Proof of Theorem 4.1

We start with some estimates for the solutions of (1.1) which come from the works
of Ecker and Huisken (see [18, Theorems 2.3 and 5.1]).

Proposition 4.8 There ezists a constant C = C(R,T, ||u0||c1(B2R(w0))) such that
for any solution u of (1.1),

(4.7 sup  |ul, sup |Du| < C.
Br(z0)x[0,T] Br(z0)x[0,T]

Proof of Theorem 4.1. Let u be any radial solution of (1.1) with initial data
ug. We proceed in several steps:

Step 1. For R > 1, let C = C(R,T, HUOHCl(BzR(wo))) be the constant defined in
Proposition 4.8 and ugr be the solution built in Proposition 4.4 with K = —C.
It is clear that ug is constructed independently of any other solution u, a remark
which will be important in the following. By comparison on the derived problem
(Proposition 4.2), we obtain

(4.8) Oru > Opur in Bg(0) x [0,T].

Step 2. Now we let R increase to +oo: by the local bounds (4.7), the family
(ur)r>1 is locally uniformly bounded in C' 1. and thus locally equi-continuous. We
can then extract a subsequence converging locally uniformly in RN x [0,00). Let
us call 49~ the limit obtained after extraction.

Step 3. We proceed as in the Step 4 of Proposition 4.4: the limit w9~ turns out to
be a viscosity solution of (1.1). Moreover, by the previous gradient bounds, in any
fixed ball Bg,(0), for R > Ry, the ug are solutions of

(4.9) % — Tr[a(Du)D*u] = 0 in Bg,(0) x (0, +00),
where the diffusion matrix a is defined as in the proof of Proposition 4.4, Step 4,
using C = C(R, T, ||U0||01(BR0(10)))- Thus, u¥9~ is also a viscosity solution of (4.9)
which is classical in Bg,(0) x (0, +00) for any Ry > 1 by Lemma 4.7; therefore u9~
is classical in RN x (0, +00). Finally, as R — oo along the chosen subsequence, (4.8)
yields in the limit:

Oou > 0pud”  in RN x [0, +00).

Note that by construction, u?~ is radial and as was said, is constructed indepen-
dently of any solution. Hence u9'~ is the solution which has minimal gradient among
radial solutions.

Step 4. The same argument works for construction of a solution with maximal
gradient in the class of radial solutions. It consists in solving the Neumann problem
with boundary data K = +C'(R, T, |luo ||Cl(BZR(zo)))’ and the rest of the proof follows
as in the previous steps. m
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5 Proof of the uniqueness result (Theorem 1.1)

Let us finally conclude with our uniqueness result:

Proof of Theorem 1.1. By definition of the maximal and minimal solutions, it
is sufficient to prove that u™ = 4~ to obtain uniqueness in the class of continuous
viscosity solutions. Moreover, from Proposition 2.3, we can suppose that the radial
function ug is in C*(IRY) without loss of generality. Therefore, we know from Section
4 that there exist radial extremal gradient solutions u9* and u9% .

Step 1. We first claim that %" = ¢~. Indeed, suppose there exists (7,%) €
[0, +00) x [0, +00) such that

(5.1) @I (7, 1) — @ (7,1) > &,

for some ¢ > 0. By Theorem 4.1, 8,(p%" — ¢©7)(r,t) > 0 for any r > 7; therefore,
there exists rg > 1 such that (5.1) holds for (7, %) € [rg, +00) x {t}. Applying Lemma
3.1 with g and T = ¢, we obtain

+o0o

/T+°°(<p+ — ¢ )(rt)dr > /+Oo(<ﬂ“”+ — ™) (r, )dr > / edr,

0 To To

which is absurd. Then, similar arguments also prove that @9 = ¢™.

Step 2. Now let us fix 7' > 0 and set for any ¢ > 0

Uer(z,t) == ut (z,t) —u (z,t) — ﬁ for (z,t) € RN x [0,T).

It follows from Step 1 that U r(z,t) = @9 (|z|,t) — @91 (|z|,t) — ¢/(T — t) is
nonincreasing with respect to |z| and thus that M = SUp RN x [0,y Ue,T 1s achieved
at some point (0,%) with ¢y € [0,T).

If tg > 0 we have a interior maximum point and thus

8tu+ (O,to) - 8tu_(0, to) = DU+(O, to) = D’LL_(O, t()),

(T —1)*

and D?ut(0,t9) < D?u(0,5). Thus, using the equation under the form du —
Tr(b(Du)D?u) = 0, we obtain

c

T = T [e(Du") (D%t - DT <,

hence we reach a contradiction.
It follows that ¢t = 0 and thus M < 0; hence
ut(z,t) —u (z,t) < TLt for (z,t) € RN x [0,T).

Letting ¢ go to 0T, it gives the result since T is arbitrary. m
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6 A remark on the stationary problem

Our aim in this section is to compare the uniqueness result for (1.1) with those we
can obtain for the associated stationary problem, namely for the elliptic equation

(D*uDu, Du)

1+ |Dul? + u=f in R

(6.1) —Au +
This equation arises naturally when considering the semi-group approach to the
parabolic equation [15], and we especially consider its radial version

_ Orrp
1+ (0rp)?

(6.2) — (N - 1)82('0 + Ap = f(r) in (0,4+00),

where A > 0 and f € C(IRY) is a radial function we identify with its restriction to
any half-line.

In fact, we will prove that the uniqueness result for C? radial solutions of (6.2)
takes place under growth conditions and more precisely in the following class of
functions

¢ = {ip € CP(10, +00) s plr)e 23Dy o},

r—+00

The result is the following;:

Theorem 6.1 For N > 1 and a radial function f, if ¢1 € C (respectively @9 € C)
is a subsolution (respectively a supersolution) of (6.2) then

w1 < w2 in [0,+00).
In particular, (6.1) has at most one radial solution in C.

Moreover, this result is optimal in the sense that we have a counter-example
to uniqueness when the solutions are allowed to have the critical growth: consider
o(r) = eAr?/2(N-1) A straightforward computation shows that ¢ is a classical solu-
tion of (6.2) on [0, +o00) with

A Ar? Ar2/2(N—1
P (5 +1) /2D

f(?“) = - 2
14 (N)‘L) o2Ar? 2(N—1)

It is clear that f € BUC([0,+00)) N C*®([0, +00)) can be extended to RN as a
smooth radial function. However, we know from the theory of viscosity solutions,
that for such a data f there is a unique radial viscosity solution ¢ of (6.1) in
BUC(IRY), and from the usual machinery for elliptic equations (see e.g [21]), this
solution is a classical one. Since @ # ¢, this proves that nonuniqueness may occur
outside the class C.

Before giving the proof of the theorem, we state and prove a lemma which will
be useful.
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Lemma 6.2 Consider an elliptic pde under the form
(6.3) F(Du,D*u) + \u=f in RV,

where X > 0, F is a continuous elliptic nonlinearity and f € C(IRN). Let uy
(respectively ug) be a C? subsolution (respectively supersolution) of (6.3). Suppose
that there exists zo € IRYN such that ui(zo) > ua(wo). Then for all T > |z¢),

maxqu; — u = Imax {u; — U .
BT(O){ ' 2} aB,(o){ ' 2}

In particular, if ui(z) = p1(|z|) (respectively us(z) = @a(|z|)) are radial then (p1 —
©2)(r) = (01 — p2)(s) > 0 for all r > s > |zg|-

Proof of Lemma 6.2. Let r > |z9| and consider

(6.4) max{u; — us},
B, (0)

which is positive by assumption. Suppose that this maximum is achieved at z; such
that 0 < |z1| < r. In this case,

(6.5) D(uy —u)(z1) =0 and D?(uy —ug)(z;1) < 0.
Writing the Equation (6.3) for u; and ug at z1, and using (6.5) we get
Mui(z1) — ua(z1)) < F(Dug(z1), D*us(z1)) — F(Duy (1), D*ui(z1)) < 0
by ellipticity. Thus
0 > ui(z1) —ue(z1) = ur(zo) — ua(zo) > 0,

which is a contradiction. This proves that the maximum in (6.4) is achieved on
0B (0). In particular in the radial case, for every s € [0, 7],

0 < (g1 = p2)(s) < (p1 — p2)(r),

which ends the proof of the lemma. m
We turn to the proof of the theorem.

Proof of Theorem 6.1. We argue by contradiction, assuming that there exists
rg = 0 such that

(6.6) (1 — 2)(ro) =€ > 0.

Note that, from Lemma 6.2, we can suppose that r( is as large as we want. We take
rg > 0 such that

N-1
(67) )\7‘0 -
o

> 0.
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Writing Equation (6.2) for the subsolution ¢; and the supersolution @9 at any point
T > 19, substracting the inequalities and integrating on [ry, 7], we get

—(N -1) /T (o1~ ¢2)(0) SOQ)(a)do + /\/T(Sol — p2)(0)do < 2

a ro

Defining 9(r) = (¢1 — @2)(r)/r and using a integration by parts, we obtain, for
every v = 1o,

(6.8) —(N — 1)op(r) + (N — D)ap(ro) + /rzb(a) (Aa - %) do < 2.

For r > ry, we define

H(r)= (N —1)¢(rg) — 27 + /Trqp(a) (/\U - %) do.

Let us suppose first that
(6.9) (N — D)tp(rg) — 27 > 0.

From Lemma 6.2 and (6.7), we have ¢(o)(Aoc — (N — 1)/o) > 0 for every o > 9.
Then it follows that H(r) > 0 for every r > ry. From (6.8), we obtain, for every
T > To,

(6.10) ———H(r) < $(r)

and multiplying by Ar — (N —1)/r > 0, we get

N -1 N -1

(6.11) ﬁH(T) (AT - T) < P(r) ()\T — T) = H'(r).

Integrating the ordinary differential inequality given by (6.11), we obtain

H(T) > Ee)\rzﬂ(Nfl)
T

for some positive constant K = K(rg, N). From (6.10), we get

K 2 _
((Pl o (PQ)(T) > —e)\r /2(N-1)

/N_l ) VT‘}TO,

which leads to a contradiction by letting r go to +oo since @1, w9 € C.

Finally (6.9) is absurd and thus, for every r > ro, 9(r) < 27/(N —1). Now,
from (6.8), it follows

[ov@io = [ (o1-e)o)do

T0 To

N-1
do
o

< 2+ (V =190 — (V- Do) + [ (o)

T
4
< 47r+/ —Cda=47r+27r1n(1).
ro O To
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But, using (6.6) we obtain, for every r > 7o,

T
e(r —10) < / (¢1 — ¢2)(0) do < 4 + 2rin (L),
T0 To
which leads again to a contradiction when r goes to +o00. It completes the proof of
the theorem. m

7 Application to the mean curvature motion

We state here a consequence of Theorem 1.1 for the evolution by mean curvature of
an entire graph.

Theorem 7.1 Let Ty = Graph(ug) where ug € C(IRY) is a radial function. Then
the generalized evolution by mean curvature (T4, )10 of (Do, Q) is given by

(7.1) Ty = Graph(u(-,t)) and Qf = {y > u(z,t)} for anyt>0,

where u € C®(IRN x (0, +00))NC(IRYN x [0, +0c)) is the unique continuous viscosity
solution of (1.1). Therefore (I't)i>0 does not develop any interior and, for t > 0, the
generalized evolution coincides with the classical mean curvature flow in the sense
of differential geometry.

Proof of Theorem 7.1. The statement (7.1) is obvious since, by Theorem 1.1, the
functions 4™ and v~ defined in Theorem 2.1, coincide: ut = v~ = u € C® (RN x
(0,400)) N C(IRN x [0, 400)).

We have shown that T'; is a smooth hypersurface. To prove that I'; evolves
by mean curvature, we have to prove that the normal velocity V(tho,to) at each
(zo,u(z0,t0)) € Tiy,t0 > 0, is equal to —div(z ) (n)(zo,t0), where n(zo,?o) is the
outward unit normal to Epi(u(-,t9)) = {(z,y) € RN*! : y > u(z,t0)} at the point
(zo,u(xg,tp)). It is a classical calculation we recall for reader’s convenience. Let
P(t) = (z(t), u(z(t),t)) be a smooth curve on the front such that z(¢y) = z¢. Notic-
ing that n(zo,t9) = (Du(wo,t0), —1)/+/1 + |Du(zo, to)[?, we obtain that the normal
velocity of P(t) at ¢t = tg is:

dP(t _u (g ¢
(Fwto to) < d(to),n(mo,to)> = at (€0, o) g
| I+ | Dulao, to)]
= —1 Tr [(I _ Du(zo,t0) ® Du(xo,t0)> D?u(zy to)}
V/1+[Du(zo, ) [? 1+ |Du(zg, t)[2 ,

di Du__ ) (g, 10)
= —divy | ———— | (o,
V14 |Dul? 0
. (Du,—1)
= —d T B e T ) at 7t
W(zy) ( % [Dul (20, u(Z0,0), t0)

= —div(gy)(n)(wo, o),
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which proves the claim. O

We end with some comments about the “fattening phenomena”. This issue is of
interest since it is closely related to the nonuniqueness of the generalized evolution
by mean curvature of hypersurfaces when starting with an hypersurface I'y C IR".
There are some situations where I'y develops an interior: see Evans and Spruck [19],
Soner [29], Barles, Soner and Souganidis [7], Ilmanen [23], Barles and Souganidis
[8] and the discussion in [6]. However, the question: may a graph I'g = Graph(uy)
develops an interior? is an open question in the whole generality. As we said in the
introduction and in Section 2, it is equivalent to prove uniqueness for (1.1).

We have two types of results. For the first type, we prove first the uniqueness
for (1.1) and then derive the non fattening for the generalized evolution in the
following situations: (i) here, when I'y is the graph of a radial function; (ii) in [5] in
dimension 1, i.e. when ug € C(IR); (iii) in [4], when ug € C(IRY), N > 1, with some
polynomial-type restrictions on the gradient of ug.

The second type of results consists in proving that I'; does not develop any
interior to get uniqueness results for (1.1). We obtain this result in the following
cases: (i) when I’y = Graph(ug) is the graph of a convex function in [6]; (ii) when
ug is “convex at infinity,” see [9].
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