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Abstract

The classical model of an oscillator linearly coupled to a string captures, for
a low price in technique, many general features of more realistic models for
describing a particle interacting with a field or an atom in an electromagnetic
cavity. The scattering matrix and the asymptotic in and out-waves on the string
can be computed exactly and the phenomenon of resonant scattering can be
introduced in the simplest way. The dissipation induced by the coupling of the
oscillator to the string can be studied completely. In the case of a d’ Alembert
string, the backreaction leads to an Abraham-Lorentz—Dirac-like equation. In
the case of a Klein—Gordon string, one can see explicitly how radiation governs
the (meta)stability of the (quasi)bounded mode.

1. Introduction

Getting back to the spirit of the 19th century—when purely mechanical models were ubiquitous
even for understanding systems involving electromagnetic fields—this paper discusses a simple
model of an oscillator coupled to a string that presents a host of interesting features in a very
accessible way. It will be presented in detail in section 2 (see figure 1). Even though
the required technical background is on an upper undergraduate/early graduate level, if one
remains within a classical (i.e. non-quantum) context!, this model encapsulates many relevant
features of physical interest which can be found in more realistic models, for instance when
considering the interaction of an atom (the oscillator) with light (the string).

First (section 3), when the string is infinite, it allows one to gain insight into (or to
discover for the first time in academic studies) the scattering of waves by a dynamical system.
It provides the opportunity to introduce some of the ingredients of scattering theory: when
dealing with a one-dimensional mechanical system, the notion of asymptotic states (the so-
called ‘in’ and ‘out’ states) is made as simple as possible and the S matrix takes a particular

! In the following, the starred sections indicate a more advanced level and may be omitted in a first reading.
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Figure 1. Model of a harmonic oscillator coupled to a string via a massless spring. The long-
dashed lines refer to the equilibrium positions of the string and the oscillator. The inset shows the
three forces that cancel at the massless attachment point A (x = 0): the left and right tensions of
the string and the elastic force of the coupling spring.

simple form. Unlike the transmission of light in a Fabry—Perot interferometer, the resonant
scattering appears here explicitly in connection with the familiar resonance phenomenon of a
forced oscillator and we can also understand how the motion of the oscillator affects in return
the external excitation.

Second (section 4), from the point of view of the oscillator, this model constitutes the most
elementary example of radiation. It shows concretely how an interaction not only induces a
shift in the natural frequency of the oscillator (this can already be seen when only two degrees
of freedom are coupled) but also that the coupling to a large number of degrees of freedom (the
string being seen as a large collection of oscillators) induces a friction term for the oscillator,
although no dissipation exists in the system as a whole (for an electric analogous phenomenon
see section 22.6 of Feynman ez al (1970), Krivine and Lesne (2003)). Indeed, as far as I know,
there are very few places where this model is discussed and always in the specialized literature
with a d’Alembert string (Sollfrey and Goertzel 1951, Dekker 1985). Some of its variants
(Stevens 1961, Rubin 1963, Yurke 1984, 1986, Dekker 1984) are introduced precisely for
studying dissipation at a quantum level. As we will see, a Klein—Gordon string allows one to
keep one discrete mode (a bounded state) without dissolving it in the continuous spectrum of
the string and therefore allows one to mimic the interaction of a field with a stable particle, not
just a metastable one. This model is particularly relevant to see how backreaction works: for
instance, for a d’ Alembert string, the oscillator is governed by an Abraham-Lorentz—Dirac-
like equation. Besides, we will be able to illustrate precisely the deep connection between the
resonance and the poles of the S matrix (a major feature in high-energy particle physics and
in condensed matter physics).

Before we give some guidelines for further developments in the conclusion (section 6), we
will complete our classical study in section 5 by the detailed diagonalization of the Hamiltonian
and the discussion of the completeness of the basis of modes that are used to describe the
dynamics. This will be the occasion to sketch the finite size effects if one wants to use this
model for describing an atom placed in a cavity. This study also prepares the ground for the
quantization which will be proposed in a future paper.
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Figure 2. A mechanical model that leads to a Klein—-Gordon equation: the string is attached to an
elastic support that can be seen as a tight collection of massless springs uniformly distributed per
unit length along the string. For another mechanical example, see Crawford (1968), section 3.5.

2. The spring-string model

2.1. Description of the model

A very thin homogeneous string of linear mass p is considered to have only transverse
displacements in one direction. At equilibrium it forms a straight line along the x-axis with
the uniform tension 7y (we will never take into account the effects of gravity). The string is
coupled to a system of mass M with one degree of freedom connected to a fixed support with a
massless spring of stiffness K (see figure 1). The coupling is modelized by a second massless
spring of stiffness « attached to the string at the massless point A at x = 0. All the vibrations
will be considered within the harmonic approximation of small amplitudes. We will denote by
&(x, t) the transverse displacement at time ¢ of the string element located at x at equilibrium.
The displacement of M with respect to its equilibrium position will be denoted by X (¢).

2.2. Equations of motion

The equation of motion of the oscillator is

d’x 5

MF+MQOX= —Kk(X — &), (1a)
where &y(¢) défé (0, t) is the displacement of A and 2 & /K /M is the harmonic frequency
of the free oscillator. For x # 0, £ fulfils the one-dimensional d’ Alembert equation

0%& 1 9% .

ax2  croarr
where the wave velocity on the string is given by cdéf«/To /1ko- The derivation of (1) is a
major step in every introductory course on waves (Crawford 1968, section 2.2, for instance).
Less common is perhaps the refinement of sticking the string to a ‘mattress’ (see figure 2)
made of n massless springs per unit length along the x-axis, each of them having a stiffness »x.
The restoring force per unit length due to the mattress, —nx&, turns the d’ Alembert equation
into a Klein—Gordon equation

%6 193% o}

— - Ve, 0), 15’

0xz 292 (2 70 (157
where wy défcx/nx /Ty. This equation governs also the propagation of the electromagnetic
field in a rectangular waveguide (Feynman et al 1970, chapter 24) and is also the relativistic
equation of a quantum particle of mass iiwg/c?, ¢ being the velocity of light in the vacuum.

(1b)
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Since the attachment point A is massless, the sum of the three forces applied to it vanishes
as depicted in the inset of figure 1. To first order in the slope ¥ (x,t) = 90£/9x(x,t), the
transverse component of the right tension applied to A is given by Ty (0%, ¢) the limit when
x — 0 keeping x > 0. On the other side, the transverse component of the left tension is
—To¥ (07, t). The restoring force of the coupling string corresponds to the opposite of the
left-hand side of (1a), namely « (X — &j). Therefore the coupling introduces a discontinuity
of the slope of the string at x = 0:

9 0
TO£(O+, 0 - m%(o—, 1) = —(X (1) = £(1). (1e)

2.3. Dimensionless quantities

The fundamental units will be chosen to be 7% M /(moc) for the times, LY M /o
for the lengths and M for the masses. The model is therefore uniquely
determmed in terms of dlmensmnless quantltles deﬁned by the apdproprlate rescahng
Xeff —X/L o & f/T Euir %'/L X ff = X/L QOeff = 90/(T D, kett = k/(MT™?), etc.
These conventions correspond to ceff = ¢/ (LT 1) = 1. There is no need for any quantlzatlon
as long as the effective Planck constant 7 Y /(ML2T") = hpo/(M%c) < 1. For
simplifying the notations, in the following we will drop the ‘effective’ subscript and work
directly with M =1, c=1, o =1 and Ty = 1. Introducing the shifted® frequency

Q = /Q2+x, )

the equations governing the dynamics of the system become

d2

w7 QXX = k&, (3a)

0% 825

92 912 “)05 =0, (x #0) (3)
and

d a

£(O+, 1) — %(0_, 1) = k(& (1) — X (1)) (3¢)

with the help of the Dirac distribution §, equations (3b) and (3¢) can be combined in one
equation, valid for all x,

9%t 9% )

W—ﬁ—wogzx(S(x)(S—X). (3bc)
Indeed, (3¢) is recovered after integrating (3bc) between x = —e and x =+€ when € — 0%,
since £ and its time derivatives are continuous (and finite) everywhere.

2.4. The Hamiltonian*

If one wants to prepare the ground for some perturbative treatment of some nonlinear
corrections, if one wants to quantize the model and/or to couple it to a thermal bath, one
possible starting point is the Hamiltonian of the system expressed in terms of some canonical
variables. The continuous part of the system (the string) corresponds to a Hamiltonian density
(Goldstein 1980, section 12.4) involving a pair of canonically conjugate fields (7 (x, t), £ (x, t))

2 With more pedantry, one could speak of the renormalized frequency. Here the shift can be understood by the
effective restoring force —(K + «) X that M actually feels.



Interaction with a field: a simple integrable model with backreaction 1037

whereas the oscillator is described in terms of (Py, X). The Poisson bracket has also a mixed
structure of continuous and discrete variables: for any two O, O, that are functions of (Pyx, X)
and functionals of (7, £),
def 00100, 00, 00, 80180, 680,60,
_— — — dx. @)

070 = — + _ P
(01, 02} 3Py 9X 9Py 90X sm 86 om O

The Hamiltonian of the whole system generates the evolution of any function(al) O via
dO/dt = 9,0 + {H, O}. For our system we have

melpr Loae Lo g )2+1/ 242 2+a)2§2 dx, (5
IR VT2 ox 0 ’
the corresponding Hamilton equations yield directly to (3). The interaction term is completely
different from the one used in a recent one-dimensional pedagogical model (Boozer 2007).
The latter emphasizes the recoil effect of the field on the mass M (unlike in the present work,
the external (translational) degrees of freedom for M are considered) whereas we are more
interested in the resonance effects.

3. Scattering

3.1. Free modes

As for any vibrating system, a normal mode is defined to be a particular collective motion
where all the degrees of freedom oscillate with the same frequency. In the absence of coupling
(¢ = 0), for a given frequency w > 0, one can choose two independent normal modes (the
free modes) on the string given by

jfi‘k (x’ t) — i(ik}c—wl). (6)

—e
21

The wave number is obtained from the dispersion relation of the Klein—Gordon equation:

k@) € /o -} = k) =/} +k. (7

When @ < wy, k is purely imaginary with a positive imaginary part and does not correspond
to any travelling wave. When o > wg, k is real positive and the two modes are two
monochromatic counter-propagating waves.

A real field £ obeying the Klein—Gordon equation (3b) carries an linear energy density
pe = 2[(3€/31)*+(9& /0x)*+w}£>] and alinear density of energy current j, = —d& /3t3& /dx.
The conservation of energy takes the form dp./d¢ + dj./0x = 0 for x # 0. For a
monochromatic travelling wave of complex amplitude a, £ (x, t) = a e ***~“) an elementary
calculation shows that the average current over one period is given by

(o) = Tkolal*/2 (k real), (8)
whereas for an evanescent wave

(jey =0 (k imaginary). 9

3.2. Definitions of the in and out asymptotic modes

When a coupling is present (¢ > 0), the two free waves (6) are no longer solutions of (3).
A monochromatic travelling wave will be partially reflected (respectively, transmitted) by the
oscillator with a reflection (respectively, transmission) coefficient p (respectively, 7) that is a
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Figure 3. Several choices for the normal modes with frequency w. The wavy arrows symbolize
monochromatic travelling waves whose complex amplitude is specified below; (a) the in-state
given by (10a); (b) the in-state given by (10b); (c) the out-state given by (15a) and (d) shows the
general coefficients that will be linked by the S or 7' matrix defined, respectively, by (21) and (23).

complex function of k or w. The linearity of equations (3) guarantees that the frequency will
be unchanged by scattering. Indeed, to describe such a scattering process, a relevant choice
for the two modes of frequency w is to look for in-states, defined (for real positive k) to be of
the form (see figure 3(a))

] 1 ei(kx—a)t) + pei(—kx—wr) for «x < 0

in ’
x,1)=—— . (10a)

5—13 27 | T eitke—en for x>0,

and, since the scattering is symmetric with respect to x — —x,
i(—kx—awt) f <0

in def . in 1 TE or x sV,
X, 1) = —x,1) = —1 . . 106
s(k_( ) EL( ) /27_[ el(kafwt) +p e1(k)c7wt) for «x > 0’ ( )

with, for both modes, the same amplitude y (w) for the oscillator that can be interpreted, using
the language of linear response theory, as a susceptibility:

X"(1) = x(w)e . (11
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These modes form a set of waves that is suited for constructing localized wave-packets that
look like free wave-packets when + — —oo (i.e. far away from the oscillator). For instance,
when considering a localized wave-packet travelling to the right, we shall have?

f P& (x, 1) dk — f PUOE (x, 1) dk = @ (k) 7" dk. (12)

1
=/
The continuity of £ at x = 0 implies that

l+p=r. (13)
Conservation of energy implies that the average energetic current is conserved in the stationary
regime. From (8), we must have

1= |pl*+]t|% (14)

Moreover, the equations are real and invariant under the time reversal; therefore if & (x, ) is
a splution, so is its complex conjugate (£(x,r))* and &(x, —¢). If we consider the solution
(E‘: (x, —t))*, then we obtain the mode depicted in figure 3(c) obtained from figure 3(b) by

reversing the orientation of the arrows and by conjugating the amplitudes. This procedure
defines the out-modes that behave like free modes for remote future times when packed in
localized superpositions. We will have (see figure 3(c))

EM(x, 1) & ER(x,—0)" = o s (150

4k> s (k_ 5 o ei(kx—wl) + )0* ei(—kx_‘“’) for x > O,
and

‘ 1 [elkeen 4 px gitka—en for x <0,

Omx,t déf n x,_t *=_ ) 15b
§£ (x,1) (S_lg( ) Vx| ereitha—en for x>0, (130
with

XUt) = x*(w)e . (16

If we interpret & ‘/’c‘“ as a superposition of in-modes coming from both sides that conspire to
—
product no wave travelling to the right for x < 0, we get

Th = , pr=— . (17
o+T p+T

More mathematically, E‘,’{‘“ (x, t) can be seen as the continuation of & i,? (x, t) to the domain
— <~

of negative k’s. Indeed, we have “g“]’(”‘ (x,t) = Sf‘k (x, t) provided that we define

t(—k) € (k)" p(—k) € (p(k))*. (18)

3.3. Definitions of the scattering and transfer matrices

The in-modes and the out-modes are two possible bases for describing a scattered wave-packet.
These bases can be obtained one from each other by linear transformations; the linearity of the
equations of our model implies that they connect waves with the same frequency only, which
is a major simplification. A typical scattering experiment consists in preparing one wave-
packet travelling towards the scatterer (the oscillator). Long before the diffusion, this ingoing

3 This can be understood with the stationary phase approximation. If ¢ is concentrated around ko > 0, the wave-
packets travel with the group velocity £dw/dk (ko) 2 0. When t — —oo, the dominant contributions to the integrals
in (12) form one wave-packet located in x < 0 and travelling to the right.
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wave-packet is a simple superposition of in-modes. Long after the diffusion, we get two
outgoing wave-packets that are naturally described in terms of out-modes. The passage from
the in-basis to the out-basis is described in terms of the scattering matrix S that encapsulates
all the information about the possible scattering processes*. It is made of 2 x 2 blocks S(w)
defined by

%-(I)Cul %-1]1{1
=5 = 19
%-(])(Ut (a)) %-1]1(1 ( )

The decomposition of each out-mode in terms of the two in-modes for, say, x < 0, leads to

T p
| e+ p+t | (" p*

pP+T  pHT
In other words, for the general monochromatic wave

C_eikx—on 4 p eil—kx—on  for <0,

C+ei(kx—wt) + D+ei(—kx—u)t) for x 2 O, (21)

é(x,l)={

the S matrix connects linearly the coefficients

Cc_ C,
(S) =50 (%) o)

In the absence of scattering (r = 1,p = 0), S simply reduces to the identity. The
unitarity of S, which can be checked on (20), can be seen as a direct consequence of the
conservation of energy since, from (8), the norm of the two vectors involved in (22) is
preserved: |C,|>+ |D_|> =|C_|* +|D,|*.

If one wants to calculate the diffusion by several scatterers, it is more convenient to
introduce the transfer matrix 7 whose 2 x 2 blocks are defined to connect the left coefficients
to the right coefficients,

C. C_
(D+> =T(w) (D_> . (23)

L

Then we have

1+

T(w) = (24)

T

Q= Qo

whose determinant is one. The addition of one scatterer on the string corresponds to a
multiplication by a T matrix.

3.4. Physical interpretation of the solutions—resonant scattering

The definitions and the general properties presented in sections 3.2 and 3.3 are valid for any
non-dissipative punctual scatterer. As far as our model is concerned, inserting the expression

4 In the literature, specially within the context of scattering of quantum waves (Taylor 1972, section 2c, for instance),
the matrices that connect the free waves to the in-waves on the one hand and the free waves to the out-waves on the
other hand are often introduced under the name of Mgller operators with the caveat that unlike the free states, the set
of scattering states may be incomplete, that is insufficient to construct all the states. As we will see in section 4.2, to
get a complete basis one may add to the in-states (10) the bounded modes when existing.
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(10a) with the oscillation (11) in equations (3) yields to a linear system that can be solved
straightforwardly:

T(w) = 1 Lo _ : (25)
2 2 , K W — Q2
1+1 0
o2 — Q2
2./ w? — w(z) K
1 1 . -1
pl@)=—3+5e = , (26)
2\/ w? — a)é w? — Q2
1—i X
! K w? — Q(z)
with
2 QZ
n(w) &l arctan i a)z 9(2) 27
? —
2,/ —
and
(@) = KT . (28)
2 o2 . K 9
Q- —i (a) QO)
2./ w? — a)g

Even though the coefficients p and t were first defined for travelling waves, i.e. for
® > wyo, the above expressions can be continued for v < wy. We will understand the physical
interpretation of this procedure when we study radiation in section 4. As long as > wy,
(14), (17) and (18) hold. We can check that the ultra-violet limit @ — oo is equivalent to the
limit of weak coupling where the oscillator becomes transparent: 7 — 1 and p — 0. Another
case where the coupling is inefficient is when A and X both oscillate in phase with w =
since the coupling spring remains unstretched. More interesting is the resonant scattering
that occurs, provided that wy < €2, when the ingoing wave that forces the oscillator has
precisely the same frequency as the shifted frequency of the latter, that is w = €2;. Then, the
scattering is the most efficient since no transmission occurs (o = —1, T = 0). The resonance
spike can be seen in figure 4 and its quality factor can be evaluated from its width Aw when
[p(R2 £ Aw/2)| = 1/\/5: for a small coupling,

0 def & _ 252%
Aw K2
and therefore, the smaller «, the better the quality of the resonance.

R — 2(1+0(x)), (29)

4. Radiation, damping and bounded mode

The general idea that damping and therefore irreversibility emerge because of the interaction
with a large number of degrees of freedom can be illustrated explicitly on our model. If
we choose initial conditions such that the spring is at rest at t = 0, the entire energy being
contained in the oscillator, for instance

d i

£(x,0) =0, a—f(x,()) =0, X(0) =X, X(0)=0, (30)
the energy transfer to the string will damp the oscillations of M and the latter may completely
lose its energy far before the energy can get back from the string if its boundary is far away

from the oscillator (for a string of length ¢, Poincaré recurrence time is of order £/c if there
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w0 Q0

Figure 4. Graphs of |7(w)| (dashed line) and |p(w)| (solid line) given by (25) and (26) when
wp < 0. One can observe a resonance scattering spike for @ = €24 and an antiresonance for
o = 2, where no scattering occurs. The quality factor is (a) Q ~ 15 and (b) Q =~ 200. Let
us mention that when Q¢ < wy < €, the antiresonance has vanished and the local maximum
|p(2k)| = 1 is too soft to be called a resonance. When 2, < wyp, no scattering resonance occurs
and |p| decreases monotonically from 1 at @ = wg to 0 when @ — +00.

were no dispersions). The equation of motion of the oscillator is particularly simple when the
string is non-dispersive (wy = 0) and therefore we will start by studying this case. However,
we will also consider the case of the Klein—-Gordon string because when wy > €29, we will
see that there exists a stable mode of the oscillator at a frequency w, > 0 whose dissipation
is blocked because w;, < wp. Its vibration does not decay because at this frequency, only
evanescent waves can exist on the string, which do not carry away energy current on average
(see (9)).

4.1. The d’Alembert string

With the initial conditions (30), the general form of the radiated waves on the string will be
E(x,t) = & (t—|x|): each of the two wave-packets travels away from x = 0 without distortion
when wy = 0. Equation (3¢) becomes

2$0+KSO=KX 3
and the elimination of & from (31) and (3a) yields
o 2Q2 . 2.,
X+ QX =— X - —-X. 32)
K K

The two terms in the right-hand side are dissipative forces. The first one has the familiar
taste of the viscous resistive force whereas the second has the flavour of the Schott term
2¢% ¥ /3 (Rohrlich 2000, equation (2.7b)) in the Abraham—Lorentz-Dirac equation which
governs the dynamics of an electric charge e that takes into account the electromagnetic
self-force of the charge. The major difference is the sign of the coefficient in front of the
third derivative. Unlike the Schott term, the negative sign in (32) prevents the spurious
exponentially accelerating solutions. It can be clearly seen that the irreversibility due to
dissipation comes straightforwardly from the choice of initial conditions (30) that break the
time-reversal symmetry under which the original equations are invariant.

Many models of an oscillator coupled to one-dimensional waves are recovered in the limit
of strong coupling k — +00 (see the references given in the introduction, for instance when
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the mass is directly attached to the string). In that case, only the viscous force remains in (32)
and we immediately get the well-known damped oscillator X +2X + Q53X = 0.
Looking for exponential solutions X (#) = X (0)e* yields to the characteristic equation of
(32):
D+ Ik + Qlz+ Qi =0. (33)
There are three solutions, one real zg and two complex z,, z_ all having a strictly negative real
part. Perturbatively in «, we have

2

z __£+K_+O(K3) (34a)
0T T2 T a2 ’

ze=1" ——K—2+i<9 +L—K—2>+O(f<3) (34b)
P T Tl °T2Q, 823 '

For generic initial conditions, including (30), where the string is at rest the energy of the

oscillator will exponentially decay like e " at the rate
QQ K2 3
'=—=—+0(k"). 35
0~ 22 («7) (35)

In the language of particle physics, the stable non-interacting particle (the mode of the free
oscillator) has been destabilised into a metastable particle of lifetime I'"! because of its
interactions.

4.2. The Klein—Gordon string

When wy > 0, one cannot get a differential equation for X (#) but must keep working with its
temporal Fourier transform

def

X(w) = X(¢) e dt, (36)

7l
2
together with a superposition of purely radiated waves of the form &(x,f) =
(V2m)7! f £ (w) e ®¥1=®Dd¢ Inserting them in (3), X must satisfy’

[k (0 — ) — 2iy/0? — W} (0® — Q)] X (w) = 0. (37)

Therefore X vanishes everywhere but at the frequencies that cancel the brackets. These are
precisely the poles of T and therefore of p = v — 1 given by (25) and (26). Indeed, for pure
radiative modes, the ingoing waves vanish (C_ = D, = 0) and therefore the matrix element
T»> must go to infinity in order to keep D_ finite (see figure 3(d)) and equations (23) and (24)).

Letting Z = —w?, we look for the solutions of the cubic equation
2 2 2 K’ 2)2
(Z+w)(Z+9Q5+x) _Z(Z"'Qo) =0. (38)
Perturbatively in «, those are
2 3
Zo=—P+ o — L OrY, (39a)

4 22— wd)

5 The presence of the square root in (37) is the reason that prevents us from obtaining a local differential operator
for X (¢).
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* 2 . i 3
Z,=7" = -Qj — k —i—————=+0("). (39b)
2 Q(z) —a)(z)

When wy — 0, we recover Zy — z% and Z; — z2. The physical frequencies will be the
three square roots in/Zg, i/Z+ whose imaginary part is not positive: the typical decay rate
of energy will be given by the nearest root wy,, to the real axis: I' = —2Im(wy,n). As long
as 2wy < k < 23, all the three frequencies have strictly negative real part. The decay rate is
given by

2
r=®__ K Lowh (40)

Q@ 20,/ — o}

It is a very general feature that the poles of the S matrix are associated with resonances and,
more precisely, that their imaginary parts provide the decay rates, which are proportional to
the inverse of the quality factor of the resonances.

When k < 2wy, Z is negative, one residual oscillation persists at frequency w;, = Ly —Zy.
For w;, < wy, no transfer of energy is allowed; only evanescent waves are created and those
do not carry any average energy current. Unlike the scattering states, this non-decaying mode
is spatially localized. More generally, any bounded mode has a purely real frequency w that
must be less than w since Z; + a)O = wo — a)b > 0 in order to fulfil (38). From (7) k(wp) is
therefore purely imaginary. Moreover, in order to cancel the bracket in (37) wb must lie in
between Q2 and Q2. For simplicity, let us introduce the auxiliary parameter TY (92 wj) [«
and the real positive variable u &ef |k|/+/k; a stable mode will exist if the cubic equation

@ + Y+ D) +/k@*+Y)=0 (41)

has a positive real solution. This can be achieved for T < 0 only i.e. in a regime where
Qo < wo. For T < 0, the product of the roots of the left-hand side of (41), u,u_u, is
—/kY > 0. If two roots are complex conjugated, the third one is necessarily positive. If
the three roots are real, either only one is positive or all three of them are. The latter case
must be ruled out since the sum u, + u_ + u, = —./k is strictly negative. We have therefore
proved that a sufficient and necessary condition for a stable mode to exist is that wy > 2. Its
frequency is given by

wp = J 0k — i, (42)

where u, is the unique positive real solution of (41). Perturbatively in x, we have

p 29(2)+,/w0 92

=Q+ s — — +0() (43)
20 93 / Qz 8
and the corresponding bounded mode is given by
EP(x,1) = Cpe Vool giont (44a)
ch —iwy
Xp(t) = me vt (44Db)
The choice of the normalization,
-1/2
1 2
Cp = P 45)

R (Ve )’

will be justified below (equation (54)).
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5. Some like it diagonal*

5.1. Normal coordinates

What makes the model completely tractable is of course that it remains linear. However, the
direct diagonalization of the quadratic Hamiltonian (5) remains particularly difficult. In that
case, the trick is to solve the equations of motion to determine the normal modes first—this is
precisely what we have done in the previous paragraphs—and then write the Hamiltonian in
its diagonal form

1
H= > Z (pi + wiqi) = Xa:waa:aa (46)

o
in terms of some (real) canonical coordinate {p,, g4} Or (complex) normal coordinates {a }
that are associated with modes labelled by the discrete and/or continuous index .’ We have

Wo i
ay = | 22g, + ——p,. 47
2 @
Go = (a+a,) Po =1 &(a*—a) (48)
* 2(1)0( “ “ ) 2 ¢ “
and, for each pair {&1, a3},
{{aal s aolz}} =0, {{a(xl ’ a:xkz }} = i8011:012’ (49)
{{pm ’ paz}} = 0, {{CIOH ’ qaz}} = O, {{Pm ’ qaz}} = 50(1,&2’ (50)

where § stands for the Kronecker symbol or the Dirac distribution. The second step consists in
determining the canonical transformation that expresses a, in terms of some a priori known
normal coordinates, namely some free normal modes ay . In our case this transformation is
linear and will be transposed directly into the quantum theory by replacing the complex number
a, (respectively, a) by the creation (respectively, annihilation) operator d, (respectively, its
Hermitian conjugate a.) of the th one-particle eigenstate whose energy is iw,. As we have
seen, all the scattering states are twice degenerate, in the sense that each normal frequency w
is associated with two independent states labelled by k and —k. These modes both diagonalize
the Hamiltonian (5). An infinite number of pairs of eigenvectors can be chosen to constitute
a basis, among them, the in- and out-states, which are particularly relevant as soon as we get
into a quantum field theory’. But in order to get (46) properly one must check that the set of
modes is actually complete—i.e. that any kind of motion of our system can be described as a
linear superposition of modes—and orthonormalized correctly in order to deal with canonical
complex coordinates. Fourier analysis assures that the free states (6) constitute a complete set
for describing the waves on the string. When interacting with the oscillator, if wy > €2 one
bounded state exists that must be added to the in-modes (or to the out-modes) to get a genuine
basis. Then, including the normal coordinates A; of the bounded mode if there is any, (46)
reads

H=w,AA, + / wk)ak (k)a, (k) dk = w, ALA, + / wk)ar, (ka. . (k) dk. (51)

out out

% To avoid ambiguities we will often subscript the brace describing a set like {...}4ec4 to recall which indices are
running and what is their range A if the latter does matter.

7 The normal coordinates ain (k) and aoy (k) constructed from the scattering modes, once quantized into @i, (k) and
dout(k), allow the interpretation of the quantum states in terms of asymptotic (quasi-)particles; more precisely the
linear transformations from the free ar (k) provide the explicit connection between the non-interacting states (the
Fock space for bare particles including the free vacuum) and the interacting states (the Fock space for dressed particles
including the interacting vacuum).
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We chose the convention that, when k > 0, aj, (k) (respectively, aoy (k)) is constructed from & l/?
(respectively, E‘]’{‘“) while aj, (—k) (respectively, aoy (—k)) is constructed from Ei]‘: (respectively,

£,

5.2. Orthonormalization

Having a complete set of modes does not guarantee that they are orthogonal. Indeed, it may
happen that two eigenvectors having a common eigenfrequency are not. For instance, one
must check in one way or another that the modes (10) are orthogonal and properly normalized.
If we denote by E(¢) a classical state represented by the displacement X (¢) of the oscillator
and the wave £(x, ) on the string, the scalar product between two states E;(#) and E, () is

= = def *

E1(1) - B2(1) = XT()X,(0) + f Ef(r. D& (x, 1) dx. (52)
It is shown in the appendix that if E}{“ (respectively, Eij‘k) stands for the mode Ei,? (x,1)
(respectively, £ (x, 7)) both with X™(r) = x (w) e, then we have, for any (positive and/or

negative) real p(a_ir (k1, ko),

EQ () - ER@) =8k — ko). (53)
It is easy to see that we chose the normalization (45) in order to get

g - B'1) = 1. (54)

—~fr =fr  =fr

The free states &1, represented by X =0 and (6) are clearly orthonormalized, &} - & =
8(k; — k), and form a complete basis if we add the state that allows us to describe the motion
=fr

of the oscillator, namely E; represented by X = 1 and & = 0.

5.3. The real symmetric modes

The potential in (5) is a real definite positive symmetric quadratic form and therefore can be
diagonalized in an orthogonal basis of real vectors. The natural choice of retaining the real
or the imaginary part of E'%, actually provides two real modes but that are not orthogonal. A
way to assure that we deal with an orthogonal basis, is to pick up a symmetry, say the parity
x +— —ux, of the Hamiltonian and classify the eigenmodes accordingly. The bounded state, if
there is any, remains even. The in- and out-modes are not symmetric under space inversion but
it is straightforward to obtain eigenmodes that are also eigenvectors of parity. For any complex
factors c., the combinations c4 (EI" + E™", ) are symmetric/antisymmetric eigenvectors at any
time with the eigenvalues £1. After some algebraic manipulations using the expressions (26)
of p in terms of » given by (27), the symmetric and antisymmetric modes are represented, for
k > 0, by

. . . 2 .
e (EF (D +EF (0, 0) = ¢ e_"’/jCOS(kI)CI —me (55a)
= < T
in in : 2 : —iwt
c_ (Si (x,1) — gg(x, t)) =ic_ - sin(kx) e™'". (55b)
The choice ¢, = ¢"/+/2 and c_ = —i/+/2 leads to the real normalized symmetric modes,

defined for k > O by

(:f) =R(w)< ) ) (56)
S k

[1]

~5

]
§=]
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with the unitary matrix

1 ein(w) eiri(w)
R(w) = 7 < . i ) (57)

Constructing the real (anti)symmetric states from the out-modes at any time leads to the
same E,f since the common eigenspace to H and to the parity is of dimension one. To sum
up, for k > 0, Eki is represented by

1 . A
E(x, 1) = 7= cosliklx| = n@)] e i, X*(r) = %% e i, (584)
£ (1) = —— sin(kx) e, X~ (1) =0, (58b)

N

and {E,(t)} U {Eki (t)} =0 is, at any time, an orthonormalized eigenbasis of symmetric or
antisymmetric eigenvectors of the Hamiltonian with eigenvalues given, respectively, by (42)
and (7).

5.4. An atom in a closed cavity

The explicit canonical linear transformation that connects the free canonical variables to the
interacting ones (the in or out-modes via the real symmetric ones) is beyond the scope of this
paper and will be given and extensively interpreted in a future paper where we will quantize
our model. As explained above (see section 2.4 and also the note 7), this is really interesting
and beyond a purely academic exercise only if one wants to switch to quantum theory and/or
statistical physics. The quantum linear transformation between a;, (k) and ay (k) appears to be
a generalized Bogoliubov transformation and our model provides an explicit construction of
quasi-particles in terms of free particles.

However, the real symmetric modes that have been founded in the previous section remain
interesting at the less advanced level of the present paper because they are the natural modes
to work with when the finite size £ of the string becomes relevant. Indeed, when £/c is not
too large compared to the typical time I'~! characterizing the radiations of the oscillator, the
discrete character of the spectrum of the non-interacting string can be ‘felt’ by the oscillator.
When boundary conditions are imposed, say £(£/2,t) = §(—£/2,t) = 0, the discrete (even)
spectrum of the whole system is modified by the presence of the oscillator and, from (58a)
given by the {k,},cz that fulfil the equations

%knﬁ —n(wk,)) = % +nn <<= tan(n(k)) =tan(kl/2 —m/2), (59)

that can be solved graphically (figure 5). The frequency €2 of the free oscillations of the mass
comes into the spectrum of the string. The even spectrum will differ from the non-interacting
case when e'” is significantly different from one. For resonances with high quality, it will not
affect the frequencies that are away from the resonant frequency.

What one gets here, for wy = 0 is an elementary model of an atom in a (perfect)
electrodynamics cavity of size £ (some imperfections can be taken into account if we relax the
Dirichlet boundary conditions and put partially reflectives ‘mirrors’ on the string). The field
may or may not be quantized and, not to speak of lasers, we obtain a sort of primer for the
widespread physics of quantum electrodynamics cavities that have been realised in laboratory
to test successfully some fundamental concepts in quantum physics (Haroche and Raymond
2006). The purely mechanical model for infinite « (the mass is directly attached on the string)
has been carefully studied with experiments in Gémez et al (2007).
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wo Q}{

Figure 5. Graphical resolution of equations (59) that provide the even frequency spectrum when
the oscillator is attached to the middle of string of finite size £. The frequencies, represented by
small up triangles on a horizontal line at the bottom of the figure, are centred on the abscissae of the
intersections of the graph @ +— tan(n(w)) (thick solid line) with the graphs w — tan(k(w){ —1/2)
(thin solid lines) for @ > wp. As in figure 4(a), the quality factor of the resonance is Q ~ 15. The
down triangles indicate the spectrum of vibration of the Klein—Gordon string alone of finite size

£ obtained for tan(k(w)¢/2 — /2) = 0, that is for w, = /wZ +72(2n + 1)2/¢2 with n being a
positive integer.

(This figure is in colour only in the electronic version)

6. Conclusion

In addition to a more detailed study of the finite size effects, another natural development of
the present work would be to deal with multiple scatterers. For instance, when there are two
identical scatterers with wy > €2, we expect that the degeneracies of the two bounded modes
are broken and that the splitting between the symmetric and the antisymmetric bounded modes
decreases exponentially with the separation of the oscillators. Starting with initial conditions
where only one oscillator has some energy, the beating between the two oscillators is an
example of tunnelling due to the presence of evanescent waves connecting the two oscillators.

Even before we quantize the whole system, our model may be interesting to keep the field
classical whereas only the oscillator is quantized. It would provide an illustration of say, the
Fermi golden rule within the context of time-dependent perturbation theory (Cohen-Tannoudji
et al 1980, chapter XIII). However, we have proven that this golden rule transpires in our
classical model since the transition rate (35) to the continuum of the modes is proportionnal
to the square of the coupling strength « to first order in the perturbation.

As has been demonstrated, this model captures many fundamental phenomena that are
important in many areas of physics and offers wide possibilities for pedagogical use. Above
all, T hope it will help the reader to discover and/or to understand them more deeply.
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Appendix. Normalization of the modes*

The construction of the real symmetric modes presented in section 5.3 leads to an orthogonal
basis {E,(7)} U {Eki(t)}bo. When it exists (wy > o), the bounded state Z, has a norm

unity. That they are eigenvectors for different eigenvalues of H or of the parity guarantees that

E,fl . Et o 8(k; — k) and this appendix proves that the proportionality factor is indeed unity.

Rewriting (10a) with the help of (13) and with the Heaviside step function ©,

4 1
Ep(x,1) =

V2

we have, with p; &ef p(ky) and po &f p(ko),

i 1 1
C(x,t ) dx =8k — ko) + — i i
/Sﬁ(x )Eg(x )dx (ki 2)+2n’ |:,02 <k2+k1+10++k2—k1+10+)

* 1 1 201 Py
p __ )+ | (A2)
kz—k1+10+ k2+k1—10+ kz—k1+10+

We have used the identity (0* stands for the limit € — 0 keeping € > 0)

[¢" +ptye ™ O(=0) +p) ™ OW]e ™, (A1)

+00 i eikxo
/ ek dy = —— (A.3)
xo k +10*
valid for any real k. The other identity
1 2
= — —ind(k A4
crior k) (A.4)

allows one to convert (A.2) in terms of the § distribution and of the Cauchy principal value :
/ £ (x, DE,, (x, dx = 8k — ko) + p}8(ky + k)

i [o) o)
+— — o) ———+ (o] + o2 + 207 ) —— | A5
7 |:(:02 pl)k2+k1 (o1 + P2 p‘p2)k2—k1] (A.5)

In fact, the coefficients of the principal values both vanish when the respective denominators
cancel (we use (18), (13) and (14), then p + p* + 2|p|*> = 0 follows) and we can drop the
symbol g. The §(k; + k») can also be forgotten for, to constitute the basis, we retain only
strictly positive values of k; and k;. A little bit of algebraic jugglery with (25) and (26) allows
to check that

i |::02 —p; P+ +2pr2} o K? 'Y,

2w [ ko +ky ks — ki T (2 ) (R — ot

) = —x"(@)x(@) (A.6)

def

with T, & t(k,), w, = w(k,) (n =1, 2). Then we have proved that, for k; > 0 and k, > 0,

BN - ER® = (XP®) X2 + f E; (x, D&, (x,1)dx =8k — ko). (A7)

The space inversion of this identity leads immediately to ™, (1) - 8", (t) = 8(k; — k»). At
last, with the same techniques we can obtain

1 2 * _ * _ *
f &1 (e 0E, (v, 0dx = (1+p]S (ki +k2) + = [% oML I .

E k2 —k 1 k2 +k 1
As above, for k| and k; both strictly positive, §(k1 + k,) vanishes whereas the second term on
the right-hand side is precisely — (X} ®))" X . (1). Therefore

} . (A8)

B () - BR (0 = (X2(0) X" (1) + / Ef (x,0E (x,)dx =0.  (A.9)



1050 A Mouchet

The complex conjugation and the time reversal t — —t of the above relations allow us to show
that the out-modes are also orthonormalized. The orthonormalization of { E,f Heso follows from
(56) and (57). To sum up, we have obtained the following scalar products, for any k; > 0 and
kz > 0:

Bl (1) - BT () =8k — ko), g5, @ - BN (1) =0, (A.10)
B (1) - B (1) = 8(ky — ko), 23 (1) - BX (1) =0, (A.11)
Ei (1) - B (1) = 8(ky — ko), B () EFL(1) =0, (A.12)

and, when wy > €2 for a unique bounded state to exist,

2(t) - Bp(t) = 1, (A.13)

ED (1) Bp() =0, EXO-Bp()=0, Ep1) E@) =0 (Al4)

Three eigenbases for the Hamiltonian have been chosen: {Z,(f)} U {Eik“(t)} k<R’ {Ep()} U

{E9" (1) }ker and {2, (1)} U {EzE () }x>0. The passage from one to the other is done with unitary
matrices made of independent 2 x 2 unitary blocks of S(w) or R(w) given by (20) and (57),
respectively.
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