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Abstract
It is shown how the model which was introduced by Mouchet (2008 Eur. J.
Phys. 29 1033) allows one to mimic the quantum tunnelling between two
symmetric one-dimensional wells.

Following the publication of [1], some readers asked me to provide more details on the
concluding remark about tunnelling (first paragraph of section 6). Strictly speaking, tunnelling
is a quantum phenomenon that refers to any process that is classically forbidden (i.e. cannot
be understood from the real solutions of the Hamilton equations). The paradigmatic example
(that can be found in many textbooks, such as [2]) is given by the oscillations of a quantum
system between two one-dimensional potential wells separated by a barrier whose maximal
energy is larger than the energy of the system. As understood as early as 1927 by Hund [3],
it relies on the existence of some evanescent Schrödinger waves connecting the two wells.
Therefore, it is perfectly justified to consider a purely classical mechanical model to illustrate
tunnelling provided it exhibits the appropriate evanescent waves (we do not intend here to
compare the classical model with its quantum analogue). In optics, where evanescent waves
can easily be created with dielectric materials, the analogue of quantum tunnelling has already
been considered, for instance in [4].

To mimic the double-well symmetric situation, let us consider two identical oscillators
coupled to the Klein–Gordon string (as described in [1]) and located at x = ±a/2 (a > 0).
When the oscillation frequency of the free oscillators �0 is below the ‘infra-red’ cut-off on the
Klein–Gordon string ω0, there are two stable modes, one symmetric and one antisymmetric
whose corresponding frequencies are denoted by ω+ and ω− respectively: if the two oscillators
were infinitely far away, we would get ω+ = ω− = ωb given by (42) of [1] but at finite distance
the string connecting the two oscillators lifts the degeneracies between the two frequencies:

the splitting �ω
def= ω− − ω+ �= 0 represents the frequency of the beating between the two

oscillators. At these frequencies ω±, both below ω0, no energy transport along the string
is allowed on the average (equation (9) of [1]) and however some energy can be exchanged
between the two oscillators.
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This is similar to the quantum situation: for the quantum symmetric double-well potential,
the true eigenstates are delocalized between the two wells with energies E+ and E−; a
state that is localized in one well only is a linear superposition of a symmetric and an
antisymmetric state and oscillates back and forth between the two wells at a frequency
(E− − E+)/h̄.

The tunnelling splitting is expected to be exponentially small with the distance between
the two oscillators [5] as can be proved by the following computation. For x < −a/2, we
keep an evanescent wave on the string with the form D− ei(−k(x+a/2)−ωt) with k = i

√
ω2

0 − ω2

whereas for −a/2 < x < 0 we have C+ ei(k(x+a/2)−ωt) + D+ ei(−k(x+a/2)−ωt). The complex
coefficients C+ and D+ are linearly related to D− with the matrix T (ω) given by (23)–(26)
of [1]. The antisymmetric mode corresponds to an odd wavefunction that vanishes at x = 0:
C+ eika/2 + D+ e−ika/2 = 0. The symmetric mode corresponds to an even wavefunction whose
spatial derivative vanishes at x = 0: C+ eika/2 − D+ e−ika/2 = 0. In both cases, a non-trivial
solution can be found if ρ = ±e−ika . The frequencies ω± must be the solutions of the two
equations respectively

1 +
2
√

ω2
0−ω2

κ

ω2 − �2
κ

ω2 − �2
0

= ∓e−a
√

ω2
0−ω2

. (1)

If the right-hand side vanished (a → +∞ while keeping fixed all the other parameters), we
would recover the equation that furnishes ωb (see equation (38) of [1]). For finite a, in the
case where the right-hand side is small
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, the first-order expansion in the coupling

parameter κ provides
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