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Chapter 1

Resonance-assisted tunneling in

mixed regular-chaotic systems

1.1 Introduction

Since the early days of quantum mechanics, tunneling has been recognized as one of the
hallmarks of the wave character of microscopic physics. The possibility of a quantum particle
to penetrate an energetic barrier represents certainly one of the most spectacular implications
of quantum theory and has lead to various applications in atomic and molecular physics as
well as in mesoscopic science. Typical scenarios in which tunneling manifests are the escape of
a quantum particle from a quasi-bound region, the transition between two or more symmetry-
related, but classically disconnected wells (which we shall focus on in the following), as well
as scattering or transport through potential barriers. The spectrum of scenarios becomes
even richer when the concept of tunneling is generalized to any kind of classically forbidden
transitions in phase space, i.e. to transitions that are not necessarily inhibited by static
potential barriers but by some other constraints of the underlying classical dynamics (such
as integrals of motion). Such “dynamical tunneling” processes arise frequently in molecular
systems [1] and were realized with cold atoms propagating in periodically modulated optical
lattices [2, 3].

Despite its genuinely quantal nature, tunneling is strongly influenced by the structure
of the underlying classical phase space. (see Ref. [4] for a review). This is best illus-
trated within the textbook example of a one-dimensional symmetric double-well potential.
In this simple case, the eigenvalue problem can be straightforwardly solved with the standard
Wentzel-Kramers-Brillouin (WKB) ansatz [5]. The eigenstates of this system are, below the
barrier height, obtained by the symmetric and antisymmetric linear combination of the local
“quasi-modes” (i.e., of the wave functions that are semiclassically constructed on the quan-
tized orbits within each well, without taking into account the classically forbidden coupling
between the wells), and the splitting of their energies is given by an expression of the form

∆E =
~ω

π
exp

[
−1

~

∫ √
2m(V (x) − E)dx

]
. (1.1)

Here E is the mean energy of the doublet, V (x) represents the double well potential, m is the
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2 CHAPTER 1. RESONANCE-ASSISTED TUNNELING

mass of the particle, ω denotes the oscillation frequency within each well, and the integral
in the exponent is performed over the whole classically forbidden domain, i.e. between the
inner turning points of the orbits in the two wells. Preparing the initial state as one of the
quasi-modes (i.e., as the even or odd superposition of the symmetric and the antisymmetric
eigenstate), the system will undergo Rabi oscillations between the wells with the frequency
∆E/~. The “tunneling rate” of this system is therefore given by the splitting (1.1) and
decreases, keeping all classical parameters fixed, exponentially with 1/~, what gives rise to
the statement that tunneling “vanishes” in the classical limit.

This approach can be generalized to multidimensional, even non separable systems, as
long as their classical dynamics is still integrable [6]. It breaks down, however, as soon as a
non-integrable perturbation is added to the system, e.g. if the one-dimensional double-well
potential is exposed to a periodically time-dependent driving. In that case, the classical
phase space of the system generally becomes mixed regular-chaotic. As visualized by the
stroboscopic Poincaré section that is obtained through monitoring the phase space variables
at fixed phases of the driving field, it typically displays two prominent regions of regular
motion, corresponding to the weakly perturbed dynamics within the two wells, and a small
(or, for stronger perturbations, large) layer of chaotic dynamics that separates the two reg-
ular islands from each other. Numerical calculations of model systems in the early nineties
[7, 8] have shown that the tunnel splittings in such mixed systems generally become strongly
enhanced compared to the integrable limit. Moreover, they do no longer follow a smooth
exponential scaling with 1/~ as expressed by Eq. (1.1), but display huge, quasi-erratic fluc-
tuations at variations of ~ or any other parameter of the system [7, 8].

These phenomena are traced back to the specific role that chaotic states play in such
systems [9, 10, 11, 12]. In contrast to the integrable case, the tunnel doublets of the local-
ized quasi-modes are, in a mixed regular-chaotic system, no longer isolated in the spectrum,
but resonantly interact with states that are associated with the chaotic part of phase space.
Due to their delocalized nature, such chaotic states typically exhibit a significant overlap
with the boundary regions of both regular wells. They may therefore provide an efficient
coupling mechanism between the quasi-modes – which becomes particularly effective when-
ever one of the chaotic levels is shifted exactly on resonance with the tunnel doublet. This
coupling mechanism generally enhances the tunneling rate, but may also lead to a complete
suppression thereof, arising at specific values of ~ or other parameters [13].

The validity of this “chaos-assisted” tunneling picture was essentially confirmed by a
simple statistical ansatz in which the quantum dynamics within the chaotic part of the
phase space was represented by a random matrix from the Gaussian orthogonal ensemble
(GOE) [9, 10, 14]. In presence of small coupling coefficients between the regular states and
the chaotic domain, this random matrix ansatz yields a truncated Cauchy distribution for
the probability density to obtain a level splitting of the size ∆E. Such a distribution is
indeed encountered in the exact quantum splittings, which was demonstrated for the two-
dimensional quartic oscillator [14] as well as, later on, for the driven pendulum Hamiltonian
that describes the tunneling process of cold atoms in periodically modulated optical lattices
[15, 16]. A quantitative prediction of the average tunneling rate, however, was not possible
in the above-mentioned theoretical works. As we shall argue later on, this average tunneling
rate is directly connected to the coupling matrix element between the regular and the chaotic
states, and the strength of this matrix element was unknown and introduced in an ad-hoc
way.

A first step towards his latter problem was undertaken by Podolskiy and Narimanov [17]
who derived an explicit semiclassical expression for the mean tunneling rate in a mixed
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system by assuming a perfectly clean, harmonic-oscillator like dynamics within the regular
island and a structureless chaotic sea outside the outermost invariant torus of the island. This
expression turned out to be successful for the reproduction of the level splittings between
near-degenerate optical modes that are associated with a pair of symmetric regular islands in
a non integrable micro-cavity [17] (see also Ref. [18]). The application to dynamical tunneling
process in periodically modulated optical lattices [17], for which splittings between the left-
and the right-moving stable eigenmodes were calculated in Ref. [15], seems convincing for
low and moderate values of 1/~, but reveals deviations deeper in the semiclassical regime
where plateau structures arise in the tunneling rates. Further, and more severe, deviations
were encountered in the application of this approach to tunneling processes in other model
systems [19].

Bäcker, Ketzmerick, Löck, and coworkers [20, 21] recently undertook the effort to derive
in a more rigorous manner the regular-to-chaotic coupling rate governing chaos-assisted
tunneling. Their approach is based on the construction of an integrable approximation for the
nonintegrable system, which is designed such that it accurately describes the motion within
the regular islands under consideration. The coupling rate to the chaotic domain is then
determined through the computation of matrix elements of the system’s Hamiltonian within
the eigenbasis of this integrable approximation [20]. This results in a smooth exponential-
like decay of the average tunneling rate with 1/~, which was indeed found to be in very
good agreement with the exact tunneling rates for quantum maps and billiards [20, 21].
Those systems, however, were designed such as to yield a “clean” mixed regular-chaotic
phase space, containing a regular island and a chaotic region which both do not exhibit
appreciable substructures [20, 21].

In more generic systems, such as the quantum kicked rotor or the driven pendulum [15],
however, even the “average” quantum tunneling rates do not exhibit a smooth monotonous
behaviour with 1/~, but display peaks and plateau structures that cannot be accounted for
by the above approaches. To understand the origin of such plateaus, it is instructive to
step back to the conceptually simpler case of nearly integrable dynamics, where the pertur-
bation from the integrable Hamiltonian is sufficiently small such that macroscopically large
chaotic layers are not yet developed in the Poincaré surface of section. In such systems, the
main effect of the perturbation consists in the manifestation of chain-like substructures in
the phase space, which arise at nonlinear resonances between the eigenmodes of the unper-
turbed Hamiltonian, or, in periodically driven systems, between the external driving and
the unperturbed oscillation within the well. In a similar way as for the quantum pendulum
Hamiltonian, such resonances induce additional tunneling paths in the phase space, which
lead to couplings between states that are located in the same well [22, 23].

The relevance of this effect for the near-integrable tunneling process between two symmetry-
related wells was first pointed out by Bonci et al. [24] who argued that such resonances may
lead to a strong enhancement of the tunneling rate, due to couplings between lowly and
highly excited states within the well which are permitted by near-degeneracies in the spec-
trum. In Refs. [25, 26], a quantitative semiclassical theory of near-integrable tunneling was
formulated on the basis of this principal mechanism. This theory allows one to reproduce
the exact quantum splittings on the basis of purely classical quantities that can be extracted
from the phase space, and takes into account high-order effects such as the coupling via
a sequence of different resonance chains [25, 26]. More recent studies by Keshavamurthy
on classically forbidden coupling processes in model Hamiltonians that mimic the dynamics
of simple molecules confirm that the “resonance-assisted” tunneling scenario prevails not
only in one-dimensional systems that are subject to a periodic driving (such as the “kicked
Harper” model which was studied in Ref. [25, 26]), but also in autonomous systems with two
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and even three degrees of freedom [27, 28].

...

1.2 Theory of resonance-assisted tunneling

1.2.1 Secular perturbation theory

For our study, we restrict ourselves to systems with one degree of freedom that evolve under
a periodically time-dependent Hamiltonian H(p, q, t) = H(p, q, t + τ). We suppose that,
for a suitable choice of parameters, the classical phase space of H is mixed regular-chaotic
and exhibits two symmetry-related regular islands that are embedded within the chaotic
sea. This phase space structure is most conveniently visualized by a stroboscopic Poincaré
section, where p and q are plotted at the times t = nτ(n ∈ Z). Such a Poincaré section
typically reveals the presence of chain-like substructures within the regular islands, which
arise due to nonlinear resonances between the external driving and the internal oscillation
around the island’s center. We shall assume now that the two islands exhibit a prominent
r:s resonance, i.e., a nonlinear resonance where s internal oscillation periods match r driving
periods and r sub-islands are visible in the stroboscopic section.

The classical motion in the vicinity of the r:s resonance is approximately integrated by
secular perturbation theory [29] (see also Ref. [26]). For this purpose, we formally introduce
a time-independent Hamiltonian H0(p, q) that approximately reproduces the regular motion
in the islands and preserves the discrete symmetry of H . The phase space generated by this
integrable Hamiltonian consequently exhibits two symmetric wells that are separated by an
energetic barrier and “embed” the two islands of H . In terms of the action-angle variables
(I, θ) describing the dynamics within each of the wells, the total Hamiltonian can be written
as

H(I, θ, t) = H0(I) + V (I, θ, t) (1.2)

where V would represent a weak perturbation in the center of the island [30].

The nonlinear r:s resonance occurs at the action variable Ir:s that satisfies the condition

rΩr:s = sω (1.3)

with ω = 2π/τ and

Ωr:s ≡
dH0

dI

∣∣∣∣
I=Ir:s

. (1.4)

We now perform a canonical transformation to the frame that corotates with this resonance.
This is done by leaving I invariant and modifying θ according to

θ 7→ ϑ = θ − Ωr:st . (1.5)

This time-dependent shift is accompanied by the transformation H 7→ H = H − Ωr:sI in
order to ensure that the new corotating angle variable ϑ is conjugate to I. The motion of I
and ϑ is therefore described by the new Hamiltonian

H(I, ϑ, t) = H0(I) + V(I, ϑ, t) (1.6)
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with

H0(I) = H0(I) − Ωr:sI , (1.7)

V(I, ϑ, t) = V (I, ϑ+ Ωr:st, t) . (1.8)

The expansion of H0 in powers of I − Ir:s yields

H0(I) ≃ H(0)
0 +

(I − Ir:s)
2

2mr:s

+ O
[
(I − Ir:s)

3
]

(1.9)

with a constant H(0)
0 ≡ H0(Ir:s) − Ωr:sIr:s and a quadratic term that is characterized by the

effective “mass” parameter mr:s. Hence, dH0/dI is comparatively small for I ≃ Ir:s, which
implies that the corotating angle ϑ varies slowly in time near the resonance. This justifies the
application of adiabatic perturbation theory [29], which effectively amounts, in first order,
to replacing V(I, ϑ, t) by its time average over r periods of the driving (using the fact that
V is periodic in t with the period rτ) [31]. We therefore obtain, after this transformation,
the time-independent Hamiltonian

H(I, ϑ) = H0(I) + V(I, ϑ) (1.10)

with

V(I, ϑ) ≡ 1

rτ

∫ rτ

0

V(I, ϑ, t)dt . (1.11)

By making a Fourier series expansion for V (I, θ, t) in both θ and t, i.e.

V (I, θ, t) =

∞∑

l,m=−∞

Vl,m(I)eilθeimωt (1.12)

with Vl,m(I) = [V−l,−m(I)]∗, one can straightforwardly derive

V(I, ϑ) = V0,0(I) +
∞∑

k=0

2Vk(I) cos(krϑ+ φk) (1.13)

defining

Vk(I)e
iφk ≡ Vrk,−sk(I) , (1.14)

i.e., the resulting time-independent perturbation term is (2π/r)-periodic in ϑ.

In a first step, we neglect the action dependence of the Fourier coefficients of V(i, ϑ) and
replace Vk(I) by Vk ≡ Vk(I = Ir:s) in Eq. (1.13). Neglecting furthermore the term V0,0(I),
we obtain the effective integrable Hamiltonian

Heff(I, ϑ) = H0(I) − Ωr:sI +

∞∑

k=1

2Vk cos(krϑ+ φk) (1.15)

for the description of the classical dynamics in the vicinity of the resonance.
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1.2.2 The pendulum approximation

The quantum implications due to the presence of this nonlinear resonance can be straight-
forwardly inferred from the direct semiclassical quantization of Heff , given by

Ĥeff = H0(Î) − Ωr:sÎ +

∞∑

k=1

2Vk cos(krϑ̂+ φk) . (1.16)

Here we introduce the action operator Î ≡ −i~∂/∂ϑ and assume anti-periodic boundary
conditions in ϑ in order to properly account for the Maslov index in the original phase
space [22]. In accordance with our assumption that the effect of the resonance is rather
weak, we can now apply quantum perturbation theory to the Hamiltonian (1.16), treating

the Î-dependent “kinetic” terms as unperturbed part, with the unperturbed eigenstates
〈ϑ|n〉 = exp[i(n + 0.5)ϑ], and the ϑ̂-dependent series as perturbation. The unperturbed
eigenstates are then given by the (anti-periodic) eigenfunctions 〈ϑ|n〉 = exp[i(n + 0.5)ϑ]

(n ≥ 0) of the action operator Î with the eigenvalues

In = ~(n + 1/2) . (1.17)

As is straightforwardly evaluated, the presence of the perturbation induces couplings
between the states |n〉 and |n+ kr〉 with the matrix elements

〈n+ kr|Ĥeff |n〉 = Vke
iφk (1.18)

for positive k. As a consequence, the “true” eigenstates |ψn〉 of Ĥeff contain admixtures from
unperturbed modes |n′〉 that satisfy the selection rule |n′−n| = kr with integer k. They are
approximated by the expression

|ψn〉 = |n〉 +
∑

k 6=0

〈n+ kr|Ĥeff |n〉
En −En+kr + ks~ω

|n+ kr〉 +

+
∑

k,k′ 6=0

〈n+ kr|Ĥeff |n+ k′r〉
En − En+kr + ks~ω

〈n+ k′r|Ĥeff |n〉
En −En+k′r + k′s~ω

|n + kr〉 + . . . (1.19)

where En ≡ H0(In) denote the unperturbed eigenenergies of H0 and the resonance condition
(1.3) is used.

Within the quadratic approximation of H0(I) around Ir:s, we obtain from Eqs. (1.7) and
(1.8)

En ≃ H0(Ir:s) − Ωr:s(In − Ir:s) +
1

2mr:s

(In − Ir:s)
2 . (1.20)

This results in the energy differences

En − En+kr + ks~ω ≃ 1

2mr:s
(In − In+kr)(In + In+kr − 2Ir:s) . (1.21)

From this expression, we see that the admixture between |n〉 and |n′〉 becomes particularly
strong if the r:s resonance is symmetrically located between the two tori that are associated
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with the actions In and In′ — i.e., if In + In′ ≃ 2Ir:s. The presence of a significant nonlinear
resonance within a region of regular motion provides therefore an efficient mechanism to
couple the local “ground state” — i.e, the state that is semiclassically localized in the center
of that region (with action variable I0 < Ir:s) — to a highly excited state (with action
variable Ikr > Ir:s).

It is instructive to realize that the Fourier coefficients Vk of the perturbation operator
decrease rather rapidly with increasing k. Indeed, one can derive under quite general cir-
cumstances the asymptotic scaling law

Vk ∼ (kr)γV0 exp[−krΩr:stim(Ir:s)] (1.22)

for large k, which is based on the presence of singularities of the complexified tori of the
integrable approximation H0(I) [26]. Here tim(I) denotes the imaginary time that elapses
from the (real) torus with action I to the nearest singularity in complex phase space, γ corre-
sponds to the degree of the singularity, and V0 contains information about the corresponding
residue near the singularity as well as the strength of the perturbation. The expression (1.22)
is of little practical relevance as far as the concrete determination of the coefficients Vk is
concerned. It permits, however, to estimate the relative importance of different perturbative
pathways connecting the states |n〉 and |n+kr〉 in Eq. (1.19). Comparing e.g. the amplitude
A2 associated with a single step from |n〉 to |n+2r〉 via V2 and the amplitude A1 associated
with two steps from |n〉 to |n+ 2r〉 via V1, we obtain from Eqs. (1.21) and (1.22) the ratio

A2/A1 ≃
2γr2−γ

~
2

mr:sV0

ei(φ2−2φ1) (1.23)

under the assumption that the resonance is symmetrically located in between the corre-
sponding two tori. Since V0 can be assumed to be finite in mixed regular-chaotic systems,
we infer that the second-order process via the stronger coefficient V1 will more dominantly
contribute to the coupling between |n〉 and |n+ 2r〉 in the semiclassical limit ~ → 0.

A similar result is obtained from a comparison of the one-step process via Vk with the
k-step process via V1, where we again find that the latter more dominantly contributes to
the coupling between |n〉 and |n + kr〉 in the limit ~ → 0. We therefore conclude that in
mixed regular-chaotic systems the semiclassical tunneling process is adequately described
by the lowest nonvanishing term of the sum over the Vk contributions, which in general is
given by V1 cos(rϑ + φ1) [32]. Neglecting all higher Fourier components Vk with k > 1 and
making the quadratic approximation of H0 around I = Ir:s, we finally obtain an effective
pendulum-like Hamiltonian

Heff(I, ϑ) ≃ (I − Ir:s)
2

2mr:s

+ 2Vr:s cos(rϑ+ φ1) (1.24)

with Vr:s ≡ V1 [33].

This simple form of the effective Hamiltonian allows us to determine the parameters Ir:s,
mr:s and Vr:s from the Poincaré map of the classical dynamics, without explicitly using the
transformation to the action-angle variables of H0. To this end, we numerically calculate
the monodromy matrix Mr:s ≡ ∂(pf , qf )/∂(pi, qi) of a stable periodic point of the resonance
(which involves r iterations of the stroboscopic map) as well as the phase space areas S+

r:s

and S−
r:s that are enclosed by the outer and inner separatrices of the resonance, respectively

(see also Fig. 1.1). Using the fact that the trace of Mr:s as well as the phase space areas S±
r:s
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remain invariant under the canonical transformation to (I, ϑ), we infer

Ir:s =
1

4π
(S+

r:s + S−
r:s) , (1.25)

√
2mr:sVr:s =

1

16
(S+

r:s − S−
r:s) , (1.26)

√
2Vr:s

mr:s
=

1

r2τ
arccos(trMr:s/2) (1.27)

from the integration of the dynamics generated by Heff [34].

-π 0 π
q

-π

0

π

p

-π/2 0 π/2
Q

-π/2

0

π/2

P

-π -π/2 0 π/2 π

θ
0

1

I

Figure 1.1: Classical phase space of the kicked rotor Hamiltonian at K = 3.5 showing a
regular island with an embedded 6:2 resonance. The phase space is plotted in the original
(p, q) coordinates (upper left panel), in approximate normal-form corrdinates (P,Q) (upper
right panel), and in approximate action-angle variables (I, ϑ) (lower panel). The blue solid
and dashed lines represent the “outer” and “inner” separatrix of the resonance, respectively.
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1.2.3 Action dependence of the coupling coefficients

Up to now, and in our previous publications [25, 26, 33, 35, 36], we completely neglected the
action dependence of the coupling coefficients Vk(I). This approximation should be justified
in the semiclassical limit of extremely small ~, where resonance-assisted tunneling generally
involves multiple coupling processes [26] and transitions across individual resonance chains
are therefore expected to take place in their immediate vicinity in action space. For finite
~, however, the replacement Vk(I) 7→ Vk(Ir:s), permitting the direct quantization in action-
angle space, is, in general, not sufficient to obtain an accurate reproduction of the quantum
tunneling rates. We show now how this can be improved.

To this end, we make the general assumption that the classical Hamiltonian H(p, q, t) of
our system is analytic in p and q in the vicinity of the regular islands under consideration.
It is then possible to define an analytical canonical transformation from (p, q) to Birkhoff-
Gustavson normal-form coordinates (P,Q) [37, 38] that satisfy

P = −
√

2I sin θ , (1.28)

Q =
√

2I cos θ (1.29)

and that can be represented in power series in p and q. The “unperturbed” integrable
Hamiltonian H0 therefore depends only on I = (P 2 +Q2)/2.

Writing

e±ilθ =

(
Q∓ iP√

2I

)l

(1.30)

for positive l, we obtain, from Eq. (1.12), the series

V (I, θ, t) =
∞∑

m=−∞

{
V0,m(I) +

∞∑

l=1

1
√

2I
l

[
Vl,m(I)(Q− iP )l + V−l,m(I)(Q+ iP )l

]
}
eimωt

(1.31)
for the perturbation. Using the fact that V (I, θ, t) is analytic in P and Q, we infer that
Vl,m(I) must scale at least proportional to I l/2 with I. By virtue of (1.14), this implies the
scaling Vk(I) ∝ Irk/2 for the Fourier coefficients of the time-independent perturbation term
that is associated with the r:s resonance. Making the ansatz Vk(I) ≡ Irk/2ṽk (and neglecting
the residual action dependence of ṽk), we rewrite Eq. (1.13) as [39]

V(I, ϑ) = V0,0(I) +
∞∑

k=0

ṽk

2kr/2

[
(Q− iP )kreiφk + (Q+ iP )kre−iφk

]
. (1.32)

The quantization of the resulting classical Hamiltonian can now be carried out in terms
of the “harmonic oscillator” variables P and Q and amounts to introducing the standard
ladder operators â and â† according to

â =
1√
2~

(Q̂+ iP̂ ) , (1.33)

â† =
1√
2~

(Q̂− iP̂ ) . (1.34)
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This yields the quantum Hamiltonian

Ĥeff = H0(Î) − Ωr:sÎ +
∞∑

k=1

ṽk~
kr/2

[
âkre−iφk + (â†)kreiφk

]
(1.35)

with Î ≡ ~(â†â+1/2). As for Eq. (1.16), perturbative couplings are introduced only between
unperturbed eigenstates |n〉 and |n′〉 that exhibit the selection rule |n′−n| = kr with integer
k. The associated coupling matrix elements are, however, different from Eq. (1.18) and read

〈n+ kr|Ĥeff |n〉 = ṽk

√
~

kr
eiφk

√
(n+ kr)!

n!

= Vk(Ir:s)e
iφk

(
~

Ir:s

)kr/2
√

(n+ kr)!

n!
(1.36)

for positive k. This difference becomes particularly pronounced if the r:s resonance is, in
phase space, rather asymmetrically located in between the invariant tori that correspond
to the states |n〉 and |n + kr〉 — i.e., if Ir:s is rather close to In or to In+kr. In that case,
Eq. (1.18) may, respectively, strongly over- or underestimate the coupling strength between
these states.

1.2.4 Chaos-assisted tunneling

We now discuss the implication of such nonlinear resonances on the tunneling process between
the two symmetry-related regular islands under consideration. In the quantum system, these
islands support (for not too large values of ~) locally quantized eigenstates or “quasimodes”
with different node numbers n, which, due to the symmetry, have the same eigenvalues
in both islands. In our case of a periodically driven system, these eigenvalues can be the
eigenphases ϕn of the unitary time evolution operator U over one period τ of the driving, or,
alternatively, the quasienergies En that arise from the diagonalization of the corresponding
Floquet operator. We generally have the relation ϕn = −Enτ/~ (mod 2π).

The presence of a small tunneling-induced coupling between the islands lifts the degener-
acy of the eigenvalues and yields the symmetric and antisymmetric linear combination of the
quasimodes in the two islands as “true” eigenstates of the system. A nonvanishing splitting
∆ϕn ≡ |ϕ+

n − ϕ−
n | consequently arises between the eigenphases ϕ±

n of the symmetric and
the antisymmetric state, which is related to the splitting ∆En ≡ |E+

n − E−
n | of the quasi-

energies E±
n through ∆ϕn = τ∆En/~. Within the integrable approximation of our driven

system with one degree of freedom, these energy splittings can be semiclassically calculated
from the integrable Hamiltonian H0 via an analytic continuation of the invariant tori to the
complex domain [6]. This generally yields the splittings

∆E(0)
n =

~Ωn

π
exp(−σn/~) (1.37)

where Ωn is the classical oscillation frequency associated with the nth quantized torus and
σn denotes the imaginary part of the action integral along the complex path that joins the
two symmetry-related tori.
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The main effect of nonlinear resonances in the nonintegrable system is, as was discussed in
the previous subsections, to induce perturbative couplings between quasimodes of different
excitation within the regular islands. This can lead to a substantial enhancement of the
splittings ∆En as compared to Eq. (1.37) already for nearly integrable systems in which
chaos is not yet visibly manifested in phase space [25, 26]. As can be straightforwardly
derived within quantum perturbation theory, the modified splitting of the local “ground
state” in the island (i.e., the state with vanishing node number n = 0) is in the presence of
a prominent r:s resonance given by

∆ϕ0 = ∆ϕ
(0)
0 +

∑

k

|A(r:s)
kr |2∆ϕ(0)

kr (1.38)

where A(r:s)
kr ≡ 〈kr|ψ0〉 denotes the admixture of the (kr)th excited unperturbed component

|kr〉 to the perturbed ground state |ψ0〉 according to Eq. (1.19) [possibly using Eq. (1.36)

instead of (1.18)]. The rapid decrease of the amplitudes A(r:s)
kr with k is compensated by an

exponential increase of the unperturbed splittings ∆ϕ
(0)
kr , arising from the fact that the tunnel

action σn in Eq. (1.37) generally decreases with increasing n. The maximal contribution
to the modified ground state splitting is generally provided by the state |kr〉 for which
Ikr + I0 ≃ 2Ir:s — i.e., which in phase space is most closely located to the torus that lies
symmetrically on the opposite side of the resonance chain. This contribution is particularly
enhanced by a small energy denominator [see Eq. (1.21] and typically dominates the sum in
Eq. (1.38).

In the mixed regular-chaotic case, invariant tori exist only up to a maximum action vari-
able Ic corresponding to the outermost boundary of the regular island in phase space. Beyond
this outermost invariant torus, multiple overlapping resonances provide various couplings and
pathways such that unperturbed states in this regime can be assumed to be strongly con-
nected to each other. Under such circumstances, the classically forbidden coupling between
the two symmetric islands does not require any barrier tunneling process of the type (1.37).
It can be achieved by any coupling process that connects the ground state, or any other
“regular” state inside the island, to a state that is defined within the chaotic domain [9, 10].

A straightforward guess consists in stating that this coupling process is induced by the
presence of one or several r:s resonances within the island. This means that the ground
state of the island is connected, through perturbative chains of the form (1.19), to highly
excited quasimodes of the integrable approximation H0 which are defined on invariant tori
that become destroyed in the mixed regular-chaotic system. These latter quasimodes are,
in the quantum system, therefore strongly coupled to each other and to their symmetric
counterparts and thereby provide the breaking of the degeneracy between the symmetric
and antisymmetric (quasi-)energies of the ground state doublet.

The structure of the effective Hamiltonian that describes this coupling process in the
presence of a single nonlinear r:s resonance is depicted in Fig. 1.2. Keeping in mind the
discussion in Section 1.2.2 and in Ref. [26], we assume here that the couplings induced by
the r:s resonance are dominantly described by the lowest nonvanishing Fourier component

V1 of the perturbation, i.e. by the matrix elements V
(n+r)
r:s ≡ 〈n+r|Ĥeff |n〉, and set the phase

φ1 to zero without loss of generality. Separating the Hilbert space into an “even” and “odd”
subspace with respect to the discrete symmetry of H and eliminating intermediate states
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Figure 1.2: Sketch of the effective Hamiltonian matrix that describes tunneling between the
symmetric quasi-modes in the two separate regular islands. The regular parts (upper left and
lower right band) includes only components that are coupled to the island’s ground state by
the r:s resonance. The chaotic part (central square) consists of a full sub-block with equally
strong couplings between all basis states with actions beyond the outermost invariant torus
of the islands. Ẽkr ≡ Ekr −Ωr:sIkr are the eigenenergies of the unperturbed Hamiltonian H0

in the co-rotating frame.

within the regular island leads to an effective Hamiltonian matrix of the form

H±
eff =




E0 Veff 0 · · · 0
Veff H±

11 · · · · · · H±
1N

0
...

...
...

...
...

0 H±
N1 · · · · · · H±

NN



. (1.39)

for each symmetry class. The effective coupling matrix element between the ground state
and the chaos block (H±

ij ) is given by

Veff = V (κr)
r:s

κ−1∏

k=1

V
(kr)
r:s

E0 −Ekr + ks~ω
(1.40)

where En are the unperturbed energies (1.20) of Heff . Here |κr〉 represents the lowest unper-
turbed state that is connected by the r:s resonance to the ground state and located outside
the outermost invariant torus of the island (i.e., I(κ−1)r < Ic < Iκr).



1.2. THEORY OF RESONANCE-ASSISTED TUNNELING 13

In the simplest possible approximation, which follows the lines of Refs. [10, 14], we neglect
the effect of partial barriers in the chaotic part of the phase space [9] and assume that the
chaos block (H±

ij ) is adequately modeled by a random hermitian matrix from the Gaussian

orthogonal ensemble (GOE). After a pre-diagonalization of (H±
ij ), yielding the eigenstates

φ±
j and eigenenergies E±

j , we can perturbatively express the shifts of the symmetric and
antisymmetric ground state energies by

E±
0 = E0 + V 2

eff

N∑

j=1

|〈kr|φ±
j 〉|2

E0 − E±
j

. (1.41)

Performing the random matrix average for the eigenvectors, we obtain

|〈kr|φ±
j 〉|2 ≃ 1/N (1.42)

for all j = 1 . . .N , which simply expresses the fact that none of the basis states is distin-
guished within the chaotic block (Hij).

As was shown in Ref. [14], the random matrix average over the eigenvalues E±
j gives rise

to a Cauchy distribution for the shifts of the ground state energies, and consequently also
for the splittings

∆E0 = |E+
0 − E−

0 | (1.43)

between the symmetric and the antisymmetric ground state energy. For the latter, we
specifically obtain the probability distribution

P (∆E0) =
2

π

∆E0

(∆E0)2 + (∆E0)2
(1.44)

with

∆E0 =
2πV 2

eff

N∆c
(1.45)

where ∆c denotes the mean level spacing in the chaos at energy E0. This distribution is,
strictly speaking, valid only for ∆E0 ≪ Veff and exhibits a cutoff at ∆E0 ∼ 2Veff , which
ensures that the statistical expectation value 〈∆E0〉 =

∫ ∞

0
xP (x)dx does not diverge.

Since tunneling rates and their parametric variations are typically studied on a logarith-
mic scale (i.e., log(∆E0) rather than ∆E0 is plotted vs. 1/~), the relevant quantity to be
calculated from Eq. (1.44) and compared to quantum data is not the mean value 〈∆E0〉, but
rather the average of the logarithm of ∆E0. We therefore define our “average” level splitting
〈∆E0〉g as the geometric mean of ∆E0, i.e.

〈∆E0〉g ≡ exp [〈ln(∆E0)〉] (1.46)

and obtain as result the scale defined in Eq. (1.45),

〈∆E0〉g = ∆E0 . (1.47)

This expression further simplifies for our specific case of periodically driven systems, where
the time evolution operator U is modeled by the dynamics under the effective Hamiltonian
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(1.39) over one period τ . In this case, the chaotic eigenphases ϕ±
j ≡ E±

j τ/~ are uniformly

distributed in the interval 0 < ϕ±
j < 2π. We therefore obtain

∆c =
2π~

Nτ
(1.48)

for the mean level spacing near E0. This yields

〈∆ϕ0〉g ≡
τ

~
〈∆E0〉g =

(
τVeff

~

)2

(1.49)

for the geometric mean of the ground state’s eigenphase splitting. Note that this final
result does not depend on how many of the chaotic states do actually participate in the
sub-block (H±

ij ); as long as this number is sufficiently large to justify the validity of the
Cauchy distribution (1.44) (see Ref. [14]), the geometric mean of the eigenphase splitting is
essentially given by the square of the coupling Veff from the ground state to the chaos.

The distribution (1.44) also permits the calculation of the logarithmic variance of the
eigenphase splitting: we obtain

〈
[ln(∆ϕ0) − 〈ln(∆ϕ0)〉]2

〉
=
π2

4
. (1.50)

This universal result predicts that the actual splittings may be enhanced or reduced compared
to 〈∆ϕ0〉g by factors of the order of exp(π/2) ≃ 4.8, independently of the values of ~ and
external parameters. Indeed, we shall show that short-range fluctuations of the splittings,
arising at small variations of ~, are well characterized by the standard deviation that is
associated with Eq. (1.50).

1.2.5 The role of partial barriers in the chaotic domain

In the previous section, we assumed a perfectly homogeneous structure of the Hamiltonian
outside the outermost invariant torus, which allowed us to make a simpe random-matrix
ansatz for the chaotic block. This assumption hardly ever corresponds to reality. As was
shown in Refs. [9, 10] for the quartic oscillator, the chaotic part of the phase space is, in
general, divided into several subregions which are weakly connected to each other through
partial transport barriers for the classical flux (see, e.g., Fig. 8 in Ref. [10]). This substructure
of the chaotic phase space (which is generally not visible in a Poincaré surface of section)
is particularly pronounced in the immediate vicinity of a regular island, where a dense
hierarchical sequence of partial barriers formed by broken invariant tori and island chains is
accumulating [40, 41, 42].

In the corresponding quantum system, such partial barriers may play the role of “true”
tunneling barriers in the same spirit as invariant classical tori. This will be the case if the
phase space area ∆W that is exchanged across such a partial barrier within one classical
iteration is much smaller than Planck’s constant 2π~ [43], while in the opposite limit ∆W ≫
2π~ the classical partial barrier appears completely transparent in the quantum system
[44]. Consequently, the “sticky” hierarchical region around a regular island acts, for not
extremely small values of ~, as a dynamical tunneling area and thereby extends the effective
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“quantum” size of the island in phase space. This particularly leads to the formation of
localized “hierarchical states” [45] which are supported by this sticky phase space region in
the surrounding of the regular island.

An immediate consequence of the presence of such partial barriers for resonance-assisted
tunneling is the fact that the crticical action variable Ic defining the number κ of resonance-
assisted steps within the island according to Eq. (1.40) should not be determined from the
outermost invariant torus of the island, but rather from the outermost partial barrier that
acts like an invariant torus in the quantum system. We find that this outermost quantum
barrier is, for not extremely small values of ~, generally formed by the stable and unstable
manifolds that emerge from the hyperbolic periodic points associated with a low-order non-
linear r:s resonance. These manifolds are constructed until their first intersection points in
between two adjacent periodic points, and iterated r − 1 times (assuming that no period-
doubling of the island chain due to discrete symmetries takes place), such as to form a closed
artificial boundary around the island in phase space [46]. As shown in Fig. 1.3, one fur-
ther iteration maps then this boundary onto itself, except for a small piece that develops
a loop-like deformation. The phase space area that is enclosed between the original and
the iterated boundary precisely defines the classical flux ∆W that is exchanged across this
boundary within one iteration of the map [40, 41].

The example in Fig. 1.3 shows a boundary that arises from the inner stable and unstable
manifolds (i.e. the ones that would, in a near-integrable system, form the inner separatrix
structure) emerging from the unstable periodic points of a 4:1 resonance (which otherwise is
not visibly manifested in the Poincaré section) in the kicked rotor system. Judging from the
size of the flux area ∆W , this boundary should represent the relevant quantum chaos border
for the tunneling processes that are discussed in the following section. We clearly see that it
encloses a non-negligible part of the chaotic classical phase space, which includes a prominent
10:3 resonance that, consequently, needs to be taken into account for the coupling process
between the regular island and the chaotic sea. We thereby naturally arrive at multi-step
coupling processes across a sequence of several resonances, which would have to be computed
for a reliable prediction of the quantum tunneling rates in the semiclassical regime.

1.2.6 Multi-resonance processes

...

1.3 Application to the kicked rotor

1.3.1 Tunneling in the kicked rotor

To demonstrate the validity of our approach, we apply it to the “kicked rotor” model, which
is described by the Hamiltonian

H(p, q, t) = p2/2 −K

∞∑

n=−∞

δ(t− n) cos q . (1.51)
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Figure 1.3: Classical phase space of the kicked rotor at K = 3.4 in approximate action-angle
variables (I, θ). The solid blue line shows the location of the effective quantum boundary
of the central island for the values of Planck’s constant that are considered in Section 1.3.
This effective boundary is constructed from the stable and unstable manifolds that emerge
from the hyperbolic periodic points of the 4:1 resonance. An iteration of this boundary
under the classical kicked rotor maps it onto itself, except for the piece between θ ≃ 0.15π
and θ = 0.5π which is replaced by the red curve. The phase space area that is enclosed
between the original (blue) and the iterated (red) boundary defines the classical flux that
is exchanged across this boundary within one iteration of the map. The dashed green line
shows, in comparison, the actual classical chaos border defined by the outermost invariant
torus of the island.

The classical dynamics of this system is described by the “standard map” (p, q) 7→ (p′, q′)
with

p′ = p−K sin q (1.52)

q′ = q + p′ , (1.53)

which generates the stroboscopic Poincaré section at times immediately before the kick. The
phase space of the kicked rotor is 2π periodic in position q and momentum p, and exhibits,
for not too large perturbation strengths K < 4, a region of bounded regular motion centered
around (p, q) = (0, 0).

The quantum dynamics of the kicked rotor is described by the associated time evolution
operator

U = exp

(
− i

~

p2

2

)
exp

(
− i

~
K cos q̂

)
(1.54)

which contains two unitary operators that describe the effect of the kick and the propagation
in between two kicks, respectively (p̂ and q̂ denote the position and momentum operators).
Due to the periodicity in q, we can apply Bloch’s theorem and restrict the consideration
to the subspace of states ψ(q) that are 2π-periodic in position, i.e. with ψ(q + 2π) = ψ(q).
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In order to simplify the quantum eigenvalue problem, we furthermore restrict the choice
of Planck’s constant to discrete values according to ~ = 2π/N with even integer N > 0.
For this particular choice, which corresponds to a “quantum resonance” of the kicked rotor
[47, 48], the time evolution operator U exhibits, within the above subspace, 2π-periodicity
not only in position, but also in momentum. More precisely, the two phase-space translation
operators T1 = exp(2πip̂/~) and T2 = exp(−2πiq̂/~) mutually commute with U and with
each other when being restricted to the subspace of periodic functions. This allows us to
make a Bloch ansatz in momentum as well, i.e., to choose eigenstates ψ(q) = ψ(q+2π) with
the additional property

ψ̂(p + 2π) = ψ̂(p) exp(iξ) (1.55)

where ψ̂ denotes the Fourier transform of ψ. Since the subspace of wave functions satisfying
periodic boundary conditions in position and the periodicity condition (1.55) in momen-
tum has finite dimension N , finite matrices need to be diagonalized in order to obtain the
eigenstates of U .

Quantum tunneling can take place between the main regular island centred around (p, q) =
(0, 0) and its counterparts that are shifted by integer multiples of 2π along the momentum
axis. The spectral manifestation of this classically forbidden coupling process is a finite

bandwidth of the eigenphases ϕn ≡ ϕ
(ξ)
n of U that are associated with the nth excited

quantized torus within the island. This bandwidth can be characterized by the difference

∆ϕn = |ϕ(0)
n − ϕ(π)

n | (1.56)

between the eigenphases of the periodic (ξ = 0) and the anti-periodic (ξ = π) state in
momentum, which we shall focus on in the following. In this way, we effectively map the
tunneling problem to a symmetric double well configuration, with the two wells centred, e.g.,
around (p, q) = (0, 0) and (2π, 0).

1.3.2 Eigenphase splittings

Figures 1.4 and 1.5 show the eigenphase splittings ∆ϕ0 [see Eq. (1.56)] of the kicked rotor for
the local “ground state” (n = 0) in the central island, i.e. for the state that is most strongly
localized around the center of the island, at K = 2.6, 2.8, . . . 3.6. As in Refs. [33, 35],
the splittings were calculated with a diagonalization routine for complex matrices that is
based on the GMP multiple precision library [49], in order to obtain accurate eigenvalue
differences below the ordinary machine precision limit. While on average these splittings
decrease exponentially with the number N = 2π/~ of Planck cells that fit into one Bloch
cell, significant fluctuations arise on top of that exponential decrease, which are traced back
to the presence of nonlinear resonances.

This is confirmed by the semiclassical prediction of the eigenphase splittings, which is
based on the most relevant resonances that are encountered in phase space. In practice, we
took those r:s resonances into account that exhibit the smallest possible values of r and s for
the winding numbers s/r under consideration. In all of the considered cases, the “quantum
boundary” of the regular island was defined by the partial barrier that results from the inter-
sections of the inner stable and unstable manifolds associated with the hyperbolic periodic
points of the 4:1 resonance (see also Fig. 1.3). While this partial barrier lies rather close to
the classical chaos border of the island for K = 2.6 (Fig. 1.4), it encloses an appreciable part
of the chaotic phase for K = 3.6 (Fig. 1.5) including some relevant nonlinear resonances.
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We generally find that the quantum splittings are quite well reproduced by our simple
semiclassical theory based on nonlinear resonances. In particular, the location and height of
prominent plateau structures and peaks in the tunneling rates can, in almost all cases, be
quantitatively reproduced through resonance-assisted tunneling. The additional fluctuations
of the splittings on a small scale of N , however, cannot be accounted for by our approach
as they arise from the details of the eigenspectrum in the chaotic block of the Hamiltonian
Their average size, however, seems in good agreement with the universal prediction (1.50)
for the variance of eigenphase splittings in chaos-assisted tunneling.

1.3.3 Direct and resonance-assisted tunneling

Apart from those small-scale fluctuations due to chaos-assisted tunneling, there are also more
systematic deviations between the quantum and the semiclassical tunneling rates, which may
partially lead to an over- or underestimation of the quantum eigenphase splittings by several
orders of magnitude. These deviations are attributed to the approximate nature of the
semiclassical approach based on nonlinear resonances, in particular to the simplified structure
of the Floquet Hamiltonian shown in Fig. 1.2. This structure is expected to become invalid
expecially near the effective chaos border (possibly extended into the chaotic sea due to
partial barriers), where the presence of a number of perturbations and additional resonances
may give rise to various pathways and couplings to the chaotic sea. Consequently, the last
perturbative steps to the chaotic domain [i.e., the last terms in the product in Eq. (1.40)]
may not be accurately described by resonance-assisted tunneling. This also concerns single-
step tunneling processes in the deep quantum limit of rather large 2π~, being slightly smaller
than the area enclosed by the island, where substructures due to nonlinear resonances are
generally not expected to play an important role.

Bäcker et al. [20] recently proposed a simple but accurate method to predict tunneling
rates in this “quantum” regime of rather large ~. This method relies on the explicit con-
struction of a good integrable approximation H0(p, q) to the time-dependent dynamics (see
Sec. 1.2.1), which then allows one, by quantum or semiclassical diagonalization, to determine
the unperturbed eigenstates |n〉 within the regular island, and to construct the projectors
Preg and Pch onto the subspaces of the Hilbert space that are associated with the regular
and chaotic parts, respectively, of the classical phase space. The “direct” regular-to-chaotic

tunneling rate ∆ϕ
(d)
n of the nth quantized state within the island is then evaluated by a

simple application of the quantum time evolution operator U over one period of the driving
according to

∆ϕ(d)
n = ||Pch(U − U0)|n〉||2 (1.57)

with U0 ≡ exp(−iτH0/~). Very good agreement between this prediction and numerically
computed quantum tunneling rates was found for quantum maps that were designed such as
to yield a “clean” mixed regular-chaotic phase space, containing a regular island and a chaotic
region which both do not exhibit appreciable substructures [20], as well as for the mushroom
billiard [21]. In more generic situations, where nonlinear resonances are manifested within the
regular island, this approach yields reliable predictions only in the regime of large ~ in which
modifications of the integrable approximation H0 due to such resonances are not relevant
for the quantum tunneling process. This “direct” regular-to-chaotic tunneling approach can
therefore be seen as complementary to resonance-assisted tunneling.

In view of this fact, direct and resonance-assisted tunneling (in its improved form as
described in Sec. 1.2.3) were recently combined to yield a powerful tool for the semiclas-
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sical determination of tunneling rates in mixed systems [50]. The main idea behind this
combination is that nonlinear resonances may induce perturbative couplings between locally
quantized states within the regular island, whereas the coupling to chaotic states beyond
the chaos border is more reliably evaluated with direct tunneling. Technically, this amounts

to replacing ∆ϕ
(0)
n in Eq. (1.38) with ∆ϕ

(d)
n from Eq. (1.57). Figure 1.6 shows the resulting

prediction for the eigenphase splittings of the quantum kicked rotor at K = 3.5 [50] (see
Fig. 1.1 for the corresponding classical phase space) in comparison with the exact quantum
splittings and with the prediction resulting from “plain” resonance-assisted tunneling. We
see that the inclusion of direct tunneling gives rise to a significant quantitative improvement
in the prediction of the quantum tunneling rates, which now appears to become possible on
the level of individual peaks.

1.3.4 The role of bifurcations

...

1.4 Conclusion

...
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Figure 1.4: Quantum and semiclassical splittings in the kicked rotor model for K = 2.6
(left column) K = 2.8 (central column), and K = 3 (right column). The upper and middle
panels show the classical phase space in the original phase space variables p and q, with the
red curve marking the effective quantum boundary of the island, and in approximate action-
angle variables I and θ. The lower panels display the quantum and semiclassical eigenphase
splittings (black and red lines, respectively) of the ground state in the central regular island.
For the semiclassical splittings, we used the 18:5 resonance for K = 2.6, the 10:3 and 14:4
resonances for K = 2.8, and the 10:3, 14:4, 16:5, and 22:7 resonances for K = 3.
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Figure 1.5: Same as Fig. 1.4 for K = 3.2, K = 3.4, and K = 3.6. For the semiclassical
splittings, we used the 6:2 and 10:3 resonances forK = 3.2, the 6:2, 10:3, and 14:5 resonances
for K = 3.4, and the 6:2 and 8:3 resonances for K = 3.6.
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Figure 1.6: Direct and resonance-assisted tunneling in the kicked rotor model for K = 3.5
(see Fig. 1.1 for the classical phase space). As ins Figs. 1.4 and 1.5, the black and red lines
represent, respectively, the quantum splittings and the semiclassical prediction based on our
approach, where we take into account the 6:2, 8:3, 10:3, and 14:5 resonances. The green
line shows the prediction that is obtained from a combination of direct regular-to-chaotic
tunneling and resonance-assisted tunneling, which is taken from Ref. [50]. We see that the
accuracy of the reproduction of the quantum eigenphase splittings is significantly improved
in the combined approach where the final coupling to the chaotic sea is evaluated by means
of the projection method presented in Ref. [20].
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Figure 1.7: Resonance-assisted tunneling in the kicked rotor at a bifurcation. The left panel
shows the classical phase space forK = 2, which contains a prominent 10:2 resonance close to
the border of the island, and the right panel displays the corresponding quantum eigenphase
splittings (black line). Semiclassical calculations of the splittings (red and green lines) were
carried out using the 10:2 resonance only (green line) as well as a combination of the 4:1
resonance and the 10:2 resonance, the former emerging at the island’s center right at K = 2.
The parameter ṽ1 associated with that 4:1 resonance [see Eq. (1.36)] were determined from
the classical phase space at K = 2.001.
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