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Abstract

We study the behavior near the singularity t=0 of Gowdy met-
rics. We prove existence of an open dense set of boundary points near
which the solution is smoothly “asymptotically velocity term domi-
nated” (AVTD). We show that the set of solutions which are AVTD
near the whole boundary and which satisfy a uniformity condition is
open in the set of all solutions. We analyse in detail the asymptotic
behavior of “power law” solutions at the (hitherto unchartered) points
at which the asymptotic velocity equals zero or one. Several other
related results are established.
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1 Introduction

The Gowdy family of space-times [8] constitutes an interesting toy model to
study formation of singularities in general relativity. This family of metrics
is sufficiently simple to hope to analyse the resulting singularities in an
exhaustive way. It is sufficiently non-trivial so that the relevant dynamical
behavior has not been understood so far. The questions of interest are
the curvature blow-up – or lack thereof – at the boundary t = 0 of the
associated space-time, as well as existence of Cauchy horizons. The reader
is referred to [6] for a further discussion of this issue, we simply note that
the relevant geometric information can be obtained by deriving a sharp
asymptotic expansion of the solutions near the singular set t = 0. The main
purpose of this work is to prove a stability result for the existence of such
expansions.

In Gowdy space times the essential part of the Einstein equations reduces
to a nonlinear wave-map-type system of equations [8] for a map x from
(M, gαβ) to the hyperbolic plane (H , hab), where M = [T, 0) × S1 with
the flat metric g = −dt2 + dθ2. The solutions are critical points of the
Lagrangean

L [x] =
1
2

∫

M
tgαβhab∂αxa∂βxb dθdt . (1.1)
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This differs from the usual wave-map Lagragean by a supplementary mul-
tiplicative factor t. It is sometimes convenient to use coordinates P,Q ∈ R
on the hyperbolic plane in which the hyperbolic metric hab takes the form

h = dP 2 + e2P dQ2. (1.2)

Let Xt = ∂x
∂t , Xθ = ∂x

∂θ , D denote the Levi-Civita connection of hab, and
Dθ ≡ D

Dθ := DXθ
, Dt ≡ D

Dt := DXt . The Euler-Lagrange equations for (1.1)
take the form

DXt

Dt
− DXθ

Dθ
= −Xt

t
(1.3)

or, in coordinates,

2xa + Γa
bc ◦ x∂µxb∂µxc = −∂tx

a

t
,

where the Γ’s are the Christoffel symbols of hab, and 2 = ∂2
t − ∂2

θ . Global
existence of smooth solutions on (−∞, 0) of the Cauchy problem for (1.3)
has been established by V. Moncrief [13].

For further use we note the non-vanishing Christoffel symbols of h:

ΓP
QQ = −e2P , ΓQ

PQ = ΓQ
QP = 1 . (1.4)

In the (P, Q) coordinates one thus has

∂2
t P − ∂2

θP = −∂tP

t
+ e2P

(
(∂tQ)2 − (∂θQ)2

)
,

∂2
t Q− ∂2

θQ = −∂tQ

t
− 2 (∂tP∂tQ− ∂θP∂θQ) .

We consider solutions defined on sets Ω(a, b, t0), where

t0 < 0 , a ≤ b , Ω(a, b, t0) := {t0 ≤ t < 0 , a + t ≤ θ ≤ b− t} (1.5)

(see Figure 1). Thus our analysis is local, if the solution satisfies certain
properties on an interval [a, b] ⊂ S1, then the conclusions hold on that
interval. Throughout this work we assume that the initial data for the map
x at t0 are smooth functions of θ. We prove the following theorem (the
Geroch group is defined in Section 4; the position function ϕ∞ is defined by
Equation (3.24)):
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Figure 1: The set Ω(a, b, t0).

Theorem 1.1 Let (̊x(t0, ·), X̊t(t0, ·)) be Cauchy data for a solution of the
Gowdy equations on Ω(a, b, t0) such that the associated solution x̊ has uni-
formly controlled blow-up; by this we mean that

sup
θ∈[a−|t|,b+|t|]

(∑̀

k=0

|tk+1Dk
θXθ|+

∑̀

k=1

|tk+1Dk
θXt|

)
(t, θ) →t→0 0 , (1.6)

with ` = 2, and with Xt in (1.6) equal to ∂tx̊, etc. There exists η > 0 such
that for all initial data (x(t0, ·), Xt(t0, ·)) satisfying1

‖(x(t0, ·)− x̊(t0, ·), Xt(t0, ·)− X̊t(t0, ·))‖H3⊕H2 < η

the associated solution x also satisfies (1.6), and further the following holds:

(i) For all θ ∈ [a, b] the function |tXt|(t, θ) converges to a velocity function
v(θ) as t tends to zero, uniformly in θ.

(ii) There exists an open dense set on which v is smooth.

(iii) [a, b] can be covered by a finite number of intervals [ai, bi] with the
following property: for each i there exists an element Gi of the Ge-
roch group such that Gix has a smooth velocity function 0 ≤ v < 1
and a smooth position function ϕ∞, except perhaps on the boundary
of the set {v(θ) = 0}. Further Gix satisfies a power law blow-up,
Equation (8.20).

(iv) In the associated space-time the curvature scalar RαβγδR
αβγδ blows up

in finite proper time on every causal curve approaching

B := {0} × ([a, b] \ {v(θ) = 1})× S1 × S1 .

1We equip Ω(a, b, t0) with the Riemannian metric dt2 + dθ2, this together with the
metric h on H2 induces Riemannian metrics on all the bundles involved. We use those
metrics to measure the distance between points on those bundles.
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In particular the associated Gowdy space-time is inextendible across
B.

Remark 1.2 Actually it suffices to have a sequence ti → 0 along which (1.6)
holds. A recent result of Ringström [18]2 can be used to lower to ` = 1 the
threshold ` in (1.6).

The proof of Theorem 1.1 can be found at the end of Section 12.
It is of interest to enquire whether the uniform blow-up condition (1.6)

is necessary for AVTD behavior of the solutions. Consider, for example,
an AVTD(P,Q)

3 solution, as defined in Section 3, for which the error terms
in (3.5)-(3.6) and in their derivative counterparts (see (3.10)) are uniform
in θ. If v1 is strictly smaller than one (no negative lower bound assumed),
then the solution satisfies (1.6)3. This shows in particular that the set of
solutions satisfying the hypotheses of Theorem 1.1 is not empty, as existence
of a large class of AVTD(P,Q)

∞ solutions satisfying v1 < 1 follows from the
results in [14].

The second main result of this work is the proof that for every solution
there exists an open dense set Ω̂ ⊂ S1 near which we have complete control
of the solution:

Theorem 1.3 Consider a solution x defined on Ω(a, b, t0). There exists an
open dense set Ω̂ ⊂ [a, b] such that x is AVTD(P,Q)

∞ in a neighborhood of
{0} × Ω̂.

The examples discussed in Section 3 show that the result is sharp, with
the following proviso: the known examples have a velocity function defined
everywhere, even at points where it is not continuous, while Theorems 1.3
and 12.1 leave open the possibility of existence of points where the veloc-
ity is not defined. Such points (if any) are characterised in point (i) of
Proposition 12.3.

The third main result of this paper is an exhaustive analysis of the
asymptotic behavior of power-law solutions at points at which v vanishes,

2The results presented in [18] have been made available as a preprint [17] while this
paper was being prepared for publication.

3This follows immediately from Proposition 1.4 together with the calculations of the
proof of Lemma 8.7. For points θ at which v1 ≥ 1 one expects Q∞ to have vanishing
derivatives, compare point (ii) of Proposition 3.1 and Theorem 10.2. Then, if v1(θ0) ≥ 1
and if ∂i

θQ∞(θ0) = 0, i = 1, 2, 3, then (3.5)-(3.6) and their derivative counterparts give
pointwise decay of the function appearing under the sup at the left-hand-side of (1.6), but
uniformity is far from being clear.
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or equals one. This last case is especially important for the discussion of
strong cosmic censorship, we refer the reader to [6] for applications. We
note that no results concerning those velocities were available so far in the
non-polarised case.

The results discussed above are established through a series of auxiliary
results which have some interest in their own. We say that a solution x sat-
isfies a power law blow-up, or is of power-law type, or is a power-law solution,
if the norm of the theta derivatives vector |Xθ| does not blow up faster than
|t|ε−1, for some positive constant ε, when approaching the singularity t = 0.
All solutions of the smooth Cauchy problem on T 3 analysed in detail so far
satisfy4 a power law decay.

It is simple to show that every solution with a power law decay has a
continuous asymptotic velocity function v (see the proof of Theorem 8.3
below). The associated solutions of the vacuum Einstein equations have
curvature blowing up uniformly, except perhaps at the set of points θ at
which v(θ) = 1. Consider the set of initial data for solutions satisfying
a power law decay and for which v < 1, uniformly in θ. We show – see
Theorem 11.1 below – that this set is open in the set of all initial data; this
is one of the steps of the proof of Theorem 1.1. We further show that for
those solutions v is smooth except perhaps at the boundary of the set of
points at which v vanishes. Theorem 11.1 leads to a sharper version of the
stability of the singularity theorem for (2/3, 2/3,−1/3) Kasner metrics, see
Theorem 9.1.

An important element of our analysis is the action of the Geroch group,
as defined in Section 4. In fact, the key ingredients of our analysis are the
results in [4] together with the following:

(i) The analysis of the action of the Geroch group in the work of Rendall
and Weaver [15];

(ii) The reformulation of the wave-map equations as a first-order system
of scalar equations by Christodoulou and Tahvildar-Zadeh [3];

(iii) The small-derivatives stability result of Ringström [16].

We finish this introduction by recalling some results from [4] which will
be useful in the sequel:

4More precisely, the examples known to us satisfy a power law decay on all sets C0
t0(ψ)

as defined in Equation (2.3) below. The constants are uniform in ψ away from the points
at which the asymptotic velocity has spikes, or discontinuities, or crosses zero or one. At
the end of Section 2 we give an explicit self-similar solution that does not satisfy the power
law decay, but this solution does not fit into a Cauchy problem framework.
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Proposition 1.4 (Time-weighted pointwise estimates; Proposition 3.2.1 in [4])
Let x(t0, θ) ∈ Ck(S1), k ≥ 1, Xt(t0, θ) ∈ Ck−1(S1). For all t ≥ t0 we have

(i) (|Xt|2+|Xθ|2)(t, θ) ≤ 2
{

supψ∈[θ−t+t0,θ+t−t0](|Xt|2 + |Xθ|2)(t0, ψ)
}(

t0
t

)2.

(ii) If k ≥ 2, then there exist constants C depending only upon the argu-
ments listed such that, for all 1 ≤ |α| ≤ k,

|Dαx|(t, θ) ≤ C(|α|, t0, ‖Xθ(t0)‖C|α|−1 , ‖Xt(t0)‖C|α|−1)|t|−|α|. (1.7)

Remark 1.5 It has been pointed out to us by H. Ringström that the proof
of Proposition 3.2.1 in [4] (compare [4, Equation (3.2.5)] together with the
argument leading to Equation (3.2.9) there) actually gives an inequality
somewhat stronger than (i) above:
(

t

t0

)2

(|Xt|2 + |Xθ|2)(t, θ) ≤
1
2

{
sup

ψ∈[θ−t+t0,θ+t−t0]
|Xt −Xθ|2(t0, ψ) + sup

ψ∈[θ−t+t0,θ+t−t0]
|Xt + Xθ|2(t0, ψ)

}
.

(1.8)

Equation (1.8) carries more information about the solution than the in-
equality in (i), which can be seen e.g. when the initial data have small
θ-derivatives.

Proposition 1.6 (Time-weighted Sobolev decay; Proposition 3.3.1 in [4]) Let
x ∈ Ci([t0, 0) × S1) and let Xθ(t0, ·), Xt(t0, ·) ∈ Hi(S1), i ≥ 1. Then there
exist constants depending only upon the arguments listed such that

(i) For all 1 ≤ |α| ≤ i + 1,

g(α)(t) ≡
∮

dθ|t|2|α||Dαx|2 ≤ C(|α|, ‖Xθ(t0)‖H|α|−1(S1), ‖Xt(t0)‖H|α|−1(S1), t0).

(ii) If at least one differentiation is a θ differentiation we have

lim
t→0

g(α)(t) = 0.

(iii) If at least one differentiation is a θ differentiation then g(α)(t)
|t| ∈ L1([t0, 0])

and
∫ 0

t0

g(α)(s)
|s| ds ≤ C ′(|α|, t0, ‖Xθ(t0)‖H|α|−1(S1), ‖Xt(t0)‖H|α|−1(S1)).
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Figure 2: The truncated domains of dependence Ct
t0(ψ).

2 Problems with θ derivatives, self-similar solu-
tions

As already mentioned in the introduction, all published solutions of the
Gowdy equations known to us, and for which the asymptotic behavior is
reasonably well understood [4, 5, 10, 14–16], have the property that

|tXθ| ≤ Ctε (2.1)

for some ε > 0, with the bound being optimal4. The power law is very
useful for the control of the analytic properties of the solutions, but it is
not necessary for curvature blow-up. In any case the bound (2.1) certainly
implies, for all ψ ∈ S1,

∫

C0
t0

(ψ)
|Xθ|2 dt dθ < ∞ , (2.2)

where for t0 < 0 the set C0
t0(ψ) is defined as (compare Figure 2)

C0
t0(ψ) = {t0 ≤ t < 0 , −|t| ≤ θ − ψ ≤ |t|} . (2.3)

We shall say that limC0
t0

(ψ)f = α if

lim
t→0

sup
−|t|≤θ−ψ≤|t|

|f(t, θ)− α| = 0 . (2.4)

Such limits look a little awkward at first sight; however, they arise naturally
when considering the behavior of the geometry along causal curves with
endpoints on the boundary t = 0. Further, such limits appear naturally in
our results below.

We have a partial converse to (2.1):
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Proposition 2.1 (Proposition 3.4.1 in [4]) At every ψ at which (2.2) holds
we have, for all multi-indices α,

limC0
t0

(ψ)|t||α|+1|DαXθ| = 0 .

Remark 2.2 In Section 6 below we give further integral conditions which
ensure pointwise convergence of |tXt| to a number v(ψ). Yet another crite-
rion for existence of v(ψ) is given by Proposition 12.3.

Proposition 2.1 begs the question of existence of solutions for which (2.2)
fails. An obvious candidate is given by self-similar solutions:

x(t, θ) = y(θ/t) , (2.5)

for some map y from M to the hyperbolic space. It would be of interest to
find all solutions satisfying (2.5). Here we note the following family of such
solutions: let α, β ∈ R and let Γ : R → H be an affinely parameterised
unit-speed geodesic in H , for |θ| < −t set

x(t, θ) = Γ
(
α arcsin

(θ

t

)
+ β

)
. (2.6)

It is easily checked that (2.6) solves the Gowdy equation (1.3). Equa-
tion (2.2) fails for the solution (2.6) when α 6= 0, as expected. It turns
out that the solutions (2.6) do not fit into the Cauchy problem framework
because they are singular on the whole light cone |θ| = −t, while the so-
lutions we are interested in are smooth at t = t0. Singular solutions can
sometimes be used to produce smooth examples of bad behavior, but we
have not managed to exploit this solution to do that. In view of our stabil-
ity results here it would be important to construct a solution of the Cauchy
problem where (2.2) fails, or to prove that such solutions do not exist.

3 AVTDk behavior, spikes and discontinuities

In [5, 11, 14] a large class of solutions of (1.3) has been constructed with the
following behavior:

P (t, θ) = −v1(θ) ln |t|+ P∞(θ) + o(1) , 0 < v1(θ) < 1 , (3.1)

Q(t, θ) = Q∞(θ) + |t|2v1(θ)
(
ψQ(θ) + o(1)

)
. (3.2)
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A generalisation of those formulae to arbitrary velocities requires a careful
study of the field equations. For instance, an analysis of the indicial ex-
ponents of the linearised equations suggests the following behavior of Q at
points where v(θ) = n ∈ N∗ (compare [6] for n = 1)5

Q(t, θ) = Q∞(θ) +
t2n

(2n)!
∂2n

θ Q∞(θ) ln |t|+ ψQ(θ)t2n + o(t2n) . (3.3)

While there is no existence statement for solutions with a non-zero coeffi-
cient in the ln |t| term above, we expect that such solutions can actually be
constructed. We note that if v ∈ N∗ on an interval, then no log term will
occur on that interval.

Applying the “solution-generating transformation” (3.19) described be-
low to (3.3) at a point at which one further has Q∞(θ) = 0 leads to a solution
(P ′, Q′) with a negative P -velocity v′1(θ) = −n and with a logarithmically
blowing-up Q function

Q′(t, θ) = e2P∞(θ)

(
1

(2n)!
∂2n

θ Q∞(θ) ln |t|+ ψQ(θ)
)

+ o(1) . (3.4)

The above discussion suggests that the following will capture the asymptotic
behavior of a large class of solutions of the Gowdy equations:

P (t, θ) = −v1(θ) ln |t|+ P∞(θ) + o(1) , (3.5)

Q(t, θ) = Q∞(θ) +





|t|2v1(θ)
(
ψQ(θ) + o(1)

)
, 0 < v1(θ) 6∈ N ;

|t|2v1(θ)
(
Qln(θ) ln |t|+ ψQ(θ) + o(1)

)
, 0 < v1(θ) ∈ N ;

Qln(θ) ln |t|+ o(1) , v1(θ) ∈ −N∗ ;
o(1) , −N∗ 63 v1(θ) ≤ 0 .

(3.6)

The function
v := |v1| (3.7)

will be called the velocity function, while Q∞ will be called the Q-position
function. Those functions have the following geometric interpretation [9]:
for v > 0 the path

τ → Γθ(τ) := (P (−e−τ , θ), Q(−e−τ , θ))

5The expected a priori estimate |ti+1Di
θXθ| → 0 implies that ∂i

θQ∞(θ) = 0 for i =
1, . . . , 2n− 1, which is implicit in (3.3).
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approaches – in a sense made precise by (3.5)-(3.6) – the affinely parame-
terised h-geodesic

τ → Γ̊θ(τ) := (v1(θ)τ − ϕ(θ), Q∞(θ)) ,

with v - the length of the velocity vector of Γ̊θ. The point Q∞(θ) is then
the uniquely defined point on the conformal boundary of the hyperbolic
space at which the geodesic Γ̊θ accumulates. Clearly this interpretation
breaks down at v(θ) = 0, which suggests that solutions might display strange
features, not necessarily compatible with (3.5)-(3.6), at the boundary of the
set {v(θ) = 0}.

We shall say that a map x = (P,Q) is in the AVTD(P,Q) class if there
exist functions v1, Q∞, and Qln such that

P (t, θ) = −v1(θ) ln |t|+ O(1) , (3.8)

Q(t, θ) =
{

Q∞(θ) + o(1) , v1 6∈ −N∗ ;
Qln(θ) ln |t|+ Q∞(θ) + o(1) , v1 ∈ −N∗ .

(3.9)

We shall say that a solution is in the AVTD(P,Q)
k class if (3.5)-(3.6) hold with

functions v1, P∞, Q∞, Qln and ψQ which are of Ck differentiability class (on
closed intervals the derivatives are understood as one-sided ones at the end
points). For the purposes of the AVTD(P,Q)

k definition the function Qln is
assumed to be extended by 0 to the set v1(θ) 6∈ −N∗; we emphasise that
such an extension will not be assumed in Definition 3.4 below. For k > 0 we
will assume that the behavior (3.5)-(3.6) is preserved under differentiation
in the following way:

∀ 0 ≤ i + j ≤ k ∂j
θ(t∂t)i

(
P (t, θ) + v1(θ) ln |t| − P∞(θ)

)
= o(1) , (3.10)

similarly for Q.
Note that the classes AVTD(P,Q) and AVTD(P,Q)

0 do not coincide.
Unless explicitly stated otherwise the o(1) symbol denotes pointwise con-

vergence to zero as t tends to zero at fixed θ. Similarly O(1) means uniformly
bounded in t at fixed θ. An alternative meaning of o(t), which will be some-
times used, is provided by uniform convergence to zero on the set Ω(a, b, t0)
as defined by (1.5). Yet another possibility is convergence to zero in a
limC0

t0
(ψ) sense, as defined by (2.4); in any case we will make precise state-

ments when needed.
Using the above solutions, Rendall and Weaver [15] have constructed so-

lutions of (1.3) which display “spiky features”. They separate those solutions
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into two classes, one called “false spikes” and one called “true spikes”. An
instructive example of this behavior is provided by a family of Gowdy maps
discovered by Moncrief [12], and analysed in detail in [4, Appendix B]. They
are given there in terms of the polar coordinates on the hyperbolic space,

h = dρ2 + sinh2 ρ dϕ2 , (3.11)

which are related to the (P, Q) coordinates by the formulae6

eP = cosh ρ + sinh ρ cosϕ

=
1
2

(
eρ(1 + cosϕ) + e−ρ(1− cosϕ)

)
, (3.12)

eP Q = sinh ρ sinϕ . (3.13)

Moncrief’s ansatz
ρ = ρ(t) , ϕ = nθ , n ∈ N , (3.14)

leads to the following: every solution is uniquely determined by two numbers
v∞ ∈ [0, 1), ρ∞ ∈ R, such that

ρ = −v∞ ln |t|+ ρ∞ + o(1) . (3.15)

Inserting (3.14)-(3.15) into (3.12) one finds

P (t, θ) =

{
−v∞ ln |t|+ ρ∞ + ln

(
1+cos(nθ)

2

)
+ o(1) , nθ 6= π mod 2π;

v∞ ln |t| − ρ∞ + o(1) , nθ = π mod 2π,
(3.16)

Q(t, θ) =

{
sin(nθ)

1+cos(nθ) + o(1) , nθ 6= π mod 2π;
0 , nθ = π mod 2π.

(3.17)

If we define v1 : S1 → R by the equation

v1(θ) := lim
t→0

|t|Pt , (3.18)

then v1 = v∞ > 0 except at n isolated spike points θm = (1 + 2m)π/n,
m ∈ N∩ [1, n], at which v1 is equal to −v∞ < 0. Equation (3.16) shows that
the subleading term in P blows up logarithmically at the spike points, so
that no uniformity in θ for that term can be expected near those points in
norms which control pointwise behavior of P and Q. It is interesting that

6We are very grateful to Marsha Weaver for several enlightening discussions concerning
the issues discussed in this section, and for providing us formulae (3.12)-(3.13).
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even though Q∞ blows up as one approaches the spike points, it is finite,
actually vanishing, there. Next, even though at each fixed θ we have

lim
t→0

Pθ(t, θ) = 0 ,

there are timelike curves reaching the boundary along which Pθ does not go
to zero: for example, for n = 1,

lim
t→0

Pθ(t, π + αe−ρ(t)) = ∞ , lim
t→0

Pθ(t, π + αe−2ρ(t)) =
α

2
.

The above examples provide solutions with an arbitrary finite number of
spikes. Solutions with a countably infinite number of spikes accumulating at
some point θ∞ ∈ S1 can be constructed as follows: Consider an AVTD(P,Q)

∞
solution such that the function Q∞ in (3.6) has an infinite number of isolated
zeros θi accumulating at θ∞, and such that v1 avoids zero in a neighborhood
of θ∞; the existence of such solutions follows from [14]. Following [15], one
then performs the following “inversion” of the hyperbolic plane:

e−P ′ =
e−P

Q2 + e−2P
, Q′ =

Q

Q2 + e−2P
. (3.19)

This is an isometry of h and therefore maps solutions into solutions. It is
easily seen that (P ′, Q′) will have a spike at each of the points θi, yielding
the desired spiky solution.

The discontinuities discussed so far consisted of isolated points at which
v1 changes sign. Solutions with jumps of v1 can be constructed as follows:
consider any AVTD(P,Q)

∞ solution such that the zero set of the function Q∞
in (3.6) is a closed interval [a, b], with v1 strictly positive near the end
points. As before, the existence of such solutions follows from [14]. It is
easily seen from (3.19) that the velocity function v′1 associated with the map
x′ = (P ′, Q′) will jump from v1(a) to −v1(a) at a, and will be continuous
from the right there. Further, as θ increases from a to b the new velocity
function v′1 will continuously attain the value −v1(b) when b is approached
from the left, and jump to v1(b) immediately afterwards.

Clearly, the above behaviors can be combined to give infinite sequences
of pointwise jumps and/or intervals on which v′1 is negative, with the set of
discontinuities of v′1 accumulating at a given point.

In fact, let F ⊂ S1 or F ⊂ [a, b] be any non-empty closed set without
interior, we claim that there exists a smooth function ϕF such that

ϕ−1
F ({0}) = F .
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In order to see this, let x 6∈ F , and let (x−, x+) be the largest open interval
containing x which does not meet F (hence x± ∈ F ), we set σ(x) = (x −
x−)(x+ − x). Define

ϕF (x) =
{

0, x ∈ F ;
e−1/σ(x), otherwise.

Then ϕF has all the required properties. Using the function ϕF as Q∞, with
v1 equal, e.g., to the constant function 1/2, after performing an inversion
we obtain a new function v′1 which equals −1/2 on F , and 1/2 on S1 \F . If
F is a fat Cantor set one obtains a rather wild set of spikes, with measure
as close as desired to that of S1 or that of [a, b] by choosing F suitably.

The spikes discussed so far are called false spikes, as they can be thought
of as an artifact of the (P, Q) coordinate system above: no discontinuous
behavior occurs in the (ρ, ϕ) representation of the solutions.7 However, the
(P,Q) coordinates are very useful when analysing the Gowdy-to-Ernst trans-
formation, because that transformation has a very simple form precisely in
the (P, Q) coordinates: given a solution x = (P, Q) of the Gowdy equa-
tions, one defines a new solution x̂ by performing the “Gowdy-to-Ernst”
transformation [15]:

P̂ := −P − ln |t| , eP̂ ∂tQ̂ := −eP ∂θQ , eP̂ ∂θQ̂ := −eP ∂tQ . (3.20)

The new map satisfies again the Gowdy equation (1.3). As shown by Rendall
and Weaver, this has significant consequences: By definition, a true spike is
the image of a false spike after a Gowdy-to-Ernst transformation has been
performed; equation (3.20) shows that any discontinuity in v1 leads to a
discontinuity in the velocity v̂1 associated with the map (P̂ , Q̂). For AVTD
solutions this typically leads to a discontinuity in the geometric velocity
function v̂ = |v̂1|. For instance, for the solutions (3.14) the transformation

7Applying isometries of the hyperbolic plane to the solution has the effect of reshuffling
Killing vectors, and can thus be considered as an irrelevant “coordinate transformation”
from the space-time point of view. We note that the isometry (3.19) changes the orienta-
tion of the hyperbolic plane. The accompanying relabeling of the Killing vectors changes
the space-time orientation, leading thus to a non-equivalent solution if a space-time ori-
entation has been chosen. However, we can always perform a second inversion about a
different point, regaining the original orientation. If the map θ → Q∞(θ) is surjective,
this will always introduce at least one “false spike” in the transformed solution. In other
words, in the surjective case there will be no (P, Q) representation of the solution without
“false spikes”. This gives some geometric meaning to those.
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(3.20) leads to

P̂ =

{
−(1− v∞) ln |t| − ρ∞ − ln

(
1+cos(nθ)

2

)
+ o(1) , nθ 6= π mod 2π;

−(1 + v∞) ln |t|+ ρ∞ + o(1) , nθ = π mod 2π,
(3.21)

which clearly results in a |v̂| which is not continuous at nθ = π mod 2π.
We refer the reader to [15, Section 6] for a further discussion of iterations

of the above.
It is interesting to enquire about independence of the conditions (3.8)-

(3.9). It turns out that (3.8) is the key requirement, up to a Gowdy-to-Ernst
transformation:

Proposition 3.1 (i) At each point θ at which (3.8) holds with v1 > 0 we
also have (3.9). If the term O(1) in (3.8) is uniform in θ over some
interval I then Q∞ is continuous on I. If further v1 is uniformly
bounded away from zero, then the term o(1) in (3.8) is uniform in
θ ∈ I.

(ii) If v1 > 1 on an interval I, with the term O(1) in (3.8) uniform in θ,
then there exists a constant A such that

∀ θ ∈ I Q(t, θ) →t→0 A

(we say that x is asymptotically polarised on I).

(iii) At points θ or intervals I on which (3.8) holds with v1 < 1 the conclu-
sions of point (i) above hold for the Gowdy-to-Ernst transformed map
x̂. If v1 < 0 on I then the conclusion of point (ii) holds for Q̂. (In the
case of an interval I we assume that the term O(1) in (3.8) is uniform
in θ.)

Proof: Point (i) of Proposition 1.4 shows that

|Qt|+ |Qθ| ≤ C(θ)e−P

|t| ≤ C(θ)|t|v1(θ)−1 . (3.22)

Integrating in t one obtains (3.9). If C(θ) can be made θ-independent, then
Q∞ is a uniform limit of continuous functions, and therefore continuous,
which gives (i). If v1(θ) > 1, then (3.22) shows that |Qθ| tends to zero as t
goes to zero, which easily implies that Q∞ is constant over I. This proves
(ii). Applying the Gowdy-to-Ernst transformation (3.20) one finds that the
hatted velocity function v̂1 associated with P̂ equals 1 − v1, and point (iii)
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follows. 2

Let us summarize the properties of the (P, Q) coordinates which follow
from the above:

(i) They provide a simple explicit formula for the Gowdy-to-Ernst trans-
formation;

(ii) They describe faithfully the geometric behavior of the solutions except
near those points at the conformal boundary with ϕ = π mod 2π;

(iii) They describe faithfully the geometric behavior of those solutions on
intervals of θ on which v vanishes.

The problem with ϕ = π mod 2π above is avoided by turning to the (ρ, ϕ)-
description of the solutions. So, instead of (3.5)-(3.6) we write

ρ(t, θ) = −v(θ) ln |t|+ ρ∞(θ) + o(1) , (3.23)

ϕ(t, θ) = ϕ∞(θ) +





|t|2v(θ)
(
ψϕ(θ) + o(1)

)
, 0 < v(θ) 6∈ N∗ ;

|t|2v(θ)
(
ϕln(θ) ln |t|+ ψϕ(θ) + o(1)

)
, v(θ) ∈ N∗ ;

o(1) , v(θ) = 0 .
(3.24)

(We impose the usual restriction that ρ ≥ 0 so v above is necessarily non-
negative, though in some situations it might be convenient not to do this,
allowing ρ to be negative, but then identifying the points (ρ, ϕ) with (−ρ, ϕ−
π).) It follows from (3.12) that the notation v for the ρ-velocity in (3.23)
is comptatible with (3.5) and (3.7). A map x = (ρ, ϕ) will be said to be
AVTD(ρ,ϕ) on an interval [a, b] if there exist real valued functions v and ϕ∞
such that for θ ∈ [a, b] we have

ρ(t, θ) = −v(θ) ln |t|+ O(1) , (3.25)
ϕ(t, θ) = ϕ∞(θ) + o(1) . (3.26)

x will be said to be AVTD(ρ,ϕ)
k on an interval [a, b] if (3.23)-(3.24) holds

with functions v, ρ∞, ϕ∞, ϕln and ψϕ which are Ck on [a, b]. For k > 0 the
derivatives are assumed to behave as in (3.10).

Because of the usual polar coordinate singularity at ρ = 0 the (ρ, ϕ)
coordinates do not always reflect the geometric character of the dynamics
for solutions on intervals on which v(θ) = 0.
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We note the following result, which follows immediately from the calcula-
tions in the proof of Proposition 4.2 below. It shows that the only points θ at
which the distinction between AVTD(ρ,ϕ)

k and AVTD(P,Q)
k behavior matters

are those at which v vanishes (where (ρ, ϕ) might be singular) or at which
ϕ∞ = π mod 2π (where the restriction of Q to the conformal boundary of
the hyperbolic space is singular):

Proposition 3.2 Let k ≥ 0.

(i) If the map x is AVTD(P,Q)
k on [a1, b1] with v1 avoiding zero on [a1, b1],

then it is AVTD(ρ,ϕ)
k . Further ϕ∞ mod 2π avoids π on [a1, b1] if v1 >

0, while ϕ∞ ≡ π mod 2π if v1 < 0.

(ii) If the map x is AVTD(ρ,ϕ)
k on [a1, b1] with ϕ∞ mod 2π avoiding π on

[a1, b1], then it is AVTD(P,Q)
k .

Remark 3.3 We have an obvious equivalent of points (i) and (ii) of Propo-
sition 3.1 for the (ρ, ϕ) representation of the solutions, with identical proof,
regardless of whether or not ϕ∞ meets π mod 2π.

What has been said so far in this section leads naturally to the following
definition:

Definition 3.4 A map x : Ω(a, b, t0) → H2 will be said to be AVTD, respec-
tively AVTDk, on [a1, b1] ⊂ [a, b] if there exists a function v : [a1, b1] → R+

such that:

(i) For every interval I ⊂ [a1, b1] on which v vanishes the map x is
AVTD(P,Q), respectively AVTD(P,Q)

k , near {0} × I, with |v1| = v.

(ii) For every interval I ⊂ [a1, b1] on which v has no zeros the map x is
AVTD(ρ,ϕ), respectively AVTD(ρ,ϕ)

k , near {0} × I.

4 The Geroch group and its action

We consider solutions of the Gowdy equations defined on Ω(a, b, t0) (see
(1.5)), for some a ≤ b, t0 < 0. We fix8 once and for all a (P,Q) coordinate
system on (H2, h). Following [7], we define the Geroch group G as the
set of finite strings of the form G = G1G2 · · ·Gk, where each of the Gi’s

8We emphasise that there are several coordinate systems (P, Q) in which the metric h
takes the form (1.2), differing from each other by an isometry of h.
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is either an isometry of (H2, h), denoted by Ii, or is a Gowdy-to-Ernst
transformation (3.20), denoted by E. The Geroch group acts on solutions
as follows: First, G1 · · ·Gn acts on x by first acting with Gn on x, then
acting with Gn−1 on Gnx, etc. Next, if x is a solution of (1.3), then we
start by writing it in the (P, Q) coordinate system just chosen. Isometries
act on solutions by composition. This implies that the G -group product
I1I2 of two isometries I1 and I2 is the composition I1 ◦ I2 of I1 with I2.
The action of a Gowdy-to-Ernst transformation E on a solution is defined
as follows: we integrate (3.20) with the integration constant chosen so that
Q̂(t0, a) = Q(t0, a). This leads to the group product E2 = IdH2 , where IdH2

is the identity isometry of the hyperbolic plane. The G –group products EI
and IE, are defined by the above action on solutions.

Let G = G1G2 · · ·Gk, then any two adjacent Gowdy-to-Ernst trans-
formations can be canceled out, leading to a shorter presentation of G.
Similarly any two adjacent isometries can be replaced by a single isome-
try. This leads eventually to a presentation of G such that isometries and
Gowdy-to-Ernst transformations alternate. The number of Gowdy-to-Ernst
transformations in the resulting presentation of G will be called the order
of G. Thus, the order of I is zero, the order of E, or IE, or EI, is one, etc.

The behavior near t = 0 of all the known to us solutions of the Cauchy
problem for the Gowdy equations is captured in the definition of the set U1

below; the set U2 is then a subset of U1 with a genericity condition; we
expect U2 to be useful in the analysis of the strong cosmic censorship prob-
lem in the class of Gowdy space-times. The following comment is in order
here: as emphasised in the previous section, the (P, Q) variables provide
a parametrization of the hyperbolic space which does not always correctly
reflect the geometric aspects of the asymptotic behavior of the solutions, so
the reader might wonder why to invest so much effort to characterise the
asymptotics of the Gowdy solutions in terms of those variables rather than,
say, the (ρ, ϕ) variables of (3.11). The answer is that the Gowdy-to-Ernst
transformation takes a simple form in the (P, Q) variables, compare (8.33),
and this is what forces us to carry out the analysis below.

Definition 4.1 1. Let U1 be the set of smooth solutions of the Gowdy equa-
tions defined on Ω(a, b, t0) for which (3.5)-(3.6) holds with some functions
v1, P∞, Q∞ defined on [a, b], a function ψQ defined on the set {v1 > 0},
and a function Qln defined on the set {v1 ∈ Z∗}, satisfying the following:

(i) v1 is uniformly bounded.

(ii) v1 is continuous on an open dense subset of [a, b].
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(iii) The restrictions of Q∞ to the sets {θ : v1(θ) 6∈ −N} and {θ : v1(θ) ∈
−N} are continuous functions on those sets.

(iv) The restriction of P∞ to the set {θ : Q∞ and v1 are continuous at θ}
is a continuous function on this set, similarly for Qln and ψQ.

(v) At points at which Qln(θ) 6= 0 the error terms o(1) in (3.5)-(3.6) have
the property that they remain o(1) after multiplication by ln |t|.

2. We define U2 to be the subset of U1 consisting of those solutions for
which the sets of discontinuities and of critical points of v1 and of Q∞ are
finite.

It is an open question whether there exist solutions of the smooth Cauchy
problem for the Gowdy equations which are not in U1.

In our analysis below we will need the following:

Proposition 4.2 U1 and U2 are invariant under the action of isometries
of (H2, h).

Remark 4.3 The arguments of the proof of Theorem 12.1 show that the
set of solutions which are in U1 is stable under the action of the whole
Geroch group. It is not completely clear what happens with the action of
the Geroch group on solutions in U2, since the integration of the Q̂ equations
might introduce non-generic behavior.

Proof: Let φ be an isometry of the hyperbolic space into itself. We will
write

x̂ = φ ◦ x ,

and denote by (P̂ , Q̂) the associated coordinate functions.
If θ0 ∈ [a, b] is such that v1(θ0) = 0, then continuity of φ shows that (3.5)-

(3.6) does hold for (P̂ (t, θ), Q̂(t, θ)) at θ0, with the new velocity v̂1(θ0) =
0 = v1(θ).

Let V be the open dense set on which v1 is continuous, then V is a
nonempty countable union of open intervals Ii, V = ∪iIi. By definition the
velocity function v1 is continuous on each Ii. We rewrite the Ii’s as

Ii = {v1 > 0}︸ ︷︷ ︸
Ii+

∪{v1 < 0}︸ ︷︷ ︸
Ii−

∪{v1 = 0}︸ ︷︷ ︸
Ii0

.

The simplest set to analyse is Ii0: for (t, θ) ∈ [t0, 0) × Ii0 the map x(t, θ)
stays in a compact set, so does φ ◦ x for any isometry φ, and the property
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that (P∞, Q∞) are continuous on Ii0 is clearly preserved under the action of
isometries.

Let us use the angle ϕ of (3.11) to parameterise the conformal boundary
of the hyperbolic space, then to every point for which v1(θ) > 0 we can
assign a unique ϕ∞(θ) such that the trajectory t → x(t, θ) asymptotes to
the point at infinity ϕ∞(θ). From (3.12)-(3.13) we have

v1(θ) > 0 =⇒ Q∞(θ) =
sin(ϕ∞(θ))

1 + cos(ϕ∞(θ))
, (4.1)

except at
ϕ∞(θ) = π mod 2π (4.2)

where a more careful analysis is required. We emphasise that a possible
singularity arising here would only reflect the singular behavior of the Q-
parameterisation of the conformal boundary, and not a singularity of ϕ∞(θ):
continuity of ϕ∞ on the set {v > 0} can be established as in Proposi-
tion 3.1, working directly in the (ρ, ϕ) coordinates, regardless of whether or
not cos(θ) = −1. In any case Q∞ is continuous on Ii+ by hypothesis, and
so is therefore ϕ∞.

Inverting (3.12)-(3.13) one finds

eρ =
e−P + eP (1 + Q2)

2
+

√(
e−P + eP (1 + Q2)

2

)2

− 1 . (4.3)

(The alternative solution

e−ρ =
e−P + eP (1 + Q2)

2
+

√(
e−P + eP (1 + Q2)

2

)2

− 1 (4.4)

always leads to a negative ρ. Equations (4.3)-(4.4) reflect the fact that a
point (P, Q) corresponds both to (ρ, ϕ) and (−ρ, ϕ−π). In the current proof
we follow the usual convention that ρ ≥ 0.) It follows that

ρ(t, θ) = −v1(θ) ln |t|+ ρ∞(θ) + o(1) , (4.5)

for some number ρ∞(θ). Inserting (4.5) into (3.13) one is then led to

ϕ(t, θ) = ϕ∞(θ) +




|t|2v1(θ)

(
ψϕ(θ) + o(1)

)
, v1(θ) 6∈ N∗ ,

|t|2v1(θ)
(
ϕln(θ) ln |t|+ ψϕ(θ) + o(1)

)
, v1(θ) ∈ N∗ ,

(4.6)
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for some numbers ψϕ(θ), ϕln(θ). As ϕ∞ is a continuous function of θ on Ii+,
continuity in θ of ρ∞(θ) there follows. Continuity of ψϕ(θ) and ϕln(θ) over
the sets Ii+ ∩ {v1 ∈ N∗} and Ii+ ∩ {v1 6∈ N∗} follows in an identical manner.

Recall, now, that any isometry φ of the hyperbolic space extends to a
smooth diffeomorphism of the conformal boundary of (H2, h), say χ. This
shows that on the set {v(θ) > 0} the solution x̂ := φ◦x will have a ϕ-position
function

ϕ̂∞(θ) = χ(ϕ∞(θ)) .

The fact that isometries extend smoothly to the conformal boundary further
shows that the asymptotic behavior (4.5)-(4.6) is preserved under the action
of isometries of the hyperbolic space, so that the map (ρ̂, ϕ̂) will satisfy the
hatted version of (4.5)-(4.6) at points with positive v1.

Let θ be any point such that χ(ϕ∞(θ)) 6= π mod 2π. A straightforward
analysis of (3.12)-(3.13) shows that one will recover (3.5)-(3.6) for the map
(P̂ , Q̂) at θ, with v̂1(θ) = v1(θ) > 0.

Set

Îi+ := {χ(ϕ∞(θ)) 6= π mod 2π}︸ ︷︷ ︸
Îi++

⋃

{∃ interval J around θ such that χ ◦ ϕ∞|J ≡ π mod 2π}︸ ︷︷ ︸
Îi+−

⊂ Ii+ .

Then Îi+ is clearly open in Ii+. Suppose that θ ∈ Ii+ is such that there are
no points of Îi++ in a neighborhood of θ, then Q∞ is constant and equal
to π mod 2π on that neighborhood, hence θ ∈ Îi+−. It follows that Îi+ is
dense in Ii+.

On Îi++ the function ϕ̂∞ − π avoids integer multiples of 2π, and con-
tinuity of v̂1(θ) = v1(θ) > 0 on Ii+ follows. Similarly one obtains a new
continuous position function Q̂∞ by using (4.1) with ϕ∞ there replaced by
ϕ̂∞.

On the other hand, at points at which ϕ̂∞ = π mod 2π and v1 6∈ N∗ we
have from (3.12)-(3.13) and (4.5)-(4.6)

P̂ (t, θ) = v1(θ) ln |t|+ ρ̂∞(θ) + ln

(
1 +

(ψ̂ϕ(θ))2

4

)
+ o(1) , (4.7)

Q̂(t, θ) = −1
2
eρ̂(∞)−P̂ (∞)ψ̂ϕ(θ) + o(1) . (4.8)

Analogous equations hold with supplementary ln |t| terms for v1 ∈ N∗, com-
pare (3.4). This shows that (3.5)-(3.6) hold again, with a negative v1. Fur-
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ther v1 is continuous on Îi+−. It follows that Ii+ contains an open dense set
on which v1 is continuous.

Consider, finally, points at which v1(θ) < 0. Equation (4.3) leads to

ρ(t, θ) =
(
−P +

e2P (1 + 3Q2)
4

+ O(e4P )
)

(t, θ)

= −|v1(θ)| ln |t| − P∞(θ) + o(1) .

Inserting this into (3.13) yields

sin(ϕ) =
eP

sinh ρ
Q = 2e2P∞(1 + o(1))|t|2|v1|(θ)Q ,

so that sin(ϕ(t, θ)) goes to zero as t does. Equation (3.12) shows that we
must have ϕ(t, θ) →t→0 π mod 2π and one obtains, again modulo 2π,

ϕ(t, θ) = π+

{ |t|2|v1(θ)|2e2P∞(θ) (Q∞(θ) + o(1)) , v1 6∈ −N∗ ;
|t|2|v1|(θ)2e2P∞(θ)

(
Qln(θ) ln |t|+ Q∞(θ) + o(1)

)
, v1(θ) ∈ −N∗ .

(For v1(θ) ∈ −N∗ we have used the hypothesis that ln |t|×o(1) remains o(1).)
The calculations done so far show that (3.5)-(3.6) hold for all θ ∈ [a, b] for
the map φ◦x. A repetition of the arguments given on Ii+ justifies continuity
on an open dense subset of Ii−, and the proposition for U1 easily follows.

The result for U2 follows immediately from the calculations above, using
the fact that for maps in U2 all level sets of Q∞ form a finite collection of
points. 2

5 A symmetric hyperbolic system

Let us set

Pt = f1, Pθ = g1,

eP Qt = f2, eP Qθ = g2.

Equation (1.3) takes then the form of the following first order symmetric
hyperbolic system:

∂t




f1

f2

g1

g2


 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ∂θ




f1

f2

g1

g2


 +




f2
2 − g2

2 − f1

t

−f1f2 + g1g2 − f2

t
0

f1g2 − g1f2


 ,

(5.1)

22



The new unknowns fa, ga agree with the coefficient functions of 1−forms,
ψA

µ , of Christodoulou and Tahvildar-Zadeh’s work on spherically symmetric
wave maps [3], when an appropriate trivialisation of the bundle of vectors
tangent to the hyperbolic space has been chosen: Indeed, if we set

e1 = ∂P , e2 = e−P ∂Q , (5.2)

then, in view of (1.2), the ea’s form a globally defined h–orthonormal frame
with constant structure coefficients (and thus constant connection coeffi-
cients), and

fa = h(ea, Xt) , ga = h(ea, Xθ) .

We consider solutions defined on domains of dependence Ω(a, b, t0), de-
fined in (1.5). By Proposition 1.4 we have

sup
Ω(a,b,t0)

(|tf1|+ |tf2|+ |tg1|+ |tg2|) < ∞ . (5.3)

Throughout this work the value of various irrelevant constants may
change from line to line.

Since |Xθ|2 = g2
1 + g2

2, Proposition 1.6 implies

limt→0

∫ b−t

a+t
t2(g2

1 + g2
2)dθ = 0 , (5.4)

∫ b−t

a+t
t(g2

1 + g2
2)dθ ∈ L1([t0, 0]) . (5.5)

We further note that by (1.4) we have

DµXν = (∂µ∂νP − e2P ∂µQ∂νQ)∂P + (∂µ∂νQ + QµPν + QνPµ)∂Q

= (∂µ∂νP − e2P ∂µQ∂νQ)e1 + eP (∂µ∂νQ + QµPν + QνPµ)e2 ,

(5.6)

so that
DθXθ = (∂θg1 − g2

2)e1 + (∂θg2 + g1g2)e2 . (5.7)

It then easily follows from (5.3)-(5.5) together with Proposition 1.6 that

limt→0

∫ b−t

a+t
t4

(
(∂θg1)2 + (∂θg2)2

)
dθ = 0 , (5.8)

∫ b−t

a+t
t
(
(∂θg1)2 + (∂θg2)2

)
dθ ∈ L1([t0, 0]) . (5.9)

It turns out that we also have
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Proposition 5.1

limt→0

∫ b−t

a+t
t2f2

2 dθ = 0 , (5.10)

∫ b−t

a+t
tf2

2 dθ ∈ L1([t0, 0]) . (5.11)

Proof: Let

F (t) =
∫ b−t

a+t
tf1dθ ,

then

dF

dt
= t(g1 − f1)(t, b− t)− t(g1 + f1)(t, a + t) +

∫ b−t

a+t
t(f2

2 − g2
2) .

Now, tf1 is bounded, hence so if F , and by integration of the last equation
we obtain ∫ t

t0

∫ b−t

a+t
tf2

2 dθdt ≤
∫ t

t0

∫ b−t

a+t
tg2

2 dθdt + C

for all t0 ≤ t < 0. Equation (5.5) together with the monotone convergence
theorem imply (5.11). In order to prove (5.10) we calculate

∣∣∣∣∣
d

dt

∫ b−t

a+t
t2f2

2

∣∣∣∣∣ =

∣∣∣∣∣− t2f2
2 (t, b− t)− t2f2

2 (t, a + t)

+
∫ b−t

a+t
f2 (∂θg2 − f1f2 + g1g2)

∣∣∣∣∣

≤ C

(
1 +

∫ b−t

a+t

(|t|3(∂θg2)2 + |t|(f2
2 + g2

1 + g2
2)

))
.

(5.12)

The function on the right-hand side of the last line is in L1([t0, 0]) by (5.5),
(5.9) and (5.11). Integrating (5.12) one concludes that the limit at the
left-hand side of (5.10) exists. If this limit were different from zero (5.11)
couldn’t hold, whence the result. 2

We are ready to prove now:
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Proposition 5.2 For k ≥ 0 we have

limt→0

∫ b−t

a+t
|t|2(k+1)

(
(∂k

θ g1)2 + (∂k
θ g2)2

)
dθ = 0 , (5.13)

∫ b−t

a+t
|t|2k+1

(
(∂k

θ g1)2 + (∂k
θ g2)2

)
dθ ∈ L1([t0, 0]) , (5.14)

limt→0

∫ b−t

a+t
|t|2(k+1)(∂k

θ f2)2dθ = 0 , (5.15)

∫ b−t

a+t
|t|2k+1(∂k

θ f2)2dθ ∈ L1([t0, 0]) . (5.16)

Proof: The cases k = 0 have already been established, as well as (5.13) and
(5.14) with k = 1. A simple induction argument, using the formulae (1.4)
for the Christoffel symbols, shows that

Dk
θXθ =

(
∂k

θ g1+Fk(∂k−1
θ g, . . . , g)

)
e1+

(
∂k

θ g2+Gk(∂k−1
θ g, . . . , g)

)
e2, (5.17)

where g denotes both g1, g2, while the Fk(·)’s and Gk(·)’s are polynomials
in the variables ∂m

θ g, 0 ≤ m ≤ k − 1 with the number of derivatives and
factors in each of the terms ∂i1

θ g · ∂i2
θ g . . . ∂in

θ g satisfying

n ≥ 2 ,
n∑

m=1

(im + 1) ≤ k + 1 .

This, together with Proposition 1.6, proves (5.13) and (5.14).
Next, for k ≥ 1 we compute

∂k
θ f2 =

k∑

i=0

C(i, k)〈Di
θXt, D

k−i
θ e2〉 (5.18)

since f2 = 〈Xt, e2〉. By induction we obtain

Dk
θe2 =

(
∂k−1

θ g +F ′
k−1(∂

k−2
θ g, . . . , g)

)
e1 +

(
∂k−1

θ g +G′
k−1(∂

k−2
θ g, . . . , g)

)
e2,

(5.19)
where the F ′

k−1(·)’s and G′
k−1(·)’s have the same property as described above.

Thus

|t|k+1|∂k
θ f2| ≤

k∑

i=0

C(i, k)|t|i+1|Di
θXt||t|k−i|Dk−i

θ e2|

≤ C
k∑

i=1

|t|i(|∂i−1
θ g|+ |Fi−1|+ |Gi−1|) + |t|k+1|Dk

θXt|.

25



The proof is completed by combining Proposition 1.6 with Equations (5.13)-
(5.14). 2

6 Existence of a velocity function

Numerical experiments (see [2] and references therein) suggest that the limit

v(θ) := lim
t→0

|tXt|(t, θ) (6.1)

exists, and is a continuous function of θ except for a “small” exceptional set
of θ’s in S1. We set

Ωt−reg := {θ ∈ S1 such that the limit (6.1) exists } , (6.2)

so that v is a well-defined function on Ωt−reg. The existence of this limit
is useful when analysing the geometry of the associated space-time. Now
Proposition 5.1 shows that t2f2

2 goes to zero in L2 as t tends to zero, and
since

|tXt|2 = t2(f2
1 + f2

2 ) ,

the whole information about the limit (6.1) is contained in tf1, except pos-
sibly for a negligible set.

6.1 Existence of a weak velocity function vweak

We have the following:

Proposition 6.1 There exists vweak ∈ L∞(S1) such that for any p ∈ (1,∞)

|t|f1(t, ·) Lp

⇀ vweak ,

where Lp

⇀ denotes weak convergence in Lp(S1).

Remark 6.2 In the proof of Theorem 1.3 we establish existence of an open
dense set Ω̂ ⊂ S1 such that vweak has a smooth representative v on Ω̂, with
pointwise convergence to v on Ω̂.

Proof: Let vi(θ) = 2−if1(−2−i, θ), then the sequence vi is bounded in
L2 and therefore there exists vweak and a subsequence vij which converges
weakly to vweak. Let φ be any smooth function on S1, we have

∂t

∫

S1

tf1φ =
∫

S1

(
t∂θg1 − t(f2

2 − g2
2)

)
φ

=
∫

S1

(−tg1∂θφ− t(f2
2 − g2

2)φ
)

.

26



Integrating one finds
∣∣∣∣
∫

S1

t1f1(t1, θ)φ(θ)dθ −
∫

S1

t2f1(t2, θ)φ(θ)dθ

∣∣∣∣

=
∣∣∣∣
∫ t1

t2

∫

S1

(−tg1∂θφ− t(f2
2 − g2

2)φ
)
dθdt

∣∣∣∣ .

Setting t1 = −2−ij and letting j go to infinity one obtains
∣∣∣∣
∫

S1

vweak(θ)φ(θ)dθ −
∫

S1

|t2|f1(t2, θ)φ(θ)dθ

∣∣∣∣

≤
∫ 0

t2

∫

S1

(|tg1∂θφ|+ |t|(f2
2 + g2

2)φ
)
dθdt .

Since the integrand in the last line is in L1([t0, 0]× S1) we obtain

lim
t→0

∫

S1

|t|f1(t, θ)φ(θ)dθ =
∫

S1

vweak(θ)φ(θ)dθ ,

so that |t|f1 converges to vweak in the sense of distributions. Weak conver-
gence in Lp follows by elementary functional analysis, using the fact that
smooth functions are dense in Lp′ for p ∈ (1,∞), with p′ – the Hölder
conjugate of p. Lower semi-continuity of the norm with respect to weak
convergence implies

‖vweak‖Lp(S1) ≤ lim
j→∞

‖2−ijf1(−2ij , ·)‖Lp(S1) ≤ 2π sup
[t0,0)×S1

|tf1| ,

so that

‖vweak‖L∞(S1) ≤
1
2π

sup
p∈[2,∞)

‖vweak‖Lp(S1) ≤ sup
[t0,0)×S1

|tf1| .

2

The information contained in vweak seems to be very poor. For instance,
since vweak is defined only almost everywhere, one can imagine situations in
which vweak has a smooth representative, but nevertheless the dynamics has
very rough features at some points. This actually happens in the solutions
with “spikes” discussed in Section 3. In those last examples one has point-
wise convergence of |tXt| everywhere; this suggests that even an exhaustive
understanding of the properties of the velocity function might not be enough
to understand the dynamics of the Gowdy models.
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6.2 From space-time integrals to pointwise velocity

We introduce
δgψ

1 (t) = g1(t, ψ − t)− g1(t, ψ + t) , (6.3)

Ωθ−reg :=
{

ψ ∈ S1 such that δgψ
1 ∈ L1([t0, 0)) and

∫

C0
t0

(ψ)
(f2

2 + g2
1 + g2

2) dt dθ < ∞
}

. (6.4)

Our aim in this section is to present an integral criterion for pointwise ex-
istence of a velocity function v on Ωθ−reg; this will be used later in this
work.

Theorem 6.3 For every ψ ∈ Ωθ−reg there exists a number v(ψ) ∈ R such
that

limC0
t0

(ψ)|tXt| = v(ψ) , with limC0
t0

(ψ)|tf2| = 0 (6.5)

(recall that limC0
t0

(ψ) has been defined in (2.4)). This implies in particular

Ωθ−reg ⊂ Ωt−reg .

Moreover for ψ ∈ Ωθ−reg we have

limC0
t0

(ψ)|t2DθXθ| = limC0
t0

(ψ)|t2DθXt| = limC0
t0

(ψ)|tXθ| = 0 . (6.6)

.

Remark 6.4 We remark that for those points ψ ∈ Ωθ−reg for which v(ψ) 6= 1
we have curvature blow-up in the associated space-time.

Proof: We have

2(tf1) = ∂θg1 − (1 + 2tf1)(f2
2 + g2

2) + 2tf2∂θg2 − 2tg2∂θf2

+4tf2g1g2 , (6.7)
2(tf2) = ∂θg2 + f1f2 + g1g2 − 2tf2∂θg1 + 2tg2∂θf1

+tf2g
2
2 − tf2g

2
1 − tf3

2 + tf2
1 f2 . (6.8)

In particular

2(tf2)2 = 2tf22(tf2) + 2(∂t(tf2))2 − 2t2(∂θf2)2

= 2tf22(tf2)− 2t2(∂θf2)2 + 2t2(∂θg2 + f2
2 − g2

2)
2 (6.9)
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using (5.1). It follows from (2.2), (6.10), Propositions 2.1 and [4, point
b) of Lemma 3.4.1] that for ψ ∈ Ωθ−reg the right-hand side of (6.9) is in
L1(C0

t0(ψ)). The dominated convergence theorem applied to the usual inte-
gral representation of solutions of the one-dimensional wave equation,

u(t, x) = ů(t, x) +
1
2

∫ t

s=t0

∫ x+t−s

θ=x−t+s
2u(s, θ) dθds ,

where ů is the solution of the free wave equation with the same initial data,
shows that the limit limC0

t0
(ψ)(tf2)2 exists. This limit has to be zero, oth-

erwise the integral condition on f2 in (6.4) wouldn’t hold. If δgψ
1 is in

L1([t0, 0)), then the right-hand side of (6.7) is also in L1(C0
t0(ψ)), and by a

similar argument limC0
t0

(ψ)tf1 exists. 2

We close this section with the following remark:

Lemma 6.5 In the definition of Ωθ−reg, the condition
∫

C0
t0

(ψ)
f2
2 dt dθ < ∞ can be replaced by

∫

C0
t0

(ψ)
|∂θf1| dt dθ < ∞ . (6.10)

Similarly, the condition
∫ 0

t0

|δgψ
1 | dt < ∞ can be replaced by

∫

C0
t0

(ψ)
|∂θg1| dt dθ < ∞ . (6.11)

Proof: Let

F (t) =
∫ ψ−t

ψ+t
f1(t, θ)dθ ,

then

dF

dt
= −f1(t, ψ − t)− f1(t, ψ + t) +

∫ ψ−t

ψ+t

(
∂θg1 +

f1

|t| + f2
2 − g2

2

)

= −f1(t, ψ − t)− f1(t, ψ + t) + δgψ
1 (t) +

∫ ψ−t

ψ+t

(
f1

|t| + f2
2 − g2

2

)
.

Integration by parts gives the identity

1
|t|

∫ ψ−t

ψ+t
u(θ)dθ = u(ψ − t) + u(ψ + t) +

∫ ψ−t

ψ+t

ψ − θ

|t| u′(θ)dθ , (6.12)
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so that

dF

dt
= δgψ

1 (t) +
∫ ψ−t

ψ+t

(
ψ − θ

|t| ∂θf1 + f2
2 − g2

2

)
.

As F is bounded, integrating in t gives (6.10). Equation (6.11) is obvious.
2

7 Power law in Sobolev spaces

As discussed in the Introduction, and as will be proved below in detail in any
case, a power law inequality (2.1) implies existence of a velocity function.
It turns out that one strategy for establishing (2.1) is to derive a power-law
for t-weighted Sobolev norms. This is done in this section.

It is useful to introduce the following quantities

µ1 = sup
Ω(a,b,t0)

|tf1| , µ2 = sup
Ω(a,b,t0)

|tf2| , λ2 = sup
Ω(a,b,t0)

|tg2| . (7.1)

These are finite by (5.3). (Recall that Ω(a, b, t0) has been defined in (1.5).)
Let t0 ≤ t < 0, a < b. Define the k−th order energy Ek(t) by

Ek(t) =
∫ b−t

a+t
|t|2k+2

∑

i=1,2

((∂k
θ fi)2 + (∂k

θ gi)2) dθ. (7.2)

Proposition 7.1 1. If

β := sup
Ω(a,b,t0)

(
|tf1|+ |tf2|

2
+

2|tg2|2√
1 + 4|tg2|2 + 1

)
< 1 , (7.3)

then
Ek(t) ≤ C(t0, k, α)|t|2α , k ≥ 1 , (7.4)

where
α = 1− β . (7.5)

2. Similarly if
β̂ := sup

Ω(a,b,t0)
max(1− |t|f1, |t|f1) < 1 (7.6)

then (7.4) holds with α = 1 − β̂ if µ1 < 1/2, and with α being any number
strictly smaller than 1− µ1 if µ1 ≥ 1/2.
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Remark 7.2 Recall that, at fixed a and b, the constants µi and λi depend
upon t0. In several situations of interest µ2 and λ2 will tend to zero as t0
tends to zero, in which case the essential restriction in (7.3) is that µ1 be
smaller than one sufficiently close to the singular boundary t = 0.

Remark 7.3 We note that (7.3) will hold under the slightly stronger but
simpler condition

sup
Ω(a,b,t0)

(
|tf1|+ |tf2|

2
+
|tg2|√

2

)
< 1 . (7.7)

Proposition 1.4 or Remark 1.5 can be used to replace (7.7) by a condition
on initial data using the Cauchy-Schwarz inequality

|tf1|+ |tf2|
2

+
|tg2|√

2
≤

√
1 +

1
4

+
1
2

√
|tf1|2 + |tf2|2 + |tg2|2

≤
√

7
2

√
|tXt|2 + |tXθ|2

≤
√

7
√
|tXt|2 + |tXθ|2

∣∣∣
t=t0

< 1 .

Proof: Differentiating Ek(t) in t, using the field equations and integrating
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by parts one has

dEk(t)
dt

=− t2k+2
∑

i=1,2

(
(∂k

θ (fi − gi))2(t, b− t) + (∂k
θ (fi + gi))2(t, a + t)

)

− (2k + 2)
∫ b−t

a+t
|t|2k+1

∑

i=1,2

((∂k
θ fi)2 + (∂k

θ gi)2)

+ 2|t|2k+2

∫ b−t

a+t

(
∂k

θ f1 · ∂k
θ (f2

2 − g2
2 −

f1

t
) + ∂k

θ g2 · ∂k
θ (f1g2 − g1f2)

+ ∂k
θ f2 · ∂k

θ (−f1f2 + g1g2 − f2

t
)
)

dθ

≤− 2k

∫ b−t

a+t
|t|2k+1

∑

i=1,2

(∂k
θ fi)2 − (2k + 2)

∫ b−t

a+t
|t|2k+1

∑

i=1,2

(∂k
θ gi)2

(7.8)

+ 2|t|2k+2

∫ b−t

a+t

(
f2∂

k
θ f2∂

k
θ f1 − g2∂

k
θ f1∂

k
θ g2 − f2∂

k
θ g2∂

k
θ g1 (7.9)

+ g2∂
k
θ g1∂

k
θ f2 − f1(∂k

θ f2)2 + f1(∂k
θ g2)2

)

(7.10)

+ |t|2k+2

∫ b−t

a+t
∂k

θ u ·
∑

i+j=k
i,j>0

C(i, j, k)∂i
θu · ∂j

θu . (7.11)

In (7.9) and (7.10) we have collected all those terms which contain undif-
ferentiated functions fi or gi. In (7.11) we denote (fi, gi) by u and the
C(i, j, k)’s are the coefficients of k−th binomial expansions; we will ignore
those coefficients and replace them by an overall constant from now on —
this is sufficient for estimation purposes. Note that when k = 1, then (7.11)
does not appear. Mixed terms of the form ∂k

θ f1∂
k
θ f2 and ∂k

θ g1∂
k
θ g2 are es-

timated in the obvious way using 2ab ≤ a2 + b2. To take advantage of the
different factors in front of the integrals appearing in (7.8) the mixed terms
∂k

θ fi∂
k
θ gj are estimated using 2ab ≤ a2

σ + σb2. Absorbing all the terms from
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(7.9) and (7.10) into those appearing in (7.8) we obtain

dEk(t)
dt

≤− |t|2k+1

∫ b−t

a+t
(2k − 2|tf1| − |tf2| − 2|tg2|

σ
)

∑

i=1,2

(∂k
θ fi)2 dθ

− |t|2k+1

∫ b−t

a+t
(2k + 2− 2|tf1| − |tf2| − 2σ|tg2|)

∑

i=1,2

(∂k
θ gi)2 dθ

+ |t|2k+2C(k)
∫ b−t

a+t
∂k

θ u ·
∑

i+j=k
i,j>0

∂i
θu · ∂j

θu .

For k = 1 this reads

dE1(t)
dt

≤− |t|3
∫ b−t

a+t
(2− 2|tf1| − |tf2| − 2|tg2|

σ
)

∑

i=1,2

(∂k
θ fi)2 dθ

− |t|3
∫ b−t

a+t
(4− 2|tf1| − |tf2| − 2σ|tg2|)

∑

i=1,2

(∂k
θ gi)2 dθ .

It should be clear from what follows that the choice of σ = σ(t, θ) which is
optimal for our purposes is that of equal factors in front of the sums, namely
σ = (

√
1 + 4|tg2|2 + 1)/(2|tg2|). Choosing this value of σ leads to

dE1(t)
dt

≤ −2α

|t| E1 ,

with α as in (7.5). This shows that d((−t)−2αE1)/dt ≤ 0, and by integration
one obtains

E1(t) ≤
∣∣∣∣
t

t0

∣∣∣∣
2α

E1(t0).

(This inequality holds whatever the sign of α, but for α ≤ 0 it does not
carry any new information.)

To cover the case (7.6) we shall need a Lemma:

Lemma 7.4 Let

F (t) =
∫ b−t

a+t
(f2

2 + g2
2) .

Under (7.6) we have

F (t) ≤ F (t0)
∣∣∣∣
t

t0

∣∣∣∣
−2β̂

.
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Proof: We have

dF (t)
dt

= −(f2 − g2)2(t, b− t)− (f2 + g2)2(t, a + t)

+
2
|t|

∫ b−t

a+t
(1− |t|f1)f2

2 + |t|f1g
2
2

≤ 2β̂F (t)
|t| , (7.12)

and the result follows by integration as before. 2

Returning to the estimation of dE1/dt, assume that (7.6) holds and
consider any of the terms of the form f2 ∂θu ∂θu or g2 ∂θu ∂θu in (7.9) and
(7.10); they are estimated as

∫ b−t

a+t

∣∣∣|t|4 f2 ∂θu ∂θu
∣∣∣ ≤

∫ b−t

a+t

ε

4C
|t|7|∂θu|4 +

16C

ε
|t|f2

2

≤
∫ b−t

a+t

ε

4
|t|3|∂θu|2 +

16C

ε
|t|f2

2

≤ εE1(t)
4|t| + C ′(ε)|t|1−2β̂ ,

where in the last line we have used Lemma 7.4; similarly for g2. It follows
that

dE1(t)
dt

≤ −2(1− µ1 − ε)
|t| E1 + C ′(ε)|t|1−2β̂ ,

Multiplying by | t0t |2(1−µ1−ε) and integrating in t, one obtains

E1(t) ≤ C(α)
∣∣∣∣
t

t0

∣∣∣∣
2α

,

with α = µ1 if µ1 < 1/2, and α any number strictly smaller than 1 − µ1 if
µ1 ≥ 1/2.

The cases k ≥ 2 are established by induction: Suppose, thus, that (7.4)
holds for k = m − 1; we have already shown that it holds for k = 1. Then
the terms from line (7.11) in dEm(t)

dt are estimated as

|t|2m+2

∫ b−t

a+t
∂m

θ u ·
∑

i+j=m
i,j>0

∂i
θu · ∂j

θu ≤ C(t0)|t|m+1

∫ b−t

a+t

∑
i+j=m

0<i,j<m

|∂i
θu · ∂j

θu|,
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letting C(t0) = sup(t,θ) |t|m+1|∂m
θ u|, which is finite by (5.3). Using the in-

duction hypothesis for i, j < m on ∂i
θu · ∂j

θu, we get

|t|m+1

∫ b−t

a+t

∑
i+j=m

0<i,j<m

|∂i
θu| · |∂j

θu| = |t|−1

∫ b−t

a+t

∑
i+j=m

0<i,j<m

|t|i+1|∂i
θu| · |t|j+1|∂j

θu|

≤ |t|−1

∫ b−t

a+t

∑
i+j=m

0<i,j<m

|t|2i+2(∂i
θu)2 + |t|2j+2(∂j

θu)2

≤ C(m)|t|2α−1 .

It follows that

dEm(t)
dt

≤ −2(m + α− 1)
|t| Em(t) + C(t0, m)|t|2α−1 . (7.13)

Multiplying by | t0t |2(m+α−1) on both sides and integrating over (t0, t) in t,
we obtain

Em(t) ≤ | t

t0
|2(m+α−1)Ek(t0) + C(t0,m)|t|2(m+α−1)

∫ t

t0

|s|1−2m ds

≤ C(t0,m)|t|2α ,

as claimed. 2

Corollary 7.5 Under the conditions of Proposition 7.1, there exists a con-
stant C such that

∫ b−t

a+t
t2|Xθ|2dθ =

∫ b−t

a+t
t2

(
(g1)2 + (g2)2

)
dθ ≤ C|t|2α . (7.14)

If
σ1 := inf

Ω(a,b,t0)
|t|f1 > 0 , (7.15)

then we also have ∫ b−t

a+t
t2f2

2 dθ ≤ C|t|2α′ , (7.16)

with α′ = α if α < σ1, or α′ any number smaller than σ1 otherwise.
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Proof: We calculate

d

dt

∫ b−t

a+t
t2g2

2 = −t2g2
2(t, b− t)− t2g2

2(t, a + t)

+2t

∫ b−t

a+t
g2
2 + 2

∫ b−t

a+t
t2g2

(
∂θf2︸︷︷︸

I

+ f1g2︸︷︷︸
II

− g1f2︸︷︷︸
III

)

≤ − 2
|t|

∫ b−t

a+t
t2g2

2 + ε

∫ b−t

a+t
|t|g2

2 +
1
ε

∫ b−t

a+t
|t|3(∂θf2)2

︸ ︷︷ ︸
I

+
2µ1

|t|
∫ b−t

a+t
t2g2

2

︸ ︷︷ ︸
II

+
µ2

|t|
∫ b−t

a+t
t2

(
g2
1

ε′
+ ε′g2

2

)

︸ ︷︷ ︸
III

≤ −2− 2µ1 − ε′µ2 − ε

|t|
∫ b−t

a+t
t2g2

2 + C(ε, ε′)|t|2α−1 .

(7.17)

Choosing ε, ε′ appropriately and arguing as in the paragraph following (7.13)
one obtains the bound for

∫ b−t
a+t g2

2. A similar, but simpler, calculation with
g2 replaced by g1 proves (7.16). In order to establish (7.16) we note that

d

dt

∫ b−t

a+t
t2f2

2 = −t2f2
2 (t, b− t)− t2f2

2 (t, a + t)

+2
∫ b−t

a+t
t2f2

(
∂θg2︸︷︷︸

I

− f1f2︸︷︷︸
II

+ g1g2︸︷︷︸
III

)

≤ ε

∫ b−t

a+t
|t|f2

2 +
1
ε

∫ b−t

a+t
|t|3(∂θg2)2

︸ ︷︷ ︸
I

− 2σ1

|t|
∫ b−t

a+t
t2f2

2

︸ ︷︷ ︸
II

+
µ2

|t|
∫ b−t

a+t
t2

(
g2
1 + g2

2

)

︸ ︷︷ ︸
III

≤ −2σ1 − ε

|t|
∫ b−t

a+t
t2f2

2 + C(ε)|t|2α−1 ,

and we conclude as before. 2
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8 Pointwise power law

We start with the following observation, where a < b is assumed (however,
a = b is allowed in the remaining results of this section):

Lemma 8.1 (i) Suppose that there exists α > 0 such that
∫ b−t

a+t
t2|Xθ|2dθ ≤ C|t|2α . (8.1)

Then for all multi-indices ν we have
∫ b−t

a+t

(
|t||ν|+1|DνXθ|

)2
dθ ≤ C(ν)|t|2α , (8.2)

(ii) If |tXθ| ≤ C|t|αp then we also have

supΩ(a,b,t0) |t||ν|+1|DνXθ| ≤ C ′(ν)|t|αp . (8.3)

(iii) If the constant α in (8.1) satisfies α > 1/2 then (8.3) holds with αp =
α− 1/2.

Proof: Equation (8.2) follows by a straightforward adaptation of the proof
of [4, Proposition 3.3.1]. Equation (8.3) is obtained from [4, Remark, p. 73].
To establish point (iii) it remains to show that

sup
Ω(a,b,t0)

|t||Xθ| ≤ C|t|α−1/2 . (8.4)

That last inequality is obtained by applying the interpolation inequality

‖∂θu‖L∞([a+t,b−t]) ≤ C‖∂2
θu‖3/4

L2([a+t,b−t])
‖u‖1/4

L2([a+t,b−t])

(see, e.g., [1, p. 94]; the condition there that u vanishes on the boundary is
not necessary) to the functions tgi, i = 1, 2. 2

Thus, power-law blow-up in Sobolev spaces implies a pointwise one if the
decay rate is larger than 1/2. The unpleasant feature of the above argument
is the loss of 1/2 decay rate in point (iii) of Lemma 8.1. This can be avoided
by working directly with L∞ norms, as follows: Consider two fields f, g
satisfying the symmetric hyperbolic set of equations

∂tf − ∂θg = Sf ,

∂tg − ∂θf = Sg , (8.5)
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set

Ttt[f, g] = Tθθ[f, g] :=
1
2
(f2 + g2) , Ttθ[f, g] = Tθt[f, g] := fg , (8.6)

and define
jµ[f, g] = ∂ν(Tµ

ν [f, g]) . (8.7)

Writing Tµν for Tµν [f, g], etc, we have the identity [4, Equation (3.2.5)]

Ttt(t1, θ1) = −1
2

∫ t1

t0

(
(jt + jθ)(t, θ1 + t1 − t) + (jt − jθ)(t, θ1 − t1 + t)

)
dt

+
1
2

(
(Ttt + Ttθ)(t, θ1 + t1 − t0) + (Ttt + Ttθ)(t, θ1 − t1 + t0)

)
.

(8.8)

For (8.5) the j–terms appearing in (8.8) read

−1
2
(jt + jθ) =

1
2
(f + g)(Sf + Sg) , (8.9)

−1
2
(jt − jθ) =

1
2
(f − g)(Sf − Sg) . (8.10)

If we let (f, g) = (∂k
θ f1, ∂

k
θ g1) we obtain

−1
2
(jt + jθ) =

1
2
(∂k

θ f1 + ∂k
θ g1)

(
∂k

θ f1

|t| + ∂k
θ

[
(f2 − g2)(f2 + g2)

])
,

(8.11)

−1
2
(jt − jθ) =

1
2
(∂k

θ f1 − ∂k
θ g1)

(
∂k

θ f1

|t| + ∂k
θ

[
(f2 − g2)(f2 + g2)

])
.

(8.12)

Similarly for (f, g) = (∂k
θ f2, ∂

k
θ g2) one has

−1
2
(jt + jθ) =

1
2
(∂k

θ f2 + ∂k
θ g2)

(
∂k

θ f2

|t| − ∂k
θ

[
(f1 + g1)(f2 − g2)

])
,

(8.13)

−1
2
(jt − jθ) =

1
2
(∂k

θ f2 − ∂k
θ g2)

(
∂k

θ f2

|t| − ∂k
θ

[
(f1 − g1)(f2 + g2)

])
.

(8.14)

We define

Ek(t, ψ) = sup
t0≤s≤t , ψ+s−t≤θ≤ψ−s+t

(Ttt[∂k
θ f1, ∂

k
θ g1] + Ttt[∂k

θ f2, ∂
k
θ g2])(s, θ) .

(8.15)
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It is useful to note that

Ttt[f, g] =
1
4

(
(f − g)2 + (f + g)2

)
. (8.16)

Define
µ± = sup

Ω(a,b,t0)
|t(f1 ± g1)| . (8.17)

We have the following pointwise equivalent of Proposition 7.1:

Proposition 8.2 Suppose that

sup
Ω(a,b,t0)

(
µ− + |tf1 + tg1|+

√
(µ− + |tf1 + tg1|)2 + 4|tf2 + tg2|2

)
< 4 ,

(8.18)
sup

Ω(a,b,t0)

(
µ+ + |tf1 − tg1|+

√
(µ+ + |tf1 − tg1|)2 + 4|tf2 − tg2|2

)
< 4 .

(8.19)
Then there exist constants C, αp > 0 so that we have the inequality

|tXθ| ≤ C|t|αp . (8.20)

Proof: We start by deriving an integral inequality for E1 using (8.8). Let
S denote the sum of (8.11) and (8.13) with k = 1:

S =
1
2
(∂θf1 + ∂θg1)

(
∂θf1 + ∂θg1 + ∂θf1 − ∂θg1

2|t|
+ ∂θ

[
(f2 − g2)(f2 + g2)

])

+
1
2
(∂θf2 + ∂θg2)

(
∂θf2 + ∂θg2 + ∂θf2 − ∂θg2

2|t|
− ∂θ

[
(f2 − g2)(f1 + g1)

])

=
1

4|t|
[
(∂θf1 + ∂θg1)2 + (∂θf2 + ∂θg2)2 + (∂θf1 + ∂θg1)(∂θf1 − ∂θg1)

+ (∂θf2 + ∂θg2)(∂θf2 − ∂θg2)
]

+
1
2
(f2 + g2)(∂θf1 + ∂θg1)(∂θf2 − ∂θg2)

− 1
2
(f1 + g1)(∂θf2 + ∂θg2)(∂θf2 − ∂θg2). (8.21)

A formula for the sum of (8.12) and (8.14) can be obtained by changing ga

to −ga in (8.21). We apply Young’s inequality ab ≤ c
2a2 + 1

2cb
2 to estimate
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the mixed terms (∂θf + ∂θg)(∂θf − ∂θg), using a c which might possibly
depend upon t and θ. With a little work one finds that the integrand in the
first line of (8.8) can be estimated by the sup, over θ in the relevant range,
of the quantity

1
2|t|

[(
1 +

c1|tf2 + tg2|
2

)
(∂θf1 + ∂θg1)2

+
(

1 +
µ−
2

+
1
2

(
|tf1 + tg1|+ |tf2 + tg2|

c1

))
(∂θf2 − ∂θg2)2

+
(

1 +
c2|tf2 − tg2|

2

)
(∂θf1 − ∂θg1)2

+
(

1 +
µ+

2
+

1
2

(
|tf1 − tg1|+ |tf2 − tg2|

c2

))
(∂θf2 + ∂θg2)2

]
.(8.22)

If all the factors in front of the derivative squared terms are strictly smaller
than 2, say smaller than or equal to 2 − 2αp, then (8.22) is smaller than
or equal to (4− 4αp)E1/|t|. From (8.8) applied to E1 and from Gronwall’s
Lemma (cf., e.g., [4, Lemma 3.2.3]) one obtains an integral inequality for
E1, which translates into the inequality

|t2∂θfa|+ |t2∂θga| ≤ C|t|αp . (8.23)

It should be clear that an optimal estimate will be obtained in (8.22) if
c1 = c1(t, θ) is chosen so that

c1|f2 + g2| = µ− + |f1 + g1|+ |f2 + g2|
c1

,

similarly for c2. This gives

c1|f2 + g2| ≤ 1
2

(
µ− + |f1 + g1|+

√
(µ− + |f1 + g1|)2 + 4|f2 + g2|2

)
,

c2|f2 − g2| ≤ 1
2

(
µ+ + |f1 − g1|+

√
(µ+ + |f1 − g1|)2 + 4|f2 − g2|2

)
,

with equalities if (f2 + g2)(f2 − g2) 6= 0, and the condition described imme-
diately after equation (8.22) will be satisfied if (8.18)-(8.19) holds.

Equation (5.1) gives
∂tg1 = O(|t|αp−2) , (8.24)

and by integration along rays θ = ψ + λt, λ ∈ [−1, 1] one obtains on C0
t0(ψ)

|tg1| ≤ C|t|αp .
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Returning to (5.1) one finds

∂tg2 − f1g2 = O(|t|αp−2) , (8.25)

which can be integrated to give

0 > t2 > t1 ≥ t0 g2(t2, ψ) = e
∫ t2

t1
f1(s,ψ)dsg2(t1, ψ)

+
∫ t2

t1

e
∫ t2

u f1(s,ψ)dsO(|u|αp−2)du .

(8.26)

Since |f1| ≤ (1− γ) |ln |t||+ C one easily concludes that

g2(t, ψ) = O(|t|αp−1) .

Integrating in θ from ψ to θ, at fixed t, the desired estimate for g2 on C0
t0(ψ)

is obtained using (8.23). Since ψ was arbitrary in [a, b], and since all the
constants were uniform in ψ, the result follows. 2

The main result of this section is the following:

Theorem 8.3 Suppose that either

sup
Ω(a,b,t0)

(
|tf1|+ |tf2|

2
+

2|tg2|2√
1 + 4|tg2|2 + 1

)
<

1
2

, (8.27)

or that (8.18)-(8.19) hold. Then the velocity vweak has a continuous repre-
sentative v < 1 on [a, b], and the weak convergence in Proposition 6.1 can be
replaced by convergence in sup norm to v. In other words, limt→0 |tXt|(t, θ)
exists and is a continuous function on [a, b]. Moreover the solution satisfies
a power law blow-up, Equation (8.20).

Remark 8.4 Further information concerning the properties of the solutions
considered in Theorem 8.3 can be found in Theorem 11.1 below.

Proof: Under (8.27) Corollary 7.5 applies, so that the conclusion of Lemma 8.1
point (iii) holds. It now follows from Proposition 8.2 that both under (8.27),
or under (8.18)-(8.19), point (ii) of Lemma 8.1 applies, and thus there exists
ε < 1 such that |tDθXθ|+ |tDθXt| ≤ C|t|−ε. Theorem 8.3 is now a straight-
forward consequence of the following: 2
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Lemma 8.5 Suppose that there exist positive constants C and αp such that
on Ω(a, b, t0) we have

|t2DθXθ|+ |t2DθXt| ≤ C|t|αp . (8.28)

Then there exists a continuous function v such that on Ω(a, b, t0) it holds
∣∣∣|tXt|2(t, θ)− v2(θ)

∣∣∣ ≤ C ′|t|αp . (8.29)

Further, for every ψ such that (8.28) holds on C0
t0(ψ) we also have (8.29)

on C0
t0(ψ).

Proof: We have
∂t|tXt|2 = 2h (tXt, tDθXθ) . (8.30)

By integration we obtain

|tXt|2(t1, θ)−|tXt|2(t2, θ) =
∫ t1

t2

∂t|tXt|2(s, θ)ds =
∫ t1

t2

O(sαp−1)ds . (8.31)

It easily follows from this equation that

v(θ) := lim
t→0

|tXt|(t, θ)

exists. By passing to the limit t1 → 0 in (8.31) we obtain on [t0, 0)× [a, b]

|v2(θ)− |tXt|2(t, θ)| ≤
∫ 0

t
Csαp−1ds ≤ C ′|t|αp . (8.32)

This shows that |tXt|(t, ·) converges uniformly to v, and establishes conti-
nuity thereof. The same argument applies on C0

t0(ψ) by integrating along
rays θ = ψ+λt, λ ∈ [−1, 1]; one easily checks, using (8.28), that the number
v(ψ) is λ–independent. This, together with the result already established
on [t0, 0)× [a, b], establishes (8.29) on Ω(a, b, t0). 2

In terms of the (f, g) variables the Gowdy-to-Ernst transformation (3.20)
takes a remarkably simple form:

f̂1 = −f1 − 1
t

, ĝ1 = −g1 ,

f̂2 = −g2 , ĝ2 = −f2 . (8.33)

This transformation immediately leads to the following counterpart of The-
orem 8.3:
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Theorem 8.6 Suppose that either

sup
Ω(a,b,t0)

(
|tf1 + 1|+ |tg2|

2
+

2|tf2|2√
1 + 4|tf2|2 + 1

)
<

1
2

, (8.34)

or

sup
Ω(a,b,t0)

(
µ̂− + |tf1 + 1 + tg1|+

√
(µ̂− + |tf1 + 1 + tg1|)2 + 4|tf2 + tg2|2

)
< 4 ,

(8.35)
sup

Ω(a,b,t0)

(
µ̂+ + |tf1 + 1− tg1|+

√
(µ+ + |tf1 + 1− tg1|)2 + 4|tf2 − tg2|2

)
< 4 ,

(8.36)
where

µ̂± = sup
Ω(a,b,t0)

|tf1 + 1± tg1| .

Then there exists a continuous function v̂ such that

|tf1|2 + |tg2|2 →t→0 v̂2 , (8.37)

uniformly in θ. Further there exist constants C, ε > 0 such that we have

|tf2|2 + |tg1|2 ≤ C|t|2ε . (8.38)

In Section 12 below we will see how to iterate the Gowdy-to-Ernst trans-
formation to obtain information on more general solutions.

For further purposes it is convenient to restate the conclusions of Lemma 8.1
as higher derivative estimates for the ga’s and fa’s:

Lemma 8.7 (i) There exists a constant C such that

|t|k+1|∂k
θ fa|+ |t|k+1|∂k

θ ga|+ |t|k+1|∂k
t fa|+ |t|k+1|∂k

t ga| ≤ C . (8.39)

(ii) Under the conditions of point (i) of Lemma 8.1 we have
∫ b−t

a+t

(
|t|l+k+1∂k

t ∂l
θu

)2
dθ ≤ C(l, k)|t|2α , (8.40)

for every l, k ≥ 0 when u = g1, g2 or l ≥ 1, k ≥ 0 when u = f1, f2.

(iii) If |tXθ| ≤ C|t|αp then we also have

|t|l+k+1|∂k
t ∂l

θu| ≤ C(l, k)|t|αp , (8.41)

with the ranges of the (l, k)’s as in (ii).
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Proof: For the purposes of the proof let u stand for any of ga, f2.
(i): From (5.17) we have

(∂k
θ g1)2 + (∂k

θ g2)2 ≤ |Dk
θXθ|2 + F 2

k + G2
k

then |t|k+1|∂k
θ g| ≤ C inductively using part (ii) of Proposition 1.4. For

|t|k+1|∂k
t fa| we compute by induction

Dk
t Xθ = (∂k

t g1 + F̃k(∂k−1u, . . . , u))e1 + (∂k
t g2 + G̃k(∂k−1u, . . . , u))e2,

(8.42)
Dk

t Xt = (∂k
t f1 + F̂k(∂k−1f, . . . , f))e1 + (∂k

t f2 + Ĝk(∂k−1f, . . . , f))e2 ,

(8.43)

where F̃k, G̃k, F̂k, Ĝk have the same properties as described in the proof of
Proposition 5.2 for Fk and Gk. The remaining inequalities follow as before.

(ii): The proof is identical to that of Proposition 5.2.
(iii): We consider the ga’s first. Letting e stand for the basis vectors ea’s

of (5.2), it is sufficient to show

sup
Ω(a,b,t0)

|t|i+j |Di
tD

j
θe| ≤ C , (8.44)

then the assertion follows from

∂k
t ∂l

θg = ∂k
t ∂l

θ〈Xθ, e〉 = ∂k
t

l∑

j=0

C(l, j)〈Dj
θXθ, D

l−j
θ e〉

=
k∑

i=0

l∑

j=1

C(l, k, i, j)〈Di
tD

j
θXθ, D

k−i
t Dl−j

θ e〉

together with Lemma 8.1. Now

Dθe1 = g2e2 , Dθe2 = −g2e1 , Dte1 = f2e2 , Dte2 = −f2e1 , (8.45)

which implies that the Dk
θea, Dk

t ea are of the form

Dk
t e1 = F̄k−1e1 +

(
∂k−1

t f2 + Ḡk−1

)
e2 , Dk

t e2 =
(
−∂k−1

θ f2 + F̄ ′
k−1

)
e1 + Ḡ′

k−1e2 ,

Dk
θe1 = F̊k−1e1 +

(
∂k−1

θ g2 + G̊k−1

)
e2 , Dk

θe2 =
(
−∂k−1

θ g2 + F̊ ′
k−1

)
e1 + G̊′

k−1e2 ,

with the F̄k−1’s, Ḡk−1’s, etc., of a similar structure as in (5.17). By (8.39)
and by the above expression we see that |t|k|Dk

θe|, |t|k|Dk
t e| are bounded.
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For mixed derivatives of g, we write

Dk
t Dl

θXθ = Dk
t

(
(∂l

θg1 + Fl)e1 + (∂l
θg2 + Gl)e2

)

=
k∑

i=0

∂i
t(∂

l
θg1 + Fl)Dk−i

t e1 + ∂i
t(∂

l
θg2 + Gl)Dk−i

t e2

= (∂k
t ∂l

θg1 + ∂k
t Fl)e1 + (∂k

t ∂l
θg2 + ∂k

t Gl)e2

+
k−1∑

i=0

(∂i
t∂

l
θg1 + ∂i

tFl)Dk−i
t e1 + (∂i

t∂
l
θg2 + ∂i

tGl)Dk−i
t e2 ;

above, and in what follows, we ignore constants arising from binomial expan-
sions. From above expression we get |t|k+l+1|∂k

t ∂l
θg| ≤ C inductively using

(8.39) and boundedness of |t|i|Di
te|. Finally (8.44) follows from writing

Dk
t Dl

θe = Dk
t

(
(σ∂l−1

θ g2 + F̊l−1)e1 + (σ̂∂l−1
θ g + G̊l−1)e2)

)

=
k∑

i=0

(σ∂i
t∂

l−1
θ g2 + ∂i

tF̊l−1)Dk−i
t e1 + (σ̂∂i

t∂
l−1
θ g + ∂iG̊l−1)Dk−i

t e2

(8.46)

and then using boundedness of |t|i+j+1|∂i
t∂

j
θg|, |t|i|Di

te|.
Let us turn now to the f2’s. According to (5.18) we write

∂l
θf2 =

l∑

j=0

〈Dj
θXt, D

l−j
θ e2〉,

so that

∂k
t ∂l

θf2 =
k∑

i=0

l∑

j=0

〈Di
tD

j
θXt, D

k−i
t Dl−j

θ e2〉 ,

=
k∑

i=0

〈Di
tXt, D

k−i
t Dl

θe2〉+
k∑

i=0

l∑

j=1

〈Di
tD

j
θXt, D

k−i
t Dl−j

θ e2〉 2

when l ≥ 1, k ≥ 0. Multiplying by |t|k+l+1 we have

|t|k+l+1|∂k
t ∂l

θf2| ≤
k∑

i=0

|t|k+l−i|Dk−i
t Dl

θe2|+
k∑

i=0

l∑

j=1

|t|i+j+1|Di
tD

j
θXt| (8.47)
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from Proposition 1.4 together with (8.44). Using the expression (8.46) we
get

|t|k+l−i|Dk−i
t Dl

θe2| ≤
k−i∑

m=0

|t|k+l−i
(
|∂m

t ∂l−1
θ g|+ |∂m

t F̊l−1|+ |∂m
t G̊l−1|

)
|Dk−i−m

t e|

≤ C

k−i∑

m=0

|t|l+m
(
|∂m

t ∂l−1
θ g|+ |∂m

t F̊l−1|+ |∂m
t G̊l−1|

)

from the boundedness of |t|k|Dk
t e|. The claim on f2 follows now from Lemma

8.1 together with the assertions on g. Finally, the result for f1 follows from
what has been proved so far together with the equation

∂t(tf1) = t(∂θg1 + f2
2 − g2

2) .

9 Stability of the (2
3 ,

2
3 ,−1

3) and (1, 0, 0) Kasner met-
rics

The following result extends the singularity stability theorem for the (2
3 , 2

3 ,−1
3)

Kasner metrics established in [4], by raising9 the stability threshold there
by a factor 63/2/2

Theorem 9.1 Suppose that

sup
θ∈[a−t0,b+t0]

t20
(|Xt|2 + |Xθ|2

)
(t0, θ) <

1
2

. (9.1)

Then the solution is of power-law type. Further, the curvature scalar RαβγδR
αβγδ

blows up on every causal curve with endpoint on {0}×[a, b]×S1×S1. In par-
ticular the associated Gowdy space-time is inextendible across the boundary
{0} × [a, b]× S1 × S1.

Proof: We wish to apply Proposition 8.2. Let µ± be defined by (8.17),
using the Cauchy-Schwarz inequality and some rather obvious estimations
we have

µ− + |tf1 + tg1|+
√

(µ− + |tf1 + tg1|)2 + 4|tf2 + tg2|2
≤
√

2
√

2(µ− + |tf1 + tg1|)2 + 4|tf2 + tg2|2

≤ 2
√

2
√

µ2− + |tf1 + tg1|2 + |tf2 + tg2|2 . (9.2)

9A similar result has been recently established by Ringström [18].
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This shows that both conditions (8.18)-(8.19) will hold if

sup
Ω(a,b,t0)

(|tf1 − tg1|2 + |tf2 − tg2|2
)

< 1 ,

and if
sup

Ω(a,b,t0)

(|tf1 + tg1|2 + |tf2 + tg2|2
)

< 1 .

It follows from (1.8) that the last inequalities will hold if

sup
t=t0,θ∈[a−|t0|,b+|t0|]

|t| (|f1 − g1|2 + |f1 + g1|2 + |f2 − g2|2 + |f2 + g2|2
)

< 1 ,

which is equivalent to (9.1). The result follows now from the arguments in
the proofs of Theorem 3.5.1 and Proposition 3.5.2 in [4]. 2

Remark 9.2 We note that the Sobolev decay estimates of Section 7 lead to
a similar somewhat weaker statement, with 1/2 replaced by

√
3/19 in (9.1).

This can be seen as follows: Equation (8.27) will hold under the slightly
stronger but simpler condition

sup
Ω(a,b,t0)

(
|tf1|+ |tf2|

2
+
|tg2|√

3

)
<

1
2

. (9.3)

The Cauchy-Schwarz inequality,

|tf1|+ |tf2|
2

+
|tg2|√

3
≤

√
1 +

1
4

+
1
3

√
|tf1|2 + |tf2|2 + |tg2|2 ,

together with point (i) of Proposition 1.4 show that Theorem 8.3 applies,
and one concludes as before.

The solution
f1 = 1/|t| , f2 = g1 = g2 = 0 ,

of (5.1) corresponds to the flat Kasner metric. Theorem 8.6 similarly implies
complete control of the behavior of the solution for all data in a neighbor-
hood of those for the flat Kasner metric. In this case the geometric inter-
pretation is more complicated, because of occurrence of horizons. A further
discussion of the latter can be found in [6].
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10 Behavior of power-law solutions at v = 0 and
v = 1

We consider solutions on Ω(a, b, t0) such that

|tXθ| ≤ C|t|αp , (10.1)

for some αp > 0. It follows from [4, Remark 7.3] and Lemma 8.5 that the
velocity function v exists. The aim of this section is to study the behavior
of such solutions at points, or intervals, on which v vanishes:

Theorem 10.1 Suppose that (10.1) holds with some αp > 0 and consider
any point ψ ∈ [a, b] such that v(ψ) = 0. Then:

(i) The restriction x̄ := x|C0
t0

(ψ) of x to C0
t0(ψ) can be extended to an

AVTD(P,Q)
∞ map from R2 to H2.

(ii) If limC0
t0

(ψ)t∂
j
θPt = 0 for all j ∈ N, then for i, k ∈ N we have

limC0
t0

(ψ)∂
2i+1
t ∂k

θ P = limC0
t0

(ψ)∂
2i+1
t ∂k

θ Q = 0 . (10.2)

(iii) Further, if v vanishes on an interval [θl, θr], then the restriction x̃ :=
x|Ω(θl,θr,t0) of x to Ω(θl, θr, t0) can be extended by continuity to a smooth
map from R2 to H2, with (10.2) holding for all ψ ∈ [θl, θr].

Theorem 10.1 says, in essence, that x behaves on C0
t0(ψ) as if it arose

from an AVTD(P,Q)
∞ map defined on R2. We emphasize, however, that the

extensions mentioned above might fail to coincide with the original map x
away from C0

t0(ψ) (for x̄), or away from Ω(θl, θr, t0) (for x̃). Such a situation
could arise when x has an infinite number of smaller and smaller spikes
accumulating at a point at which v(ψ) = 0.

Equation (10.2) says, roughly speaking, that P and Q can be thought of
as smooth functions of θ and t2 (rather than t). This result is relevant to the
question of extendibility of the associated metric across Cauchy horizons. If
limC0

t0
(ψ)t∂

j
θPt = 0 for a finite number of j’s, there will be a certain number

of i’s for which (10.2) will hold.
Using the Gowdy-to-Ernst transformation we obtain immediately the

following counterpart of Theorem 10.1 at v = 1:
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Theorem 10.2 Suppose that there exist constants C,αp > 0 such that

|tg1|+ |tf2| ≤ C|t|αp (10.3)

and consider any point ψ ∈ [a, b] such that v1(ψ) = 1. Then the functions
(P̄ , Q̄) := (P + ln |t|, Q)|C0

t0
(ψ) can be extended to an AVTD(P,Q)

∞ map from

R2 to H2. If limC0
t0

(ψ)t∂
j
θPt = 0 for all j ∈ N, then for all i, k ∈ N we have

limC0
t0

(ψ)∂
2i+1
t ∂k

θ (P + ln |t|) = limC0
t0

(ψ)∂
2i+1
t ∂k

θ Q = limC0
t0

(ψ)∂
k+1
θ Q = 0 .

(10.4)
Further, if v1 = 1 on an interval [θl, θr], then the restriction (P̃ , Q̃) :=
(P + ln |t|, Q)|Ω(θl,θr,t0) can be extended to a smooth map from R2 to H2,
with (10.4) holding for all ψ ∈ [θl, θr].

Remark 10.3 The vanishing of the last term in (10.4) for all k ≥ 0 is
somewhat surprising. We emphasise that the power-law condition (10.1) in
Theorem 10.1 is justified for small initial data by Theorem 8.3, and that the
condition (10.3) is justified for initial data near the flat Kasner by Theo-
rem 8.6.

Proof of Theorem 10.2: The Gowdy-to-Ernst transformed map x̂ sat-
isfies the hypotheses of Theorem 10.1, and therefore (10.2) holds for the
associated functions P̂ and Q̂. The claim about P in (10.4) is straightfor-
ward. From (3.20) we have

∂t∂
k
θ Q = −|t|∂k

θ

(
e2P̂ ∂θQ̂

)
, ∂k+1

θ Q = −|t|∂k
θ

(
e2P̂ ∂tQ̂

)
. (10.5)

Integrating in t and using (10.2) one obtains (10.4). 2

An iteration of isometries and Gowdy-to-Ernst transformations, as in
the proof of Theorem 1.1 below, allows one to control the behavior of x near
points (0, ψ) at which v(ψ) ∈ Z, the details are left to the reader.

Proof of Theorem 10.1: We start with a lemma:

Lemma 10.4 Suppose that there exists 0 < αp such that (10.1) holds. Then
there exists a function v1(θ), with |v1| = v, and constants Ca(θ), a = 1, 2,
such that on C0

t0(θ) we have

|tf2| ≤ C2(θ)




|t|αp , v(θ) ≤ 0;
|t|v(θ) + |t|αp , 0 < v1(θ) 6= αp;(
1 +

∣∣ ln |t|∣∣)|t|v(θ), v1(θ) = αp.
(10.6)
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∣∣∣|t|f1 − v1(θ)
∣∣∣ ≤ C1(θ)




|t|αp , v1(θ) ≤ 0;
|t|2v1(θ) + |t|αp , 0 < v1(θ) 6= αp;
|t|αp , v1(θ) = αp.

(10.7)

The constants Ca(θ) are uniformly bounded on compact intervals on which
v1 is strictly positive, uniformly bounded away from zero.

Remark 10.5 The examples discussed in Section 3 show that v1 is not con-
tinuous in general. Further, the constants Ca are not uniformly bounded
near points at which v1 has discontinuities involving a change of sign. Sim-
ilarly we do not expect uniformity at points at which v1 crosses 0.

Proof: As explained in the proof of Lemma 8.1, Equation (10.1) implies

|t||ν|+1|DνXθ| ≤ C(ν)|t|αp . (10.8)

We can use Lemma 8.5 to conclude that there exists a continuous function
v such that

|v2(θ)− |tXt|2(t, θ)| ≤ C|t|αp . (10.9)

Equation (10.8) with ν = θ and ν = t shows that the θ-derivatives conditions
of Lemma 6.5 are satisfied, and Theorem 6.3 implies that there exists a
function v1 with |v1| = v such that, for all ψ ∈ [a, b],

limC0
t0

(ψ)|t|f1 = v1(ψ) , (10.10)

together with
limC0

t0
(ψ)|t|f2 = 0 . (10.11)

Equations (5.1) and Lemma 8.7 lead to

∂t(|t|f1) = |t|f2
2 + O(|t|αp−1) , (10.12)

∂t(|t|f2) = −|t|f1f2 + O(|t|αp−1) . (10.13)

Suppose, first, that θ is such that v(θ) = 0. It follows from (10.9) that
the right-hand sides of (10.12)-(10.13) are O(|t|αp−1). The same is true for
∂θ(|t|fa) by Lemma 8.7, and by integration in t along rays Γλ(t) = (t, θ+λt),
λ ∈ [−1, 1], we find on C0

t0(θ)

v(θ) = 0 =⇒ |tf1| ≤ C|t|αp , |tf2| ≤ C|t|αp . (10.14)

In general, integrating (10.12) shows first that tf2
2 ∈ L1([t0, 0), and then

|t|f1(t, θ) = v1(θ)−
∫ 0

t
|s|f2

2 (s, θ)ds + O(|t|αp) . (10.15)
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Similarly, (10.13) can be integrated to give

0 > t2 > t1 ≥ t0 |t2|f2(t2, θ) = e−
∫ t2

t1
f1(s,θ)ds|t1|f2(t1, θ)

+
∫ t2

t1

e−
∫ t2

u f1(s,θ)dsO(|u|αp−1)du .

(10.16)

If v1(θ) > 0 one finds first from (10.16) that |tf2| ≤ C|t|ε, with ε equal to,
say, min(v1(θ)/2, αp/4). Plugging this in (10.12) one obtains that f1− v1 =
O(|t|ε). Returning to (10.16) one is then led to (10.6) at (t, θ) with v1(θ) > 0.
Inserting (10.6) into (10.15) we arrive at (10.7) at (t, θ), again for v1(θ) > 0.

Suppose, finally, that v1(θ) < 0, then we rewrite (10.16) as

0 > t2 > t1 ≥ t0 |t1|f2(t1, θ) = e
∫ t2

t1
f1(s,θ)ds|t2|f2(t2, θ)

+
∫ t2

t1

e
∫ u

t1
f1(s,θ)ds

O(|u|αp−1)du .

(10.17)

One readily checks that the integrand is in L1([t0, 0)), and passing to the
limit t2 → 0 one obtains

0 > t1 ≥ t0 |t1|f2(t1, θ) =
∫ 0

t1

e
∫ u

t1
f1(s,θ)ds

O(|u|αp−1)du .

(10.18)

Arguing as before one obtains the result at (t, θ). Finally, the result for
(t, θ1) ∈ C0

t0(θ) is obtained from the one for (t, θ) by integrating ∂θ(tfa) in
θ from (t, θ1) to (t, θ), using point (iii) of Lemma 8.7. 2

We return to the proof of Theorem 10.1. To proceed further we need
better control of the θ derivatives. Let Ek be defined by (8.15) and con-
sider a point ψ such that v(ψ) = 0. From (10.1), (10.14), together with
Equations (8.8) and (8.11)-(8.14) one obtains

E1(t1, ψ) ≤ E1(t0, ψ) +
∫ t1

t0

2 + O(|t|αp)
|t| E1(t, ψ) dt ; (10.19)

we have also made use of (8.16). Gronwall’s Lemma (cf., e.g., [4, Lemma 3.2.3])
gives, for any ε > 0, decreasing |t0| if necessary,

E1(t, ψ) ≤ C

∣∣∣∣
t0
t

∣∣∣∣
2+ε

. (10.20)
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This allows us to rewrite (10.19) as

E1(t1, ψ) ≤ E1(t0, ψ) +
∫ t1

t0

( 2
|t|E1(t, ψ) + O(|t|αp−3−ε)

)
dt , (10.21)

which, together with Gronwall’s Lemma, implies (10.20) with ε = 0. It
follows that on C0

t0(ψ) we have

|t∂θfa|+ |t∂θga| ≤ C , (10.22)

and (5.1) gives

|t∂tg1| ≤ C , |t∂tg2| ≤ C(1 + |t|2αp−1) . (10.23)

Integrating in t over rays θ = ψ + λt, λ ∈ [−1, 1], one obtains

g1 = O(ln |t|) , |g2| ≤ C(ln |t|+ |t|2αp−1) . (10.24)

We have thus recovered (10.1) with the exponent αp there replaced by 2αp if
2αp < 1, or by a number as close to one as desired otherwise. Iterating the
argument leading from (10.23) to (10.24) a finite number of times if needed
one thus has

|tfa|+ |tga| ≤ C|t|1−ε , (10.25)

with ε as small as desired.
We continue by induction: suppose that for all ε > 0 and for all 0 ≤ i ≤

k − 1 there exists Ci(ε)

|t∂i
θfa|+ |t∂i

θga| ≤ Ci(ε)|t|−ε . (10.26)

From (8.8), (8.11)-(8.14) one obtains

Ek(t1, ψ) ≤ Ek(t0, ψ) +
∫ t1

t0

(2 + ε

|t| Ek(t, ψ) + C|t|−2−2εE
1/2
k (t, ψ)

)
dt

≤ Ek(t0, ψ) +
∫ t1

t0

(2 + 2ε
|t| Ek(t, ψ) +

C

4ε
|t|−2−2ε

)
dt , (10.27)

leading to (10.26) with i = k (and with ε replaced by 2ε.).
The equation

∂t




∂k
θ f1

∂k
θ f2

∂k
θ g1

∂k
θ g2


 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ∂θ




∂k
θ f1

∂k
θ f2

∂k
θ g1

∂k
θ g2


+




∂k
θ

(
f2
2 − g2

2 − f1

t

)

∂k
θ

(
− f1f2 + g1g2 − f2

t

)

0
∂k

θ

(
f1g2 − g1f2

)




(10.28)
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gives
|∂t

(
t∂i

θfa

) |+ |t∂t∂
i
θga| ≤ Ci(ε)|t|−ε . (10.29)

Integrating in t over rays θ = ψ + λt, λ ∈ [−1, 1], from (10.26) and (10.29)
one obtains

|∂i
θga| ≤ Ci(ε)|t|−ε . (10.30)

Further, the same integration argument shows that there exist constants
va,i(ψ) such that

||t|∂i
θfa − va,i(ψ)| ≤ Ci(ε)|t|1−ε . (10.31)

We note that va,0(ψ) = 0 by (10.25). From (10.28) one obtains now the
equation

∂t(∂i
θ|t|f1) = |t|∂i

θ(f
2
2 ) + O(|t|−ε)

=




i∑

j=0

(
j
i

)
v2,j(ψ)v2,i−j(ψ)


 1
|t| + O(|t|−ε) , (10.32)

which is compatible with boundedness of ∂i
θ(|t|f1) if and only if the coefficient

of 1/|t| vanishes. Suppose that we know that v2,j vanishes for j = 1, . . . , m−
1, then the condition of vanishing of the offending term in (10.32) with
i = 2m gives v2,m = 0, and induction gives the vanishing of v2,j for all j. It
then follows from (10.31) that

|∂i
θf2| ≤ Ci(ε)|t|−ε . (10.33)

Integrating the equations for ∂t∂
i
θga one arrives at

∂i
θg1 = −v1,i+1(ψ) ln |t|+ g1,i(ψ) + O(|t|1−ε) , (10.34)
g2 = g2,0(ψ) + O(|t|1−ε) , (10.35)

∂i
θg2 = −v1,i(ψ)g2,0(ψ) ln |t|+ g2,1(ψ) + O(|t|1−ε) , (10.36)

for some constants ga,i(ψ). Similarly, as in (10.18),

0 > t1 ≥ t0 |t1|∂k
θ f2(t1, ψ) =

∫ 0

t1

e
∫ u

t1
f1(s,ψ)ds

O(|u|1−ε)du

= O(|t1|2−ε) . (10.37)

Integrating in θ from ψ to θ and using (10.37) one obtains, on C0
t0(ψ),

∂k
θ f2(t, ψ) = O(|t|1−ε) . (10.38)
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Analogously to (10.15) one has

|t|∂k
θ f1(t, ψ)− v1,i(ψ) =

∫ 0

t
O (|s ln |s||) ds = O

(∣∣t2 ln |t|∣∣) . (10.39)

An iterative repetition of the arguments given leads to a full asymptotic
expansion of the solution on C0

t0(ψ). It should be clear that the expansions
for the derivatives obtained in this way behave as though they arose from an
AVTD(P,Q)

∞ map, and the usual extension arguments can be used to provide
an AVTD(P,Q)

∞ extension of the restriction x|C0
t0

(ψ) of x.
Suppose finally that all the v1,j(ψ) vanish. We note that it follows from

the argument above that this will be the case when v = 0 on an interval
containing ψ. It is then straightforward to show that all the ∂k

θ fa’s and
the ∂k

θ ga’s can be extended by continuity to the tip (0, ψ) of C0
t0(ψ). By an

abuse of notation we will denote the value at the tip of those extensions by
∂αfa(0, ψ), etc. Equation (10.37) gives, for all k,

∂k
θ f2(0, ψ) = 0 . (10.40)

Equation (10.39) implies
∂k

θ f1(0, ψ) = 0 . (10.41)

Arguing similarly one obtains that any mixed t and θ derivatives can also
be extended by continuity to the tip (0, ψ) of C0

t0(ψ). For example, when
v1,j(ψ) = 0 (10.39) can be rewritten as

|t|∂k
θ f1(t, ψ) =

∂k
θ

(
g2
2(0, ψ)

)
t2

2
+ O

(|t|3) , (10.42)

which shows that ∂k
θ f1/t extends continuously to the tip. It then follows from

(10.28) that ∂t∂
k
θ f1 extends continuously to the tip. A similar analysis shows

that the same is true for ∂t∂
k
θ f2. It then immediately follows from (10.28)

that ∂t∂
k
θ ga extends continuously to the tip. Differentiating (10.28) with

respect to t one can repeat this analysis for all higher-order t-derivatives.
An identical extension property is obviously true for P , Q, and all their

derivatives.
In order to prove (10.2), suppose that

∂k
θ fa(t, ψ) =

i−1∑

j=0

αa,j,kt
2j+1 + O(|t|2i) , (10.43)

∂k
θ ga(t, ψ) =

i∑

j=0

βa,j,kt
2j + O(|t|2i+1) ; (10.44)
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this clearly holds with i = 0. Then (10.28) gives

∂t

(
t∂k

θ fa(t, ψ)
)

=
i−1∑

j=0

α̂a,j,kt
2j+1 + O(|t|2i+2) , (10.45)

and by integration one recovers (10.43) with i replaced by i + 1. Inserting
this into (10.28) one then finds

∂t

(
∂k

θ ga(t, ψ)
)

=
i∑

j=0

β̂a,j,kt
2j+1 + O(|t|2i+2) , (10.46)

and integration in t completes the induction step. The usual extension
results finish the proof on C0

t0(ψ). Clearly the same results remain valid if v
vanishes on an interval I, we simply note that all the estimates so far were
uniform in θ over I. 2

11 Solutions with v < 1 and with uniform power-
law

We are ready now to prove Theorem 1.1 under the more restrictive hypothe-
ses (11.1) and (11.2); those will be removed in Section 12:

Theorem 11.1 Let x̊ be a solution of the Gowdy equations on Ω(a, b, t0)
such that

sup
Ω(a,b,t0)

|tX̊t| < 1 . (11.1)

Suppose moreover that there exist positive constants ε and C0 such that on
Ω(a, b, t0) we have

|tX̊θ| ≤ C0|t|ε . (11.2)

Then:

(i) The solution belongs to the class U1 defined in Section 4, with a velocity
function v = |v1| and a position function ϕ∞ which are smooth except
perhaps on the set

∂{θ : v(θ) = 0} .
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(ii) There exists η > 0 such that for all initial data (x(t0, ·), Xt(t0, ·))
satisfying1

‖(x(t0, ·)− x̊(t0, ·), Xt(t0, ·)− X̊t(t0, ·))‖H3⊕H2 < η

the associated solution x also satisfies (11.1)-(11.2) (with perhaps dif-
ferent values of ε and C). Further the conclusions of Theorem 9.1
apply.

Remark 11.2 The behavior of the solution near all points (0, ψ) with v(ψ) =
0, including {0}×(∂{θ : v(θ) = 0}), is described exhaustively in Theorem 10.1.
It is not clear whether or not the function ϕ∞ of (3.24) is continuous at
∂{θ : v(θ) = 0}.

Remark 11.3 Every AVTD(P,Q)
1 solution with v strictly smaller than one,

and for which the error terms in (3.5)-(3.6) and in their derivative counter-
parts (see (3.10)) are uniform in θ satisfies (11.2), as well as (11.1) for some
t0 close enough to 0. This follows immediately from (3.5)-(3.6). Further, all
initial data satisfying the hypotheses of Theorem 8.6, or of [17, Theorems 1
and 2], satisfy the hypotheses of Theorem 11.1.

Proof: The arguments at the beginning of the proof of Theorem 8.6 show
that v exists on [a, b] and is continuous there. We continue with a lemma:

Lemma 11.4 Suppose that |tXθ| ≤ C|t|ε for some ε > 0 and

inf
Ω(a,b,t1)

|tXt| ≥ γ > 0 , sup
Ω(a,b,t1)

|tXt| < 1− γ , (11.3)

for some t1. Then Ω(a, b, t1) can be covered by a finite number N of domains
of dependence on which x is AVTD(P,Q)

∞ in appropriate coordinates on hyper-
bolic space. (This implies smoothness of v and of ϕ∞, as those properties are
invariant under isometries of the hyperbolic space.) The number N depends
only upon ε, C0 and γ.

We will actually prove a slightly stronger statement:

Lemma 11.5 Under (11.3), suppose that there exists a sequence ti such that
the function

F (ti) := sup
θ∈[a+ti,b−ti]

2∑

k=0

|tk+1Dk
θXθ|(ti, θ) +

2∑

k=1

|tk+1Dk
θXt|(ti, θ) (11.4)

goes to zero as ti goes to zero. Then the conclusion of Lemma 11.4 holds,
with the number N there depending upon γ and the sequences {ti}, {F (ti)}.
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Proof: We start by noting that under (11.2) we have F (ti) ≤ C|ti|ε by
(10.8), so that Lemma 11.4 does indeed follow from Lemma 11.5 by setting
ti = 2−it0.

We wish to apply a result of Ringström [16, Theorem 9.1]. Set

γ =
1
8

min( inf
Ω(a,b,t1)

|tXt|, 1− sup
Ω(a,b,t1)

|tXt|) . (11.5)

Let the constants εk, k = 0, 1, 2 in [16, Theorem 9.1] be equal to 10, decreas-
ing |t1| if necessary we can suppose that t1 > −e−τ0 , with τ0 given by [16,
Equation (9.1)]. Choose some ψ ∈ (a, b), and define Ĉ0

t1(ψ) to be a triangle
with the top vertex at (0, ψ) and slopes ±1/2:

Ĉ0
t1(ψ) := {t ≥ t1 , ψ − 2|t| ≤ θ ≤ ψ + 2|t|} . (11.6)

If ψ = a we set

Ĉ0
t1(ψ) := {t ≥ t1 , ψ − |t| ≤ θ ≤ ψ + 2|t|} , (11.7)

while for ψ = b we set

Ĉ0
t1(ψ) := {t ≥ t1 , ψ − 2|t| ≤ θ ≤ ψ + |t|} . (11.8)

For 0 < λ ≤ 1 let x(ψ,λ) be defined as

Ĉ0
t1(0) 3 (t, θ) → x(ψ,λ)(t, θ) := x(λt, ψ + λθ) . (11.9)

We have
X

(ψ,λ)
t (t, θ) := ∂tx

(ψ,λ)(t, θ) = λXt(λt, ψ + λθ) , (11.10)

similarly

X
(ψ,λ)
θ (t, θ) := ∂θx

(ψ,λ)(t, θ) = λXθ(λt, ψ + λθ) , (11.11)

with analogous formulae for higher derivatives. This, together with our
hypothesis on the function F , shows that for λ = λi = ti/t1 we have for
ψ ∈ (a, b)

sup
θ∈[2t1,−2t1]

2∑

k=0

|tkDk
θX

(ψ,λ)
θ |(t1, θ)+

2∑

k=1

|tkDk
θX

(ψ,λ)
t |(t1, θ) ≤ F (λit1 = ti)/|t1| →λi→0 0 ,

(11.12)
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with similar results if ψ = a or ψ = b. In particular at t = t1 we have

sup
θ∈[−2|t1|,2|t1|]

2∑

k=0

|Dk
θX

(ψ,λ)
θ |(t1, θ) +

2∑

k=1

|Dk
θX

(ψ,λ)
t |(t1, θ) →λ→0 0 . (11.13)

Now, it is easy to show, using (5.6), that

P 2
tθ + e2P Q2

tθ ≤ |DθXt|2 + C|Xt|2|Xθ|2, (11.14)

P 2
θθ + e2P Q2

θθ ≤ |DθXθ|2 + C|Xθ|4. (11.15)

Similarly,

P 2
tθθ + e2P Q2

tθθ ≤ |D2
θXt|2 + C(|Xt|2(|DθXθ|2 + |Xθ|4 + |Xθ|2)

+ |Xθ|2|DθXt|2), (11.16)

P 2
θθθ + e2P Q2

θθθ ≤ |D2
θXθ|2 + C(|Xθ|2|DθXt|2 + |Xθ|6 + |Xθ|4). (11.17)

Equations (11.12)-(11.17) show that there exists λj such that Equations (6.2)
and (9.3) with k = 1, 2, of [16] will be satisfied by the initial data for x(ψ,λ)

for all λ = λn ≤ λj with a multiplicative factor 1/(2C1) at the right-hand
sides there, with a constant C1 to be made precise shortly. Decreasing λj

if necessary Ringström’s energy ε2 corresponding to the current solution
here will be smaller than 1/(2C1). Again decreasing λj if necessary [16,
Equation (9.4)] will hold with 2γ there replaced by 4γ. It remains to satisfy
Ringström’s equation (9.3) with k = 0. Recall that the group of isometries
of the hyperbolic space (H2, h) acts transitively on the unit tangent bundle
of H2. This implies that there exists an isometry ψλ of (H2, h) such that
the map ψλ ◦x(ψ,λ), when written in the local coordinates (P, Q), will satisfy

P (t2, ψ) = Q(t2, ψ) = ∂tQ(t2, ψ) = 0 , ∂tP (t2, ψ) ≥ 0.

Now, Ringström’s norms are not invariant under isometries. However, the
objects appearing in (11.12) and (11.13) are, and those have been used to
control Ringström’s norms, so that the inequalities which have already been
fulfilled still hold (in any case we could decrease λ further to obtain the
desired inequalities). It then follows by integration in θ, using the fact that
the θ derivatives of P and Q are already known to be small, that there
exists d > 0 such that Ringström’s equation (9.3) with k = 0 and with
a multiplicative factor 1/(2C1) at the right-hand side there will hold on
[ψ− d + tj , ψ + d− tj ]. Decreasing d and λj if necessary, we can extend the
initial data from that last interval to smooth periodic initial data, without
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increasing all the relevant quantities by more than a factor C1. Applying
Ringström’s Theorem 9.1 the result follows for the map obtained by the
evolution of the extended initial data. Uniqueness in domains of dependence
establishes the claim on each Ω(ψ − d, ψ + d, tj). Reverting to the original
t1, the result is obtained by covering Ω(a, b, t1) by a finite number of sets
Ω(ψ − d, ψ + d, t1). 2

We note that an obvious modification of the argument just given estab-
lishes the following version of Ringström’s result [16, Theorem 9.1]:

Proposition 11.6 Let a ≤ b, t0 < 0, 0 < γ < 1, there exists ε(γ) > 0 such
that if

γ ≤ t0P (t0, ·) ≤ 1− γ ,

2∑

k=0

|tk0Dk
θXθ|(t0, ·) +

2∑

k=1

|tk0Dk
θXt|(t0, ·) < ε ,

on [a−|t0|, b+|t0|], then the solution is AVTD(P,Q)
∞ in Ω(a, b, t0), with velocity

strictly positive and strictly smaller than one. 2

We return to the proof of point (ii) of Theorem 11.1. The reader will
note that the above proof has been worded to leave room for perturbing the
data at t = t1, with t1 as redefined in the paragraph following (11.5), while
still satisfying Ringström’s hypotheses; this is needed for the remainder of
the argument.

We set now
γ =

1
8

min(
1
3
, 1− sup

Ω(a,b,t0)
|tX̊t|) .

Since v is continuous, with tX̊t converging uniformly to v, the interval [a, b]
can be covered by a finite number of intervals [ai, bi] on which either

γ ≤ 1
8

inf
Ω(ai,bi,t1)

|tX̊t| ,

or on which
sup

Ω(ai,bi,t1)
|tX̊t| < 1

12
.

Let us call the latter intervals of type II, and the former of type I. Each
of the [ai, bi]’s of type I can further be chosen to coincide with one of the
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intervals [ψ−d, ψ +d] of the proof of Lemma 11.4 such that x̊ is AVTD(P,Q)
∞

on Ω(ψ−d, ψ+d, t2), where t2 is the time given in the proof of Lemma 11.4.
A sufficiently small pertubation of x̊ at t = t2 leads again to an AVTD(P,Q)

∞
solution, thus satisfying (11.1)-(11.2) (with X̊ there replaced by X, with
possibly different constants C and ε). The usual continuous dependence of
solutions upon initial data on compact intervals of t shows that the same
will remain true for sufficiently small perturbations of the initial data at
t = t0.

On each interval of type II we have at t = t2

|tX̊θ| ≤ Ctε <
1
6

,

making t2 smaller if necessary, then any sufficiently small perturbation of
the Cauchy data at {t2} × [ai + t2, bi − t2] leads to a solution x such that

sup
Ω(ai,bi,t2)

|tXt|2 + |tXθ|2 < 2(
1
12

+
1
6
) =

1
2
,

where the factor 2 comes from Proposition 1.4. We can thus use Theorem 8.3
to conclude x will satisfy (11.1)-(11.2).

2

12 Existence and smoothness of v on an open dense
set

The proof of Theorem 1.3 will run in parallel with that of the following,
more precise, statement:

Theorem 12.1 Consider a solution x defined on Ω(a, b, t0) and set

n := bsup |tXt|c .

There exists an open dense set Ω ⊂ [a, b] such that for every ψ ∈ Ω there
exist a neighborhood Oψ ⊂ Ω of ψ and an element Gψ of the Geroch group,
with the order of Gψ less than or equal to n, such that Gψx has on Oψ a
smooth velocity function 0 ≤ v = |v1| < 1 and smooth position function Q∞.
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Proof: We start with a covering argument: We choose arbitrarily two
points a ≤ θl < θr ≤ b, we set I0 = [θl, θr] and we decompose Ω(θl, θr,−|I0|/2)
into a union of strips Ωi, Ω(θl, θr,−|I0|/2) = ∪∞i=1Ωi, where

Ωi = {(t, x) ∈ Ω(θl, θr,−|I0|/2) | − |I0|
2i

≤ t < − |I0|
2i+1

} .

Note that |I0|/2 is the height of Ω(θl, θr,−|I0|/2), and that the Ωi’s are
pairwise disjoint. Let ti = − |I0|

2i and let Bi be the base line of Ωi,

Bi = {(t, x) ∈ Ωi | t = ti , θl − |ti| ≤ x ≤ θr + |ti|}, i ≥ 1 .

We denote by Ai0 the left end point of Bi, and set θli = θl−|ti|, θri = θr+|ti|.
We consider a partition Pi of Bi determined by the following sequence of
points (see Figure 3)

Pi = {Ai0, . . . , Aij , . . . , Ai,mi},

where mi = 2i + 2, Aij = (ti, θli + |I0|
2i j). Note that the length of each

sub-interval of Pi is |I0|
2i .

A10 A11 12 13 14

20 2221 23 24 25 26

A A

A A A A A A A

A

e
e

e
e

e e e11
12 13

14
15

16
17

Figure 3: The points Aij and the triangles eij .

Next, we decompose Ωi into a union of triangles with 45 degrees slopes as
follows: Let cij denote the triangle with vertices at the points (Aij , Ai+1,2j , Ai,j+1)
defined above, where i ≥ 1, j = 0, 1, . . . , 2i+1. The set Ωi−

⋃2i+1
j=0 cij is then

the union of ‘upside down’ triangles with vertices (Ai+1,2j−2, Aij , Ai+1,2j),
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where i ≥ 1, j = 1, . . . , 2i + 1. We denote those last triangles by dij . It
follows that

Ωi = (∪2i+1
j=0 cij)

⋃
(∪2i+1

j=1 dij) .

Finally we relabel the cij ’s and the dij ’s as eij :

ei,2j+1 := cij , j = 0, . . . , 2i + 1

ei,2j := dij , j = 1, . . . , 2i + 1

Lemma 12.2 Let {Ωj}∞j=0 be the decomposition of Ω(θl, θr,−|I0|/2) described
above. Let f be a nonnegative measurable function on Ω(θl, θr,−|I0|/2) with

∫

Ω
|t|f(t, θ) dθdt < ∞ .

Then for any ε > 0 and j0 ∈ N there exists j ≥ j0 such that Ωj contains a
set ω consisting of eight consecutive triangles eij with

∫

ω
f dθdt < ε.

Proof: Let
∫
Ω |t|f(t, θ) dθdt = A. Using the decomposition Ω(θl, θr,−|I0|/2) =

∪∞i=1Ωi we find

A =
∞∑

i=1

∫

Ωi

|t|f(t, θ) dθdt

≥ |I0|
∞∑

i=0

∫

Ωi

f(t, θ)
2i

dθdt .

Thus, since the last sum is finite, there exists i(ε) such that for all i ≥ i(ε)
we have

1
2i+1

∫

Ωi

f(t, θ) dθdt ≤ ε

for any given ε. Let us show that there exist j and at least N = 8 consecutive
triangles starting at eij such that

∫

∪N
k=0ei,j+k

f(t, θ) dθdt ≤ ε.
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In fact we prove this assertion with any given N ∈ N; we set

ei1 ∪ ei2 . . . ∪ eiN = c1 ,
...

ei,j ∪ ei,j+1 . . . ∪ ei,j+N−1 = cj ,
...

ei,m−N+1 ∪ ei,m−N+2 . . . ∪ eim = cm−N+1 ,

where m = 2i+1 + 3. Let
∫

cj

f = Cj ,

∫

eij

f = Ej ,

then

C1 + . . . + Cm−N+1 = E1 + 2E2 + . . . + (N − 1)EN−1 + N(EN + . . .

+ Em−N+3) + . . . + 2Em−1 + Em

≤ N(E1 + . . . + Em) = N

∫

Ωi

f(t, θ) dθdt ≤ Nmε.

Hence we obtain

C1 + . . . + Cm−N+1

m−N + 1
≤ Nmε

m−N + 1
≤ Nε,

which implies that there exists Cj such that Cj ≤ Nε. 2

We apply Lemma 12.2 to the function

f :=
∑̀

k=0

|tkDk
θXθ|2 +

∑̀

k=1

|tkDk
θXt|2 ;

we are actually interested in ` = 4, but the argument applies to any fixed
` ∈ N, ` ≥ 2. Point (iii) of Proposition 1.6 shows that f satisfies the
hypotheses of Lemma 12.2, therefore there exists a sequence of domains
ωi ⊂ Ωi such that ∫

ωi

f →i→∞ 0 .

The base bi of ωi has length 4|ti|, so that it can be written as

bi = {ti} × [ψi − 2|ti|, ψi + 2|ti|] ,
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for some ψi ∈ [θl, θr]. We scale ωi to a union of eight triangles with bottom
edge lengths one, with the basis of the scaled set lying at t = −1, and (ψi, ti)
mapped to (0,−1); we call ω̃ the resulting set, and we note that the top of
ω̃ lies at t = −1/2. We have

∫

ωi

f =
∫

ω̃

∑̀

k=0

|tkDk
θX

(ψi,ti)
θ |2 +

∑̀

k=1

|tkDk
θX

(ψi,ti)
t |2 , (12.1)

with x(ψi,ti), etc., defined in (11.9). There exists an isometry of the hyper-
bolic space into itself which maps x(ψi,ti)(0,−1) to the origin in the (P,Q)
coordinate system. We apply this isometry to x(ψi,ti), and still use the same
name for the resulting map. Since |t| ∈ [1/2, 1] on ω̃, isometry-invariance of
(12.1) gives

‖X(ψi,ti)
θ ‖H`(ω̃) + ‖DθX

(ψi,ti)
t ‖H`−1(ω̃) →i→∞ 0 ,

and the Sobolev inequality implies

‖X(ψi,ti)
θ ‖C`−2(ω̃) + ‖DθX

(ψi,ti)
t ‖C`−3(ω̃) →i→∞ 0 .

Returning to the original ωi one thus has

sup
ωi

(
`−2∑

k=0

|tk+1Dk
θXθ|+

`−2∑

k=1

|tk+1Dk
θXt|

)
→i→∞ 0 . (12.2)

Let Ii = [ψi − 2|ti|, ψi + 2|ti|] and set

F`(Ii) := sup
θ∈[ψi−2|ti|,ψi+2|ti|]

(∑̀

k=0

|tk+1Dk
θXθ|+

∑̀

k=1

|tk+1Dk
θXt|

)
(ti, θ) .

Equation (12.2) shows that F2(Ii) approaches zero as ti tends to zero. We
choose i0 large enough so that for all i ≥ i0 we have

F2(Ii) <
1

100
.

Clearly the same bound will then also hold for F`(Ii) with 0 ≤ ` ≤ 1. Since
the sequence |tXt|(ti, ψi) is bounded, passing to a subsequence if necessary
we can assume that there exists v∞ such that |tXt|(ti, ψi) → v∞. Suppose,
first, that v∞ < 1/200, then |tXt|(ti, ψi) < 1/100 for i large enough. By
integration in θ we have for θ ∈ Ii

∣∣|tXt|2(ti, θ)− |tXt|2(ti, ψi)
∣∣ ≤ ±2

∫ θ

ψi

t2|h(Xt, DθXt)|dθ ≤ 4 sup |tXt|F1(Ii) ,

(12.3)
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which goes to zero as i goes to infinity so that |tXt|(ti, θ) < 1/50 for θ ∈ Ii.
Now |tf1| ≤ |tXt| < 1/50, similarly for tf2, while |tg2| ≤ |tXθ| ≤ F0(Ii) <
1/100, which proves that Theorem 8.3 applies, and shows that for all i ≥ i0
(increasing i0 if necessary) the solution satisfies a power law decay in each
of the Ω(ψi − 2|ti|, ψi + 2|ti|, ti). The conclusions of Theorem 11.1 apply
to show that the solution is AVTD(P,Q)

∞ on each of the Ω(ψi − 2|ti|, ψi +
2|ti|, ti), except perhaps a) for points in ∂{θ : v(θ) = 0} at which Q∞
may have discontinuities and/or v1 might fail to be smooth (even though
it is continuous there), or b) for a set of discontinuities of v1 introduced by
applying back isometries to the isometry-transformed AVTD(P,Q)

∞ solutions
of Lemma 11.5. In any case Proposition 4.2 guarantees existence of an open
dense subset of [θl, θr] with AVTD(P,Q)

∞ behavior there.
Suppose, next, that 1/200 ≤ v∞ ≤ 1− 1/200. A scaling argument as in

the proof of Lemma 11.5 shows that, after applying a suitable isometry, the
solution is AVTD(P,Q)

∞ in each of the Ω(ψi − 2|ti|, ψi + 2|ti|, ti)’s, for i large
enough, and hence again in an open subset of [θl, θr]. Applying the isometry
back to recover the original solution one obtains an open subset of [θl, θr]
with AVTD(P,Q)

∞ behavior.
As the next possibility, consider the case in which 1 − 1/200 < v∞ ≤

1 + 1/200. Applying an isometry φi we can assume that the map φi ◦ x,
still denoted by x, satisfies Qt(ti, ψi) = 0 with Pt(ti, ψi) – positive, so that
1 − 1/100 < |t|Pt(ti, ψi) < 1 + 1/100. Note that F` is invariant under
isometries, so that F2(Ii) remains unchanged. Now,

∂θfa = ∂θ (h(Xt, ea)) = h(DθXt, e2) + h(Xt, Dθea) , (12.4)

and by integration, making use of (8.45), one finds that

−1/100 < |t|f2 = |t|eP Qt(ti, θ) < 1/100

on Ii for i large enough, similarly 1 − 1/50 < |t|f1 = |t|Pt(ti, θ) < 1 +
1/50. Applying a Gowdy-to-Ernst transformation (3.20) (compare (8.33))
we obtain on Ii

−1/50 < |t|P̂t = 1− |t|Pt < 1/50 , −1/100 < |t|ĝ1 = −|t|g1 < 1/100 ,

as well as

−1/100 < |t|ĝ2 = −|t|f2 < 1/100 , −1/100 < |t|f̂2 = −|t|g2 < 1/100 .

This shows that the hypotheses of Theorem 8.3 are satisfied by the initial
data for x̂ on Ii, so that by Theorem 11.1 the map x̂ will be AVTD(P,Q)

∞ on
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an open dense subset of each of the Ω(ψi − 2|ti|, ψi + 2|ti|, ti)’s for i large
enough. This gives an open subset of [θl, θr] with AVTD(P,Q)

∞ behavior for
x̂. To analyse the behavior of x we need first to perform back the Gowdy-
to-Ernst transformation. Since

P = −P̂ − ln |t| ,
the existence and continuity properties of v are unchanged by the Gowdy-
to-Ernst map. Next, we note that

|Qt| = |teP̂ ĝ2| ≤ C|t|ε−1 (12.5)

for some ε > 0, which by integration shows that the function Q∞ of (3.6)
exists and is a continuous function on each interval [ψi − |ti|, ψi + |ti|] with
i large enough. Hence the map (P,Q) belongs to the class U1 defined in
Section 4. Now, the original map x is obtained from the one just described
by composing with an isometry of the hyperbolic plane, and is thus again
in the class U1 by Proposition 4.2. One then obtains an AVTD(P,Q)

∞ map
in a neighborhood of the set obtained by removing from [ψi − |ti|, ψi + |ti|]
the set consisting of points where v has discontinuities, together with the
boundary of the set where v = 1.

We continue by induction: suppose that we have already established the
claim for v∞ ≤ k + 1/200, and suppose that there exists k ∈ N such that
k + 1/200 ≤ v∞ ≤ k + 1 − 1/200. Applying an isometry φi to x, and still
denoting by x the resulting map, we can assume that f2(ti, ψi) = 0, and
that k +1/50 < |t|Pt < k +1− 1/50 on Ii, while |tXθ|+ |tf2| < 1/100 there.
Applying a Gowdy-to-Ernst transformation we obtain

−k + 1/50 < |t|P̂t < −(k − 1)− 1/50 on Ii, with |tf̂2| < 1/100 . (12.6)

It follows that |tX̂t| < k on all Ii’s for i large enough. We note that (12.4)
with a = 2 shows, by integration, that on Ii we have

|tĝ2| = |tf2| ≤ CF1(Ii) , while |tĝ1| = |tg1| ≤ F0(Ii) holds trivially.
(12.7)

Next, by (5.7),

DθX̂θ = (∂θĝ1 − ĝ2
2)e1 + (∂θĝ2 + ĝ1ĝ2)e2

= (−∂θg1 − f2
2 )e1 + (−∂θf2 + g1f2)e2 . (12.8)

Similarly,

DθX̂t = (∂θf̂1 − f̂2ĝ2)e1 + (∂θf̂2 + f̂1ĝ2)e2

= (−∂θf1 − f2g2)e1 + (−∂θg2 + f1f2 − f2

|t|)e2 . (12.9)
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It is straightforward to check, using (12.7)-(12.9), that if one sets

F̂`(Ii) := sup
θ∈[ψi−2|ti|,ψi+2|ti|]

(∑̀

k=0

|tk+1Dk
θ X̂θ|+

∑̀

k=1

|tk+1Dk
θ X̂t|

)
(ti, θ) ,

then F̂1(Ii) → 0 as i → ∞. A similar calculation shows that the same is
true for F̂2(Ii), and in fact for any higher order F̂` if true for F`.

Returning to the proof of Theorem 12.1, it follows that the map x̂ sat-
isfies all the conditions needed to apply the result assumed to be true by
the induction hypothesis. In particular the velocity function v̂ and the po-
sition function Q̂∞ are smooth on each interval [ψi − |ti|, ψi + |ti|], with i
large enough, except perhaps for a countable number of points. Performing
back the Gowdy-to-Ernst transformation one obtains a map with a velocity
function v which has the same properties. Equation (12.5) becomes

|Qt| = |teP̂ ĝ2| ≤ CeP̂ ≤ C|t|k−1/50 , (12.10)

which shows, as before, existence of a continuous function Q∞ on each
interval [ψi − |ti|, ψi + |ti|], with i large enough. Proposition 4.2 implies
again the AVTD(P,Q)

∞ behavior in a neighborhood of an appropriate subset
of {0} × [ψi − |ti|, ψi + |ti|].

The possibility k + 1− 1/200 < v∞ < k + 1 + 1/200 is handled similarly,
and the induction step is completed.

Since we have a uniform bound on |tXt|, the procedure stops in a finite
number of steps.

We have thus shown that every subinterval [θl, θr] of [a, b] contains an
open set so that the solution is AVTD(P,Q)

∞ in a neighborhood thereof. The
union of all such sets, as [θl, θr] runs over all subintervals of [a, b], provides
the desired open dense set Ω̂ of Theorem 1.3. The set Ω of Theorem 12.1 can
be taken to coincide with Ω̂. However, for the purpose of Proposition 12.3,
one should keep in Ω those points at which the discontinuities in v arise
from the action of the Geroch-group-inverse G−1 on Gx, when recovering
x from Gx on Ω(ψi − 2|ti|, ψi + 2|ti|, ti), by inverting the inductive method
described above. 2

The arguments given above together with Remark 1.2 can be used to
obtain the following characterisation of points which are not in Ω:

Proposition 12.3 Let Ω be the largest open set for which the conclusions
of Theorem 12.1 hold. Then ψ 6∈ Ω if and only if
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(i) either there exists ε > 0 such that for all t small enough

sup
θ∈[ψ−|t|,ψ+|t|]

(
1∑

k=0

|tk+1Dk
θXθ|+ |t2DθXt|

)
(t, θ) > ε ,

(ii) or v exists and is continuous on an interval I containing ψ, with ψ
belonging to the boundary of the set {v(θ) = 0}. Further

2∑

k=0

sup
θ∈I

(
|tk+1Dk

θXθ|+ |tk+1Dk
θXt|

)
(t, θ) → 0 ,

but Q∞ is discontinuous at ψ. 2

The key open question is that of existence of solutions for which the
set of points exhibiting the properties described in Proposition 12.3 is not
empty. The behavior described in (i) above seems to be a much more serious
problem than the one in (ii).

We are ready now to pass to the proof of the main result of our paper:

Proof of Theorem 1.1: Let x = x̊ and consider any point ψ ∈ [a, b]. The
argument of the proof of Theorem 12.1 with ti = −2−i, ψi = ψ, shows the
existence of a time tψ < 0 and of an element Gψ of the Geroch group such
that Gψx satisfies the hypotheses of Theorem 11.1 on Ω(ψ−|tψ|, ψ+|tψ|, tψ).
(Note that the covering argument is not needed anymore in view of the hy-
pothesis (1.6).) This proves (i) for Gψx, and what has been said concerning
the action of the Geroch group for the solutions under consideration proves
(i) and (ii) for x.

By compactness of [a, b] a finite covering by intervals (ai, bi) := (ψi −
|tψi |, ψ + |tψi |) can be chosen, and (iii) readily follows. Point (iv) follows
from the results in [4] (compare [6]). A small change of the initial data at
t = t0 will lead to a small change of initial data at t = tψi , hence to a small
change of Gψi

x(tψi
, ·) and its derivatives at tψi

, and the claim about stability
follows from Theorem 11.1. 2
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