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Buéa qui ont consacré une part très importante de leur précieux temps à la
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très honoré.
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Résumé

Dans la première partie de la thèse, on démontre l’existence de solutions dans
un espace de Sobolev à poids de problème de Cauchy hyperboloidal pour
une classe de systèmes d’équations aux dérivées partielles symétriques hy-
perboliques non linéaires, compatibles avec les équations d’Einstein-Maxwell
en dimension d’espace-temps supérieure ou égale à 7. De même, on démontre
pour de tels systèmes l’existence des solutions polyhomogènes au voisinage
de l’infini isotrope en dimensions d’espace-temps n + 1 ≥ 9. Il en découle
pour ces dimensions, que les solutions globales des équations couplées Einstein-
Maxwell du vide obtenues par évolution des données initiales petites, station-
naires en dehors d’un compact sont polyhomogènes au voisinage de l’infini
isotrope. Dans la seconde partie de la thèse, sous des hypothèses de nullité
sur le terme source, on démontre un résultat d’existence et d’unicité pour
une classe d’équations d’ondes semi-linéaires dont les données initiales sont
prescrites sur le cône lumière futur de sommet l’origine des coordonnées
dans l’espace-temps de Minkowski. Les hypothèses imposées sur la partie
non linéaire du système considéré garantissent que l’ épaisseur du voisinage
du cône future tout entier sur lequel nous obtenons notre solution ne s’annule
pas lorsqu’on atteint l’infini isotrope. Le résultat obtenu est appliqué aux
applications d’ondes sur l’espace-temps de Minkowski Rn+1avec n ≥ 3.

Mots clés:

Equations d’ondes, Equations d’Einstein-Maxwell, Jauge harmonique, Jauge
de Lorenz, Problèmes de Cauchy hyperbol̈ıdaux, Problèmes de Cauchy Car-
actéristiques, Espaces de Sobolev à poids, Solutions polyhomogènes.
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Abstract

In the first part of the thesis, we prove propagation of weighted Sobolev
regularity for solutions of the hyperboloidal Cauchy problem for a class
of quasi-linear symmetric hyperbolic systems, under structure conditions
compatible with the Einstein-Maxwell equations in space-time dimensions
n + 1 ≥ 7. Similarly we prove propagation of polyhomogeneity in dimen-
sions n + 1 ≥ 9. As a byproduct we obtain, in those last dimensions, poly-
homogeneity at null infinity of small data solutions of vacuum Einstein, or
Einstein-Maxwell equations evolving out of initial data which are stationary
outside of a ball. In the second part of the thesis, we prove existence and
uniqueness of solution of a class of semi-linear wave equations with initial
data prescribed on the light-cone with vertex the origin of the Minkowski
space-time. The nonlinear term is assumed to satisfy a nullity condition
which guarantee that the neighborhood of the initial cone on which we ob-
tain our solution does not shrink to zero as one approaches infinity. This
result is applied to wave maps on Minkowski space-times Rn+1 with n ≥ 3.

Keywords

Wave equations, Einstein-Maxwell equations, Harmonic gauge, Lorenz gauge,
Hyperboloidal Cauchy Problem, Characteristic Cauchy problem, Weighted
Sobolev spaces, polyhomogeneous solutions.
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General Introduction

In this thesis, we study the asymptotic behavior of the solutions of Cauchy
problems for systems of second order hyperbolic equations. In the first
part, we are interested with a class of quasi-linear wave equations compat-
ible with the coupled vacuum Einstein-Maxwell equations in harmonic and
Lorenz gauges. The Cauchy data which are considered for such systems
are prescribed on a hyperboloid S0 and are polyhomogeneous (i.e. around
infinity, they are expandable in terms of r−j logi r rather than in terms of
r−j). We intend to prove an existence and a uniqueness theorem on a fu-
ture neighborhood of the initial data hypersurface by guaranteeing that the
thickness of this neighborhood does not shrink to zero as one approaches
infinity and that the asymptotic properties of the initial data are preserve
by evolution near infinity. The motivation of studying such problem arises
from the fact that in [1], L. Andersson and P. T. Chruściel have constructed
a large class of solutions of the constraint of the Einstein equations which
are polyhomogeneous. This leads naturally to the question, whether poly-
homogeneity of initial data is preserved under evolution dictated by wave
equations. The results of [19, 20] constitute a first step towards an affir-
mative answer to this question. In these references, the authors consider
a hyperboloidal Cauchy problem for semi-linear scalar wave equation and
wave map equation on Minkowski space-time and, using the techniques of
conformal transformation they prove that there exists a neighborhood (with
a uniform thickness) of the whole initial hyperboloid on which existence in
weighted Sobolev spaces (the weight being choose in order to control the sin-
gular behavior of the data near conformal boundary) and polyhomogeneity
of solutions with appropriate polyhomogeneous initial data is obtained. We
adapt this method to the quasi-linear case. First, by following step by step
the proof of Theorem 3.7 of [19] (semi-linear case), we generalize this theo-
rem to quasi-linear case (see Theorem 1.1.1 page 8): If the coefficients and
the initial data are polyhomogeneous, if the source terms depend upon the
unknown function as well as its first order derivatives and satisfy the NL−
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condition (which is compatible with the Einstein-Maxwell equations), then
the solution is polyhomogeneous provided that it belongs to some spaces
of differentiable functions with singular behavior on the boundary, these
singularities being controlled with appropriate weight. Next, to conclude
that polyhomogeneous Cauchy data lead to polyhomogeneous solutions of
the coupled Einstein-Maxwell equations, we need to show that one can con-
struct solutions of these equations which satisfy in a neighborhood of null
infinity the necessary estimates for the polyhomogeneity theorem. It turns
out that the estimates on the global solutions obtained in [37, 38] in the
case of space dimension n = 3 and in [40] in high space dimensions case
are not sufficient to apply Theorem 1.1.1. To obtain those properties, we
consider a more general quasi-linear wave equation (see Equation (4.1.13)
page 85) and after a gauge transformation which transforms the hyperboloid
Ss into relatively compact sets, by the means of energy momentum tensor
contracted with a suitable vector field, we establish some energy inequalities
on the slices {τ = const}. Using afterwards these energy estimates, we solve
locally (in time) the transformed equation on a future neighborhood of the
initial data hypersurface {τ = τ0}, obtaining at the same time the needed
estimates for our polyhomogeneity theorem. In that way, we have proved
that, hyperboloidal Cauchy data in weighted Sobolev space lead to solutions
of the vacuum Einstein-Maxwell equations near null infinity in space-time
dimension n+ 1 ≥ 7 odd or even and that polyhomogeneous hyperboloidal
Cauchy data for the same partial differential equations lead to polyhomoge-
neous solutions near I + in space-time dimensions n + 1 ≥ 9. In those last
dimensions, as a consequence of our approach, we obtain that the global so-
lution of the Einstein-Maxwell equations obtained by J. Loizelet in [39, 40]
by evolving small initial data which are stationary out of a compact set are
polyhomogeneous near null infinity.

Because of its applications to physical phenomenon, notably to the the-
ory of general relativity (see [27, 29, 47] and the references therein for the
importance of characteristic Cauchy problem in GR), it would be very inter-
esting to state and prove the characteristic analog of the results mentioned
above. In other words, one can enquire whether polyhomogeneous Cauchy
data prescribed on one or several intersecting characteristic hypersurfaces
lead to polyhomogeneous solutions of the Einstein equations. The second
part of the thesis can be seen as a first step towards the resolution of this
problem. Indeed, in the second part of the thesis, we consider a class of
semi-linear wave equations for which the data are given on the light cone
with vertex the origin of the canonical coordinates in the Minkowski space-
time. By assuming that the nonlinear term satisfies an appropriate structure
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condition and that the prescribed data on the cone satisfy the hypothesis
of those of [27] near the tip of the cone and that near {r =∞} they are in
some weighted Sobolev spaces, we state and prove for the considered prob-
lem, an existence and uniqueness of solution theorem on a neighborhood
of the whole future light cone. The approach which is used here is a good
combination of the techniques of conformal compactification of the first part
of the thesis, the techniques of local solutions developed by M. Dossa in [28]
and those of iterative scheme of [42]. This is achieved in two steps. First,
from the results of [28] we obtain a local solution of the problem at hand
near the tip of the cone and following [6], we use this local solution to re-
duce the transformed characteristic Cauchy problem to characteristic initial
problem with data prescribed on two intersecting characteristic hypersur-
faces. Next, as in [5] we use the method of iterative scheme introduced by
A. J. Majda in [42]. The solution of our problem is obtained as a limit of
solutions of linear Goursat problems on a neighborhood of the entire cone
which intersect the future null infinity I +.

3



Part I

Solutions of quasi-linear

wave equations

polyhomogeneous at null

infinity in high dimensions
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Introduction of the first part

A problem of current interest is the asymptotic behavior of solutions of hy-
perbolic equations in the radiation zone. For large (however, not for all) sets
of initial data, this question can be reduced to one where the initial data are
given on a Cauchy surface that resembles a hyperboloid in Minkowski space-
time. In recent works [19,20], polyhomogeneity of solutions of such Cauchy
problems, with polyhomogeneous initial data, has been proved for a large
class of semi-linear symmetric hyperbolic systems. The object of this work
is to extend those results to quasi-linear equations satisfying certain struc-
ture conditions which are compatible with the vacuum Einstein equations,
or with the Einstein-Maxwell equations, in space-time dimensions n+1 ≥ 9.

A special case of our results is Theorem 5.0.12 below, where polyhomo-
geneity at null infinity of small data global solutions of the Einstein-Maxwell
equations, evolving out of initial data which are stationary outside of a com-
pact set, is established; this is perhaps the most significant result in this
work. For clarity we repeat the relevant part of that theorem here:

Theorem 0.0.1 In dimensions n + 1 ≥ 9 the global solutions of Einstein-
Maxwell equations constructed in [39,40] out from small initial data station-
ary outside of a compact set are polyhomogeneous at null infinity.

The polyhomogeneous expansions above are in terms of powers of log r
and negative integer powers of r in odd space dimension, while one has
powers of log r and negative half-integer powers of r in even space dimension.

Theorem 0.0.1 should be compared with [9], where even space-time di-
mension n+1 ≥ 6 is assumed, where initial data Schwarzschildian outside of
a compact set are considered, and where solutions which are smooth at null
infinity are obtained. The methods of that last reference completely fail in
odd space-time dimensions. Furthermore, in odd space dimensions, generic
initial data which are only stationary, as opposed to Schwarzschildian, are
likely to be polyhomogeneous, but not smooth, at null infinity, and generic

5



such initial data are expected to be too singular to be covered by the ap-
proach in [9]. We also note the analysis in [4], which implies smoothness at
null infinity of exactly stationary vacuum or electro-vacuum space-times, in
even space-dimension, in space-time harmonic gauge. But the dimensions
covered in [4] are precisely those not covered by the evolution theorems
in [2, 9].

6



Chapter 1

Polyhomogeneous solutions

The purpose of this chapter is to state and prove the main theorem of
the first part of this thesis. In order to have a complete presentation (we
need a self-contained document) of this theorem on the polyhomogeneity of
solution of a class of quasilinear hyperbolic systems of first order, we choose
to give a detailed presentation of the spaces of smooth and polyhomogeneous
functions with their properties in Appendix A page 190. We also refer the
reader to this Appendix for notations and definitions involved in this chapter.

1.1 The main theorem

Let ψ = (ψ1, ψ2) and set

f := (ψ,ϕ) , f̄ := (ψ1, xψ2, xϕ) . (1.1.1)

We shall say that a function G satisfies the NL-condition if there exist
N, pi, qi,mi ∈ N

∗ and functions Hi(z, w) A δ
{0≤x≤y}-polyhomogeneous in z

with a uniform zero of order mi in the variable

w := (f̄ , x2∂xf, x
2∂yf, x∂Af)

≡ (ψ1, xψ2, xϕ, x
2∂xf, x

2∂yf, x∂Af)

such that

G =

N∑

i=1

x−piδHi(z, x
qiδw) , (1.1.2)

with, for i = 1, . . . , N ,

mi >
pi − 1

δ

qi
. (1.1.3)

7



Our first main result is the following:

Theorem 1.1.1 Let U be defined in (A.2.1), suppose that p ∈ Z, q, 1/δ ∈
N
∗, k ∈ N ∪ {∞}, and let

ψ = (ψ1, ψ2)

and ϕ, with

ψ1 ∈ C
<−1
{0≤x≤y},∞ ∩ C

<0
{0≤x≤y},0 , ψ2, ϕ ∈ C

<−1
{0≤x≤y},∞ , (1.1.4)

be a solution on U of the following system of equations:

{
∂yϕ+Bϕϕϕ+Bϕψψ = Lϕϕϕ+ Lϕψψ + a+Gϕ
∂xψ +Bψϕϕ+Bψψψ = Lψϕϕ+ Lψψψ + b+Gψ

, (1.1.5)

with the operators

Lij = LAij∂A + xLyij∂y + xLxij∂x (1.1.6)

satisfying

Lµϕϕ ∈ xδA δ
{0≤x≤y} , Lµψϕ , L

µ
ϕψ , L

µ
ψψ ∈ A

δ
{0≤x≤y} (1.1.7)

(no symmetry hypotheses are made on the matrices Lµij), while

Bϕϕ ∈ C∞(U ) + xδA δ
{0≤x≤y} , Bϕψ, Bψψ , Bψϕ ∈ A δ

{0≤x≤y} ,(1.1.8)

a, b ∈ x−1+δA δ
{0≤x≤y} , (1.1.9)

ϕ|x=y = ϕ̊ ∈ x−1+δA δ
{x=0} , ψ|x=y = ψ̊ ∈ x−1+δA δ

{x=0} . (1.1.10)

If the non-linear terms Gϕ, Gψ satisfy the NL-condition, then

(ψ,ϕ) ∈ A
δ
{0≤x≤y} × xδ−1A δ

{0≤x≤y} ;

more precisely

ψ ∈ xδA δ
{0≤x≤y} +A

δ
{y=0} , (1.1.11a)

ϕ ∈ xδ−1A δ
{x=0} + xδ−1yA δ

{0≤x≤y} . (1.1.11b)

In particular for any τ > 0 we have

(ψ,ϕ)|{y≥τ} ∈ A
δ
{x=0} × xδ−1A δ

{x=0} ,

which shows that the solution is polyhomogeneous with respect to {x = 0}
on {y ≥ τ}.

8



Proof: This theorem is a generalization of the semi-linear case, Theorem
3.7 of [19], and we will follow step by step the proof given there.

By hypothesis we have

Bϕϕ = B̊ϕϕ +Bδ
ϕϕ with B̊ϕϕ ∈ C∞(U ) and Bδ

ϕϕ ∈ A
δ
{0≤x≤y} .

We rewrite the system (1.1.5) as:

{
∂yϕ+ B̊ϕϕϕ = cϕ

∂xψ = cψ
(1.1.12)

with
{

cϕ = Lϕϕϕ+ Lϕψψ + a+Gϕ −Bδ
ϕϕϕ−Bϕψψ

cψ = Lψϕ1ϕ+ Lψψψ + b+Gψ −Bψϕϕ−Bψψψ
. (1.1.13)

The first step in the proof is to prove the following:

Lemma 1.1.2 Under the hypotheses of Theorem 1.1.1, we have:

ψ ∈ C
<0
{0≤x≤y},∞ + xδA δ

{0≤x≤y} +A
δ
{y=0} (1.1.14a)

ϕ ∈ C
<−1+δ
{0≤x≤y},∞ + xδ−1yA δ

{0≤x≤y} + xδ−1A δ
{x=0} . (1.1.14b)

Proof: Integration of the second equation of (1.1.12) yields:

ψ(x, vA, y) = ψ(y, vA, y) +

∫ x

y
cψ(s, v

A, y)ds

= ψ̊(y, vA) +

∫ x

y
b(s, vA, y)ds

+

∫ x

y
{Lψϕϕ+ Lψψψ −Bψϕϕ−Bψψψ +Gψ} (s, vA, y)ds .

By hypotheses, we have: ψ̊ ∈ A δ
{y=0} and b ∈ xδ−1A δ

{0≤x≤y}, we
deduce from Proposition A.6.2 that

I1(b) = −
∫ x

y
b(s, vA, y)ds ∈ xδA δ

{0≤x≤y} + yδA δ
{y=0}.

If we set ψ0,phg = ψ̊ + I1(b) then, we have:

ψ = ψ0,phg + ψǫ,1 + ψǫ,2 ,

9



with

ψ0,phg ∈ xδA δ
{0≤x≤y} + yδA δ

{y=0} +A
δ
{y=0} (1.1.15a)

ψǫ,1 :=

∫ x

y
{Lψϕϕ+ Lψψψ −Bψϕϕ−Bψψψ} (s, vA, y)ds (1.1.15b)

ψǫ,2 :=

∫ x

y
Gψ(s, v

A, y)ds . (1.1.15c)

Since the space C
<θ
{0≤x≤y},∞ is invariant under the operators ∂A, x∂x and

x∂y, and since we have the embedding

A
δ
{0≤x≤y} ⊂ C

<0
{0≤x≤y},∞ ,

one obtains that

Lψϕϕ, Lψψψ, Bψϕϕ, Bψψψ ∈ C
<−1
{0≤x≤y},∞, (1.1.16)

and from Lemma A.6.3, we deduce that:

ψ1,ǫ ∈ C
<0
{0≤x≤y},∞ . (1.1.17)

On the other hand, recall

Gψ(z) =

N∑

i=0

x−piδHiψ(z, x
qiδω).

Let ǫ > 0, if we apply (A.3.5) page 196 to Hiψ with k = i = 0, one obtains:

‖x−piδHiψ(z, x
qiδω)‖L∞(U ) = ‖x−piδHiψ(z, x

qiδ− ǫ
mi x

ǫ
miw)‖L∞(U )

≤ Cx−piδ‖xqiδ−
ǫ

mi x
ǫ

miw‖mi

L∞(U )

≤ Cx(−pi+qimi)δ−ǫ .

We recall that from (1.1.4) we have w ∈ C
<0
{0≤x≤y},0(U ) which implies that

xǫw is in L∞(U ); thus,

x−piδHiψ(z, x
qiδω) = O(x(−pi+qimi)δ−ǫ) (1.1.18)

and

ψǫ,2 =

∫ x

y

N∑

i=0

x−piδHiψ(s, y, v
A, sqiδω)︸ ︷︷ ︸

O(s−piδ+qimiδ−ǫ)

ds

=

N∑

i=0

{
O(x(−pi+qimi)δ−ǫ+1) +O(y(−pi+qimi)δ−ǫ+1)

}
.
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Since (−pi + qimi)δ + 1 > 0 , we have

ψǫ,2 = O(x−ǫ) +O(y−ǫ) = O(x−ǫ)

and we obtain that,
ψ − ψ0,phg = O(x−ǫ) , (1.1.19)

i.e.

ψ ∈ C
<0
{0≤x≤y},0 + xδA δ

{0≤x≤y} + yδA δ
{y=0} +A

δ
{y=0}

⊂ C
<0
{0≤x≤y},0 + xδA δ

{0≤x≤y} +A
δ
{y=0}.

We would like to have the same estimations on the first order derivatives of
ψ − ψ0,phg. From (1.1.16) and (1.1.18) we have

x∂x(ψ − ψ0,phg) = x
[
Lψϕϕ + Lψψψ − Bψϕϕ − Bψψψ +Gψ

]
∈ C

<0
{0≤x≤y},0 ,

i.e.
x∂x(ψ − ψ0,phg) = O(x−ǫ), ∀ǫ > 0.

We have,

y∂y(∂xψ) = y∂y[Lψϕϕ+ Lψψψ −Bψϕϕ−Bψψψ + b + Gψ] .

Again (1.1.16), gives

y∂y[Lψϕϕ+ Lψψψ −Bψϕϕ−Bψψψ] ∈ C
<−1
{0≤x≤y},∞ ;

and from (1.1.8) we have

y∂y(b) ∈ x−1+δA δ
{0≤x≤y} ⊂ C

<−1+δ
{0≤x≤y},∞ .

On the other hand,

y∂y(Gψ) =
N∑

i=0

x−piδy∂y(Hiψ(z, x
qiδw)) .

Recall that
w = (f̄ , x2∂xf, x

2∂yf, x∂Af) =
(
wj

)12
j=1

thus

y∂y(Gψ) =
N∑

i=0

x−piδ(y∂yHiψ)(z, x
qiδw)

+

N∑

i=0

12∑

j=1

x−(pi−qi)δ
∂Hiψ

∂wj
(z, xqiδw)y∂y(wj) (1.1.20)

= A+B .
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A can be estimated as follows: ∀ǫ > 0,

|x−piδ(y∂yHiψ)(z, x
qiδw)| ≤ C̄x−piδ‖Hiψ(., x

qiδ− ǫ
mi x

ǫ
miw)‖C 0

{0≤x≤y},1−0

≤ C̄x−piδ‖xqiδ−
ǫ

mi x
ǫ

miw‖mi
L∞

≤ C̄x−piδ+qimiδ−ǫ .

Which implies that,

A =

N∑

i=1

O(x−piδ+qimiδ−ǫ) = O(x−1−ǫ) since − piδ + qimiδ > −1.

If we use again the hypothesis (A.3.5) with k = i = 1 , we find that

∂Hiψ

∂wj
(z, xqiδw) = O(xqimiδ−qiδ−ǫ) .

For
j 6= 1, y∂ywj ∈ C

<0
{0≤x≤y},∞

thus,

N∑

i=0

12∑

j=2

x−(pi−qi)δ
∂Hiψ

∂wj
(z, xqiδw)y∂y(wj) =

N∑

i=0

O(x(−pi+qimi)δ−ǫ) (1.1.21)

We can then write

B = O(x−1−ǫ) +K(z)(y∂y)ψ1 (1.1.22)

where K is a sum of terms each of which being of order O(x(−pi+q
′
im
′
i)δ−ǫ)

with pi, qi and mi satisfying (1.1.3). We obtain finally the equation

∂x(y∂yψ) +K(xµ)(y∂yψ1) = O(x−1−ǫ), (1.1.23)

and Lemma A.2.4 apply to this equation gives

y∂yψ = O(x−ǫ). (1.1.24)

Since ∂Aψ can be estimated in the same way, we have shown that:

ψ ∈ xδA δ
{0≤x≤y} + yδA δ

{y=0} +A
δ
{y=0} + C

<0
{0≤x≤y},1(U )

⊂ xδA δ
{0≤x≤y} +A

δ
{y=0} + C

<0
{0≤x≤y},1(U ) .
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We pass now to the analysis of ϕ .
ϕ can be calculated as:

ϕ(x, vA, y) = R(x, vA; y, x)ϕ(x, vA, x) +

∫ y

x
R(x, vA; s, x)cϕ(x, v

A, s)ds

(1.1.25)
where R(x, vA; y, y1) is the family of resolvents (smooth up to boundary in all
variables) of the family of ODE’s ∂yϕ(x, v

A; y) = B̊ϕ,ϕ(x, v
A; y)ϕ(x, vA; y),

with parameters (x, vA) and with initial value at y1. By hypothesis we have
ϕ(x, vA, x) = ϕ̊(x, vA) ∈ x−1+δA δ

{x=0} which implies that the first term

Rϕ̊ is in x−1+δA δ
{x=0}.

On the other hand we recall that: cϕ = Lϕϕϕ + Lϕψψ + a +Gϕ − Bδ
ϕϕϕ−

Bϕψψ .
By hypothesis, a ∈ x−1+δA δ

{0≤x≤y}, and from (1.1.7) we have, Lµϕϕ ∈
xδA δ

{0≤x≤y} ⊂ C
<δ
{0≤x≤y},∞ . Thus,

(LAϕϕ∂A + xLxϕϕ∂x + xLyϕϕ∂y)ϕ ∈ C
<−1+δ
{0≤x≤y},∞ .

To estimate the terms of Lϕψψ, we proceed in a similar way, using the
supplementary hypothesis that ψ ∈ C

<0
{0≤x≤y},1 and obtain that

Lϕψψ ∈ C
<0
{0≤x≤y},0(U ).

On the other hand, Bδ
ϕϕϕ ∈ C

<−1+δ
{0≤x≤y},∞(U ), Bϕψψ ∈ C

<0
{0≤x≤y},1(U ).

Now,

Gϕ(z) =
N∑

i=0

x−piδHiϕ(z, x
qiδz)

and as in (1.1.18) we have :

Gϕ =

N∑

i=0

O(x(−pi+qimi)δ−ǫ) = O(x−1−ǫ+δ),∀ǫ > 0. (1.1.26)

The last equality follows from the following

Remark 1.1.3 mi >
pi− 1

δ
qi

=⇒ qimi − pi > −1
δ and since qimi − pi and

−1
δ are integers, we have, qimi−pi ≥ −1

δ + 1 =⇒ (qimi−pi)δ ≥ −1 + δ.

Thus, ∀ǫ > 0, we can write , cϕ = cϕ, phg + cϕ, ǫ with

cϕ, phg ∈ xδ−1A δ
{0≤x≤y} (1.1.27)
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and
cϕ,ǫ = O(x−1+δ−ǫ) . (1.1.28)

If we come back to the expression of ϕ we have:

ϕ(x, vA, y) = R(x, vA; y, x)ϕ(x, vA, x) +

∫ y

x
R(x, vA; s, x)cϕ,phg(x, v

A, s) ds

︸ ︷︷ ︸
:=ϕ0,phg

+

∫ y

x
R(x, vA; s, x)cϕ,ǫ(x, v

A, s)︸ ︷︷ ︸
=O(x−1+δ−ǫ)

ds.

Now, we have
Rϕ̊ ∈ xδ−1A δ

{x=0}

Rcϕ,phg ∈ xδ−1A δ
{0≤x≤y} thus, from Proposition A.6.2, we have

I2(Rcϕ,phg) ∈ xδ−1yA δ
{0≤x≤y} + xδA δ

{x=0}.

Therefore,
ϕ− ϕ0,phg = O(x−1+δ−ǫ)

with

ϕ0,phg ∈ xδ−1A δ
{x=0} + xδ−1yA δ

{0≤x≤y}.

At this stage we have proved that

ψ ∈ xδA δ
{0≤x≤y} + yδA δ

{y=0} + A
δ
{y=0} + C

<0
{0≤x≤y},1(U ) (1.1.29a)

ϕ ∈ xδ−1A δ
{x=0} + xδ−1yA δ

{0≤x≤y} + C
<−1+δ
{0≤x≤y},0 . (1.1.29b)

As in the proof of theorem 3.1 of [19], we have the following

Lemma 1.1.4 Under the hypothesis of the theorem 1.1.1, the fields

ϕ̃ :=




ϕ
∂Aϕ
x∂xϕ
y∂yϕ


 ; ψ̃ :=




ψ
∂Aψ
x∂xψ
y∂yψ


 (1.1.30)

satisfy a system of equations of the form (1.1.5), with coefficients Lij , Bij
and sources ã, b̃, G̃ϕ , G̃ψ satisfying the hypothesis of the main theorem,
with ψ̃1 ∈ (C<−1

{0≤x≤y},∞ + C
<0
{0≤x≤y},0)(U ) , ψ̃2, ϕ̃ ∈ C

<−1
{0≤x≤y},∞(U ) and

ϕ̃|{y=x} ∈ x−1+δA δ
{x=0}, ψ̃|{y=x} ∈ A δ

{x=0} .
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Proof: The original system can be written as:

{
∂yϕ = c̊ϕ := cϕ − B̊ϕϕϕ

∂xψ = cψ
. (1.1.31)

Thus, differentiating ϕ̃ and ψ̃ leads to:

∂yϕ̃ =




c̊ϕ
∂Ac̊ϕ
x∂xc̊ϕ

c̊ϕ + y∂y c̊ϕ


 and ∂xψ̃ =




cψ
∂Acψ

cψ + x∂xcψ
y∂ycψ


 . (1.1.32)

We want to obtain a system of the form
{

∂yϕ̃+ Bϕϕϕ̃+ Bϕψψ̃ = Lϕϕϕ̃+ Lϕψψ̃ + ã+ G̃ϕ̃
∂xψ̃ + Bψϕϕ̃+ Bψψψ̃ = Lψϕϕ̃+ Lψψψ̃ + b̃+ G̃ψ̃

with Lµij and Bij having the same structure as in (1.1.6)-(1.1.7), and

G̃ϕ̃, G̃ψ̃ satisfying the NL− condition . Following the proof of Lemma 3.5

of [19], one easily obtains the coefficients Lµij, Bij, ã and b̃ of the linear
terms, and verify that they are in the right spaces. It remains to show that
the non-linear terms satisfy the NL− condition. We have

G̃ϕ =




Gϕ
∂BGϕ
x∂xGϕ

Gϕ + y∂yGϕ


 and G̃ψ =




Gψ
∂BGψ

Gψ + x∂xGψ
y∂yGψ


 . (1.1.33)

We write,

f̃ = (ψ̃ = (ψ̃1, ψ̃2), ϕ̃), and we set ¯̃f := (ψ̃1, xψ̃2, xϕ̃) and w̃ :=
( ¯̃f, x2∂xf̃ , x2∂y f̃ , x∂Af̃

)

and we notice that, all the terms in w are in w̃. Thus, a function of w can
be considered as a function of w̃. On the other hand,

∂Bw =
(
∂B(f̄), x

2∂x(∂Bf), x
2∂y(∂Bf), x∂A(∂Bf)

)

= A1
tw̃

where the coefficients of the rectangular matrix A1 are all equal to 0 or 1,
and tw̃ is the transpose of w . Similarly,

y∂yw =
(
y∂y(f̄), x

2∂x(y∂yf), x
2∂y(y∂yf)− x2∂yf, x∂A(y∂yf)

)

= A2
tw̃
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where again the coefficients of the rectangular matrix A2 are all equal to
−1,0 or 1. Continuing this way,

x∂xw =
(
x∂x(f̄), x(x∂xf) + x2∂x(x∂xf), 2x

2∂yf + x2∂y(x∂xf), x∂Af + x∂A(x∂xf)
)

= A3
tw̃

where the coefficients of the rectangular matrix A3 are all equal to 0, 1 or
2. Now, we have

∂B{Gϕ(z)} =

N∑

i=0

x−piδ(∂BHiϕ)(z, x
qiδw)

+

N∑

i=0

12∑

j=1

x−(pi−qi)δ
∂Hiϕ

∂wj
(z, xqiδw)∂Bw

=
N∑

i=0

x−piδ(∂BHiϕ)(z, x
qiδw)

+

N∑

i=0

12∑

j=1

x−piδ
∂Hiϕ

∂wj
(z, xqiδw)xqiδ

(
A1

tw̃t
)
j

= A+B . (1.1.34)

From the definition of A δ
{0≤x≤y}-polyhomogeneous in z with a uniform

zero of order ℓ, we conclude that A has the desired form.

From (A.3.5) of Definition A.3.8,
∂Hiϕ

∂wj
is A δ

{0≤x≤y}-polyhomogeneous in

z with a uniform zero of order mi−1 in w and then
∂Hiϕ

∂wj
(z, xqiδw)

(
A1

tw̃
)
j

is A δ
{0≤x≤y}-polyhomogeneous in z with a uniform zero of order mi in w̃, this

allows us to conclude that B has the desired structure, thus ∂BGϕ satisfies

the NL − condition i.e. ∂BGϕ =
N∑
i=0

x−piδHiϕ(x
qiδw̃) where the Hiϕ’s are

A δ
{0≤x≤y}-polyhomogeneous in z with a uniform zero of order mi in w̃.

The same analysis holds for

y∂y(Gψ) =
N∑

i=0

x−piδ(y∂yHiψ)(z, x
qiδw)

+

N∑

i=0

12∑

j=1

x−(pi−qi)δ
∂Hiψ

∂wj
(z, xqiδw)y∂y(wj).
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As far as the term x∂xGϕ is concerned we notice that it has supplementary
terms:

x∂x(Gϕ) =
N∑

i=0

−pδx−piδHiψ(z, x
qiδw) +

N∑

i=0

x−piδ(x∂xHiϕ)(z, x
qiδw)

+

N∑

i=0

12∑

j=1

x−(pi−qi)δ
∂Hiϕ

∂wj
(z, xqiδw)(x∂xwj)

+
N∑

i=0

12∑

j=1

qiδx
−(pi−qi)δ ∂Hiϕ

∂wj
(z, xqiδw)wj .

The above analysis holds for each term of this expression, and we conclude
that G̃ϕ satisfies the NL − condition. Similarly, G̃ψ satisfies the NL −
condition.

The last step in the proof of this lemma is to show that the restriction
to the hypersurface {y = x} of ϕ̃, and ψ̃ are in the right spaces. We proceed
exactly as in [19]. The difference here is that we have supplementary terms
coming from the nonlinearity of the problem at hand. We have to make sure
that these terms will have the right structure.

For the components ϕ, ψ, ∂Aϕ, and ∂Aψ this is again hypothesis (1.1.10).
Therefore it remains to show that x∂xϕ, y∂yϕ, x∂xψ, y∂yψ ∈ x−1+δA δ

{x=0}.

From the second equation of (1.1.31), we have

ψ(x, v, y) = ψ̊(y, v) +

∫ y

x
cψ(s, v, y)ds

which implies that

∂yψ(, v, y) = ∂yψ̊(y, v) − cψ(x, v, y) +
∫ x

y
∂ycψ(s, v, y)ds . (1.1.35)

Now, we take the limit x→ y in (1.1.35) to obtain

y∂yψ|S = y(∂yψ̊)− ycψ|S . (1.1.36a)

Similarly from

ϕ(x, vA, y) = ϕ(x, vA, x)︸ ︷︷ ︸
ϕ̊(x,vA)

+

∫ y

x
c̊ϕ(x, v

A, s) ds .
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we find (again for x = y)

x∂xϕ|S = x(∂xϕ̊)− x̊cϕ|S . (1.1.36b)

Equations (1.1.5) further give

y(∂xψ)|S = ycψ|S , (1.1.36c)

y(∂yϕ)|S = yc̊ϕ|S . (1.1.36d)

The terms y(∂xψ̊)(y, v
A) and y(∂xϕ̊)(y, v

A) in (1.1.36a)-(1.1.36b) are in
y−1+δA δ

{y=0}. Now,

yc̊ϕ|S = y(Lϕϕϕ+ Lϕψψ + a+Gϕ −Bϕϕϕ−Bϕψψ)|S .

The restrictions to S of the terms a, Bϕϕϕ, Bϕψψ and the derivatives of
ϕ and ψ with respect to vA, give a contribution which is in y−1+δA δ

{y=0}.
As far as the restriction to S of Gϕ is concerned, we use Lemma A.3.9
and obtain again a contribution which is in y−1+δA δ

{y=0}. The remaining

terms are of the form y(∂yψ)|S , y(∂yϕ)|S , y(∂xψ)|S , y(∂xϕ)|S multiplied
by coefficients from A δ

{y=0}. The same analysis applies to ycψ|S , so that we

can write the system of equations (1.1.36) as

(Id− yK)




y(∂yψ)|S
y(∂yϕ)|S
y(∂xψ)|S
y(∂xϕ)|S


 ∈ y−1+δA δ

{y=0} .

Here K is a matrix with components in A δ
{y=0}. There exists ǫ > 0 so that

for 0 ≤ y < ǫ the matrix Id − yK has an inverse in Id + yA δ
{y=0}, and

polyhomogeneity (with appropriate power structure) of the initial data for
(ϕ̃, ψ̃) follows. �

Thus, applying Lemma 1.1.4 , we have again (1.1.29) with ϕ̃ and ψ̃
instead of ϕ and ψ i.e.

ψ̃ ∈ xδA δ
{0≤x≤y} + yδA δ

{y=0} + A
δ
{y=0} + C

<0
{0≤x≤y},1 (1.1.37a)

ϕ̃ ∈ xδ−1A δ
{x=0} + xδ−1yA δ

{0≤x≤y} + C
<−1+δ
{0≤x≤y},0 (1.1.37b)

and from Proposition A.3.7 one obtains that

ψ ∈ xδA δ
{0≤x≤y} + yδA δ

{y=0} +A
δ
{y=0} + C

<0
{0≤x≤y},2 (1.1.38a)
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ϕ ∈ xδ−1A δ
{x=0} + xδ−1yA δ

{0≤x≤y} + C
<−1+δ
{0≤x≤y},1 . (1.1.38b)

Continuing this way, we obtain

ψ ∈ xδA δ
{0≤x≤y} + yδA δ

{y=0} +A
δ
{y=0} + C

<0
{0≤x≤y},∞ (1.1.39a)

ϕ ∈ xδ−1A δ
{x=0} + xδ−1yA δ

{0≤x≤y} + C
<−1+δ
{0≤x≤y},∞ (1.1.39b)

and the proof is complete. �

To next step of the proof of the main theorem, is to show that for all
integers k, we can decompose ϕ and ψ in the following way:

ϕ = ϕ1,k︸︷︷︸
∈xδ−1A δ

{x=0}
+xδ−1yA δ

{0≤x≤y}

+ ϕ2,k︸︷︷︸
∈A δ

{x=0}
,
⊕̇

ix
iδF̊

<kδ−1+δ−iδ
{0≤x≤y},∞

+ ϕ3,k︸︷︷︸
∈T

<kδ−1+δ,(0;0)
{0≤x≤y},∞

,

(1.1.40)
ψ = ψ1,k︸︷︷︸

∈A δ
{y=0}

+xδA δ
{0≤x≤y}

+ ψ2,k︸︷︷︸
∈A δ

{x=0}
,
⊕̇

ix
iδF̊

<kδ−iδ
{0≤x≤y},∞

+ ψ3,k︸︷︷︸
∈T

<kδ,(0;0)
{0≤x≤y},∞

. (1.1.41)

The embeddings

C
<0
{0≤x≤y},∞ ⊂ T

<0,(0;0)
{0≤x≤y},∞, C

<−1+δ
{0≤x≤y},∞ ⊂ T

<−1+δ,(0;0)
{0≤x≤y},∞

and Equations (1.1.38) justify the case k = 0 of the induction, where ϕ2,0 = 0
and ψ2,0 = 0.
We suppose now that (1.1.40) and (1.1.41) hold for an integer k and we want
to show that these decompositions also hold for k replaced by k + 1 there .
From (1.1.40) we have

xϕ ∈ xδyA δ
{0≤x≤y} + xδA δ

{x=0} +A
δ
{x=0},

⊕̇
ix

iδ+1F̊
<kδ−1+δ−iδ
{0≤x≤y},∞

+T
<kδ+δ,(0;0)
{0≤x≤y},∞ .

Note that if we set iδ + 1 =: jδ then −iδ = +1− jδ and the above equation
can be written as

xϕ ∈ xδyAδ{0≤x≤y} + xδA δ
{x=0} +A

δ

{x=0},
⊕̇

ix
iδF̊

<(k+1)δ−iδ
{0≤x≤y},∞

+T
<(k+1)δ,(0;0)
{0≤x≤y},∞ .

(1.1.42)
It then follows from (a) of Lemma (A.4.3) that

f̄ = (ψ1, xψ2, xϕ) ∈ A
δ
{0≤x≤y} +A

δ
{x=0},

⊕̇
ix

iδF̊
<kδ−iδ
{0≤x≤y},∞

+T
<kδ,(0;0)
{0≤x≤y},∞ .

(1.1.43)
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On the other hand, from (1.1.40) and (1.1.41)

f = (ψ1, ψ2, ϕ) ∈ xδ−1A δ
{0≤x≤y}+A

δ

{x=0},
⊕̇

ix
iδF̊

<(k+1)δ−1−iδ
{0≤x≤y},∞

+T
<(k+1)δ−1,(0;0)
{0≤x≤y},∞ ,

(1.1.44)
and since all the spaces in the above equation are invariant under x∂x, x∂y
and ∂A, we have:

(x2∂xf, x
2∂yf, x∂Af) ∈ xδA δ

{0≤x≤y}+A
δ

{x=0},
⊕̇

ix
iδF̊

<(k+1)δ−iδ
{0≤x≤y},∞

+T
<(k+1)δ,(0;0)
{0≤x≤y},∞ .

(1.1.45)
Thus, from (1.1.43) and (1.1.45), we have,

w ∈ A
δ
{0≤x≤y} +A

δ
{x=0},

⊕̇
ix

iδF̊
<kδ−iδ
{0≤x≤y},∞

+T
<kδ,(0;0)
{0≤x≤y},∞ . (1.1.46)

It then follows from Lemma A.4.4 that

x−piδHiψ(., x
qiδw) ∈ x(−pi+qimi)δA

δ
{0≤x≤y} + A

δ
{x=0},

⊕̇
jx

(−pi+qimi+j)δF̊
<kδ−jδ
{0≤x≤y},∞

+ T
<(−pi+qimi+k)δ,(0;0)
{0≤x≤y},∞ . (1.1.47)

Applying Propositions A.6.2, A.6.5 and A.6.7 we obtain the following:

I1
(
x−piδHiψ(., x

qiδw)
)
∈ y(miqi−pi)δ+1

A
δ
{y=0} + x(miqi−pi)δ+1

A
δ
{0≤x≤y}

+A
δ
{x=0},

⊕̇
jx

(j+miqi−pi)δ+1F̊
<kδ−jδ
{0≤x≤y},∞

+T
<(k+miqi−pi)δ+1,(0;0)
{0≤x≤y},∞ + yǫF̊

<(k+miqi−pi)δ+1
{0≤x≤y},∞

. (1.1.48)

Using again the inequality (−pi + qimi)δ + 1 ≥ δ, one obtains:

I1
(
x−piδHiψ(., x

qiδw)
)
∈ yδA δ

{y=0} + xδA δ
{0≤x≤y} +A

δ
{x=0},

⊕̇
ix

(i+1)δF̊
<kδ−ǫ−iδ
{0≤x≤y},∞

+T
<(k+1)δ,(0;0)
{0≤x≤y},∞ + yǫ/2F̊

<(k+1)δ
{0≤x≤y},∞ .

The embedding yǫ/2F̊ (k+1)δ−ǫ = yǫ/2F̊ (k+1)δ−ǫ/2−ǫ/2 ⊂ F̊ (k+1)δ−ǫ (see part
(b) of Proposition A.4.3) gives:

I1
(
x−piδHiψ(., x

qiδw)
)
∈ yδA δ

{y=0} + xδA δ
{0≤x≤y} +A

δ

{x=0},
⊕̇

ix
iδF̊

<(k+1)δ−iδ
{0≤x≤y},∞

+T
<(k+1)δ,(0;0)
{0≤x≤y},∞ . (1.1.49)
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Recall that

ψ(x, vA, y) = ψ0,phg(x, v
A, y)+

∫ x

y
{L21ϕ+ L22ψ −Bψϕϕ−Bψψψ +Gψ} (s, vA, y)ds ,

thus
ψ = ψ0,phg + I1(Lψϕϕ+ Lψψψ −Bψϕϕ−Bψψψ +Gψ) .

Equation (1.1.49) shows that I1(Gψ) gives a contribution in ψ1,k+1, ψ2,k+1and
ψ3,k+1 . Therefore it remains to show that the same works for ψ0,phg +
I1(Lψϕϕ+ Lψψψ −Bψϕϕ−Bψψψ) . We proceed exactly as in [19].

Integrating the equation for ψ and using Propositions A.6.2, A.6.5 and
A.6.7 one finds

ψ(x, vA, y) = ψ0,phg(x, v
A, y) + I1

(
Lψϕϕ1,k + Lψψψ1,k −Bψϕϕ1,k −Bψψψ1,k

)

︸ ︷︷ ︸
=:ψ1,k+1∈xβ+1A δ

{0≤x≤y}
+yβA δ

{0≤x≤y}

+ I1

(
Lψϕϕ2,k + Lψψψ2,k −Bψϕϕ2,k −Bψψψ2,k

)

︸ ︷︷ ︸
∈A δ

{x=0},⊕̇ix
iδF̊

kδ+1−ǫ−iδ
{0≤x≤y},∞

⊂A δ

{x=0},⊕̇ix
iδF̊

(k+1)δ−ǫ−iδ
{0≤x≤y},∞

+ I1

(
Lψϕϕ3,k + Lψψψ3,k −Bψϕϕ3,k −Bψψψ3,k

)

︸ ︷︷ ︸
∈F̊

kδ+1−ǫ
{0≤x≤y},∞

+T
kδ+1−ǫ,(0;0)
{0≤x≤y},∞

⊂F̊
(k+1)δ−ǫ
{0≤x≤y},∞

+T
(k+1)δ−ǫ,(0;0)
{0≤x≤y},∞

, (1.1.50)

showing that the result is true for ψ with k replaced by k+1. Thus (1.1.41)
holds for k replaced by k + 1,

i.e. ψ = ψ1,k+1︸ ︷︷ ︸
∈A δ

{y=0}
+xδA δ

{0≤x≤y}

+ ψ2,k+1︸ ︷︷ ︸
∈A δ

{x=0}
,
⊕̇

ix
iδF̊

<(k+1)δ−iδ
{0≤x≤y},∞

+ ψ3,k+1︸ ︷︷ ︸
∈T

<(k+1)δ,(0;0)
{0≤x≤y},∞

.

(1.1.51)
Equations (1.1.42) and (1.1.51) show that, (1.1.43) holds with k replaced by
k+1,

i.e. f̄ = (ψ1, xψ2, xϕ) ∈ A
δ
{0≤x≤y}+A

δ

{x=0},
⊕̇

ix
iδF̊

<(k+1)δ−iδ
{0≤x≤y},∞

+T
<(k+1)δ,(0;0)
{0≤x≤y},∞ .

(1.1.52)
(1.1.45) and (1.1.52) show that (1.1.46) holds for k replaced by k + 1

i.e. w ∈ A
δ
{0≤x≤y} +A

δ

{x=0},
⊕̇

ix
iδF̊

<(k+)δ−iδ
{0≤x≤y},∞

+T
<(k+1)δ,(0;0)
{0≤x≤y},∞ . (1.1.53)
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We want now to show that we can obtain (1.1.40) with k replaced by k + 1
there. Recall (1.1.25):

ϕ(x, vA, y) = R(x, vA; y, x)ϕ(x, vA, x) +

∫ y

x
R(x, vA; s, x)cϕ(x, v

A, s)ds,

i.e.

ϕ = Rϕ̊+ I2[R(Lϕϕϕ+ Lϕψψ + a+Gϕ −Bδ
ϕϕϕ−Bϕψψ)] . (1.1.54)

R stands for the family of resolvent (smooth up to boundary in all variables)
of the family of ODE’s ∂yϕ(x, v

A; y) = B̊ϕϕ(x, v
A; y)ϕ(x, vA; y), with param-

eters (x, vA) and with initial value at y1.

•From Proposition A.6.2, I2(Ra) ∈ xδA δ
{x=0} + x−1+δyA δ

{0≤x≤y} and

since Rϕ̊ is in x−1+δA δ
{x=0}, the term Rϕ̊+ I2(Ra) will give a contribution

in ϕ1,k+1.

• As in the previous case, the analysis of the term I2(Lϕϕϕ + Lϕψψ −
Bϕψϕ−Bϕψψ) will be made as in the linear case in [19]:

Inserting (1.1.53) into (1.1.54) one similarly finds, using Propositions A.6.2
and A.6.8, that (1.1.40) with k replaced by k + 1 holds for ϕ :

ϕ(x, vA, y) = ϕ0,phg(x, v
A, y) + I2

[
R ·

(
Lϕϕϕ1,k + Lϕψψ1,k −Bδ

ϕϕϕ1,k −Bϕψψ1,k

)]

︸ ︷︷ ︸
=:ϕ1,k+1∈xβA δ

{0≤x≤y}
+yβA δ

{0≤x≤y}

+ I2

[
R ·

(
Lϕϕϕ2,k + Lϕψψ2,k −Bδ

ϕϕϕ2,k −Bϕψψ2,k

)]

︸ ︷︷ ︸
∈A δ

{x=0},⊕̇ix
iδF̊

(k+1)δ−iδ
{0≤x≤y},∞

+ I2

[
R ·

(
Lϕϕϕ3,k −Bδ

ϕϕϕ3,k + Lϕψψ3,k −Bϕψψ3,k︸ ︷︷ ︸
∈T

(k+1)δ−ǫ,(0;0)
{0≤x≤y},∞

)]

︸ ︷︷ ︸
∈T

(k+1)δ−ǫ,(1;1)
{0≤x≤y},∞

⊂T
(k+1)δ−ǫ,(0;0)
{0≤x≤y},∞

. (1.1.55)

• If we use again Lemma A.4.4 with 1.1.53 then, we obtain that:

x−piδHiϕ(., x
qiδw) ∈ x(−pi+qimi)δA

δ
{0≤x≤y} + A

δ

{x=0},
⊕̇

jx
(−pi+qimi+j)δF̊

<(k+1)δ−jδ
{0≤x≤y},∞

+ T
<(−pi+qimi+1+k)δ,(0;0)
{0≤x≤y},∞ . (1.1.56)
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Applying now Propositions A.6.2 and A.6.8 we obtain:

I2
(
x−piδHiϕ(., x

qiδw)
)
∈ x(miqi−pi)δ+1

A
δ
{x=0} + x(miqi−pi)δyA δ

{0≤x≤y}

+A
δ

{x=0},
⊕̇

jx
(j+miqi−pi)δF̊

<(k+1)δ−jδ
{0≤x≤y},∞

+T
<(k+1+miqi−pi)δ,(1;1)
{0≤x≤y},∞ . (1.1.57)

Using again the inequality (−pi + qimi)δ + 1 ≥ δ, one obtains:

I2
(
x−piδHiϕ(., x

qiδw)
)
∈ xδA δ

{x=0} + x−1+δyA δ
{0≤x≤y}

+A
δ

{x=0},⊕̇ix
iδ−1+δF̊

<(k+1)δ−iδ
{0≤x≤y},∞

+T
<(k+1)δ−1+δ,(0;0)
{0≤x≤y},∞ .

This shows that I2(Gϕ) will give a contribution in ϕ1,k+1, ϕ2,k+1and ϕ3,k+1 ,
thus (1.1.40) holds for k replaced by k + 1 and the induction step is com-
pleted. We then conclude that (1.1.40) and (1.1.41) hold for all integer k.
To end the proof of the main theorem, for any m ∈ N, we can choose k
large enough so that the last terms in (1.1.40) and (1.1.41) are in Cm(U ),
and that all the coefficients of an expansion of f2,k in terms of powers of
x and lnx are also in Cm(U ). The result follows now by an application of
Proposition A.3.6. Thus we have proved

ϕ ∈ xδ−1A δ
{x=0}+ x

δ−1yA δ
{0≤x≤y}+A

δ
{x=0} ⊂ xδ−1A δ

{x=0}+ x
δ−1yA δ

{0≤x≤y}

and
ψ ∈ A

δ
{y=0} + xδA δ

{0≤x≤y} +A
δ
{x=0} .

�

1.2 Propagation of the polyhomogeneity for the

Einstein-Maxwell equations

Let us show that Theorem 1.1.1 applies to the source-free Einstein-Maxwell
equations; we will make extensive appeal to [9]. More generally, consider a
system of second order wave equations of the form

ηαβ
∂2f

∂xα∂xβ
= −Hαβ(xµ, f, ∂f, ∂∂f)

∂2f

∂xα∂xβ
+ F (f, ∂f, xµ) , (1.2.1)

for a map f with values in R
N for some N , where η is the (n+1)–dimensional

Minkowski metric. (The map f in this section should not be confused with
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the map f appearing in (1.1.1), compare (1.2.37) below.) The Einstein-
Maxwell equations in the harmonic-Lorenz gauge can be written in this form,
with f := (gµν − ηµν , Aµ), then

Hµν := gµν − ηµν = ηµαηνβ(gαβ − ηαβ) + quadratic terms

depends only upon gµν − ηµν , while F is a quadratic form in ∂f with coef-
ficients depending upon gµν − ηµν ; see [37, 38, 40]. Thus, in the Einstein-
Maxwell case the source function F has a uniform zero of order two, while
the functions Hµν all have a uniform zero of order one.

1.2.1 Gauge transformation and its properties

As in [9] (in that reference one works within I+η,x(0), while in [20] the com-
plement of I+η,x(0) is considered. However, the methods of [20] apply to both
situations), and similarly to [20], we use a mapping φ : x 7→ y from the
future timelike cone with vertex 0, I+η,x(0), of a Minkowski space-time, which
we denote (Rn+1

x , ηx), into the past timelike cone with vertex 0 of another
Minkowski space-time, (Rn+1

y , ηy), defined by

φ : I+η,x(0)→ R
n+1
y by xα 7→ yα :=

xα

ηλµxλxµ
. (1.2.2)

We have the following

Proposition 1.2.1 The map φ is a bijection from I+η,x(0) onto I−y,η(0), with
inverse

φ−1 : yα 7→ xα by xα :=
yα

ηλµyλyµ
. (1.2.3)

Proof: Let (xα) ∈ I+η,x(0) and set (yα) = φ(xα). We have





ηαβx
αxβ < 0

x0 > 0

yµ = xµ

ηαβxαxβ

.

This implies that (ηαβx
αxβ)(ηµνy

µyν) = 1, and then ηµνy
µyν < 0. There-

fore yα = xα

ηλµxλxµ
implies

{
ηµνy

µyν < 0

xα = yα(ηλµx
λxµ) = yα

ηλµyλyµ
. On the other

hand, x0 = y0

ηλµyλyµ
> 0and ηµνy

µyν < 0imply that y0 < 0 . Thus

(yα) ∈ I−y,η(0) and then φ is a bijection from I+η,x(0) onto I−y,η(0) with
inverse given by (1.2.3). �
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Remark 1.2.2 We emphasize on the fact that the transformation φ maps
the hyperboloid

Ht =
{
(xα) ∈ R

n+1
x,η /x

0 − t =
√
t2 + r2

}

onto

φ(Ht) =

{
(yα) ∈ R

n+1
y,η /y

0 = − 1

2t

}
∩ I−y,η(0) .

Here t is a non-negative parameter.

We also have the following

Proposition 1.2.3 The map φ is a conformal mapping between Minkowski
metrics:

ηαβdx
αdxβ = Ω−2ηαβdy

αdyβ , (1.2.4)

where Ω is a function defined on all Rn+1
y , given by

Ω := −ηαβyαyβ . (1.2.5)

Proof: We have

dxα = d
( yα

ηλµyλyµ

)
=

∂

∂yγ

( yα

ηλµyλyµ

)
dyγ

=
−δαγΩ− 2yαηλµδ

λ
γy

µ

Ω2
dyγ .

Thus,

ηαβdx
αdxβ =

ηαβ
(
− δαγΩ− 2yαηλµδ

λ
γ y

µ
)(
− δβτ Ω− 2yβησθδ

σ
τ y

θ
)

Ω4
dyγdyτ

= Ω−2ηαβdy
αdyβ.

�

We work within I−y,η(0) and to the future of a hypersurface

Sτ0 := {y0 = τ0} , τ0 < 0 ,

where we set

ρ ≡ |~y| :=

√√√√
n∑

i=1

(yi)2 , x := −|~y| − y0 ≥ 0 , y := y0 − |~y|+ 1 ≥ 0 ,

so that we have the following
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Proposition 1.2.4 We have the following identities

Ω = x(1−y) , ∂x = −
1

2

( n∑

i=1

yi

|~y|
∂

∂yi
+

∂

∂y0

)
, ∂y = −

1

2

( n∑

i=1

yi

|~y|
∂

∂yi
− ∂

∂y0

)
,

and

yα
∂

∂yα
= (y − 1)∂y + x∂x . (1.2.6)

Proof:

Ω = −ηαβyαyβ = (y0)2 −
n∑

i=1

(yi)2 = (y0)2 − ρ2 = x(1− y) .

We introduce here the spherical coordinate on the sphere Sn−1: v1, v2, . . . , vn−1

and we set:
{

y0 = 1
2 (y − x− 1)

yi = 1
2 (1− y − x)ωi(vA), ∀i ∈ {1, . . . , n}

(1.2.7)

Note that,
n∑

i=i

(ωi)2 = 1 and

n∑

i=i

ωidωi = 0 on Sn−1. (1.2.8)

We have:

∂

∂y
=
∂yα

∂y

∂

∂yα
=

n∑

i=1

∂yi

∂y

∂

∂yi
+
∂y0

∂y

∂

∂y0
,

∂

∂x
=
∂yα

∂x

∂

∂yα
=

n∑

i=1

∂yi

∂x

∂

∂yi
+
∂y0

∂x

∂

∂y0

and since

∂y0

∂y
=
1

2
,

∂yi

∂y
= −1

2
ωi = −1

2

yi

|−→y | ,
∂y0

∂x
= −1

2
,

∂yi

∂x
= −1

2
ωi = −1

2

yi

|−→y | ,

the second and third identities follow.
Finally, from y − 1 = y0 − |~y| and x = −y0 − |~y| we have:





(y − 1) ∂∂y =
1
2

( n∑
i=1

(−y0+|~y|)yi
|~y|

∂
∂yi
− (−y0 + |~y|) ∂

∂y0

)

x ∂
∂x =

1
2

( n∑
i=1

(y0+|~y|)yi
|~y|

∂
∂yi

+ (y0 + |~y|) ∂
∂y0

)

and obtain that, x∂x + (y − 1)∂y = yα ∂
∂yα �

Furthermore we have
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Proposition 1.2.5 The flat d’Alembertian �η,y associated with the coordi-
nates yµ equals

�η,y = 4∂x∂y −
2(n − 1)

1− x− y
(
∂x + ∂y

)
+

4∆h

(1− x− y)2 ,

where ∆h is the canonical Laplacian on Sn−1.

Proof:

�η,y =
1√
|η|
∂µ

(√
|η|ηµν∂ν

)
= − ∂2

(∂y0)2
+

n∑

i=1

∂2

(∂yi)2
. (1.2.9)

From (1.2.7), we have,

dy0 =
1

2
(dy − dx) and dyi = −1

2
ωi(dy + dx) +

1

2
(1− x− y)dωi

thus,

(dy0)2 =
1

4

(
(dy)2 + (dx)2 − dx⊗ dy − dy ⊗ dx

)

and

(dyi)2 =
1

4
(ωi)2

(
(dy)2 + (dx)2 + dx⊗ dy + dy ⊗ dx

)

+
1

4
(1− x− y)2d(ωi)2 − 1

4
ωi(1− x− y)(dx+ dy)⊗ (dωi)

+
1

4
ωi(1− x− y)(dωi)⊗ (dx+ dy)

and then,

−(dy0)2+
n∑

i=1

(dyi)2 =
1

2
(dx⊗dy+dy⊗dx)+1

4

n∑

i=1

(1−x−y)2d(ωi)2 (1.2.10)

From this equation we deduce that, if we write η̃ = η̃αβdξ
αξβ with (ξα) =

(x, y, vA) then

(
η̃αβ

)
=




0 1
2 0 . . . 0

1
2 0 0 . . . 0
0 0
...

... 1
4 (1− x− y)2hAB

0 0




(1.2.11)
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where the hAB’s are the components of the canonical metric on Sn−1. From
the above equality we deduce that:

det
(
η̃αβ

)
= −1

4

( (1− x− y)2
4

)n−1
det(hAB) i.e.

√
|detη̃αβ | =

1

2

(1− x− y
2

)n−1√
|det(hAB)|

and

(
η̃αβ

)
=




0 2 0 . . . 0
2 0 0 . . . 0
0 0
...

...
(

4
(1−x−y)2

)
hAB

0 0




. (1.2.12)

Therefore,

�η,y =
1√
|η̃αβ |

∂µ
(√
|η̃αβ | η̃µν∂ν

)

= 2
( 2

1− x− y
)n−1 1√

|hAB |
∂µ

(1
2

(1− x− y
2

)n−1√|hAB | η̃µν∂ν
)

=
1

(1− x− y)n−1
√
|hAB |

∂µ

(
(1− x− y)n−1

√
|hAB | η̃µν∂ν

)

= 4∂x∂y −
2(n − 1)

1− x− y
(
∂x + ∂y

)
+

4∆h

(1− x− y)2 , (1.2.13)

where ∆h is the canonical Laplacian on S
n−1. It should be kept in mind that

we are interested in x small and y bounded away from one. �

We point out the following

Proposition 1.2.6 For any function f sufficiently differentiable on a neigh-
borhood of I+η,x(0), we have the following identities

∂f

∂xµ
◦ φ−1 =

(
− Ω

∂

∂yµ
− 2ηµαy

α((y − 1)
∂

∂y
+ x

∂

∂x
)
)
f ◦ φ−1 , (1.2.14)

and

∂2f

∂xλ∂xµ
◦ φ−1 =

{
x2(1− y)2 ∂2

∂yλyµ
+ 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)
2

+4x(1− y)ηθ(λyθ
∂

∂yµ)
(
(y − 1)∂y + x∂x

)

+2
(
Ωηµλ + 2yλyµ

)(
(y − 1)∂y + x∂x

)}
f ◦ φ−1.(1.2.15)

28



Proof: We have

∂f

∂xµ
◦ φ−1 = ∂(f ◦ φ−1)

∂yα
Aαµ where Aαµ :=

∂yα

∂xµ
◦ φ−1

∂yα

∂xµ
=

∂

∂xµ
( xα

ηλσxλxσ
)
=

δαµ
ηλσxλxσ

− 2
ηµσx

αxσ

(ηλσxλxσ)2
.

Thus,
Aαµ = −Ωδαµ − 2ηµσy

αyσ (1.2.16)

and we obtain (1.2.14) from (1.2.6). We emphasize the occurrence of a
factor of x in front of each derivative except ∂y. On the other hand,

∂2f

∂xλ∂xµ
=

∂

∂xλ

(
∂f

∂yα
∂yα

∂xµ

)
=

∂

∂xλ

(
∂f

∂yα

)
∂yα

∂xµ
+

∂f

∂yα
∂2yα

∂xµ∂xλ

=
∂2f

∂yα∂yβ
∂yβ

∂xλ
∂yα

∂xµ
+

∂f

∂yα
∂2yα

∂xµ∂xλ

and then,

∂2f

∂xλ∂xµ
◦φ−1 = ∂2(f ◦ φ−1)

∂yαyβ
∂yβ

∂xλ
◦φ−1 ∂y

α

∂xµ
◦φ−1+ ∂(f ◦ φ−1)

∂yα
∂2yα

∂xµ∂xλ
◦φ−1

i.e.

∂2f

∂xλ∂xµ
◦ φ−1 = ∂2(f ◦ φ−1)

∂yα∂yβ
AαµA

β
λ +

∂(f ◦ φ−1)
∂yα

∂2yα

∂xµ∂xλ
◦ φ−1 .

Next

∂2yα

∂xµ∂xλ
=

∂

∂xλ

(
∂yα

∂xµ

)

=
∂

∂xλ

(
δαµ

ηθσxθxσ
− 2

ηµτx
αxτ

(ηθσxθxσ)2

)

=
−2δαµδθληθσxσ

K2
− 2

(ηµτ δ
α
λx

τ + ηµτ δ
τ
λx

α)K2 − 4(ηθσδ
θ
λx

σ)(ηµτx
αxτ )K

K4

where K = ηθσx
θxσ = − 1

Ω , we thus deduce that,

∂2yα

∂xµ∂xλ
◦ φ−1 = 2Ωδαµηλσy

σ + 2Ωδαληµτy
τ + 2Ωηµλy

α + 8ηλσηµτy
σyαyτ

= 4Ωδα(µηλ)σy
σ + 2Ωηµλy

α + 8ηλσηµτy
σyαyτ (1.2.17)
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and then,

∂2yα

∂xµ∂xλ
◦ φ−1 ∂

∂yα
= 4Ωδα(µηλ)σy

σ ∂

∂yα
+ 2Ωηµλy

α ∂

∂yα
+ 8ηλσηµτy

σyαyτ
∂

∂yα

and since yα ∂
∂yα = (y − 1)∂y + x∂x one obtains:

∂2yα

∂xµ∂xλ
◦φ−1 ∂

∂yα
= 4Ωδα(µηλ)σy

σ ∂

∂yα
+2Ωηµλy

α ∂

∂yα
+8yλyµ ((y − 1)∂y + x∂x)

(1.2.18)
On the other hand

AαµA
β
λ = (−Ωδαµ − 2ηµσy

αyσ)(−Ωδβλ − 2ηλθy
βyθ)

= Ω2δαµδ
β
λ + 4ηµσηλθy

σyθyαyβ + 2Ω(δαµηλθy
βyθ + δβληµσy

αyσ)

This allows us to write,

AαµA
β
λ

∂2

∂yαyβ
= Ω2δαµδ

β
λ

∂2

∂yαyβ
+ 4ηµσηλθy

σyθyαyβ
∂2

∂yαyβ

+2Ω(δαµηλθy
βyθ + δβληµσy

αyσ)
∂2

∂yαyβ

= A+B + C +D

A = Ω2 ∂2

∂yλyµ

B = 4ηµσηλθy
σyθyαyβ

∂2

∂yαyβ
= 4ηµσηλθy

σyθyα
∂

∂yα
(
yβ

∂

∂yβ
)
− 4ηµσηλθδ

β
αy

σyθyα
∂

∂yβ

= 4ηµσηλθy
σyθyα

∂

∂yα
(
yβ

∂

∂yβ
)
− 4ηµσηλθy

σyθyβ
∂

∂yβ

= 4ηµσηλθy
σyθ((y − 1)∂y + x∂x)

2 − 4ηµσηλθy
σyθ((y − 1)∂y + x∂x)

C = 2Ωδαµηλθy
βyθ

∂2

∂yαyβ

= 2Ωδαµηλθy
θ ∂

∂yα
(
yβ

∂

∂yβ
)
− 2Ωδαµδ

β
αηλθy

θ ∂

∂yβ

= 2Ωηλθy
θ ∂

∂yµ
(
(y − 1)∂y + x∂x

)
− 2Ωηλθy

θ ∂

∂yµ
. (1.2.19)
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Similarly

D = 2Ωδβληµσy
αyσ

∂2

∂yαyβ
= 2Ωηµθy

θ ∂

∂yλ
(
(y − 1)∂y + x∂x

)
− 2Ωηµθy

θ ∂

∂yλ
.

(1.2.20)
Thus,

A+B + C +D = Ω2 ∂2

∂yλyµ
+ 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)
2 − 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)

−2Ωηλθyθ
∂

∂yµ
(
(y − 1)∂y + x∂x

)
+ 2Ωηλθy

θ ∂

∂yµ

−2Ωηµθyθ
∂

∂yλ
(
(y − 1)∂y + x∂x

)
+ 2Ωηµθy

θ ∂

∂yλ

= Ω2 ∂2

∂yλyµ
+ 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)
2 − 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)

+4Ωηθ(λy
θ ∂

∂yµ)
(
(y − 1)∂y + x∂x

)
− 4Ωηθ(λy

θ ∂

∂yµ)

and finally,

∂2f

∂xλ∂xµ
◦ φ−1 = {Ω2 ∂2

∂yλyµ
+ 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)
2 − 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)

+4Ωηθ(λy
θ ∂

∂yµ)

(
(y − 1)∂y + x∂x

)
− 4Ωηθ(λy

θ ∂

∂yµ)

+4Ωδα(µηλ)σy
σ ∂

∂yα
+ 2Ωηµλy

α ∂

∂yα
+ 8yλyµ((y − 1)∂y + x∂x)}f ◦ φ−1

(1.2.21)

i.e.

∂2f

∂xλ∂xµ
◦ φ−1 =

{
Ω2 ∂2

∂yλyµ
+ 4ηµσηλθy

σyθ((y − 1)∂y + x∂x)
2

+4Ωηθ(λy
θ ∂

∂yµ)
(
(y − 1)∂y + x∂x

)

+2
(
Ωηµλ + 2yλyµ

)(
(y − 1)∂y + x∂x

)}
f ◦ φ−1.

�

1.2.2 Application of the main Theorem

The general relation between the wave operator on scalar functions in two
conformal metrics transforms the left-hand-side of (1.2.1) into the following
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partial differential operator

ηαβ
∂2(Ω−

n−1
2 f ◦ φ−1)

∂yα∂yβ
≡ Ω−

n+3
2 (ηαβ

∂2f

∂xα∂xβ
) ◦ φ−1 . (1.2.22)

We introduce the following new set of scalar functions on R
n+1
y

f̂ := Ω−
n−1
2 f ◦ φ−1 i.e. f ◦ φ−1 = Ω

n−1
2 f̂ , (1.2.23)

so that the system (1.2.1) reads

ηαβ
∂2f̂

∂yα∂yβ
= −Ω−n+3

2

{
Hαβ(x, f, ∂f, ∂∂f)

∂2f

∂xα∂xβ
− F (f, ∂f)

}
◦ φ−1 ,
(1.2.24)

and we need to analyze the structure of the right-hand side. We have the
following:

Proposition 1.2.7 The set of functions f̂ satisfies the following identity:

∂2f

∂xλ∂xµ
◦ φ−1 =

(
x(1− y)

)n−1
2

{
x2(1− y)2 ∂2

∂yλ∂yµ
+ 4x(1 − y)ηα(λyα

∂

∂yµ)
(x∂x + (y − 1)∂y)

+4yλyµ((y − 1)∂y + x∂x)
2 + 2(n − 1)x(1 − y)yαηα(λ

∂

∂yµ)

+
[
4nyλyµ + 2x(1− y)ηλµ

]
((y − 1)∂y + x∂x)

+(n− 1)
[
(n+ 1)yλyµ + x(1− y)ηλµ

]
}
f̂ . (1.2.25)

Proof: We have to write the four terms of identity (1.2.15) with f ◦ φ−1
there replaced by f̂ . Since

∂Ω

∂yα
= −2yα and yα

∂Ω

∂yα
= 2Ω (1.2.26)

we have

∂(f ◦ φ−1)
∂yα

≡ ∂(Ω
n−1
2 f̂)

∂yα
= Ω

n−1
2

∂f̂

∂yα
+ (1− n)Ωn−3

2 yαf̂ (1.2.27)

and differentiating a second time with respect to yβ we obtain

∂2(f ◦ φ−1)
∂yα∂yβ

≡ Ω
n−1
2

∂2f̂

∂yα∂yβ
− (n− 1)Ω

n−3
2

(
yβ

∂f̂

∂yα
+ yα

∂f̂

∂yβ

)

+
(1− n)

2
Ω

n−5
2 Dαβ f̂ ,
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with
Dαβ := 2(3 − n)yαyβ + 2Ωηαβ . (1.2.28)

Thus the first term of (1.2.15) is

Ω2∂
2(f ◦ φ−1)
∂yλ∂yµ

≡ Ω
n+3
2

∂2f̂

∂yλ∂yµ
− (n− 1)Ω

n+1
2

(
yµ

∂f̂

∂yλ
+ yλ

∂f̂

∂yµ

)

+
(1− n)

2
Ω

n−1
2 Dλµf̂ . (1.2.29)

Next,

(x∂x + (y − 1)∂y)(f ◦ φ−1) = (x∂x + (y − 1)∂y)(Ω
n−1
2 f̂)

= (n− 1)Ω
n−1
2 f̂ +Ω

n−1
2 (x∂x + (y − 1)∂y)f̂ (1.2.30)

and thus

(x∂x + (y − 1)∂y)
2(f ◦ φ−1) = (x∂x + (y − 1)∂y)

{
(n− 1)Ω

n−1
2 f̂ +Ω

n−1
2 (x∂x + (y − 1)∂y)f̂

}

= Ω
n−1
2

{
(n− 1)2 + 2(n − 1)(x∂x + (y − 1)∂y) + (x∂x + y∂y)

2
}
f̂

and the second term of (1.2.15) is

4yλyµ(x∂x+(y−1)∂y)2(f◦φ−1) = 4yλyµΩ
n−1
2

{
(n−1)2+2(n−1)(x∂x+(y−1)∂y)+(x∂x+y∂y)2

}
f̂ .

(1.2.31)
As far as the third therm of (1.2.15) is concerned, we have

yλ
∂

∂yµ
(x∂x + (y − 1)∂y)f ◦ φ−1 = Ω

n−3
2

{
− (n− 1)2yλyµ + (n− 1)Ωyλ

∂

∂yµ

+(1− n)yλyµ(x∂x + (y − 1)∂y)

+Ωyλ
∂

∂yµ
(x∂x + (y − 1)∂y)

}
f̂ .

From this, we deduce that the third term of (1.2.15) reads

4Ωηα(λ y
α ∂

∂y µ)
(x∂x + (y − 1)∂y)f ◦ φ−1 = Ω

n−1
2

{
− 4(n − 1)2yλyµ

+4(n− 1)Ωηα(λ y
α ∂

∂y µ)

−4(n− 1)yλyµ(x∂x + (y − 1)∂y)

+4Ωηα(λ y
α ∂

∂y µ)
(x∂x + (y − 1)∂y)

}
f̂ . (1.2.32)
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Using (1.2.30), the fourth term of (1.2.15) is:

2
(
Ωηµλ + 2yλyµ

)(
(y − 1)∂y + x∂x

)}
f ◦ φ−1 = 2

(
Ωηµλ + 2yλyµ

){
(n− 1)Ω

n−1
2 f̂

+Ω
n−1
2 (x∂x + (y − 1)∂y)f̂

}
. (1.2.33)

Summing side by side equations (1.2.29), (1.2.31), (1.2.32) and (1.2.33),
we obtain (1.2.25) and the proof is complete. �

The second term on the right-hand side of (1.2.24) is

II = Ω−
n+3
2 F

(
f,

∂f

∂xµ

)
◦ φ−1 = Ω−

n+3
2 F

(
f ◦ φ−1, ∂f

∂xµ
◦ φ−1

)
.

Since

∂f

∂xµ
◦ φ−1 = Aαµ

∂(f ◦ φ−1)
∂yα

with Aαµ :=
∂yα

∂xµ
◦ φ−1 ≡ −Ωδαµ − 2yαηµβy

β ,

(1.2.34)
which is bounded on any bounded set of Rn+1

y , it follows from (1.2.27) that

∂f

∂xµ
◦φ−1 = Aαµ

∂(f ◦ φ−1)
∂yα

= −Ωn−1
2

(
Ω

∂

∂yµ
+2yµ((y−1)∂y+x∂x)+(n−1)yµ

)
f̂ ,

(1.2.35)
and we obtain that

II = Ω−
n+3
2 F

(
Ω

n−1
2 f̂ ,−Ωn−1

2

(
Ω

∂

∂yµ
+ 2yµ((y − 1)∂y + x∂x) + (n− 1)yµ

)
f̂ .

Now, we see that the right-hand side of the last equation can be rewritten as

(
x(1− y)

)−n+3
2 ×

F
((
x(1− y)

)n−1
2 f̂ ,

(
x(1− y)

)n−1
2

(
x(y − 1)

∂f̂

∂yµ
− 2ηµαy

α((y − 1)∂y f̂ + x∂xf̂)− (n− 1)yµf̂
))

.

(1.2.36)

Since

∂

∂y0
= ∂y − ∂x and

∂

∂yi
= − 2yi

1− x− y (∂y + ∂x) +

n−1∑

A=1

∂vA

∂yi
∂A .

To make contact with (1.1.2) we set

ψ1 = f̂ , ψ2 = ∂yf̂ , ϕ = (∂xf̂ , ∂Af̂) . (1.2.37)
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Here ∂Af = ∂vAf, where the vA’s are local coordinates on the sphere. To
bring (1.2.36) to the desired form (1.1.2), the choice

p2δ =
n+ 3

2
, q2δ =

n− 3

2
,

provides the supplementary power of x needed in the arguments of F to
satisfy the structure conditions of Theorem 1.1.1, provided that we choose
1/(2δ) ∈ N

∗ in even space-dimensions; any 1/δ ∈ N
∗ is admissible in odd

ones. If we assume that F has a uniform zero of order m2, condition (1.1.3)
will now be satisfied for

m2 >
n+ 1

n− 3
= 1 +

4

n− 3
⇐⇒ n ≥ 4 and m2 ≥





6, n = 4;
4, n = 5;
3, n = 6, 7;
2, n ≥ 8.

(1.2.38)
(In the Einstein-Maxwell case we have m2 = 2, which enforces n ≥ 8.)

Let us turn our attention to the first term at the right-hand side of
(1.2.24). Recall that this term is

I = −Ω−n+3
2 Hµλ(f ◦ φ−1, ∂f

∂xν
◦ φ−1) ∂2f

∂xµ∂xλ
◦ φ−1 ,

and from (1.2.15) and (1.2.27), it can be written as

I = A×B (1.2.39)

with,

A = − (x(1− y))−n+3
2 Hµλ

(
(x(1− y))n−1

2 f̂ , (x(1− y))n−1
2

(
x(1− y) ∂f̂

∂yν

−2ηναyα((y − 1)∂y f̂ + x ∂xf̂)− (n− 1)yν f̂
))

(1.2.40)
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and

B =
∂2f

∂xλ∂xµ
◦ φ−1

=
(
x(1− y)

)n−1
2

{
x2(1− y)2 ∂2

∂yλ∂yµ
+ 4x(1 − y)ηα(λyα

∂

∂yµ)
(x∂x + (y − 1)∂y)

+4yλyµ((y − 1)∂y + x∂x)
2 + 2(n − 1)x(1− y)yαηα(λ

∂

∂yµ)

+
[
4nyλyµ + 2x(1 − y)ηλµ

]
((y − 1)∂y + x∂x)

+(n− 1)
[
(n+ 1)yλyµ + x(1− y)ηλµ

]
}
f̂ .

In what follows we will consider the following restricted class of non-

linearities: we assume that, after replacing f by Ω
n−1
2 f̂ and changing vari-

ables xµ → yµ as above, the terms Hαβ takes the form

Hαβ = Gαβ(Ω
n−1
2 f̂ ,Ω

n−1
2

+1∂yµ f̂ ,Ω
n−1
2

+2∂yν∂yρ f̂) , (1.2.41)

with a uniform zero of order m0. Such a structure will clearly be obtained
from a function in (1.2.1) which depends only upon f , in particular this will
be the case for the Einstein or the Einstein-Maxwell equations, with m0 = 1.

Using (1.2.39) we can write

Ω−
n+3
2 Hµν∂xµ∂xνf = x−

n+3
2

+n−1
2 F1(H, f̂ , ∂yα∂yβ f̂ , ∂yγ f̂)

where F1 is linear in the second, third, and fourth argument. Assuming
(1.2.41), this can be rewritten as

Ω−
n+3
2 Hµν∂xµ∂xνf = x−

n+7
2 F1(H,x

n−1
2

+2f̂ , x
n−1
2

+2∂yα∂yβ f̂ , x
n−1
2

+2∂yγ f̂)

= x−
n+7
2 F2(x

n−1
2 f̂ , x

n−1
2

+2∂yα∂yβ f̂ , x
n−1
2

+1∂yγ f̂) ,

where F2 has a uniform zero of order m1 = m0 + 1. With the restrictions
on δ as before, we will obtain the right structure by setting

p1δ =
n+ 7

2
, q1δ =

n− 1

2
,

and the NL-condition will hold provided that m1 := m0 + 1 satisfies

m1 >
n+ 5

n− 1
= 1 +

6

n− 1
, ⇐⇒ m0 ≥





7, n = 2;
4, n = 3;
3, n = 4;
2, n = 5, 6, 7;
1, n ≥ 8.

(1.2.42)
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In particular the structure conditions will be satisfied by the Einstein-Maxwell
equations in space-dimensions larger than or equal to eight.

The hypothesis (1.2.41) will not be satisfied in general if Hµν in (1.2.1)
is a non-linear function of f and ∂xµf , for then H will belong instead to the
following class of functions (compare (1.2.36))

H = G(Ω
n−1
2 f̂ ,Ω

n−1
2 ∂yµ f̂ ,Ω

n−1
2

+1∂yν∂yρ f̂) , (1.2.43)

An analysis similar to the one above shows that, for Hµν ’s which are a
finite sum of terms of the form (1.2.43), we will obtain the right structure
by setting

p1δ =
n+ 5

2
, q1δ =

n− 3

2
,

and the NL− condition will hold provided that m1 = m0 + 1 satisfies

m1 >
n+ 3

n− 3
= 1 +

6

n− 3
⇐⇒ n ≥ 4 and m0 ≥





7, n = 4;
4, n = 5,;
3, n = 6;
2, n = 7, 8, 9;
1, n ≥ 10.

(1.2.44)
The reader should have no troubles similarly working out the conditions

on the nonlinearity for general H’s which depend on f , ∂xµf and ∂xµ∂xνf : In
the general case where the nonlinearity H depends on f , ∂xµf and ∂xµ∂xνf
(not necessary linearly), we choose as before,

pδ =
n+ 3

2
, qδ =

n− 5

2

and if H has a uniform zero of order mg, then the NL-condition will hold
provided that mg satisfies

mg >
n+ 1

n− 5
⇐⇒ n ≥ 6 and mg ≥





8, n = 6;
5, n = 7;
4, n = 8;
3, n = 9, 10, 11;
2, n ≥ 12.

(1.2.45)

Summarizing, we have proved:

Theorem 1.2.8 Let f be a solution of equation (1.2.1), define ψ1, ψ2, and
ϕ by (1.2.37), where f̂ is given by (1.2.23). Suppose that (1.2.38) holds, and
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assume that either (1.2.41) with (1.2.42) hold, or (1.2.43) with (1.2.44) hold.
If (1.1.4) and (1.1.10) hold, then the conclusions of Theorem 1.1.1 apply.
In particular Theorem 1.1.1 applies to the Einstein-Maxwell equations in
space-time dimensions n+ 1 ≥ 9.
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Chapter 2

Towards solutions with a

polyhomogeneous Scri

In order to establish existence of solutions of the vacuum Einstein equations,
in sufficiently high dimensions, with a polyhomogeneous Scri, it remains to
construct appropriate initial data, and show that the corresponding solutions
are in the right function spaces.

Recall, now, that large classes of polyhomogeneous hyperboloidal initial
data have been constructed in [1] (the emphasis in that reference is on
n = 3 at several places, but the general results there show that the confor-
mal method, starting from smooth or polyhomogeneous seed fields, provides
polyhomogeneous solutions of the general relativistic vacuum constraint equa-
tions in any dimension n ≥ 3). There is little doubt that large collections of
initial data so constructed provide polyhomogeneous data for the harmoni-
cally reduced equations of the last section, but we have not checked this in
detail. Instead, we will follow the standard-by-now strategy of using initial
data which are stationary outside of a compact set. So, in Section 2.2, we
provide large classes of Corvino-Schoen type initial data with polyhomoge-
neous asymptotics on hyperboloids. One of the reasons for proceeding this
way is that small such initial data lead to global, geodesically complete solu-
tions [40, 41].

One then needs to verify that the associated solutions satisfy the space-
time weighted regularity conditions needed in Theorem 1.1.1. One could hope
that the Lindblad-Rodnianski type estimates of Loizelet [40,41] would provide
that information. It turns out that the available estimates, for space-times
obtained by evolving small initial data of Section 2.2, are not sufficient for
our polyhomogeneity result; this is analyzed in Section 2.3. This means that
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the desired estimates have to be derived from scratch, which will be done in
the remainder of this first part of the thesis.

2.1 Stationary vacuum metrics in higher dimen-

sions

The only way, so far, of obtaining space-times with controlled asymptotic
behavior near i0 is to use initial data sets which are stationary at large
distances. We will outline the construction of such data in Section 2.2, but
before doing this it is convenient to start with a short discussion of stationary
metrics in higher dimensions; our presentation follows [4].

Consider a vacuum Lorentzian metric n+1g in any space-time-dimension
n+ 1 ≥ 4, with Killing vector X = ∂/∂t. In the region where X is timelike
there exist adapted coordinates in which n+1g takes the form

n+1g = −V 2(dt+ θidx
i

︸︷︷︸
=θ

)2 + gijdx
idxj︸ ︷︷ ︸

=g

, (2.1.1)

∂tV = ∂tθ = ∂tg = 0 . (2.1.2)

The vacuum Einstein equations (with vanishing cosmological constant) read
(see, e.g., [22])





V∇∗∇V = 1
4 |λ|2g ,

Ric(g)− V −1Hess gV = 1
2V 2λ ◦ λ ,

div(V λ) = 0 ,
(2.1.3)

where
λij = −V 2(∂iθj − ∂jθi) , (λ ◦ λ)ij = λi

kλkj .

We assume that there exists α > 0 such that

gij − δij = O(r−α) , ∂kgij = O(r−α−1) , (2.1.4)

similarly for V − 1 and θi. A redefinition t → t + ψ, introduces a gauge
transformation

θ → θ + dψ ,

and one can exploit this freedom to impose restrictions on θ. For our pur-
poses it is convenient to impose the harmonic gauge, �t = 0, which reads

∂i(
√
det gV gijθj) = 0 . (2.1.5)
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Equation (2.1.5) can always be achieved by replacing θ by θ+dψ, and solving
the resulting linear equation for ψ, cf., e.g., [3, 10] for the relevant isomor-
phism theorems.) One can then introduce new coordinates [3] which are
harmonic for g.

In space-harmonic coordinates, and in the gauge (2.1.5), the system
(2.1.3) is elliptic, and standard considerations show that the functions gij ,
V and θi have a polyhomogeneous expansion in terms of log r and inverse
powers of r. Furthermore, n+1gµν is Schwarzschild in the leading order, and
there exist constants αij such that

θi =
αijx

j

rn
+O(r−n) .

It is of interest to enquire whether or not the logarithmic powers are
essential in the polyhomogeneous expansion. It has long been know in space-
dimension three that, for metrics which are stationary and vacuum in the
asymptotic region, coordinate systems exist where no log r terms arise when-
ever the ADM mass is non-zero [48]. The same property is true for static
solutions with non-zero ADM mass in space-dimension four [4]. Now, in
the evolution theorems used below we need all coordinates to satisfy the wave
equation,

�xµ = 0 , (2.1.6)

and the transition from the coordinates used in [4] to the coordinates satis-
fying (2.1.6) might introduce log terms: This is exactly what happens for the
Schwarzschild metric in n = 4, which does have a logarithmic term in its
asymptotic expansion in a natural choice of wave coordinates [9], but this is
the only dimension where this happens for Schwarzschild.

In general, (2.1.6) is achieved by changing space-coordinates xi → xi +
ψi(xj) (recall that t is already harmonic), thus solving a linear equation for
ψi; by standard results (see, e.g., [13]) the ψi’s will have a full asymptotic
expansion in terms of powers of ln r and inverse powers of r, and so will
the space-time metric in the new coordinate system, when transformed from
the space-harmonic ones. In view of the calculations in [9], this implies the
existence of polyhomogeneous asymptotics of the initial data on hyperboloids
at I , as needed in Theorem 1.1.1.

Rather surprisingly, in even space-dimensions larger than or equal to
six the space-coordinates used in [4] satisfy (2.1.6), and so does the time
coordinate. It follows that the analysis of stationary solutions in [4] directly
provides wave coordinates in which no log terms occur in those dimensions.
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2.2 Corvino-Schoen data in higher dimensions

So far we have considered metrics which are exactly stationary. Now, there
exists a construction due to Corvino and Schoen [23, 24] (see also [16, 17],
and also the more recent Reference [15], where the construction is carried
out under considerably weaker asymptotic conditions) which allows one to
glue exactly stationary ends to asymptotically Euclidean initial data sets.
Some details of this construction have been presented in those references in
dimension three only, but the construction generalises to any dimension, as
follows: Recall that the construction requires a family of stationary reference
metrics which cover the whole range of asymptotic charges. In dimension
3 + 1 this is provided by the family of metrics obtained by boosting and
translating the Kerr metrics. In higher dimensions one such family can be
obtained by boosting and translating the Myers-Perry metrics [43]. Note that
the question, whether or not the reference solutions have naked singularities
is irrelevant for the problem at hand because here one only needs the solutions
at large distances. (Similarly to the Kerr family, all the metrics in the family
so obtained have a timelike ADM momentum, and therefore can only be
glued to asymptotically flat initial data which also have this property; this
is no restriction for well behaved initial data sets which are spin, or for
space-dimensions up to seven, and is expected not to be a restriction for
well behaved initial data sets in general, but this has not been proved at the
moment of writing of this work.)

So let Rx, ǫk be positive constants and consider the collection, say CRx,ǫk

of general relativistic electro-vacuum initial data sets (Rn, g,K) which are
stationary outside a coordinate ball B(Rx) and with weighted Sobolev norm
controlling k-derivatives of the metric smaller than ǫk. Here k should be
sufficiently large as in [9, 41], and the norm should be the one described
in those references. From what has been said this collection is non-empty,
and contains an open set (in the topology associated to the norm) around
Minkowski space-time.

Now, for the Schwarzschild metric in dimension n + 1 with n ≥ 4, and
in harmonic coordinates, the boundary of the domain of influence of a ball
is sandwiched between two hypersurfaces t− r = const [9, Section 5.3]. This
remains true for stationary electro-vacuum metrics because the leading order
behavior of the metric coincides with the Schwarzschild one (compare [14,
Appendix A]). This implies that the maximal globally hyperbolic develop-
ment of all initial data in CRx,ǫk contains hyperboloidal hypersurfaces, the
asymptotic region of which is contained in that part of the space-time where
the metric is stationary. So our considerations of the previous section apply
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to this region, leading to polyhomogeneous initial data on such hypersur-
faces. Since the leading order deviation of the metric from the flat one is

Schwarzschildian, the tensor field ĥ := Ω−
n−1
2 (g − η), that plays a key role

in our analysis, is O(x(n−2)−(n−1)/2) = O(x(n−3)/2), and in fact

ĥ ∈ x(n−3)/2(A δ
{x=0} ∩ L∞) , ∂y0 ĥ ∈ x(n−5)/2(A δ

{x=0} ∩ L∞) , (2.2.1)

with δ = 1 on any hyperboloid whose asymptotic part is contained in the
stationary region.

2.3 Lindblad-Rodnianski-Loizelet metrics near I

In this section we analyze how the asymptotic behavior of the small-data
space-times constructed in [40] (compare [37, 38]) relates to the differentia-
bility conditions needed in Theorem 1.1.1. We find that sharper decay rates
along outgoing null geodesics would be needed for a direct proof of poly-
homogeneity using our approach. The estimates established here are then
combined with the results of our analysis in subsequent sections to provide a
rather more involved proof of polyhomogeneity.

We start by recalling some notation of [37, 38, 40]. Let Z denote the
following set of vectors on Minkowski space-time:

∂α ≡
∂

∂xα
, α = 0, 1, . . . , n;

Zαβ = xα∂β − xβ∂α, α, β = 0, 1, . . . , n;

Z0 =

n∑

α=0

xα∂α = t∂t +

n∑

i=1

xi∂i = t∂t + r∂r .

Here, as usual, x0 = −x0 = −t, xi = xi for i = 1 . . . , n. Let the spherical
coordinates (r, θA) be defined as





t = x0 ,

r =
( n∑
i=1

(xi)2
)1/2

,

xi = rωi(θA), i = 1, . . . , n,

(2.3.1)

where θA denotes any local coordinates on the sphere Sn−1. The vector fields

L = ∂t + ∂r = ∂t + ωi∂i , L = ∂t − ∂r = ∂t − ωi∂i .
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are tangent, respectively transverse, to the light cones t − r = const. We
note

Z0 = t∂t + r∂r .

Furthermore, the Zij ’s, i, j = 1 . . . , n are tangent to the spheres Sn−1 ⊂ R
n,

and can be purely expressed in terms of the θA’s.
Let T ≥ 0, set T µ = (T, 0, . . . , 0), in this section it is more convenient

to consider instead the following variation of (1.2.2):

yµ =
xµ + T µ

(xα + Tα)(xα + Tα)
⇐⇒ xµ + T µ =

yµ

yαyα
. (2.3.2)

This provides a conformal transformation from the future causal cone centred
at T µ in the Minkowski space-time with coordinates xµ to the past causal
cone of the origin in the Minkowski space-times with coordinates yµ, and
with conformal factor Ω = yαyα =

1
−(t+T )2+r2 .

To make contact with Section 1 we set

x = −y0 − ρ, y = y0 − ρ+ 1 where ρ =
( n∑

i=1

(yi)2
)1/2

,

so that 



y0 = 1
2 (y − x− 1)

ρ = 1
2(−y − x+ 1)

yi = 1
2(−y − x+ 1)ωi(vA), i = 1, . . . , n

. (2.3.3)

Here ωi is a unit vector, and the vA’s denote local coordinates on Sn−1 in
the y–coordinates. One can take ωi(θA) = ωi(vA), i = 1, . . . , n; we will
make this choice, and simply write ωi in both xµ and yµ coordinates.

Letting Hs be the following family of hyperboloids,

Hs =
{
x0 − s =

√
s2 + r2

}
, s > 0 ,

we will have

φ(Hs) = {y0 = −
1

2s
}

in particular φ(H1) = {y0 = −1
2}.

The methods of Section 1 involve the vector fields

x∂x, y∂y, ∂A =
∂

∂vA
, A = 1, . . . n− 1.
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By straightforward calculations one finds, keeping in mind that ρ = r
(t+T )2−r2

for t+ T ≥ r,

x =
1

t+ T + r
, 1−y = 1

t+ T − r ⇐⇒ r =
1

2x
− 1

2(1− y) , t =
1

2x
+

1

2(1− y)−T




x∂x = −1
2(t+ T + r)(∂t + ∂r) ,

(1− y)∂y = 1
2(t+ T − r)(∂t − ∂r) ,

∂A = linear combinations of Zij, i, j = 1, . . . , n .
(2.3.4)

The coefficients in the equation for ∂A above depend only upon the angular
variables, and a finite number of coordinate patches vA can be chosen so that
in each of those patches the coefficients are uniformly bounded together with
derivatives of any order.

This leads us to

Proposition 2.3.1 Let T, T0 > 0, t ≥ 0 and suppose that

1− T ≤ t− r ≤ T0 ⇐⇒ 0 ≤ y ≤ 1− 1

T + T0
. (2.3.5)

For all k ∈ N, ∀ (i, j, γ) ∈ N×N×N
n−1 satisfying i+ j+ |γ| ≤ k, and for

any function f ∈ Ck we have

[x∂x]
i∂jy∂

γ
v f =

∑

|I|≤k, Z∈Z
H ijγ
I (θ, y)ZIf (2.3.6)

with |H ijγ
I (θ, y)| ≤ C(i, j, I, T, T0) .

Proof: Using (2.3.4) one can rewrite x∂x and ∂y as

x∂x = −
1

2
(Z0 − ωiZ0i + T (∂t + ωi∂i)) , (2.3.7)

∂y =
1

2(1− y)︸ ︷︷ ︸
=:ϕ1(y)

(Z0 + ωiZ0i + T (∂t − ωi∂i))︸ ︷︷ ︸
=:Z̃

. (2.3.8)

It is thus clear that x∂x, and any of its powers, have the right structure.
Next, the factor ϕ1(y) appearing in (2.3.8) is bounded on any compact subin-
terval of [0, 1) (note that y = 1 corresponds to the tip of the past causal cone
centred at the origin of the yµ-coordinates). One easily finds by induction
that

∂jy =

j∑

i=1

ϕi(y)Z̃
i ,
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where the functions ϕi are bounded on compact subsets of [0, 1), whence the
result. �

We wish to obtain the asymptotic behavior of the fields occurring in The-
orem 1.1.1 for the global solutions

f := (hµν , Aµ)

of the Einstein-Maxwell equations constructed in [40]. In order to apply
Theorem 1.1.1 we need

ψ1 = f̂ ∈ C
<0
{0≤x≤y},0;

(
ψ2 = (∂y f̂ , ∂Af̂), ϕ = ∂xf̂

)
∈ C

<−1
{0≤x≤y},∞ ,

where
f̂ = Ω−

n−1
2 f ◦ φ−1.

Now,
Ω = −x(1− y)

which implies that for any α ∈ R we have

(x∂x)
i(Ωαf) = Ωα

i∑

j=0

C(α, i, j)(x∂x)
jf . (2.3.9)

Similarly,

(y∂y)
i(Ωαf) = Ωα

i∑

j=0

C ′(α, i, j, x, y)(y∂y)
jf , ∂iy(Ω

αf) = Ωα
i∑

j=0

C ′′(α, i, j, x, y)∂jyf ,

(2.3.10)
where the functions C ′ and C ′′ are bounded for x in, say, [0, x0], and for y
bounded away from 1.

The solutions constructed in [40] satisfy the following: there exists 0 <
δ < 1/4 such that for t ≥ 0 and |t − r| ≤ C1, and for all I there exists a
constant C, depending upon I and C1, such that

|ZIf(t, xi)| ≤ C(1 + t+ r)
1−n
2

+δ , (2.3.11)

|∂̄ZIf(t, xi)| ≤ C(1 + t+ r)
−1−n

2
+δ , (2.3.12)

where

∂̄ ∈
{
∂t + ∂r, r

−1∂A
}
=

{
− 2x2∂x,

2x(1 − y)
1− x− y ∂A

}
. (2.3.13)
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Now,

1 + t+ r

t+ T + r
= 1 +

1 + T

t+ T + r
∈

[
1,
1 + T

T

]
for T > 0, t ≥ 0 ,

so (2.3.11)-(2.3.12) imply

|ZIf(t, xi)| ≤ Cx
n−1
2
−δ , |∂̄ZIf(t, xi)| ≤ Cx

n−1
2

+1−δ . (2.3.14)

From (2.3.9)-(2.3.10) and Proposition 2.3.1 we obtain

[x∂x]
i∂jy∂

γ
v f̂(x, y, v)

= [x∂x]
i∂jy∂

γ
vΩ

1−n
2 f(t, xi)

= Ω
1−n
2

∑

0≤m≤i

∑

0≤ℓ≤j
c(i, j,m, ℓ, n, x, y)[x∂x ]

m∂ℓy∂
γ
v f(t, x

i)

= Ω
1−n
2

∑

0≤m≤i

∑

0≤ℓ≤j
c(i, j,m, ℓ, n, x, y)

∑

|I|≤k, Z∈Z
Hmℓγ
I (θ, y)ZIf(t, xi) .

Using the first inequality in (2.3.14) we conclude that for any 0 < ǫ ≤ 1 and
for 0 ≤ y ≤ 1− ǫ we have

∣∣∣[x∂x]i[y∂y]j∂γv f̂(x, y, v)
∣∣∣ ≤

∣∣∣[x∂x]i∂jy∂γv f̂(x, y, v)
∣∣∣ ≤ Cx−δ ,

while it should be clear from (2.3.13) that the second inequality in (2.3.14)
does not provide any new information in the coordinate ranges assumed
above. In any case the property

(
ψ1 = f̂ , ψ2 = (∂y f̂ , ∂Af̂)

)
∈ C

−δ
{0≤x≤y},0 , ϕ = ∂xf̂ ∈ C

−1−δ
{0≤x≤y},∞

(2.3.15)
immediately follows. Unfortunately, to apply Theorem 1.1.1 one would need
δ to be an arbitrary positive number, while in (2.3.15) δ is a small number
determined by the initial data. So, as already pointed out, we need to derive
the necessary estimates by different methods. This is the purpose of the
chapters that follow.
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Chapter 3

Weighted energy estimates

near a null boundary

Let (M , g) be an (n + 1)-dimensional space-time. We consider systems of
quasi-linear wave equations, with diagonal principal part of the form

�gu = F (. , u, ∂u) , (3.0.1)

on a neighborhood of a null hypersurface of M . We suppose that the back-
ground metric g is a smooth function of the coordinates, of the unknown
vector valued function u, as well as its first order derivatives.

All calculations below will be done for a real valued function u, the result
for a vector valued function is obtained by summing over the components.

3.1 The hypotheses, and the geometry of the prob-

lem

3.1.1 The hypotheses

We will consider the Cauchy problem associated to equation (3.0.1), the
initial data will be given on a hypersurface S0. We will evolve these initial
data to obtain a solution of our problem in a past one-sided neighborhood
of a null hypersurface

N = {x = 0}
forming the boundary, or a subset thereof, of the domain of dependence of
S0. Here, and throughout, x stands for a positive function such that dx has
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no zeros on {x = 0}. We will be working in a neighborhood of {x = 0},
chosen so that x is a coordinate there, of the form

V ≡ [τ0, τ1 [ × ] 0, x0 [ ×O ,

where [τ0, τ1 [ corresponds to the time interval, ] 0, x0 [ the range of the
variable x, and O is an (n − 1)-dimensional compact submanifold of M

without boundary. The coordinates will be denoted by (τ, x, v), with v =
(vA)n−1A=1 the coordinates on O. We assume that ∂τ is timelike, and we
choose the time-orientation on M such that the vector ∂τ is everywhere
future directed.

One can think of the set U of (A.2.1) as a subset of the coordinate patch
above, compare Figure 4.2, page 108.

On the components of the metric g with respect to the coordinates (τ, x, v),
we assume the following:

1. We suppose that

∃ǫ0 > 0 , such that − gττ ≥ ǫ0 (3.1.1)

everywhere on V .

2. The components gττ and gτx can be written as

gττ = −1 + xh0(τ, x, vA) and gττ + gτx = xh1(τ, x, vA) (3.1.2)

where the functions h0 and h1 are bounded on bounded sets.

3. On the components gxA and gxx we assume that

gxA = O(x) and gττ + 2gτx + gxx = 1 + O(x) (3.1.3)

and we set gxA = xhA and gττ +2gτx + gxx = 1+ xh, where h and hA

are bounded functions on bounded sets. We further suppose that

gττ + 2gτx + gxx > 0 .

4. The vector field
Y ν∂ν := ∂τ − ∂x (3.1.4)

is assumed to be everywhere timelike on V and future directed. This
vector will be used to contract the energy momentum tensor.

The set of functions (h , hµ) will be denoted by h♯ and g♯ will denote the
inverse matrix of the matrix (gµν).
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Remark 3.1.1 It follows from the above that the vector ∇x (where ∇ is
the covariant derivative compatible with the metric g) can be decomposed
as

∇x = ω(1) + β(x)ω(2) (3.1.5)

where ω(1) is causal future directed, and that there exists a constant C0 such
that

|β(x)| ≤ C0x , |ω(2)| ≤ C0|h♯| . (3.1.6)

Example 3.1.2 As an example, consider a conformally rescaled asymptot-
ically flat solution of asymptotically vacuum Einstein equations in Bondi
coordinates near Scri [49], with the metric taking the form

g̃B = e2βdx⊗̊dy + χdy⊗̊dy + 2γ⊗̊dy + µ , (3.1.7)

for some functions β and χ, and a one-form field γ. (Here y corresponds to
the Bondi retarded time u, and x = 1/2r is half the inverse of the luminosity
distance r. E.g., for the Minkowski metric in any dimensions, β = χ = 0 =
γ.) In 3 + 1 dimensions, for smoothly compactifiable metrics, the Einstein
equations imply, for matter fields decaying sufficiently fast, that β = O(x2)
as well as

χ = O(x2) , γA = O(x2) , (3.1.8)

with derivatives behaving in the obvious way. Equation (3.1.8) remains
valid for asymptotically vacuummetrics which, after conformal rescaling, are
polyhomogeneous and C1 (see [21, Section 6] or [18, Appendix C.1.2]), while
for general A δ

{x=0} ∩ L∞–polyhomogeneous asymptotically vacuum metrics

one has [21, Equations (2.15)-(2.19) with H = Xa = 0] the asymptotic
behaviors β = O(x2 lnN x) and

χ = O(x2) , γA = O(x2 lnN x) , (3.1.9)

for some N . Here “asymptotically vacuum” requires, for polyhomogeneous
metrics, that the components of the energy-momentum tensor in asymptot-
ically Minkowskian coordinates satisfy (see [21, end of Section 2])

Tµν = o(r−2) . (3.1.10)

We have

det g = −1
4
detµ ,
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which, for a Lorentzian metric, shows that µ must be a non-degenerate
(n − 1) × (n − 1) tensor field. It is simple to check that the inverse metric
g♯ = gαγ∂α⊗̊∂γ is given by the formula

g♯ = 4(−χ+ |γ|2µ)∂x⊗̊∂x + 4∂x⊗̊∂y − 4γ♯⊗̊∂x + µ♯

= 4∂x⊗̊
(
∂y + (−χ+ |γ|2µ)∂x − γ♯

)
+ µ♯ , (3.1.11)

with µ♯ = µAB∂A⊗̊∂B, where µAB is the matrix inverse to µAB, γ
♯ =

µABγA∂B , |γ|2µ = µ♯(γ, γ) = µABγAγB, and ⊗̊ denotes the symmetric tensor
product. We note

g(∇y,∇y) = gyy = 0 ,

which makes clear the null character of the level sets of y, and implies, by a
well-known argument, that the integral curves of

∇y = gαγ∂αy∂γ = gyγ∂γ = 2∂x

are null geodesics.
Consider a new coordinate system (x, vA, τ), where

(x, y) −→ (x, τ =
y − x
2

) , (3.1.12)

so that

∂x −→ ∂x −
1

2
∂τ , ∂y =

1

2
∂τ . (3.1.13)

Thus

g♯ = 4(−χ+ |γ|2µ)(∂x −
1

2
∂τ )⊗̊(∂x −

1

2
∂τ ) + 4(∂x −

1

2
∂τ )⊗̊(

1

2
∂τ )− 4γ♯⊗̊(∂x −

1

2
∂τ ) + µ♯ ,

giving

gxx = 4(−χ+ |γ|2µ) , gxτ = 1−2(−χ+ |γ|2µ) , gxA = −2µABγB ,(3.1.14)

gτA = µABγB , gττ = −1 + (−χ+ |γ|2µ) , gAB = µAB .(3.1.15)

This, together with (3.1.9), shows that (3.1.2)-(3.1.3) hold for such metrics.

3.1.2 The slices

In this section we describe the sets within which we obtain our estimates,
see Figure 3.1. Let t ∈ [τ0, 0[ run over the range of the time coordinate τ of
the previous section.
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N = {x = 0}

x0

S

SλHT

Hλ,t

Ht′

H0 ≡ Hτ0

Figure 3.1: The sets Uλ,T (shaded) and UT (the outermost trapezium).
In this picture (but not in our hypotheses) the light-cones have forty-five
degrees slopes, as in Minkowski space-time.

• Let λ ∈ [0, 1] parameterize a family of spacelike hypersurfaces Sλ,
which approach {x = 0} when λ approaches zero, of the form

Sλ = {(τ, x, vA) : x = σλ(τ)} ,

where σλ is a C1function such that:

– σ0(τ) ≡ 0 i.e. S0 = {x = 0}
– Sλ is everywhere spacelike.

One can legitimately raise concerns about existence of the family Sλ
with global behaviour as above when the space-time under consideration
is being constructed as a solution of a Cauchy problem. While the
aim of this work is to prove that the resulting space-time will have
properties as in Figure 3.1, this is not known a priori. Now, one way
to proceed is to construct the solution as the limit of solutions of linear
equations on a sequence of metrics, each of those metrics satisfying
controlled weighted energy estimates as proved below. In particular
each space-time in this sequence is globally hyperbolic, with the set
{x = 0} being part of the boundary of the domain of dependence of the
initial surface. For each metric in the sequence a relevant family Sλ
can be constructed using e.g. Cauchy time functions; no details will be
given as no significant difficulties are involved. This can then be used
to justify our estimates for each metric in the sequence, and for the
solution.
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• By S we denote a smooth spacelike hypersurface transverse to {τ = τ0}
defined by

S = {(τ, x, vA) : x = σ(τ)} , (3.1.16)

where σ is a smooth function of τ such that

0 < σ(τ1) ≤ σ(τ) ≤ σ(τ0) = x0 .

• Hλ,t = {(τ, x, vA); τ = t, σλ(τ) ≤ x ≤ σ(τ)}, Uλ,τ1 = ∪
τ0≤t≤τ1

Hλ,t.

• Ht = {(τ, x, vA); τ = t, 0 ≤ x ≤ σ(τ)}, Uτ1 = ∪
τ0≤t≤τ1

Ht.

Note that the boundary ∂Uλ,t of the region Uλ,t is made of four pieces,
Sλ, S, Hλ,τ0 and Hλ,t. We recall that, for θ ∈ R, j ∈ N the spaces
C θ
j (Hλ,τ ), Bθ

j (Hλ,τ ), H θ
j (Hλ,τ ) and G θ

j (Hλ,τ ) are defined in the Ap-
pendix B Section B.1 page 206 .

3.1.3 The causality properties of the boundary

We want to show that under the assumptions we made on certain components
of the metric, all the hypersurfaces defined above have the nature which will
be needed when applying the Stokes’ theorem or when we will like to use the
positivity of the stress energy momentum tensor.

The vector ∇τ = ∇µ(τ)∂µ = gµνδτν∂µ = gττ∂τ+gxτ∂x+gAτ∂A is normal
to the hypersurfaces Ht and Hλ,t, and the square of its norm is g(∇τ,∇τ) =
gττ < 0. Therefore ∇τ is time-like and thus these hypersurfaces are space-
like. Their past directed unit normal is

η = ηµ∂µ =
1√
|gττ |

(gττ∂τ + gxτ∂x + gAτ∂A) . (3.1.17)

We also note de following

ηµ = gµνη
ν =

1√
|gττ |

gµνg
ντ =

1√
|gττ |

δτµ

that is

ηµdx
µ =

1√
|gττ |

dτ . (3.1.18)

As far as the hypersurfaces Sλ are concerned, the functions σλ are assumed
to be such that the normal N = ∇{−x+ σλ(τ)} is timelike and the outward
unit normal to this hypersurface is such that the integral of the contracted
energy momentum tensor is negative (see (3.2.18)). The same remark holds
for the hypersurface S.
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3.2 Estimates on the space derivatives of the so-

lution

We want to derive weighted energy inequalities for solutions of (3.0.1).
These inequalities will be used to prove existence of a solution satisfying
the hypothesis of the theorem of polyhomogeneous solution of quasi-linear
wave equation near scri.

3.2.1 The stress energy momentum tensor and its properties

The stress-energy tensor of the system (3.0.1) is given by

Tµν := ∇µu∇νu−
1

2
gµν∇αu∇αu .

The explicit form of T 0
0 , (the component of the tensor T which in general

determines the energy density of the system) in local coordinates system is
given by:

T 0
0 = ∇0u∇0u−

1

2
∇αu∇αu

= g0β∇βu∇0u−
1

2
gαβ∇αu∇βu

=
{
g00∇0u∇0u+ g0i∇iu∇0u

}
− 1

2

{
g00∇0u∇0u+ 2g0i∇0u∇iu+ gij∇iu∇ju

}

=
1

2

{
g00(∇0u)

2 − gij∇iu∇ju} = −1
2

{
− g00(∇0u)

2 + |Du|2} (3.2.1)

with |Du|2 := gij∇iu∇ju.
The tensor T is symmetric and its divergence is given by

∇µT
µ

ν = �gu∇νu

= F∇νu when u solves (3.0.1) . (3.2.2)

Further, one of the useful properties of the tensor T is its positivity: For
any vectors fields vα and wα both causal future-pointing we have:

T µ
ν vνwµ ≥ 0 . (3.2.3)

Remark 3.2.1 In the particular frame (τ, x, vA) we will be interested with,
let us calculate the quantity T Y := T (∂τ − ∂x, dτ) = T τ

τ − T τ
x which we

will use as energy density. From (3.2.1) we have:

T τ
τ =

1

2

{
gττ (∂τu)

2 − gxx (∂xu)
2 − 2gxA∂xu∂Au− gAB∂Au∂Bu

}
.
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This expression shows that in the case we are concerned with, T τ
τ cannot

be used to control the energy of the system near {x = 0} since the metric
component gxx can degenerate there. On the other hand we have

T τ
x = gττ∂τu∂xu+ gτx (∂xu)

2 + gτA∂xu∂Au ,

therefore we deduce the following expression of T Y :

T Y =
1

2

{
gττ (∂τu)

2 − 2gττ∂τu∂xu− (gxx + 2gτx) (∂xu)
2

−2
(
gxA + gτA

)
∂xu∂Au− gAB∂Au∂Bu

}
.(3.2.4)

Now, if we set




λ = gττ + gxx + 2gxτ = 1 + O(x) > 0 (by hypothesis)
ξA = gxA + gAτ

κAB = ξAξB

λ

,

then we obtain the following decomposition of T Y

T Y = −1
2



−g

ττ (∂τu− ∂xu)2 + λ

(
∂xu+

(
gxA + gAτ

)

λ
∂Au

)2

+
(
gAB − κAB

)
∂Au∂Bu



 .

(3.2.5)
The above decomposition shows that the quantity T Y controls uniformly
the energy of the system if and only if there exists ǫ0 > 0 (which can be
made to coincide with the one occurring in (3.1.1)) such that

λ > ǫ0, and
(
gAB − κAB

)
ζAζB ≥ ǫ0

∑
A(ζA)

2 ; (3.2.6)

the existence of such a constant follows already from our previous hypothe-
ses. It turns out that if we have a priori bounds on the L∞ norms of g♯ from
above and below, this expression can be used to control all the components
of the stress energy tensor. In fact we have

|T µ
ν | = |gµσ∂σu∂νu−

1

2
δ µ
ν gαβ∂αu∂βu| ≤ C|g♯||∂u|2 ≤ C|g♯||T τ

τ − T τ
x | ;
(3.2.7)

here the constant C depends upon ǫ0, and is allowed to change after each
inequality symbol in general.

Remark 3.2.2 For further purposes we note that, using the vector field
∂τ − ∂x, the principal part of the d’Alembertian has the following form:
gαβ∂αβ = gττ (∂τ − ∂x)2 + 2 (gττ + gτx) (∂τ − ∂x) ∂x + 2gτA (∂τ − ∂x) ∂A

+(gττ + 2gτx + gxx) ∂2x + 2
(
gxA + gτA

)
∂x∂A + gAB∂A∂B .

(3.2.8)
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3.2.2 Estimates on the first derivatives of the solution

We want to derive some energy inequalities for the solution u of the system
(3.0.1). For this purpose, we consider the weighted energy at an instant t
of the evolution of the system defined using the vector field ∂τ − ∂x; recall
T Y = T τ

τ − T τ
x :

E[u(t)] = −
∫

Ht

x−2αT Y
dx

x
dn−1νt,x (3.2.9)

where dn−1νt,x is the measure defined on {t} × {x} ×O by the metric g (as
will be made precise shortly), and α ≤ 0 a real parameter the range of which
will be given later. We set

Eλ[u(t)] = −
∫

Hλ,t

x−2αT Y
dx

x
dn−1νt,x . (3.2.10)

Our strategy will be to obtain a bound of E[u(t)] from an uniform bound
(with respect to λ) of Eλ[u(t)]. We will apply the divergence theorem to the
energy-momentum tensor; this holds e.g. for C1,1

loc functions u (first deriva-
tives locally Lipschitz continuous). We want to establish the following (recall
that ǫ0 is the constant arising in (3.1.1) and in (3.2.6), while C0 is defined
in (3.1.6)):

Proposition 3.2.3 Let α ≤ −1
2 . Under hypotheses (3.1.1)-(3.1.3) and (3.2.6),

there exists a constant C1 depending upon ǫ0, C0, α such that for all

τ ∈ [τ0, τ1] and u ∈ C1,1
loc

satisfying (3.0.1), we have

Eλ[u(τ)] ≤ C1

{
Eλ[u(τ0)] +

∫ τ

τ0

{
‖F (s)‖2

H α
0 (Hλ,s)

+
(
1 + ‖h♯‖L∞ + ‖g♯‖L∞

)

×
(
1 + ‖g‖2L∞(Hλ,s)

+ ‖g♯‖2L∞(Hλ,s)
+ ‖ (∂τ − ∂x) g♯‖2L∞(Hλ,s)

)
Eλ[u(s)]

}
ds

}

(3.2.11)

Proof: Stokes’ theorem for the vector field Λµ = x−2α−1T µ
ν Y ν on Uλ,τ

(compare Fig. 3.1) gives
∫

∂Uλ,τ

x−2α−1T µ
ν Y νηµdS =

∫

Uλ,τ

∇µ

{
x−2α−1T µ

ν Y ν
}
dV (3.2.12)
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for an arbitrary differentiable vector field Y . Here

dV =
√
|det g|dτ ∧ dx ∧ dn−1v , (3.2.13)

where det g is the determinant of the metric g. Further, on non-characteristic
parts of the boundary, ηµ is the unit outwards pointing conormal, and

dS =
√
|det γ|dny , (3.2.14)

with yi, i = 1, . . . , n, a system of coordinates on the corresponding boundary,
and γ the metric induced on it by the metric g; i.e. γ = j∗g , j being the
canonical injection of the boundary into the manifold. (On characteristic
parts of the boundary, a convenient choice of ηµ and dS will be made as
need arises). In the case under consideration, ∂Uλ,τ is made of four pieces
Hλ,τ0 , Hλ,τ , together with

Sλ,τ := Sλ ∩ {0 ≤ t ≤ τ} and Sτ := S ∩ {0 ≤ t ≤ τ} .

Therefore the identity (3.2.12) reads:
∫

Hλ,τ

x−2α−1T µ
ν Y νηµdS +

∫

Hλ,τ0

x−2α−1T µ
ν Y νηµdS +

∫

Sλ,τ

x−2α−1T µ
ν Y νηµdS

+

∫

Sτ

x−2α−1T µ
ν Y νηµdS =

∫

Uλ,τ

∇µ

{
x−2α−1T µ

ν Y ν
}
dV .

(3.2.15)

The left-hand-side of equation (3.2.15) is made of four terms which will
be labeled in their order of appearance L1, L2, L3 and L4. As mentioned
before, we choose the vector field Y = Y µ∂µ to be equal to ∂τ − ∂x. Once
this choice is made, let us look at each of the terms Li, i = 1, 2, 3, 4. Recall
that (see equation (3.1.18)) on Hλ,τ we have:

ηµdx
µ =

1√
|gττ |

dτ which implies that T µ
ν Y νηµ =

1√
|gττ |

{T τ
τ − T τ

x }

and dS =
√
|det γ|dx ∧ dn−1v is the surface element denoted in equations

(3.2.9) and (3.2.4) by dx dn−1vt,x. Since η0
√
det g =

√
det γ on Hλ,τ , we

obtain that (remember that ηµ∂µ is past directed)

L1 = −Eλ[u(τ)] . (3.2.16)

From this, the sign coming from the Stokes’ identity shows that

L2 = Eλ[u(τ0)] . (3.2.17)
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On the hypersurfaces Sλ and S, since the unit outward normal is also
past directed and the vector field Y ν∂ν = ∂τ − ∂x future directed, we deduce
from the positivity of the stress energy tensor that:

L3 ≤ 0 and L4 ≤ 0 . (3.2.18)

We can now rewrite (3.2.15) as:

−Eλ[u(τ)] +Eλ[u(τ0)] +L3 + L4 =

∫

Uλ,τ

∇µ

{
x−2α−1T µ

ν Y ν
}
dV . (3.2.19)

Now, let us consider the right-hand side of the above equation. We have:

∇µ

{
x−2α−1T µ

ν Y ν
}

= x−2α−1
{
(∇µT

µ
ν )Y ν + T µ

ν (∇µY
ν)− (2α + 1)x−1T µ

ν Y ν∇µ(x)
}

= x−2α−1
{
(∇µT

µ
ν )Y ν + T µ

ν

{
Γνµτ − Γνµx

}

−(2α + 1)x−1∇µx {T µ
τ − T µ

x }
}

=: R1 +R2 +R3, (3.2.20)

where

Γρµν =
1

2
gσρ(∂µgσν + ∂νgµσ − ∂σgµν),

are the Christoffel’s symbols of the metric g. From (3.2.2), we have:

x2α+1|R1| = |F ||∇νuY
ν | = |F || (∂τu− ∂xu) | ≤ 1

2

{
F 2 + (∂τu− ∂xu)2

}
)

≤ c(ǫ0)
(
F 2 +

∣∣T τ
τ − T τ

x

∣∣) .
(3.2.21)

As far as the second term is concerned, we have:

T µ
ν Γνµθ =

1

2
T µσ∂θgµσ = −1

2
Tµσ∂θg

µσ.

Thus, replacing successively in the above expression θ with τ and x and
subtracting the two expressions we find that

x2α+1R2 = −
1

2
T ν
µ gνσ (∂τ − ∂x) gµσ .

From (3.2.7) we obtain:

x2α+1|R2| = |Tνσ (∂τ − ∂x) gµσ| ≤ (n+1)C|g♯|
(
|g|2 + |(∂τ − ∂x)g♯|2

) ∣∣T τ
τ −T τ

x

∣∣ .
(3.2.22)
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For the third term we have, keeping in mind (3.1.5):

x2α+1R3 = −(2α + 1)x−1T µ
ν ∇µxY

ν

= −(2α + 1)x−1gµσTνσ∇µxY
ν

= −(2α + 1)x−1Tµν∇µxY ν

= −(2α + 1)x−1TµνY
νω(1)µ

︸ ︷︷ ︸
≥0

−(2α + 1)
β(x)

x
TµνY

νω(2)µ for α ≤ −1/2

≥ −(2α + 1)
β(x)

x
TµνY

νω(2)µ = −(2α+ 1)
β(x)

x
(Tµτ − Tµx)ω(2)µ

≥ −C( α,C0, n)|h♯|
(
1 + |g|2 + |g♯|2

)
|T τ
τ − T τ

x | . (3.2.23)

Let us justify the last inequality. In other words let us show that the expres-
sion Tµτ − Tµx is controlled by |T τ

τ − T τ
x |. We have:

|Tµτ − Tµx| = |∂µu (∂τ − ∂x)u−
1

2
(gµτ − gµx) g

αβ∂αu∂βu|

≤ (∂µu)
2 + [(∂τ − ∂x)u]2 +

(
|g|2 + |g♯|2

)(
δαβ∂αu∂βu

)

≤ C(ǫ0)
(
1 + |g|2 + |g♯|2

)
|T τ
τ − T τ

x |. See (3.2.5)

Inequalities (3.2.21), (3.2.22) and (3.2.23) show that the right-hand side of
(3.2.20) can be estimated as:

R1+R2+R3 ≥ −C1x
−(2α+1)

{(
1 + |h♯|+ |g♯|

)(
1 + |g|2 + |g♯|2 + |(∂τ − ∂x)g♯|2

)
|T Y |+ F 2

}
,

(3.2.24)
where C1 = C(α, ǫ0, C0, n) . Now from (3.2.19) we have

−Eλ[u(t)] + Eλ[u(τ0)] + L3 + L4 = R1 +R2 +R3,

thus, using (3.2.18), we obtain the following:

Eλ[u(t)] ≤ Eλ[u(τ0)] + C1

∫ t

τ0

∫

Hλ,s

x−2α
{(

1 + |h♯|+ |g♯|
)(

1 + |g|2 + |g♯|2

+ |(∂τ − ∂x)g♯|2
)
|T Y |+ F 2(s)

}
ds
dx

x
dn−1ν .
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Therefore, there exists a constant C1 > 0 depending upon n, ǫ0 , α and C0

such that

Eλ[u(τ)] ≤ C1

{
Eλ[u(τ0)] +

∫ τ

τ0

{
‖F (s)‖2

H α
0 (Hλ,s)

+
(
1 + ‖h♯‖L∞ + ‖g♯‖L∞

)

×
(
1 + ‖g‖2L∞(Hλ,s)

+ ‖g♯‖2L∞(Hλ,s)
+ ‖ (∂τ − ∂x) g♯‖2L∞(Hλ,τ )

)
Eλ[u(s)]

}
ds

}

(3.2.25)

and the proof is completed. �

3.2.3 Estimates on the higher space derivatives of the solu-

tion

To proceed further, we would like to have an estimate similar to (3.2.11)
on space derivatives of the unknown function in equation (3.0.1). For this
purpose, for k ∈ N, β = (β1, β2, . . . , βr) ∈ N

r, with |β| ≤ k; we set:

(β)

T µ
ν = x−2α−1+2β1

{
∇µ

D
βu∇νD

βu− 1

2
δ µ
ν ∇α

D
βu∇αD

βu

}
,

where α ≤ −1/2 is the real parameter of the previous section, Dβ = Xβ1
1 Xβ2

2 . . . Xβr
r ,

with the Xi’s being the vector fields defined in [20] page 51: for i = 2, . . . , r,

Xi =
r∑

A=2
XA
i (v)∂A, where the XA

i ’s are smooth functions bounded on bounded

set with all their derivatives, and X1 = ∂x. Since the operator ∇ is linear,
as in (3.2.2), we have

∇µ

(β)

T µ
ν = x2α−1+2β1�g(D

βu)∇ν(D
βu) + (−2α− 1 + 2β1)

∇µ(x)

x

(β)

T µ
ν .

Now

�g(D
βu) = D

β(�gu) + [�g,D
β]u = D

βF + [�g,D
β]u , (3.2.26)

for any solution of the equation (3.0.1). Thus

∇µ

(β)

T µ
ν = x−2α−1+2β1

{
D
βF + [�g,D

β ]u
}
∇ν(D

βu)+(−2α−1+2β1)
∇µ(x)

x

(β)

T µ
ν .

(3.2.27)
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Similarly to the previous section, we set:

(β)

T Y =
(β)

T τ
τ −

(β)

T τ
x ,

E α
k [u(τ)] =

k∑

|β|=0

∫

Ht

−
(β)

T Y dxdn−1νt,x and E α
k,λ[u(t)] =

k∑

|β|=0

∫

Hλ,τ

−
(β)

T Y dxdn−1νt,x .

(3.2.28)

Remark 3.2.4 From (3.2.5) we deduce the following decomposition for
(β)

T Y :

(β)

T Y = −1
2

{
− gττ

(
x−α−

1
2
+β1D

β(∂τ − ∂x)u
)2

+λ

(
x−α−

1
2
+β1D

β(∂xu) +

(
gxA + gAτ

)

λ
∂A

(
x−α−

1
2
+β1D

βu
))2

+
(
gAB − κAB

)
∂A

(
x−α−

1
2
+β1D

βu
)
∂B

(
x−α−

1
2
+β1D

βu
)}

. (3.2.29)

Since the coefficients of the terms arising in commutating ∂A and Dβ are
uniformly bounded, from the above we find that the energy of order k con-
trols the H α

k -norms of the first order derivatives of the unknown function
u. That is:

‖(∂τ − ∂x)u‖2H α
k (Hλ,τ )

+ ‖∂xu‖2H α
k (Hλ,τ )

+
∑

A

‖∂Au‖2H α
k (Hλ,τ )

≤ E α
k,λ[u(τ)] .

(3.2.30)

Let us set

Υν := −gαµΓναµ =
1√
|det g|

∂µ

(√
|det g|gµν

)
. (3.2.31)

Let us define

M(τ) := ‖F‖2
Bα

0 (Hτ )
+ ‖(g, (∂τ − ∂x)g♯)‖2L∞(Hτ )

+‖(g♯, h♯,Υ)‖2
C 0
{x=0},1

(Hτ )
. (3.2.32)

We claim that:
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Proposition 3.2.5 Let λ > 0, k ∈ N and suppose that α ≤ −1
2 . Under hy-

potheses (3.1.1)-(3.1.3) and (3.2.6), there exists a function C2(ǫ0, C0, α, k, n,M).
monotonously increasing in M , which we write as C2(M), such that for all

τ ∈ [τ0, τ1]

and for all u satisfying (3.0.1) we have

E α
k,λ[u(τ)]

≤ E α
k,λ[u(τ0)] +

∫ τ

τ0

C2(M(s))

{
Eαk,λ[u(s)] + ‖F (s)‖2H α

k (Hλ,τ )

+‖
(
(∂τ − ∂x)u, ∂xu, ∂Au

)
‖2

Bα
1 (Hλ,τ )

× ‖
(
g♯, h♯,Υ

)
‖2

G 0
k (Hλ,τ )

}
ds .

(3.2.33)

Remark 3.2.6 The reader should note that C2 does not depend upon λ.

Proof: If the right-hand side of (3.2.33) is infinite there is nothing to prove.
Otherwise, the calculations that follow should be done assuming smoothness
of u, and the inequality for general u’s can be obtained by a density argument.

The equivalent of (3.2.15) for space-derivatives of the solution of (3.0.1)
reads:

k∑

|β|=0

∫

Hλ,τ

(β)

T µ
ν Y νηµdS +

k∑

|β|=0

∫

Hλ,T0

(β)

T µ
ν Y νηµdS +

k∑

|β|=0

∫

Sλ,τ

(β)

T µ
ν Y νηµdS

+
k∑

|β|=0

∫

Sθ,τ

(β)

T µ
ν Y νηµdS =

k∑

|β|=0

∫

Ωλ,τ

∇µ

(
(β)

T µ
ν Y ν

)
dV (3.2.34)

which gives the following equation:

−E α
k,λ[u(τ)] + E α

k,λ[u(τ0)] +

k∑

|β|=0

∫

Sλ,τ

(β)

T µ
ν Y νηµdS +

k∑

|β|=0

∫

Sθ,τ

(β)

T µ
ν Y νηµdS

︸ ︷︷ ︸
:= L̂3+L̂4 ≤ 0

=

k∑

|β|=0

∫

Ωλ,τ

∇µ

{ (β)

T µ
ν Y ν

}
dx dν. (3.2.35)
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Again as in the previous section we take Y ν∂ν = ∂τ−∂x, then the divergence
in the right-hand side of (3.2.35) reads:

∇µ

{ (β)

T µ
ν Y ν

}
= ∇µ

(β)

T µ
ν Y ν +

(β)

T µ
ν ∇µY

ν

= x−2α−1−2β1
{
D
βF + [�g,D

β ]u
}
(∂τ − ∂x) (Dβu)

+
(β)

T µ
ν

(
Γνµτ − Γνµx

)
+ (−2α− 1 + 2β1)

∇µ(x)

x

(
(β)

T µ
τ −

(β)

T µ
x

)

=: R̂1 + R̂2 + R̂3. (3.2.36)

If we repeat the calculations in the previous section that led to (3.2.22) and
(3.2.23), we obtain that there exists a constant C = C(n, k,C0, α, ǫ0) > 0
such that:

|R̂2| ≤ C|g♯|
(
|g|2 + |(∂τ − ∂x)g♯|2

)
|
(β)

T Y | (3.2.37)

and, keeping in mind that the term with the worst power of x can be discarded
because of a favorable sign,

R̂3 ≥ −C|h♯|
(
1 + |g|2 + |g♯|2

)
|
(β)

T Y | . (3.2.38)

As far as the term R̂1 is concerned, from the inequality ab ≤ 1
2 (a

2 + b2), we
have:

x2α+1−2β1 |R̂1| = |{DβF + [�g,D
β ]u} (∂τ − ∂x) (Dβu)|

≤ 1

2
(DβF )2 +

1

2

([
�g,D

β
]
u
)2

+
[
(∂τ − ∂x)

(
D
βu

)]2

≤ (DβF )2 + C(ǫ0)|
(β)

T Y |+
([

�g,D
β
]
u
)2

. (3.2.39)

From inequalities (3.2.37), (3.2.38) , (3.2.39) and the fact that L̂3 , L̂4 ≤ 0
we obtain that:

E α
k,λ[u(τ)]− E α

k,λ[u(T0)] ≤ C

∫ τ

T0

[ (
1 + ‖h♯‖L∞ + ‖g♯‖L∞

) (
1 + ‖g‖2L∞ + ‖g♯‖2L∞

+‖ (∂τ − ∂x) g♯‖2L∞
)
Eαk,λ[u(s)] + ‖F (s)‖2H α

k (Hλ,s)

]
ds

+
k∑

|β|=0

∫ τ

T0

∫

Hλ,s

x−2α−1+2β1([�g,D
β ]u)2(s)dx dνt,xds

(3.2.40)
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with C = C(n, α, k, C0, ǫ0). Now, let us estimate the last term of the right-
hand side of the above inequality. From the definition (3.2.31) of Υµ we
have

�g = gµν∂2µν +Υν∂ν , (3.2.41)

and then

[�g,D
β]u = gαµ[∂α∂µ,D

β ]u−Υν [Dβ, ∂ν ]u−
{
D
β (Υν∂νu)−ΥνDβ (∂νu)

}

−
{
D
β (gαµ∂α∂µu)− gαµDβ (∂α∂µu)

}

=: A1 +A2 +A3 +A4 . (3.2.42)

To estimate the first and second terms, we use the explicit form of the dif-
ferential operator D : Dβ = ∂β1x X

β2
2 . . . Xβr

r = ∂β1x X
βv
v . Since ∂τ and ∂x

commute with Dβ , we have (see (3.2.8))

A1 = gµα[∂µ∂α,D
β]u = 2gτA[(∂τ−∂x)∂A,Dβ ]u+2(gxA+gτA)[∂x∂A,D

β]u+gAB [∂A∂B ,D
β]u,

and since

gτA[(∂τ−∂x)∂A,Dβ]u = gτA∂β1x ∂AX
βv
v [(∂τ−∂x)u]−gτA∂β1x Xβv

v ∂A[(∂τ−∂x)u]

we obtain that (see (3.2.30):
∫

Hλ,τ

x−2α−1+2β1
(
gτA[(∂τ − ∂x)∂A,Dβ ]u

)2
dx dν ≤ c‖g♯‖2L∞(Hλ,τ )

‖(∂τ − ∂x)u‖2H α
k

≤ c‖g♯‖2L∞(Hλ,τ )
E α
k,λ[u(τ)] .

Similarly, we have

(
gxA + gτA

)
[∂x∂A,D

β]u =
(
gxA + gτA

) (
∂AD

β(∂xu)−D
β∂A(∂xu)

)
,

which leads to:
∫

Hλ,τ

x−2α−1+2β1
{(

gxA + gτA
)
[∂x∂A,D

β]u
}2

(s)dx dν ≤ C‖g♯‖2L∞(Hλ,τ )
‖∂xu‖2H α

k

≤ c‖g♯‖2L∞(Hλ,τ )
E α
k,λ[u(τ)] .

Similar calculations give:
∫

Hλ,τ

x−2α−1+2β1(gAB [∂A∂B ,D
β ]u)2(s)dx dν ≤ c‖g♯‖2L∞(Hλ,τ )

∑

A

‖∂Au‖2H α
k

≤ c‖g♯‖2L∞(Hλ,τ )
E α
k,λ[u(τ)] .
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We obtain thus the following estimate for the first term of the identity
(3.2.42):

∫

Hλ,τ

x−2α−1+2β1A2
1dx dν ≤ C‖g♯‖2L∞(Hλ,τ )

E α
k,λ[u(τ)] . (3.2.43)

Again since ∂τ and ∂x commute with Dβ , if we develop the second term of
(3.2.42), we find that:

A2 = Υν [Dβ , ∂ν ]u = ΥA[Dβ, ∂A]u

and we then have the estimates:∫

Hλ,τ

x−2α−1+2β1A2
2dx dν ≤ ‖ΥA‖2L∞‖∂Au‖2H α

k−1
≤ ‖ΥA‖2L∞E α

k,λ[u(τ)] .

(3.2.44)
As far as the third term is concerned, we write

A3 = D
β (Υν∂νu)−ΥνDβ (∂νu) = D

β (Υτ (∂τ − ∂x)u)−ΥτDβ ((∂τ − ∂x)u)
+D

β ((Υx +Υτ )∂xu)− (Υx +Υτ )Dβ (∂xu)

+D
β
(
ΥA∂Au

)
−ΥAD

β (∂Au)

=: I + II + III .

Now we will use the weighted Moser-type inequality B.2.10 of Proposition B.2.3
to estimate the components of A3. Its first component gives the following

∫

Hλ,τ

x−2α−1+2β1 {I}2 dx dν

= ‖xβ1Dβ (Υτ (∂τ − ∂x)u)− xβ1ΥτDβ ((∂τ − ∂x)u) ‖2H α+0
0 (Hλ,τ )

≤ Cs

(
‖(∂τ − ∂x)u‖2Bα

0
‖Υτ‖2

G 0
k
+ ‖(∂τ − ∂x)u‖2H α

k−1
‖Υτ‖2

C 0
{x=0},1

)

≤ C

(
‖(∂τ − ∂x)u‖2Bα

0
‖Υτ‖2

G 0
k
+ ‖Υτ‖2

C 0
{x=0},1

E α
k [u(τ)]

)
(3.2.45)

For the second term:∫

Hλ,τ

x−2α−1+2β1 {II}2 dx dν

= ‖xβ1Dβ (Υx +Υτ ) ∂xu− xβ1(Υx +Υτ )Dβ(∂xu)‖2H α+0
0 (Hλ,τ )

≤ Cs

(
‖∂xu‖2Bα

0
‖Υx +Υτ‖2

G 0
k
+ ‖∂xu‖2H α

k−1
‖Υx +Υτ‖2

C 0
{x=0},1

)

≤ C

(
‖∂xu‖2Bα

0
‖Υx +Υτ‖2

G 0
k
+ ‖Υx +Υτ‖2

C 0
{x=0},1

E α
k [u(τ)]

)
.
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The same holds for the third term of A3:

∫

Hλ,τ

x−2α−1+2β1 {III}2 dx dν

= ‖xβ1Dβ
(
ΥA∂Au

)
− xβ1ΥAD

β (∂Au) ‖2H α+0
0 (Hλ,τ )

≤ Cs

(
‖∂Au‖2Bα

0
‖ΥA‖2

G 0
k
+ ‖∂Au‖2H α

k−1
‖ΥA‖2

C 0
{x=0},1

)

≤ C

(
‖∂Au‖2Bα

0
‖ΥA‖2

G 0
k
+ ‖ΥA‖2

C 0
{x=0},1

E α
k [u(τ)]

)
.

We then obtain the following estimate for the third term of equation (3.2.42)

∫

Hλ,τ

x−2α−1+2β1(A3)
2dx dν (3.2.46)

≤ ‖(∂τ − ∂x)u‖Bα
0
‖Υτ‖2

G 0
k
+ ‖∂xu‖2Bα

0
‖Υτ +Υx‖2

G 0
k
+ ‖∂Au‖2Bα

0
‖ΥA‖2

G 0
k

+

{
‖Υτ‖2

C 0
{x=0},1

+ ‖Υx +Υτ‖2
C 0
{x=0},1

+ ‖ΥA‖2
C 0
{x=0},1

}
Eαk,λ[u(τ)] .

(3.2.47)

In order to estimate the fourth term A4 of (3.2.42), we need to look separately
at each of its components as we have to make sure that every ∂2x comes with
a factor of x. We write

A4 = A00 + 2Aτx + 2AτA +Axx + 2AxA +AAB, (3.2.48)

where the labeling Aab corresponds to the terms obtained when in A4 we
replace gαβ∂2αβ with its expression as in (3.2.8). Now we use again the
weighted Moser-type inequality of Proposition B.2.3 Equation B.2.10 to es-
timate these terms. We have:

∫

Hλ,τ

x−2α−1+2β1
{
AAB

}2
dx dν

= ‖xβ1Dβ
(
gAB∂A∂Bu

)
− xβ1gABD

β (∂A∂Bu) ‖H α+0
0 (Hλ,τ )

≤ Cs
∑

A

(
‖∂Au‖2Bα

1
‖g♯‖2

G 0
k
+ ‖∂Au‖2H α

k
‖g♯‖2

C 0
{x=0},1

)

≤ C

(
∑

A

‖∂Au‖2Bα
1
‖g♯‖2

G 0
k
+ ‖g♯‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

)
(3.2.49)
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and
∫

Hλ,τ

x−2α−1+2β1
{
AτA

}2
dx dν (3.2.50)

= ‖xβ1Dβ
(
gτA∂A(∂τ − ∂x)u

)
− xβ1gτAD

β (∂A(∂τ − ∂x)u) ‖H α
0

≤ Cs

(
‖(∂τ − ∂x)u‖2Bα

1
‖g♯‖2

G 0
k
+ ‖(∂τ − ∂x)u‖2H α

k
‖g♯‖2

C 0
{x=0},1

)

≤ Cs

(
‖(∂τ − ∂x)u‖2Bα

1
‖g♯‖2

G 0
k
+ ‖g♯‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

)
. (3.2.51)

Continuing in this way we have:

∫

Hλ,τ

x−2α−1+2β1
{
AxA

}2
dx dν (3.2.52)

= ‖xβ1Dβ
{(

gxA + gτA
)
∂A∂xu

}
− xβ1

(
gxA + gτA

)
D
β∂A∂xu‖H α

0

≤ C

(
‖∂A∂xu‖2Bα

0
‖
(
gxA + gτA

)
‖2

G 0
k
+ ‖∂A∂xu‖2H α

k−1
‖
(
gxA + gτA

)
‖2

C 0
{x=0},1

)

≤ C
∑

A

(
‖∂xu‖2Bα

1
‖
(
gxA + gτA

)
‖2

G 0
k
+ ‖∂xu‖2H α

k
‖
(
gxA + gτA

)
‖2

C 0
{x=0},1

)

≤ C
∑

A

(
‖∂xu‖2Bα

1
‖
(
gxA + gτA

)
‖2

G 0
k
+ ‖

(
gxA + gτA

)
‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

)
.

(3.2.53)

We recall that gττ + gxτ = xh1(τ, x, vA), we then obtain the following ex-
pression for Aτx.

Aτx = D
β
[
h1x∂x(∂τ − ∂x)u

]
− xh1Dβ [∂x(∂τ − ∂x)u]

= D
β
[
h1x∂x(∂τ − ∂x)u

]
− h1Dβ [x∂x(∂τ − ∂x)u]

+ h1Dβ [x∂x(∂τ − ∂x)u]− xh1Dβ [∂x(∂τ − ∂x)u]︸ ︷︷ ︸
= β1h1Dβ(∂τ−∂x)u

.

Since
∫

Hλ,τ

x−2α−1+2β1
{
h1Dβ(∂τ − ∂x)u

}2
dx dν ≤ ‖h1‖2L∞‖(∂τ − ∂x)u‖2H α

k
,
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we have
∫

Hλ,τ

x−2α−1+2β1 {Aτx}2 dx dν

≤ Cs

(
‖(∂τ − ∂x)u)‖2Bα

1
‖h1‖2

G 0
k
+ ‖(∂τ − ∂x)u‖2H α

k
‖h1‖2

C 0
{x=0},1

)

≤ C

(
‖(∂τ − ∂x)u)‖2Bα

1
‖h1‖2

G 0
k
+ ‖h1‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

)
. (3.2.54)

On the other hand, since gττ + 2gτx + gxx = 1 + xh, we have
∫

Hλ,τ

x−2α−1+2β1 {Axx}2 dx dν ≤ ‖xβ1Dβ (hx∂x[∂xu])− xβ1hDβ (x∂x[∂xu]) ‖2H α+0
0 (Hλ,τ )

+‖h
{
xβ1Dβ (x∂x[∂xu])− xβ1xDβ

(
∂2xu

)}

︸ ︷︷ ︸
= β1xβ1Dβ(∂xu)

‖2
H

α+0
0 (Hλ,τ )

≤ Cs

(
‖x∂x[∂xu]‖2Bα

0
‖h‖2

G 0
k
+ ‖x∂x[∂xu]‖2H α

k−1
‖h‖2

C 0
{x=0},1

+‖h‖2L∞‖∂xu‖2H α
k

)

≤ Cs

(
‖∂xu‖2Bα

1
‖h‖2

G 0
k
+ ‖h‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

)
. (3.2.55)

We note that ‖xj∂jxΦ‖H α
k
≤ ‖Φ‖H α

k+j
which can be shown by induction. In

order to estimate the term A00, we proceed as follows:

A00 =
[
D
β, gττ (∂τ − ∂x)2

]
u = D

β
(
[−1 + xh0] (∂τ − ∂x)2 u

)
− [−1 + xh0]Dβ (∂τ − ∂x)2 u

= D
β
(
[xh0] (∂τ − ∂x)2 u

)
− [xh0]Dβ (∂τ − ∂x)2 u . (3.2.56)

Now using equation (3.0.1), (3.2.41) and (3.2.8), we obtain the following
expression of (∂τ − ∂x)2 u:

(∂τ − ∂x)2 u = −2 (ĝττ + ĝτx) (∂τ − ∂x) ∂x − (ĝττ + 2ĝτx + ĝxx) ∂2x − 2ĝτA (∂τ − ∂x) ∂A
−2

(
ĝxA + ĝτA

)
∂x∂A − gAB∂A∂B − Υ̂σ∂σu+ F̂ . (3.2.57)

Here the hat means multiplication with 1/gττ (recall |gττ | > ǫ0 > 0 ). We
will need the following:

Lemma 3.2.7 Let

∂̃ = (x∂x, ∂A), k ∈ N
∗, θ ∈ R, ψ̂ =

ψ

gττ
,

∣∣∣∣
1

gττ

∣∣∣∣ ≤
1

ǫ0
. (3.2.58)
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We have the following estimates:

‖ψ̂‖
C θ
{x=0},0

≤ 1

ǫ0
‖ψ‖

C θ
{x=0},0

, (3.2.59)

‖ψ̂‖
C θ
{x=0},1

≤ 1

ǫ0
‖ψ‖

C θ
{x=0},1

+
1

ǫ20
‖∂̃(xh0)‖L∞‖ψ‖C θ

{x=0},0
, (3.2.60)

and

‖ψ̂‖
H θ

k
≤ 1

ǫ0
‖ψ‖

H θ
k
+ ‖ψ‖

Bθ
0
C(‖h0‖L∞)

(
1 + ‖h0‖

H
−1
k

)
, (3.2.61)

with identical estimates with C θ
{x=0},0 replaced by Bθ

0 and H θ
k replaced by

G θ
k .

Proof: The first inequality is obvious. Next:

‖ψ̂‖
C θ
{x=0},1

≤ ‖x−θ 1

gττ
ψ‖L∞ + ‖x−θ∂̃

{
1

gττ
ψ

}
‖L∞

≤ 1

ǫ0
‖ψ‖

C θ
{x=0},0

+ ‖x−θ
{
ψ∂̃(

1

gττ
) +

1

gττ
∂̃ψ

}
‖L∞

≤ 1

ǫ0
‖ψ‖

C θ
{x=0},0

+
1

ǫ20
‖ψ‖

C θ
{x=0},0

‖∂̃(xh0)‖L∞ +
1

ǫ0
‖∂̃ψ‖

C θ
{x=0},0

≤ 1

ǫ0
‖ψ‖

C θ
{x=0},1

+
1

ǫ20
‖∂̃(xh0)‖L∞‖ψ‖C θ

{x=0},0
.

On the other hand, from Inequality B.2.4 of Proposition B.2.2, we have:

‖ψ̂‖
H θ

k
= ‖ 1

gττ
ψ‖

H θ
k
≤ ‖ψ‖

Bθ
0
‖ 1

gττ
‖G 0

k
+ ‖ψ‖

H θ
k
‖ 1

gττ
‖C 0

{x=0},0

≤ 1

ǫ0
‖ψ‖

H θ
k
+ ‖ψ‖

Bθ
0
‖ 1

gττ
‖G 0

k
. (3.2.62)

Now, from hypothesis we have,

1

gττ (τ, x, vA)
=

1

−1 + xh0(τ, x, vA)
= −1 + xh0(τ, x, vA)

−1 + xh0(τ, x, vA)

= −1 +G(τ, x, vA, xh0) ,

where G is any function which takes the correct values in the range of inter-
est, e.g.,

G(τ, x, vA, p) =
pχ(p)

−1 + p
with χ ∈ C∞(R) such that χ(p) =

{
1 if p ≤ 1− 3ǫ0

4
0 if p ≥ 1− ǫ0

4

.
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Recall that hypothesis (3.1.1) reads xh0 ≤ 1 − ǫ0. We have (note that the
space of functions G θ

k contains constant functions)

‖ 1

gττ
‖G 0

k
≤ ‖1‖G 0

k
+ ‖G(. , xh0)‖G 0

k
≤ C

(
1 + ‖G(., xh0)‖G 0

k

)
. (3.2.63)

The function G satisfies the following:

‖G(. , p)‖C 0
{x=0},k

= ‖G(. , p)‖C 0
{x=0},0

≤ C(ǫ0)

and for i = 0, 1 ;

∥∥∥∥
∂iG(. , p)

∂pi

∥∥∥∥
C 0
{x=0},k−i

≤ C(ǫ0)|p|1−i .

These two inequalities show that G has a uniform zero of order 1 at p = 0 .
Therefore, we can apply Inequality B.2.8 of Proposition B.2.2 and obtain
that

‖G(. , xh0)‖G 0
k
≤ C(‖h0‖L∞)‖h0‖H −1

k
.

This implies (see (3.2.63))

‖ 1

gττ
‖G 0

k
≤ C(‖h0‖L∞)

(
1 + ‖h0‖

H
−1
k

)
, (3.2.64)

and (3.2.62) leads to (3.2.61).
If we insert (3.2.57) into equation (3.2.56), we obtain seven commutators

which we label A00
a , a = 1, . . . , 7. These terms can be estimated in the same

way as we did before, using B.2.9, B.2.10 and Lemma 3.2.7. They will be
analyzed in the order 7− 3− 5− 1− 2− 4− 6 . Let us estimate the term A00

7

containing the source term F . We have

∫

Hλ,τ

x−2α−1+2β1
{
A00

7

}2
dx dν = ‖xβ1Dβ

(
[xh0]F̂

)
− xβ1 [xh0]DβF̂‖2H α

0

≤ C

(
‖F̂‖2Bα

0
‖xh0‖2

G 0
k
+ ‖F̂‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

)

≤ C(ǫ0)‖F‖2Bα
0
‖xh0‖2

G 0
k
+ C(ǫ0)‖xh0‖2C 0

{x=0},1

×
{
‖F‖2H α

k−1
+ ‖F‖2Bα

0
C(‖h0‖L∞)

(
1 + ‖xh0‖H 0

k−1

)}
.

(3.2.65)
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The third term can be estimated as follows:
∫

Hλ,τ

x−2α−1+2β1
{
A00

3

}2
dx dν

= 2‖Dβ
(
xh0ĝτA∂A(∂τ − ∂x)u

)
− xh0Dβ

(
ĝτA∂A(∂τ − ∂x)u

)
‖2H α

0

≤ C

(
‖ĝτA∂A(∂τ − ∂x)u‖2Bα

0
‖xh0‖2

G 0
k
+ ‖ĝτA∂A(∂τ − ∂x)u‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

)

≤ C‖ĝ♯‖2L∞‖(∂τ − ∂x)u‖2Bα
1
‖xh0‖2

G 0
k

+C‖xh0‖2
C 0
{x=0},1

{
‖(∂τ − τ)u‖2Bα

1
‖ĝ♯‖2

G 0
k−1

+ ‖(∂τ − ∂x)u‖2H α
k
‖ĝ♯‖2

C 0
{x=0},0

}

≤ C(ǫ0)‖g♯‖2L∞‖(∂τ − ∂x)u‖2Bα
1
‖xh0‖2

G 0
k
+C(ǫ0)‖xh0‖2C 0

{x=0},1
‖g♯‖2L∞‖(∂τ − ∂x)u‖2H α

k

+‖xh0‖2
C 0
{x=0},1

‖(∂τ − τ)u‖2Bα
1

{
‖g♯‖2

G 0
k−1

+ ‖g♯‖2L∞C(‖h0‖L∞)
(
1 + ‖xh0‖2

G 0
k−1

)}
.

(3.2.66)

A similar analysis gives (A00
3 and A00

5 have the same structure):
∫

Hλ,τ

x−2α−1+2β1
{
A00

5

}2
dx dν

= ‖Dβ
(
[xh0][ĝAB∂A∂Bu]

)
− [xh0]Dβ

(
[ĝAB∂A∂Bu]

)
‖2H α

0

≤ C(ǫ0)‖g♯‖2L∞‖∂Au‖2Bα
1
‖xh0‖2

G 0
k
+ C(ǫ0)‖xh0‖2C 0

{x=0},1
‖g♯‖2L∞‖∂Au‖2H α

k

+‖xh0‖2
C 0
{x=0},1

‖∂Au‖2Bα
1

{
‖g♯‖2

G 0
k−1

+ ‖g♯‖2L∞C(‖h0‖L∞)
(
1 + ‖xh0‖2

G 0
k−1

)}
.

(3.2.67)

As far as the first term A00
1 is concerned, we have

−1
2
A00

1 = D
β
(
xh0ĥ1(x∂x)(∂τ − ∂x)u

)
− xh0Dβ

(
ĥ1(x∂x)(∂τ − ∂x)u

)
.

Using again the weighted Moser-type Inequality B.2.10, we can evaluate the
square of its norm as follows:
∫

Hλ,τ

x−2α−1+2β1(A00
1 )

2dx dν

= 2‖xβ1Dβ
(
[xh0][ĥ1(x∂x)(∂τ − ∂x)u]

)
− xβ1 [xh0]Dβ

(
ĥ1(x∂x)(∂τ − ∂x)u

)
‖2H α

0

≤ C

(
‖ĥ1(x∂x)(∂τ − ∂x)u‖2Bα

0
‖xh0‖2

G 0
k
+ ‖ĥ1(x∂x)(∂τ − ∂x)u‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

)

≤ C(ǫ0)

(
‖h1‖L∞‖(∂τ − ∂x)u‖2Bα

1
‖xh0‖2

G 0
k
+ ‖ĥ1(x∂x)(∂τ − ∂x)u‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

)
.
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Using now Inequality B.2.9 of Proposition B.2.3 gives (the last inequality is
obtained by using (3.2.61):

‖ĥ1(x∂x)(∂τ − ∂x)u‖2H α
k−1

≤ C
(
‖x∂x(∂τ − ∂x)u‖2Bα

0
‖ĥ1‖2

G 0
k−1

+ ‖x∂x(∂τ − ∂x)u‖2H α
k−1
‖ĥ1‖2

C 0
0

)

≤ C‖(∂τ − ∂x)u‖2Bα
1
‖ĥ1‖2

G 0
k−1

+ C(ǫ0)‖h1‖2L∞‖(∂τ − ∂x)u‖2H α
k

≤ C(ǫ0)‖h1‖2L∞‖(∂τ − ∂x)u‖2H α
k
+ C(ǫ0)‖(∂τ − ∂x)u‖2Bα

1

×
{
‖h1‖2

G 0
k−1

+C(‖h0‖L∞)‖h1‖2L∞(1 + ‖xh0‖2G 0
k−1

)
}
,

which gives
∫

Hλ,τ

x−2α−1+2β1(A00
1 )

2dx dν

≤ C(ǫ0)‖h1‖2L∞‖(∂τ − ∂x)u‖2Bα
1
‖xh0‖2

G 0
k
+ C(ǫ0)‖xh0‖2C 0

{x=0},1
‖h1‖2L∞‖(∂τ − ∂x)u‖2H α

k

+C(ǫ0)‖xh0‖2C 0
{x=0},1

‖(∂τ − ∂x)u‖2Bα
1

{
‖h1‖2

G 0
k−1

+ C(‖h0‖L∞)‖h1‖2L∞(1 + ‖xh0‖2G 0
k−1

)
}

≤ C(ǫ0)‖xh0‖C 0
{x=0},1

‖h1‖2L∞‖(∂τ − ∂x)u‖2H α
k

+C(ǫ0)
(
1 + ‖xh0‖C 0

{x=0},1

)
‖(∂τ − ∂x)u‖2Bα

1

{
‖h1‖2

G 0
k−1

+ C(‖h0‖L∞)‖h1‖2L∞(1 + ‖xh0‖2G 0
k
)
}
.

(3.2.68)

Since the terms A00
1 and A00

4 have the same structure, to estimate the second
one, we just have to replace in the estimate on A00

1 , ‖(∂τ − ∂x)u‖2H α
k

by

‖∂xu‖2H α
k

and ‖xh1‖2
G 0
k−1

by ‖ĝτA + ĝxA‖2
G 0
k−1

. Thus we have

∫

Hλ,τ

x−2α−1+2β1
{
A00

4

}2
dx dν

= ‖Dβ
(
[xh0][(ĝτA + ĝxA)∂A(∂xu)]

)
− [xh0]Dβ

(
(ĝτA + ĝxA)∂A(∂xu)

)
‖2H α

0

≤ C(ǫ0)‖xh0‖C 0
{x=0},1

‖(ĝτA + ĝxA)‖2L∞‖∂xu‖2H α
k

+C(ǫ0)
(
1 + ‖xh0‖C 0

{x=0},1

)
‖∂xu‖2Bα

1

×
{
‖(ĝτA + ĝxA)‖2

G 0
k−1

+ C(‖h0‖L∞)‖(ĝτA + ĝxA)‖2L∞(1 + ‖xh0‖2G 0
k
)
}
.

(3.2.69)

We continue with the most dangerous term A00
2 . We have (recall that

1̂ = 1/gττ )

−A00
2 = D

β
(
[xh0](1̂ + xĥ)∂2xu

)
− [xh0]Dβ

(
[1̂ + xĥ]∂2xu

)
;

72



∫

Hλ,τ

x−2α−1+2β1
{
A00

2

}2
dx dν

= ‖xβ1Dβ
(
[h0][1̂ + xĥ](x∂x)∂xu

)
− xβ1 [xh0]Dβ

(
[1̂ + xĥ]∂2xu

)
‖2H α

0

≤ ‖xβ1Dβ
(
xh0(1̂.∂2xu)

)
− xβ1 [xh0]Dβ

(
1̂.∂2xu

)
‖2H α

0

+‖xβ1Dβ
(
xh0ĥx∂x(∂xu)

)
− xβ1 [xh0]Dβ

(
ĥx∂x(∂xu)

)
‖2H α

0

=: (a) + (b) .

Now, estimating these two expressions as we did with A00
1 , we obtain the

following

(b) ≤ C

(
‖ĥ(x∂x)∂xu‖2Bα

0
‖xh0‖2

G 0
k
+ ‖ĥ(x∂x)∂xu‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

)

≤ C(ǫ0)‖h‖2L∞‖∂xu‖2Bα
1
‖xh0‖2

G 0
k
+ C‖ĥ(x∂x)∂xu‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

.

Inequations B.2.9 and 3.2.61 give,

‖ĥ(x∂x)∂xu‖2H α
k−1

≤ C

(
‖(x∂x)∂xu‖2Bα

0
‖ĥ‖2

G 0
k−1

+ ‖(x∂x)∂xu‖2H α
k−1
‖ĥ‖2

C 0
{x=0},0

)

≤ C(ǫ0)‖h‖2L∞‖∂xu‖2H α
k

+C(ǫ0)‖∂xu‖2Bα
1

{
‖h‖2

G 0
k−1

+ ‖h‖2L∞C(‖h0‖L∞)(1 + ‖xh0‖2G 0
k−1

)
}
,

(3.2.70)

which gives the following estimate for (b):

(b) ≤ C(ǫ0)‖h‖2L∞
(
‖∂xu‖2Bα

1
‖xh0‖2

G 0
k
+ ‖∂xu‖2H α

k
‖xh0‖2

C 0
{x=0},1

)

+C(ǫ0)‖∂xu‖2Bα
1

{
‖h‖2

G 0
k−1

+ ‖h‖2L∞C(‖h0‖L∞)(1 + ‖xh0‖2G 0
k−1

)
}
‖xh0‖2

C 0
{x=0},1

.

(3.2.71)

In order to estimate the term (a) we write here β = (β1, β
′) and Dβ =

∂β1x ∂
β′
v , with ∂β

′

v = Xβ2
2 . . . Xβr

r :

D
β
(
h0x(1̂.∂2xu)

)
− [xh0]Dβ

(
1̂.∂2xu

)
= D

β
(
h0x(1̂.∂2xu)

)
− h0Dβ

(
1̂.x∂2xu

)

+h0Dβ
(
1̂.x∂2xu

)
− [xh0]Dβ

(
1̂.∂2xu

)

=: (1) + (2) . (3.2.72)

We have
xβ1(2) = β1h

0xβ1∂β
′

v ∂
β1−1
x (1̂.∂2xu)
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and we have

x−2α−1+2β1(2)2 = β21(h
0)2x−2(α−1)−1+2(β1−1)

(
∂β

′

v ∂
β1−1
x (1̂.∂2xu)

)2
.

This identity leads to

‖xβ1(2)‖2H α
0

≤ C‖h0‖2L∞‖1̂.∂2xu‖2H α−1
k−1

≤ C‖h0‖2L∞
(
‖∂2xu‖2Bα−1

0
‖1̂‖2

G 0
k−1

+ ‖∂2xu‖2H α−1
k−1

‖1̂‖2
C 0

0

)

≤ C‖h0‖2L∞
(
‖∂xu‖2Bα

1
‖1̂‖2

G 0
k−1

+
1

ǫ0
‖∂xu‖2H α

k

)
.

Using again (3.2.61) we have:

‖1̂‖2
G 0
k−1

≤ 1

ǫ0
‖1‖2

G 0
k−1

+ C(‖h0‖L∞)
(
1 + ‖x2h0‖2

G 0
k−1

)
,

that is
‖1̂‖2

G 0
k−1

≤ C(‖h0‖L∞)
(
1 + ‖x2h0‖2

G 0
k−1

)
. (3.2.73)

Thus,

‖xβ1(2)‖2H α
0

≤ C
(
‖h0‖L∞

){
‖∂xu‖2Bα

1

(
1 + ‖xh0‖2

G 0
k−1

)
+

1

ǫ0
Eαk,λ[u(τ)]

}
.

(3.2.74)

As far as the first term of (3.2.72) is concerned, we have:

‖xβ1(1)‖2H α
0

= ‖xβ1Dβ
(
h0(1̂.(x∂x)∂xu)

)
− xβ1h0Dβ

(
1̂.(x∂x)∂xu

)
‖2H α

0

≤ C

{
‖1̂.(x∂x)∂xu‖2Bα

0
‖h0‖2

G 0
k
+ ‖1̂.(x∂x)∂xu‖2H α

k−1
‖h0‖2

C 0
{x=0},1

}

≤ C(ǫ0)

{
‖∂xu‖2Bα

1
‖h0‖2

G 0
k

+‖h0‖2
C 0
{x=0},1

{
‖(x∂x)∂xu‖2Bα

0
‖1̂‖2

G 0
k−1

+ ‖(x∂x)∂xu‖2H α
k−1
‖1̂‖2

C 0
{x=0},0

}}

≤ C(ǫ0)

{
‖∂xu‖2Bα

1
‖h0‖2

G 0
k
+ ‖h0‖2

C 0
{x=0},1

{
‖∂xu‖2Bα

1
‖1̂‖2

G 0
k−1

+
1

ǫ20
‖∂xu‖2H α

k

}}

≤ C(ǫ0)

{
‖∂xu‖2Bα

1
‖h0‖2

G 0
k
+ ‖h0‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

}

+C(ǫ0)‖h0‖2C 0
{x=0},1

‖∂xu‖2Bα
1

{
C(‖h0‖L∞)

(
1 + ‖xh0‖2

G 0
k−1

)}
. (3.2.75)
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Equations 3.2.74 and 3.2.75 show that

(a) ≤ C(ǫ0)

{
‖∂xu‖2Bα

1
‖h0‖2

G 0
k
+ ‖h0‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

}

+C(ǫ0)‖h0‖2C 0
{x=0},1

‖∂xu‖2Bα
1

{
C(‖h0‖L∞)

(
1 + ‖xh0‖2

G 0
k−1

)}
.

(3.2.76)

Inequalities 3.2.71 and 3.2.76 show that

∫

Hλ,τ

x−2α−1+2β1
{
A00

2

}2
dx dν

≤ C(ǫ0)‖h‖2L∞
(
‖∂xu‖2Bα

1
‖xh0‖2

G 0
k
+ ‖∂xu‖2H α

k
‖xh0‖2

C 0
{x=0},1

)

+C(ǫ0)‖∂xu‖2Bα
1

{
‖h‖2

G 0
k−1

+ ‖h‖2L∞C(‖h0‖L∞)(1 + ‖xh0‖2G 0
k−1

)
}
‖xh0‖2

C 0
{x=0},1

.

(3.2.77)

Now let us consider the sixth term A00
6 of A00. We have

Υ̂µ∂µ = Υ̂τ (∂τ − ∂x) +
(
Υ̂x + Υ̂τ

)
∂x + Υ̂A∂A,

and we decompose A00
6 as

A00
6 = a+ b+ c . (3.2.78)

We have

a := D
β
(
[xh0]Υ̂τ (∂τ − ∂x)u

)
− [xh0]Dβ

(
Υ̂τ (∂τ − ∂x)u

)
,

and
∫

Hλ,τ

x−2α−1+2β1a2dx dν

= ‖xβ1Dβ
(
[xh0]Υ̂τ (∂τ − ∂x)u

)
− xβ1 [xh0]Dβ

(
Υ̂τ (∂τ − ∂x)u

)
‖2H α

0

≤ C

(
‖Υ̂τ (∂τ − ∂x)u‖2Bα

0
‖xh0‖2

G 0
k
+ ‖Υ̂τ (∂τ − ∂x)u‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

)

≤ C(ǫ0)‖Υτ‖2L∞‖(∂τ − ∂x)u‖2Bα
0
‖xh0‖2

G 0
k
+ ‖xh0‖2

C 0
{x=0},1

×
{
(∂τ − ∂x)u‖2Bα

0
‖Υ̂τ‖2

G 0
k−1

+ ‖(∂τ − ∂x)u‖2H α
k−1
‖Υ̂τ‖2

C 0
{x=0},0

}
.
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Now, from (3.2.59) and (3.2.61) we have

‖Υ̂τ‖2
C 0
{x=0},0

≤ C(ǫ0)‖Υτ‖L∞ ,

and

‖Υ̂τ‖2
G 0
k−1

≤ C(ǫ0)
{
‖Υτ‖G 0

k−1
+ ‖Υτ‖2L∞C(‖h0‖L∞)

(
1 + ‖xh0‖2

G 0
k−1

)}
.

Thus

∫

Hλ,τ

x−2α−1+2β1a2dx dν ≤ C(ǫ0)‖Υτ‖2L∞‖(∂τ − ∂x)u‖2Bα
0
‖xh0‖2

G 0
k

+C(ǫ0)‖xh0‖2C 0
{x=0},1

‖Υτ‖2L∞‖(∂τ − ∂x)u‖2H α
k−1

+C(‖h0‖L∞)‖xh0‖2C 0
{x=0},1

‖(∂τ − ∂x)u‖2Bα
0
‖Υτ‖2

G 0
k−1

+C(ǫ0)‖xh0‖2C 0
{x=0},1

‖(∂τ − ∂x)u‖2Bα
0
‖Υτ‖2L∞

(
1 + ‖xh0‖2

G 0
k−1

)
.

(3.2.79)

On the other hand,

b := D
β
(
[xh0](Υ̂τ + Υ̂x)∂xu

)
− [xh0]Dβ

(
(Υ̂τ + Υ̂x)∂xu

)

and we have
∫

Hλ,τ

x−2α−1+2β1b2dx dν (3.2.80)

= ‖xβ1Dβ
(
[xh0](Υ̂τ + Υ̂x)∂xu

)
− xβ1xh0Dβ

(
(Υ̂τ + Υ̂x)∂xu

)
‖2H α

0

≤ C‖(Υ̂τ + Υ̂x)∂xu‖2Bα
0
‖xh0‖2

G 0
k
+ C‖(Υ̂τ + Υ̂x)∂xu‖2H α

k−1
‖xh0‖2

C 0
{x=0},1

≤ C(ǫ0)‖Υτ +Υx‖2L∞‖∂xu‖2Bα
0
‖xh0‖2

G 0
k
+ C‖xh0‖2

C 0
{x=0},1

×
{
‖∂xu‖2Bα

0
‖Υ̂τ + Υ̂x‖2

G 0
k−1

+ ‖∂xu‖2H α
k−1
‖Υ̂τ + Υ̂x‖2

C 0
{x=0},0

}

≤ C(ǫ0)‖Υτ +Υx‖2L∞‖∂xu‖2Bα
0
‖xh0‖2

G 0
k

+C(ǫ0)‖xh0‖2C 0
{x=0},1

‖Υτ +Υx‖2L∞Eαk,λ[u(τ)]

+C(‖h0‖L∞)‖xh0‖2C 0
{x=0},1

‖∂xu‖2Bα
0

×
{
‖Υτ +Υx‖2

G 0
k−1

+ ‖Υτ +Υx‖2L∞
(
1 + ‖xh0‖2

G 0
k−1

)}
.

(3.2.81)
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The same holds for the term

c := D
β
(
[xh0]Υ̂A∂Au

)
− [xh0]Dβ

(
Υ̂A∂Au

)

and we have
∫

Hλ,τ

x−2α−1+2β1c2dx dν ≤ C(ǫ0)‖ΥA‖2L∞‖∂Au‖2Bα
0
‖xh0‖2

G 0
k

+C(ǫ0)‖xh0‖2C 0
{x=0},1

‖ΥA‖2L∞‖∂Au‖2H α
k−1

+C(‖h0‖L∞)‖xh0‖2C 0
{x=0},1

‖∂Au‖2Bα
0
‖ΥA‖2

G 0
k−1

+C(ǫ0)‖xh0‖2C 0
{x=0},1

‖∂Au‖2Bα
0
‖ΥA‖2L∞

(
1 + ‖xh0‖2

G 0
k−1

)
.

(3.2.82)

This provides the right estimate for A00
6 , and hence for of A00.

An identical estimate is obtained on the fourth term A4 of the commu-
tator (3.2.42). This finishes the estimation of the commutator [�g,D

β ]u
appearing in (3.2.40), and the proof is complete. �

Conclusion

The proof of the Proposition 3.2.5 used essentially Stokes’s theorem, the
weighted Moser-type Inequalities A.34 and A.35 of Proposition A.3 of [20],
and the weighted substitution inequality type (A.31) of the same reference
(see also Appendix B). One of the points there is that all the constants
appearing in these inequalities are independent of x2 (recall that the sets
Mx2,x1 there corresponds to the sets Hλ,τ here) which is the distance between
the boundary of Mx2,x1 and the null hypersurface N = {x = 0}. So, in
our case, all the constants involved in the proof of the previous proposition
are independent of λ. This allows us to take the limit as λ goes to 0 in
(3.2.33) and obtain an identical inequality with Eαk,λ[u(τ)] there replaced
with Eαk [u(τ)]. Therefore we have proved the following:

Proposition 3.2.8 Proposition 3.2.5 remains true with λ = 0.

Inequality (3.2.33) with λ = 0 is the key in deriving an existence theorem
for the Einstein-Maxwell equations with data on a hyperboloid, singular near
{x = 0}. In this case, we will show that all the Hk and Gk norms appearing
in this inequality are controlled by the energy.
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It turns out that the proof, in Chapter 5, of global polyhomogeneity of
the geodesically complete metrics constructed by Loizelet requires a slightly
different inequality. For this we need to split the metric into two parts as

gαβ = g̊αβ + δgαβ . (3.2.83)

The rationale behind such a splitting is, that the Lorentzian metric g̊ will
be fixed (in fact, it will be the flat Minkowski metric in our applications),
while the correction δg will eventually depend on the fields. This leads to the
obvious corresponding decomposition of Υ,

Υα = Υ̊α + δΥα . (3.2.84)

We assume that there exist constants σ, M and N such that for τ ∈
[τ0, τ1] we have

M ≥ ‖(̊h♯, g̊♯, Υ̊)‖G 0
k (Hτ ) + ‖(δh♯, δg♯, δΥ)‖C 0

{x=0},1
(Hτ )

+‖(∂x − ∂τ )g♯‖L∞(Hτ ) , (3.2.85)

N ≥ ‖(∂τu, ∂xu, ∂Au)‖Bσ
1 (Hτ ) + ‖(g♯,Υ)‖L∞(Hτ )

+‖(̊gτA, g̊xA)‖
G

α−σ
k−1 (Hτ )

+ ‖(δg♯, δΥ)‖C 0
{x=0},1

(Hτ ) . (3.2.86)

We then have:

Proposition 3.2.9 Let k > n/2+1, σ ∈ R, α ≤ −1/2. There exist functions
C3(ǫ0, C0, α, k, n,M) and C4(ǫ0, C0, α, σ, k, n,N), monotonously increasing
in M and N , which we write as C3(M) and C4(N), such that for all

τ ∈ [τ0, τ1]

and for all u satisfying (3.0.1) we have

Eαk [u(τ)] ≤ Eαk [u(τ0)] +

∫ τ

τ0

{
C3(M)

(
Eαk [u(s)] + ‖F (s)‖2H α

k (Hτ )

)

+C4(N)
(
1 + ‖(δg♯, δh♯, δΥ)‖2

G
α−σ
k (Hτ )

)}
ds . (3.2.87)

Proof: The result is obtained by calculations very similar to those of Propo-
sition 3.2.8. We follow that proof until (3.2.41), which is rewritten as

�g = g̊µν∂2µν + δgµν∂2µν + Υ̊ν∂ν + δΥν∂ν . (3.2.88)
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This leads to the following rewriting of (3.2.42):

[�g,D
β ]u = g̊αµ[∂α∂µ,D

β ]u︸ ︷︷ ︸
=:Å1

+ δgαµ[∂α∂µ,D
β]u︸ ︷︷ ︸

=:δA1

−Υ̊ν [Dβ , ∂ν ]u︸ ︷︷ ︸
=:Å2

−
{

D
β
(
Υ̊
ν
∂νu

)
− Υ̊

ν
D
β (∂νu)

}

︸ ︷︷ ︸
=:Å3

−δΥν [Dβ , ∂ν ]u︸ ︷︷ ︸
=:δA2

−
{
D
β (δΥν∂νu)− δΥνDβ (∂νu)

}

︸ ︷︷ ︸
=:δA3

−
{
D
β (̊gαµ∂α∂µu)− g̊αµDβ (∂α∂µu)

}

︸ ︷︷ ︸
=:Å4

−
{
D
β (δgαµ∂α∂µu)− δgαµDβ (∂α∂µu)

}

︸ ︷︷ ︸
=:δA4

. (3.2.89)

The terms Ai := Åi + δAi, i=1,2 are estimated as in (3.2.43)-(3.2.44). For
Å3, instead of (3.2.45) the estimates proceed as before, except that at the
end one invokes the weighted Sobolev embedding of Proposition B.2.1; e.g.,

∫

Hλ,τ

x−2α−1+2β1
{
I̊
}2
dx dν

= ‖xβ1Dβ
(
Υ̊
τ
(∂τ − ∂x)u

)
− xβ1Υ̊τDβ ((∂τ − ∂x)u) ‖2H α

0 (Hλ,τ )

≤ Cs

(
‖(∂τ − ∂x)u‖2Bα

0
‖Υ̊τ‖2

G 0
k
+ ‖(∂τ − ∂x)u‖2H α

k−1
‖Υ̊τ‖2

C 0
{x=0},1

)

≤ C

(
‖Υ̊τ‖2

G 0
k
+ ‖Υ̊τ‖2

C 0
{x=0},1

)
E α
k [u(τ)] . (3.2.90)

For δA3, we use Proposition B.2.3. Instead of (3.2.45) we then have

∫

Hλ,τ

x−2α−1+2β1 {δI}2 dx dν

= ‖xβ1Dβ (δΥτ (∂τ − ∂x)u)− xβ1δΥτDβ ((∂τ − ∂x)u) ‖2H α
0 (Hλ,τ )

≤ Cs

(
‖(∂τ − ∂x)u‖2Bσ

0
‖δΥτ‖2

G
α−σ
k

+ ‖(∂τ − ∂x)u‖2H α
k−1
‖δΥτ‖2

C 0
{x=0},1

)

≤ C

(
‖(∂τ − ∂x)u‖2Bσ

0
‖δΥτ‖2

G
α−σ
k

+ ‖δΥτ‖2
C 0
{x=0},1

E α
k [u(τ)]

)
. (3.2.91)
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An identical treatment applies to the remaining three displayed equations
following (3.2.45).

The term A4 is split into Aµν ’s as in (3.2.48), and then for µν 6= 00
we split Aµν = Åµν + δAµν in the obvious way. All the terms Åµν with
µν 6= 00 are then treated as in the proof of Proposition 3.2.8, and at the end
we invoke the inequality, for k ≥ n/2 + 1,

‖f‖2Bα
1
≤ C‖f‖2H α

k
.

The terms involving δAµν with µν 6= 00 are treated as in (3.2.91); for ex-
ample, (3.2.49) becomes

∫

Hλ,τ

x−2α−1+2β1
{
δAAB

}2
dx dν

= ‖xβ1Dβ
(
δgAB∂A∂Bu

)
− xβ1δgABD

β (∂A∂Bu) ‖H α
0 (Hλ,τ )

≤ Cs
∑

A

(
‖∂Au‖2Bα−σ

1
‖δg♯‖2G σ

k
+ ‖∂Au‖2H α

k
‖δg♯‖2

C 0
{x=0},1

)

≤ C

(
∑

A

‖∂Au‖2Bα−σ
1
‖δg♯‖2G σ

k
+ ‖δg♯‖2

C 0
{x=0},1

Eαk,λ[u(τ)]

)
. (3.2.92)

In (3.2.66) it is convenient to use the splitting h = h̊ + δh. The terms
involving h̊ are estimated, using the Sobolev embedding, by E α

k [u(τ)], while
for those involving δh we write

∫

Hλ,τ

x−2α−1+2β1
{
δA00

3

}2
dx dν

= 2‖Dβ
(
xδh0ĝτA∂A(∂τ − ∂x)u

)
− xδh0Dβ

(
ĝτA∂A(∂τ − ∂x)u

)
‖2H α

0

≤ C‖ĝτA∂A(∂τ − ∂x)u‖2Bσ
0
‖xδh0‖2

G
α−σ
k

+C‖ĝτA∂A(∂τ − ∂x)u‖2H α
k−1
‖xδh0‖2

C 0
{x=0},1

. (3.2.93)

The first line above is estimated as

C‖ĝ♯‖2L∞‖(∂τ − ∂x)u‖2Bσ
1
‖δg♯‖2

G
α−σ
k

,

as desired. The second is estimated as

C‖δg♯‖2
C 0
{x=0},1

{
‖(∂τ − ∂τ )u‖2Bσ

1
‖ĝτA‖2

G
α−σ
k−1

+ ‖(∂τ − ∂x)u‖2H α
k
‖ĝ♯‖2

C 0
{x=0},0

}

≤ C‖δg♯‖2
C 0
{x=0},1

{
‖(∂τ − ∂τ )u‖2Bσ

1
‖ĝτA‖2

G
α−σ
k−1

+ ‖g♯‖2
C 0
{x=0},0

Eαk,λ[u(τ)]

}
.

(3.2.94)
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To estimate the term A00
5 (compare (3.2.68)) we need to split both h♯ and g♯

into two. The terms there involving h̊♯ and g̊♯ can be estimated by E α
k [u(τ)].

The terms involving δg♯ are estimated as in the analysis of δA00
3 . The mixed

term involving g̊♯ and δh is handled in the obvious way

‖xβ1Dβ
(
[xδh0][ˆ̊gAB∂A∂Bu]

)
− xβ1 [xδh0]Dβ

(
[ˆ̊gAB∂A∂Bu]

)
‖2H α

0

≤ C
(
‖ˆ̊gAB∂A∂Bu‖Bσ

0
‖‖xδh0‖

G
α−σ
k

+ ‖xδh0‖C 0
{x=0},1

‖ˆ̊gAB∂A∂Bu‖H α
k−1

)

≤ C
(
‖ˆ̊g♯‖L∞‖∂Au‖Bσ

1
‖xδh0‖

G
α−σ
k

+ ‖ˆ̊g♯‖G 0
k−1
‖∂Au‖H α

k
‖xδh0‖C 0

{x=0},1

)

≤ C
(
‖̊g♯‖L∞‖∂Au‖Bσ

1
‖δg♯‖

G
α−σ
k

+ ‖̊g♯‖G 0
k−1
‖δg♯‖C 0

1
Eαk,λ[u(τ)]

)
.(3.2.95)

A similar analysis of the remaining terms proves the proposition. �
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Chapter 4

Application to the

Einstein-Maxwell Equations

in wave coordinates and

Lorenz gauge

4.1 Change of coordinates

4.1.1 On the gauge condition

Throughout this section, the (unphysical) conformally rescaled metric is de-
noted by g, and the (physical) metric is denoted by g; thus gµν = Ω2gµν .

Remember that in the original system of coordinates (xµ) we have

�gx
µ = 0 with g = η + h ,

which leads to
∂µ

(
gµν

√
|det g|

)
= 0 . (4.1.1)

We want to rewrite the above equation in the new system of coordinate (yα)
(see (4.1.4)). We have

√
|det g| = 1 +

1

2
ηαβhαβ +Q(h) ,

where Q has a uniform zero of order two in h. We set

gµν = ηµν +Hµν . (4.1.2)
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In what follows, we use a generic symbol Q for functions which have a
uniform zero of order two. We have

∂µ
(
gµν

√
|det g|

)
= ∂µ

[
gµν{1 + 1

2
ηαβhαβ +Q(h)}

]

= ∂µ
[
{ηµν +Hµν}{1 + 1

2
ηαβhαβ +Q(h)}

]

= ∂µH
µν{1 + 1

2
ηαβhαβ +Q(h)}+ {ηµν +Hµν}{1

2
ηαβ∂µhαβ + ∂µQ(h)} .

Using this identity, equation (4.1.1) takes the form:

∂µH
µν +

1

2
ηµνηαβ∂µhαβ

= −∂µHµν{1
2
ηαβhαβ +Q(h)} −Hµν{1

2
ηαβ∂µhαβ + ∂µQ(h)} − ηµν∂µQ(h) . (4.1.3)

Let us rewrite this equation in the system of coordinates (τ, x, vA) where

yµ =
xµ

ηαβxαxβ
, τ = y0 ≤ 0, x = −y0 − ρ ≥ 0 and yi = ρωi(vA) .

(4.1.4)
Recall that

Ω = −yαyα = τ2 − ρ2 = x(−τ + ρ) ≥ 0 , (4.1.5)

and f̂ = Ω−
n−1
2 f (not to be confused with division by gττ , as used in the

previous chapter), so that

∂f

∂xµ
= Ω

n−1
2

{
− (n− 1)yµ −Ω

∂

∂yµ
− 2yµy

α ∂

∂yα

}
f̂ , (4.1.6)

thus the left-hand-side of (4.1.3) can be rewritten as

−(n−1)Ωn−1
2 yµ

(
Ĥµν+

1

2
ηµνηαβ ĥαβ

)
−Ωn−1

2

{
Ω

∂

∂yµ
+2yµy

α ∂

∂yα

}(
Ĥµν+

1

2
ηµνηαβ ĥαβ

)
.

We want to analyze the structure of the right-hand side of (4.1.3). This
expression is made of three terms which will be labeled R1, R2, and R3. We
have (see (4.1.6) and recall that yα ∂Ω

∂yα = 2Ω):

R1 = Ω
n−1
2

{
1

2
Ω

n−1
2 trη(ĥ) +Q(Ω

n−1
2 ĥ)

}{
(n− 1)yµ +Ω

∂

∂yµ
+ 2yµy

α ∂

∂yα

}
Ĥµν

=: Q(Ω
n−1
2 ĥ,Ω

n−1
2 yµĤ

µν) +Q(Ω
n−1
2 ĥ,Ω

n+1
2 ∂µĤ

µν)

+Q(Ω
n−1
2 ĥ,Ω

n−1
2 yµy

α ∂

∂yα
Ĥµν) . (4.1.7)
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Now, since ∂Q
∂h has a uniform zero of order one, we have

∂

∂xµ
Q(h) =

∂Q

∂h

∂h

∂xµ
= −∂Q

∂h
(Ω

n−1
2 ĥ)Ω

n−1
2

{
(n − 1)yµ +Ω

∂

∂yµ
+ 2yµy

α ∂

∂yα

}
ĥ

=: Q(Ω
n−1
2 ĥ,Ω

n−1
2 yµĥ) +Q(Ω

n−1
2 ĥ,Ω

n+1
2
∂ĥ

∂yµ
) +Q(Ω

n−1
2 ĥ,Ω

n−1
2 yµy

α ∂

∂yα
ĥ) .

Thus R2 reads:

R2 =
1

2
ηαβΩ

n−1
2 Ĥµν

{
Ω

n−1
2

}{
(n− 1)yµ +Ω

∂

∂yµ
+ 2yµy

α ∂

∂yα

}
ĥαβ

+Ω
n−1
2 Ĥµν

{
Q(Ω

n−1
2 ĥ,Ω

n−1
2 yµĥ) +Q(Ω

n−1
2 ĥ,Ω

n+1
2 ∂µĥ)

+Q(Ω
n−1
2 ĥ,Ω

n−1
2 yµy

α ∂

∂yα
ĥ)

}
.

=: Q(Ω
n−1
2 ĥ,Ω

n−1
2 yµĤ

µν) +Q(Ω
n−1
2 Ĥµν ,Ω

n+1
2 ∂µĥ) +Q(Ω

n−1
2 yµĤ

µν ,Ω
n−1
2 yα

∂

∂yα
ĥ) .

(4.1.8)

Next

R3 = −ηµν∂µQ(h)

= ηµν
{
Q(Ω

n−1
2 ĥ,Ω

n−1
2 yµĥ) +Q(Ω

n−1
2 ĥ,Ω

n+1
2 ∂µĥ) +Q(Ω

n−1
2 ĥ,Ω

n−1
2 yµy

α ∂

∂yα
ĥ)

}
.(4.1.9)

From this, we obtain the following form of the gauge condition (4.1.3):

yµĤ
µν +

1

2
yνηαβĥαβ =

1

1− n
{
Ω

∂

∂yµ
+ 2yµy

α ∂

∂yα

}(
Ĥµν +

1

2
ηµνηαβ ĥαβ

)

+ Ω−
n−1
2 (R1 +R2 +R3) . (4.1.10)

Now we recall that

Hµν := gµν − ηµν = −hµν + Q̃µν(h) ,

where hµν = ηµαηνβhαβ . Therefore

ηαβ ĥαβ = −ηαβĤαβ +Ω−
n−1
2 Q̃(Ω

n−1
2 Ĥ).

Equations (4.1.7)-(4.1.10) lead finally to the following form of the gauge
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condition (4.1.3):

yµĤ
µν − 1

2
yνtrη(Ĥ) =

1

1− n
{
Ω

∂

∂yµ
+ 2yµy

α ∂

∂yα

}(
Ĥµν − 1

2
ηµν trηĤ

)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n−1
2 Ĥ)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n+1
2 ∂Ĥ)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n−1
2 yα

∂

∂yα
Ĥ) . (4.1.11)

We will need the following consequence of this equation: multiplying by yν
and commuting derivatives one is led to

(n− 5)yνyµĤ
µν = 2yα

∂

∂yα

(
yµyνĤ

µν +
1

2
ΩtrηĤ

)

+Ω
(n− 5

2
trη(Ĥ) + yν

∂

∂yµ
(
Ĥµν − 1

2
ηµν trη(Ĥ)

))

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n−1
2 Ĥ)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n+1
2 ∂Ĥ)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n−1
2 yα

∂

∂yα
Ĥ) . (4.1.12)

4.1.2 On the wave equation

In wave coordinates (xµ), we consider the following wave equation

ηαβ
∂2f

∂xα∂xβ
+Hαβ(f, ∂f)

∂2f

∂xα∂xβ
= F (f, ∂f) . (4.1.13)

In order to check all the hypotheses made on components of the metric in
our theorem on the energy estimate, we have to rewrite this equation with
respect the system of coordinates (τ, x, vA) used there. According to our
previous calculations, equation (4.1.13) can be written as

ηλµ
∂2f̂

∂yλ∂yµ
+Ω−

n+3
2 Hλµ(f, ∂f)

∂2f

∂xλ∂xµ
= Ω−

n+3
2 F (f, ∂f) , (4.1.14)

where
f̂ = Ω−

n−1
2 f .

So, let us express the second term of the above equation in terms of coordi-
nates yν. We already know the identity:

∂2f

∂xλ∂xµ
◦φ−1 = ∂2(f ◦ φ−1)

∂yα∂yβ
AαµA

β
λ+

∂(f ◦ φ−1)
∂yα

∂2yα

∂xµ∂xλ
◦φ−1 =: Kλµ+Vλµ ,

(4.1.15)
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with

∂2yα

∂xµ∂xλ
◦ φ−1 = 2Ωδαµηλσy

σ + 2Ωδαληµτy
τ + 2Ωηµλy

α + 8ηλσηµθy
σyαyθ

and
AαµA

β
λ = Ω2δαµδ

β
λ + 4yλyµy

αyβ + 2Ω(δαµyλy
β + δβλyµy

α) .

These identities lead to

HλµVλµ = Hλµ
{
2Ωδαµηλσy

σ + 2Ωδαληµθy
θ + 2Ωηµλy

α + 8ηλσηµθy
σyαyθ

} ∂f

∂yα
.

(4.1.16)
Now we also know that

∂f

∂yα
= Ω

n−3
2

{
Ω
∂f̂

∂yα
− (n− 1)yαf̂

}
. (4.1.17)

This implies that (note that in this equation, the term yµyλH
µλ is the one

which has the the smallest multiplicative power of Ω):

HλµVλµ = 2Ω
n−1
2 Hλµ

{
(n−1) {Ωηλµ + 2yµyλ} f̂+

(
2Ωδαµyλ +Ωηλµy

α + 4yµyλy
α
) ∂f̂

∂yα

}
.

(4.1.18)
On the other hand we have

∂2(f ◦ φ−1)
∂yα∂yβ

= Ω
n−5
2

{
Ω2 ∂2f̂

∂yα∂yβ
− (n − 1)Ω

(
yβ

∂f̂

∂yα
+ yα

∂f̂

∂yβ

)

+(n− 1) [(n− 3)yαyβ − Ωηαβ] f̂

}
,

which leads to the following expression of HλµKλµ :

HλµKλµ = Ω
n−5
2 Hλµ

{
Ω2δαµδ

β
λ + 4yµyλy

αyβ + 2Ωyθ(ηλθδ
α
µy

β + ηµθδ
β
λy

α)
}

×
{
Ω2 ∂2f̂

∂yα∂yβ
− (n− 1)Ω

(
yβ

∂f̂

∂yα
+ yα

∂f̂

∂yβ

)
+ (n − 1) [(n− 3)yαyβ − Ωηαβ ] f̂

}
,

and after simplifications, we find that

HλµKλµ = Ω
n−1
2 Hλµ

{
Ω2δαµδ

β
λ + 4yµyλy

αyβ + 2Ω(δαµyλy
β + δβλyµy

α)
} ∂2f̂

∂yα∂yβ

+ (n− 1)Ω
n−1
2 Hλµ

{
2 (2yλyµy

α +Ωδαλyµ)
∂f̂

∂yα
+ [(n− 3)yµyλ − Ωηλµ] f̂

}
.

(4.1.19)

86



With the expressions (4.1.18) and (4.1.19) and writing Hλµ = Ω
n−1
2 Ĥλµ ,

equation (4.1.14) reads after simplifications

{
ηαβ +Ω

n−5
2 Ĥλµ

[
Ω2δαµδ

β
λ + 4yµyλy

αyβ + 2Ω(δαµyλy
β + δβλyµy

α)
]} ∂2f̂

∂yα∂yβ

+ 2Ω
n−5
2 Ĥλµ

{
{
2(n + 1)yµyλy

α + (n+ 1)Ωδαµyλ + ηλµΩy
α
} ∂f̂

∂yα

+(n− 1) {(n + 1)yµyλ +Ωηλµ} f̂
}

= Ω−
n+3
2 F

(
Ω

n−1
2 f̂ ,Ω(n−1)/2{− Ω

∂

∂yν
− 2yνy

α ∂

∂yα
− (n− 1)yν

}
f̂

)

=: Ω−
n+3
2 F̃

(
Ω

n−1
2 f̂ ,Ω

n−1
2
∂f̂

∂yν

)
. (4.1.20)

We want to apply the energy estimates of Section 3.2.3 to the equation
considered here. So for consistency of notation in that section, we write the
above equation in the form (recall that Ω = x(ρ− τ)):

�gu = F(u, ∂u) , (4.1.21)

with
u = f̂ , (4.1.22)

gαβ = ηαβ + {x(ρ− τ)}n−5
2 Ĥλµ ×{

{x(ρ− τ)}2δαµδβλ + 4yµyλy
αyβ + 2{x(ρ − τ)}(δαµyλyβ + δβλyµy

α)
}

︸ ︷︷ ︸
:=ψαβ

λµ

,

(4.1.23)

(in order to reduce the typographical length of formulae we will sometimes

write ψαβµν for ψαβµν) and

F
(
u,

∂u

∂yν

)
= Ω−

n+3
2 F̃

(
Ω

n−1
2 u,Ω

n−1
2
∂u

∂yν

)

+

{
Υα − 2Ω

n−5
2 Ĥλµ

{
2(n + 1)yµyλy

α + (n+ 1)Ωδαµyλ + ηλµΩy
α
}
}
∂u

∂yα

−2(n− 1)Ω
n−5
2 Ĥλµ {(n+ 1)yµyλ +Ωηλµ}u . (4.1.24)
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So, we have to check that the metric g defined by (4.1.23) and the harmonic-
ity functions

Υµ =
1√
|det g|

∂ν

{√
|det g|gµν

}
(4.1.25)

satisfy the hypotheses of our theorem.
The tensor ψαβµν defined in (4.1.23) has the property

ηαβψ
αβ

µν = Ω2ηµν , (4.1.26)

which implies that the contraction

ηαβ(g
αβ − ηαβ) = Ω

n−1
2 trηĤ

gains two powers of Ω, as compared to a direct power-counting based on
(4.1.23). Furthermore, the structure yαyβyµyν of the term without powers of
Ω in ψαβµν implies that any contraction of the form ψαβµνηαρψ

ρσ
γδ acquires

an overall multiplicative factor of Ω. So if we set

δgαβ := gαµηµβ − δαβ ,

it follows that for k ≥ 2 we have

(
(δg)k

)
α
β := δgαα1δg

α1
α2 · · · δgαk−1

β = Ωk−1Qk(Ω
n−5
2 Ĥ) ,

where we use the symbol Qk to denote a smooth function (in this case, a
polynomial) with a uniform zero of order k, and which may change from
line to line. A similar analysis shows that, again for k ≥ 2, the trace

pk(δg) := tr(δg)k = δgαα1δg
α1
α2 · · · δgαk−1

α = ΩkQk(Ω
n−5
2 Ĥ) (4.1.27)

(no summation over k) gains one more power of Ω.
Set

Aαβ := δαβ + δgαβ . (4.1.28)

Equation (4.1.27) implies

pi(A) = tr(I+δg)i =
n∑

j=0

Cji pj(δg) = n+1+itrδg+Ω2Q2(Ω
n−5
2 Ĥ) . (4.1.29)

Let W (λ) denote the characteristic polynomial of A,

W (λ) = det(A− λI) = detA+ w1λ+ . . .+ wnλ
n + (−λ)n+1 .
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Then the coefficients wi are homogeneous polynomials of order n+ 1− i in
the entries of A = I + δg, with wn = (−1)ntrA = (−1)n(n + 1 + trδg). It
is a well known consequence of the Cayley-Hamilton theorem (see, e.g., [52,
Theorem 1]) that both detA and the wi’s can be written as polynomials in
the pi’s, and since each pi(A) has a factor Ω2 in front of the Q2 terms, we
find that the wi’s take the form

wi(A) = wi(I) + ℓi(trδg) + Ω2Q2(Ω
n−5
2 Ĥ) , (4.1.30)

where ℓi(trδg) is linear in trδg.
Now

gαβ = gασησρη
ρβ =

(
δαρ + δgαρ

)
ηρβ = Aαρη

ρβ , (4.1.31)

hence
det g♯ = − det(A) ,

which shows that

det g♯ = −1 + Ω2
(
−Ωn−5

2 trηĤ +Q2(Ω
n−5
2 Ĥ)

)
= −1 + Ω2Q1(Ω

n−5
2 Ĥ) .

(4.1.32)
From the Cayley-Hamilton theorem we have

A−1 = − 1

detA

(
w1I + · · · + wnA

n−1 + (−1)n+1An
)
,

and we conclude that gαβ = (η−1A−1)αβ takes the form

gαβ =
1

1 + Ω2Q1(Ω
n−5
2 )

(
ηαβ − Ω

n−5
2 Ĥµνψαβµν +Ω2Q2(Ω

n−5
2 Ĥ)

)

= ηαβ − Ω
n−5
2 Ĥµνyµyνy

αyβ +ΩQ1(Ω
n−5
2 Ĥ)

+Ω2Q2(Ω
n−5
2 Ĥ) , (4.1.33)

where the indices on ψαβµν have been lowered with the metric ηαβ .

4.1.3 On the components of the metric

Recall that, to obtain energy inequalities, our hypotheses on certain compo-
nents of the metric were

g00 = −1 + xh0; g0ρ = −xh1; g0A + gρA = −xhA and gρρ = 1 + xh ,
(4.1.34)
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where the functions h, h0, hA are bounded on bounded sets. Since (compare
(4.1.4))

g0ρ = g0iωi, g0A = g0i
∂vA

∂yi
, gρA = gijωj

∂vA

∂yi
and gρρ = gijωiωj ,

from (4.1.23) we have (note that yiωi = ρ, ρωiδ
i
µ = yµ + τδτµ):

h0 = x
n−7
2 (ρ−τ)n−5

2 Ĥλµ
{
{x(ρ− τ)}2δτµδτλ + 4τ2yµyλ + 4τ{x(ρ− τ)}δτµyλ

}
,

(4.1.35)

h1 = −xn−7
2 (ρ−τ)n−5

2 Ĥλµ
{
{x(ρ− τ)}2δτµδiλωi + 4τρyµyλ + 2ρ{x(ρ − τ)}yλ(δ0µρ+ τδiµωi)

}
,

(4.1.36)

h = x
n−7
2 (ρ−τ)n−5

2 Ĥλµ
{
{x(ρ−τ)}2δiµδjλωiωj+4ρ2yµyλ+4{x(ρ−τ)}yλρδiµyλωi

}
,

(4.1.37)

hA = −xn−3
2 (ρ− τ)n−3

2

{
(ρ− τ)

(
Ĥ0i + ωjĤ

ij
)
− 2yλĤ

λi
} ∂vA

∂yi
. (4.1.38)

We see that the components of the metric (4.1.23) have the right structure
(4.1.34) if the space dimension n is greater then or equal to 7. We will see
in Section 4.2.1 (see (4.1.12)) that this can be lowered to n ≥ 6 using the
harmonic coordinates condition.

We note the identities,

ηijωj
∂vA

∂yi
=

n∑

j=1

ωj
∂vA

∂yj
=
∂vA

∂r
= 0 ,

which justify that g0A + gρA has the right structure. In particular, for this
component the condition n ≥ 4 suffices to fulfill the structure condition.

We will also need

gττ = −1 +O(x
n−5
2 ), gτx = 1 +O(x

n−3
2 ), gxx = O(x

n−1
2 ),(4.1.39)

gxA = O(x
n−3
2 ), gAB = ηAB +O(x

n−5
2 ) .

4.1.4 On the harmonicity functions

Now let us look at the harmonicity functions, defined as

Υµ :=
1√
|det g|

∂ν

{√
|det g|gµν

}
.

Since our energy estimates have been established using the coordinate system
(x, τ, vA) as defined in (2.3.3), we need to calculate Υµ in that coordinate
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system. But so far we only have the expression of the metric in the yµ–
coordinate system. To avoid confusion let us write (2)Υ for Υ associated to
the coordinates (τ, x, vA) and (1)Υ for that associated to the coordinates yµ.
To understand the behaviour of Υ under coordinate changes, it is useful to
write the Christoffel symbols Γαβγ of the metric g in the form

Γαβγ = Γ̊αβγ + Cαβγ ,

where the Γ̊αβγ’s are the Christoffel symbols of the Minkowski metric η, and
Cαβγ is a tensor. Then, in the coordinate system yµ we have

(1)Υα = − gβγCαβγ︸ ︷︷ ︸
=:Cα

, (4.1.40)

since the Γ̊αβγ’s vanish in the yµ–coordinates. Note that Cα as defined in
(4.1.40) is a vector field, being the contraction of two tensors. In the coor-
dinates (τ, x, vA) we have

(2)Υα = −gβγ
(
Γ̊αβγ + Cαβγ

)
= −gβγΓ̊αβγ − Cα . (4.1.41)

Thus, to calculate (2)Υ we need to vector-transform Cα to the (τ, x, vA)
coordinates, and calculate the missing term gβγΓ̊αβγ above. We start by cal-
culating the vector field Cµ. We set

gαβ =: ηαβ +Ω
n−5
2 Kαβ , (4.1.42)

thus
Kαβ = Ĥµνψαβµν

as in (4.1.23); we hope that the clash of notation with the completely different
Kαβ appearing in (4.1.15) will not confuse the reader.

From (4.1.32) we have (recall that Q means Q2)

(√
|det g|

)∓1
= 1± 1

2
Ω

n−1
2 trη(Ĥ) + Ω2Q(Ω

n−5
2 Ĥ) .

Thus in the coordinate system yµ,

gµν
√
|det g| = ηµν

(
1− 1

2
Ω

n−1
2 trηĤ

)
+Ω

n−5
2 Kµν

+Ω2Qµν(Ω
n−5
2 Ĥ) , (4.1.43)
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∂ν

(
gµν

√
|det g|

)
=

1

2
Ω

n−3
2

{
(n− 1)yµtrηĤ − ηµνΩ∂νtrηĤ

}

+Ω
n−7
2

{
(5− n)yνKµν +Ω∂νK

µν
}
+ ∂ν

{
Ω2Qµν(Ω

n−5
2 Ĥ)

}

and since

∂νΩK
µν ∼ yνK

µν = −ΩyβĤαβ {Ωδµα + 2yαy
µ} , (4.1.44)

and

∂νK
µν = ∂νĤ

αβψµναβ+2(n+3)yβĤ
αβ {Ωδµα + 2yαy

µ}+2ΩyµtrηĤ , (4.1.45)

we obtain

∂ν

(
gµν

√
|det g|

)
=

1

2
Ω

n−3
2

{
(n+ 3)yµtrηĤ − ηµνΩ∂νtrηĤ

}

+Ω
n−5
2

{
∂νĤ

αβψµναβ + (3n+ 1)yβĤ
αβ(Ωδµα + 2yαy

β)

}

+Ω2Qµ2 (Ω
n−5
2 Ĥ) + Ω2Qµν2 (Ω

n−5
2 Ĥ,Ω

n−5
2 ∂νĤ) .

Multiplying this last identity with
(√

|det g|
)−1

we then obtain the following

expression for the vector field Cµ:

Cµ = (1)Υ
µ

=
1

2
Ω

n−3
2

{
(n+ 3)yµtrηĤ − ηµνΩ∂νtrηĤ

}

+Ω
n−5
2

{
∂νĤ

αβψµναβ + (3n+ 1)yβĤ
αβ {Ωδµα + 2yαy

µ}
}

+Ω2Qµ(Ω
n−5
2 Ĥ) + Ω2Qµν(Ω

n−5
2 Ĥ,Ω

n−5
2 ∂νĤ) . (4.1.46)

Now writing the vector field C as

C = Cµ∂µ =: C
τ∂τ + Cx∂x +CA∂A ,

one is led to:

Cτ = C0 , Cτ + Cx = −ωi(v)Ci , CA =
∂vA

∂yi
Ci .

In order to have all the harmonicity functions in the (τ, x, vA)-coordinates,
it remains to calculate the term gβγ Γ̊αβγ of the formula (4.1.41). In these

coordinates the Christoffell’s symbol of the Minkowski metric Γ̊αβγ read:

Γ̊ταβ = 0,

Γ̊xτµ = Γ̊xxµ = 0, Γ̊xAB = ρχAB

Γ̊Aττ = ΓAτx = Γ̊Axx = 0, Γ̊AτB = Γ̊AxB = −1
ρ
δAB , Γ̊ABC = γABC ,
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where we have denoted the round metric on the sphere by χ, and its corre-
sponding Christoffel symbols γABC . These identities lead to the following (see
identity (4.1.42)):

gβγ Γ̊τβγ = 0 (4.1.47a)

gβγ Γ̊xβγ = ρgABχAB =
n− 1

ρ
+ ρΩ

n−5
2 ĤµνψABµν χAB (4.1.47b)

gβγ Γ̊Aβγ = −2
ρ
(gτA + gxA) + gBCγABC (4.1.47c)

=
1

ρ2
C̊A +Ω

n−5
2 Ĥµν

(
2ψiAµν

ωi
ρ
+ ψBCµν γ

A
BC

)
; (4.1.47d)

where C̊A = χBCγABC is minus the harmonicity function on the unit sphere.
Finally, we obtain that the harmonicity functions of the metric g in the
(τ, x, vA)-coordinates read:

(2)Υτ = −C0 (4.1.48a)

(2)Υτ + (2)Υx = ωi(v)C
i − n− 1

ρ
− ρΩn−5

2 ĤµνψABµν (4.1.48b)

(2)ΥA = −∂v
A

∂yi
Ci − 1

ρ2
C̊A

−Ωn−5
2 Ĥµν

(
2ψiAµν

ωi
ρ
+ ψBCµν γ

A
BC

)
. (4.1.48c)

We revert now to the notation Υ for what was denoted by (2)Υ above.

4.1.5 The source term F
Recall that the source term in yµ-coordinates reads:

F
(
u,

∂u

∂yν

)
= Ω−

n+3
2 F̃

(
Ω

n−1
2 u,Ω

n−1
2
∂u

∂yν

)

+

{
(1)Υ

α − 2Ω
n−5
2 Ĥλµ

{
2(n+ 1)yµyλy

α + (n+ 1)Ωδαµyλ + ηλµΩy
α
}
}
∂u

∂yα

−2(n− 1)Ω
n−5
2 Ĥλµ {(n+ 1)yµyλ +Ωηλµ}u . (4.1.49)
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From (4.1.46) we have

(1)Υ
α − 2Ω

n−5
2 Ĥλµ

{
2(n + 1)yµyλy

α + (n+ 1)Ωδαµyλ + ηλµΩy
α
}

=
1

2
Ω

n−3
2

{
(n− 1)yαtrηĤ − ηανΩ∂νtrηĤ

}

+Ω
n−5
2

{
ψανµλ∂νĤ

λµ + (n− 1)yλĤ
µλ

{
Ωδαµ + 2yµy

α
}}

+Ω2Qα(Ω
n−5
2 Ĥ,Ω

n−5
2 Ĥ) + Ω2Qαβ(Ω

n−5
2 Ĥ,Ω

n−5
2 ∂βĤ) .

This shows that the source term takes the following form:

F
(
u,

∂u

∂yν

)
= Ω−

n+3
2 F̃

(
Ω

n−1
2 u,Ω

n−1
2
∂u

∂yν

)

−2(n− 1)Ω
n−5
2 Ĥλµ {(n+ 1)yµyλ +Ωηλµ}u

+
1

2
Ω

n−3
2

{
(n − 1)yαtrηĤ − ηανΩ∂νtrηĤ

} ∂u

∂yα

+Ω
n−5
2

{
ψανµλ∂νĤ

λµ + (n− 1)yλĤ
µλ

{
Ωδαµ + 2yµy

α
}} ∂u

∂yα

+
{
Ω2Qα(Ω

n−5
2 Ĥ,Ω

n−5
2 Ĥ) + Ω2Qαβ(Ω

n−5
2 Ĥ,Ω

n−5
2 ∂βĤ

} ∂u

∂yα
.

(4.1.50)

4.2 The Einstein-Maxwell case

4.2.1 Existence of a solution

The Einstein-Maxwell equations, in harmonic and Lorenz gauge, take the
form (4.1.13) (see [9, 37, 39]) with the following replacements there:

f = (gµν − ηµν︸ ︷︷ ︸
:= hµν

, Aµ) and Hαβ = gαβ − ηαβ . (4.2.1)

Recall that, if v is an arbitrary function, then

v̂ = Ω−
n−1
2 v . (4.2.2)

Therefore, we have

f̂ = (ĥµν , Âµ) := (Ω−
n−1
2 hµν , Ω

−n−1
2 Aµ) and Ĥαβ = Ω−

n−1
2 Hαβ .
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For consistency of notation with Section 3.2.3 we set

f̂ ≡ u .

In this notation
‖ĥµν‖H θ

k
≤ ‖u‖

H θ
k
,

and, since

Ĥαβ = −ηαµηβν ĥµν +Ω−(n−1)/2Qαβ
(
Ω(n−1)/2ĥµν

)
,

where Qαβ has a uniform zero of order two, from Proposition B.2.2 Ap-
pendix B.2 we obtain that

‖Ĥαβ‖
H θ

k
≤ ‖ηαµηβν ĥµν‖H θ

k
+ ‖Ω−n−1

2 Qαβ
(
Ω

n−1
2 ĥµν

)
‖

H θ
k

≤ C
(
‖ĥµν‖L∞

)
‖u‖

H
θ−(n−1)/2
k

≤ C
(
‖ĥµν‖L∞

)
‖u‖

H θ
k
. (4.2.3)

We define the energy Eαk,λ[u(τ)] as in Equation (3.2.28) of Section (3.2.3),
the metric being defined by (4.1.23). Recall (see Equation (3.2.30) of Section
(3.2.3)) that this quantity controls the H α

k -norms of ∂f̂ . Now,

‖∂Ĥαβ‖2
H θ

k
≤ ‖∂(ηαµηβν ĥµν)‖2H θ

k
+ ‖∂

(
Ω−

n−1
2 Qαβ(Ω(n−1)/2ĥµν)

)
‖2

H θ
k
.

Since

∂
(
Ω−

n−1
2 Qαβ(Ω(n−1)/2ĥµν)

)
= Ω−

n+1
2 Qαβ(Ω

n−1
2 ĥ) + Ω−

n−1
2 Qαβ(Ω

n−1
2 ĥ,Ω

n−1
2 ∂ĥ)

= Ω−
n+1
2 Qαβ(Ω

n−1
2 ĥ) + Ω−

n−1
2

+αQαβ(Ω
n−1
2 (ĥ, x−α∂ĥ)),

we have the estimate:

‖∂
(
Ω−

n−1
2 Qαβ(Ω(n−1)/2ĥµν)

)
‖2

H θ
k

≤ ‖Ω−n+1
2 Qαβ(Ω

n−1
2 ĥ)‖

H θ
k

+‖Ω−n−1
2

+αQαβ(Ω
n−1
2 (ĥ, x−α∂ĥ))‖

H θ
k

≤ C(‖ĥ‖L∞)‖ĥ‖
H

θ−(n−1)/2
k

+C(‖ĥ, x−α∂ĥ)‖L∞‖(‖ĥ, x−α∂ĥ)‖
H

θ−α−(n−1)/2
k

≤ C(‖ĥ, x−α∂ĥ)‖L∞
(
‖ĥ‖

H θ
k
+ ‖ĥ‖

H
θ−α
k

+ ‖∂ĥ‖
H θ

k

)

≤ C(‖ĥ, x−α∂ĥ)‖L∞
(
‖ĥ‖

H
θ−α
k

+ ‖∂ĥ‖
H θ

k

)
.
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Thus,

‖∂Ĥαβ‖2
H θ

k
≤ C

(
‖ĥ, x−α∂ĥ)‖L∞

)(
‖u‖

H
θ−α
k

+ ‖∂u‖
H θ

k

)
.

To continue, we suppose that at x = x1 > 0 the maximal globally hyper-
bolic development of the data exists for τ ∈ [τ0, τ1], with

M1 := ‖f̂ |{x=x1}‖L∞ <∞ .

We define (compare (3.2.32))

M̂(τ) := ‖F‖2
Bα

0 (Hτ )
+ ‖(g, (∂τ − ∂x)g♯)‖2L∞(Hτ )

+ ‖(g♯, h♯,Υ)‖2
C 0
{x=0},1

(Hτ )

+‖
(
(∂τ − ∂x)f̂ , ∂xf̂ , ∂Af̂

)
‖2

Bα
1 (Hτ )

+ ‖f̂(τ)|{x=x1}‖L∞ , (4.2.4)

with the functions g♯, h♯, Υµ ≡ (2)Υ and F defined by equations (4.1.23),
(4.1.35)-(4.1.38), (4.1.48) and (4.1.50).

For any positive function N(τ) we set

N(τ) := sup
s∈[τ0,τ ]

N(s) . (4.2.5)

We then have the following:

Proposition 4.2.1 Let k ∈ N, α ∈ (−1,−1/2] . Consider the Einstein-
Maxwell equations (4.1.13) in space-time dimension 1 + n ≥ 7 if α = −1

2 ,
and 1 + n ≥ 8 otherwise. Let f be defined in (4.2.1), suppose that t0 > 0
and assume that the initial data, given on the hyperboloid

S0 =

{
(xµ) : x0 − t0 =

√
t20 + |~x|2

}
(4.2.6)

in Minkowski space-time, are such that:

f̂
∣∣
φ(S0) ∈

(
H

α
k+1 ∩ L∞

)
(φ(S0)) , and

(
(∂τ − ∂x)f̂ , ∂xf̂ , ∂Af̂

) ∣∣
φ(S0) ∈ H

α
k (φ(S0)) .

(4.2.7)
There exists functions Ĉ3(n, k, ǫ0, C0, α, M̂ ) and Ĉ4(n, k, ǫ0, C0, α, M̂), monotonously
increasing in M̂ , which we write as C3(M̂) and C4(M̂ ), such that the energy
of the system as defined in (3.2.28), Section 3.2.3 satisfies the inequality

‖f̂(τ)‖2L∞ + Eαk [f̂(τ)] ≤ 2
{
M2

1 + Eαk [f̂(τ0)]

+

∫ τ

τ0

Ĉ3(M̂(s))Eαk [f̂(s)]ds
}
, (4.2.8)
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where τ0 = − 1
2t0

. Furthermore, for n+ 1 ≥ 7 and α = −1/2 one has

‖f̂(τ)‖2L∞ + Eαk [f̂(τ)] ≤ 2
{
M2

1 + Eαk [f̂(τ0)] + ‖x(n−7)/2Ĥµνyµyν(τ0)‖2G 0
k

+

∫ τ

τ0

Ĉ4(M̂(s))Eαk [f̂(s)]ds
}
. (4.2.9)

Remark 4.2.2 For n ≥ 7, a prefactor Ω
n−7
2 in the fourth line (the fall-off

of the component of this term with the lowest power of Ω can be improved
using the gauge condition) of the nonlinear term in (4.1.50) still leads to
the estimates here. This remark is important for the estimation of the time
derivatives in Section 4.2.2 below.

Proof: For all 0 < x < x1 the trivial identity

f̂(τ, x) = f̂(τ, x1)−
∫ x1

x
∂xf̂(τ, s)ds

leads to the estimate (recall that α > −1)

‖f̂(τ)‖L∞ ≤ M1 +

∫ x1

x
‖∂xf̂(τ)‖Cα

{x=0},k
sαds

≤ M1 + ‖∂xf̂(τ)‖G α
k
.

From this one easily concludes

‖f̂(τ)‖G 0
k
≤ C

(
M1 + ‖(∂xf̂ , ∂Af̂)(τ)‖G α

k−1

)
. (4.2.10)

Now we apply Proposition 3.2.8 of Section 3.2.3. To obtain (4.2.8) we will
show first that, in the Einstein-Maxwell case, the H α

k -norm of the source
term, the G 0

k -norms of g♯, h♯ and Υµ are controlled by the energy. Let us
start with the G 0

k -norm of g♯. From the expression of g given by (4.1.23)
and the estimate (4.2.10), if n ≥ 5 then

‖g♯(τ)‖2
G 0
k
≤ C

(
M1 + ‖∂Ĥ‖2G α

k

)

≤ C
(
M1 + Eαk,λ[u(τ)]

)
. (4.2.11)

The same holds for h♯ but with the constraint that the space dimension n
is larger than or equal to 7. We will return later to the question how to
improve on the dimension on this term when α = −1/2.

To estimate the harmonicity functions (2)Υ given by (4.1.48), we start
by estimating the functions Cµ. We decompose Cµ = Cµ1 + Cµ2 + Cµ3 , each
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corresponding to a line in (4.1.46). The first and second terms are estimated
as we did for g♯ and h♯:

‖Cµ1 ‖2G 0
k
≤ C(‖xn−3

2 Ĥ‖2
G 0
k
+ ‖xn−1

2 ∂Ĥ‖2
G 0)

≤ C
(
M1 + Eαk,λ[u(τ)]

)
for n ≥ 3 , (4.2.12)

and

‖Cµ2 ‖2G 0
k
≤ C

(
‖xn−5

2 Ĥ‖2
G 0
k
+ ‖xn−5

2 ∂Ĥ‖2
G 0
k

)

≤ C
(
M1 + Eαk,λ[u(τ)]

)
for n ≥ 5− 2α . (4.2.13)

To estimate Cµ3 we recall that its components have a uniform zero of order

two in Ĥ and (Ĥ, x−α∂Ĥ) respectively, with the second term linear in ∂Ĥ,
thus we can apply Inequality B.2.8 of Appendix B.2 on the G -norm with
ℓ = 2, β = n−5

2 . We obtain:

‖Cµ3 ‖2G 0
k
≤ ‖Qµ(Ωn−5

2 Ĥ)‖2
G
−2
k

+ ‖Qµν(Ωn−5
2 (Ĥ, x−α∂νĤ))‖2G−2−α

k

≤ C(‖(Ĥ‖L∞)‖Ĥ‖2G 3−n
k

+ C(‖(Ĥ, x−α∂Ĥ)‖L∞)‖(Ĥ, x−α∂Ĥ)‖2G 3−α−n
k

≤ C
(
‖Ĥ, x−α∂Ĥ)‖L∞

)(
‖Ĥ‖2

G 0
k
+ ‖∂Ĥ‖2G α

k

)
for n ≥ 3− α .

Thus we have:

‖Cµ3 ‖2G 0
k
≤ C

(
‖Ĥ, x−α∂Ĥ)‖L∞

) (
‖u‖2L∞ + Eαk,λ[u(τ)]

)
for n ≥ 4 .

(4.2.14)

Note that the function C
(
‖Ĥ, x−α∂Ĥ)‖L∞

)
will give a contribution to the

function C2(M(s)) of (4.2.8). The remaining terms of (2)Υ as given by
(4.1.47) are estimated in a similar way. They are controlled by

C
(
1 + Eαk,λ[u(τ)]

)
for n ≥ 5 . (4.2.15)

We continue by writing the source term F (see (4.1.50)) as a sum of
terms, each of the following form

xpiFi
(
. , xqi(f̂ , x−α∂f̂)

)
. (4.2.16)

Note that all terms are polynomial in ∂f , at most quadratic in ∂f . For
instance, the first term F̃ arises from products of the Christoffels in the Ricci
tensor, and from the products of the derivatives ∂A of the vector potential
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Fi pi qi ℓi constraint n ≥
F1 −n+3

2
n−1
2 + α 2 n > 5− 2α 7[6]

F2 −n−5
2

n−5
2 2 n > 5 6

F3
n−3
2 + α 0 2 n > 3 4

F4
n−5
2 + 2α 0 2 n > 5− 2α 7[6]

F5 2− n−5
2 + α n−5

2 3 n > 3 4
2− n−5

2 + 2α n−5
2 3 n > 3− α 4

Table 4.1: Restrictions on the dimension from the source terms.

A in the energy-momentum tensor. We then write, for example, in the xµ

coordinates,

Γ2 ∼ (g♯∂g)2 ∼ F (g♯)∂g∂g = x2αF (g♯)(x−α∂g)(x−α∂g) ;

we then express this in term of hµν , transform the whole expression to the
yµ–coordinates, and finally reexpress hµν in term of Ĥµν. This formula
shows that the Γ2 in the Einstein equations have a uniform zero of order two
in (f̂ , x−αf̂). A similar analysis applies to the contribution of the Maxwell
fields to the Einstein-Maxwell equations.

We use the following estimate to show that the H α
k -norm of F is con-

trolled by the energy of the system: Suppose that Fi has a uniform zero of
order ℓi in (u, x−α∂u), then applying to this function the second part of
Lemma B.2.2 Appendix B.2, for

pi + ℓiqi > α . (4.2.17)

We choose ǫ > 0 so that pi + ℓiqi > α+ ǫ, and write

‖xpiFi
(
. , xqi(u, x−α∂u)

)
‖2H α

k

= ‖Fi
(
. , xqi(u, x−α∂u)

)
‖2

H
α−pi
k

≤ C
(
‖(u, x−α∂u)‖L∞

)
‖(u, x−α∂u)‖2

H
α−pi−ℓiqi
k

≤ C
(
‖(u, x−α∂u)‖L∞

) (
‖u‖2

H
−ǫ
k

+ ‖x−α∂u‖2
H
−ǫ
k

)

≤ C
(
‖(u, x−α∂u)‖L∞

) (
‖u‖2L∞ + Eαk,λ[u(τ)]

)
.

The analysis of the nonlinear terms (4.1.50) along those lines gives the fol-
lowing table: Here the Fi’s, i = 1, . . . , 4, correspond to the i-th line of
(4.1.50), while the two rows for F5 correspond to the two respective terms
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in the last line of (4.1.50). In the last column the number in square bracket
is obtained by estimating below the non-linearity in a more efficient way.

It turns out that the threshold on the space dimension n can be low-
ered to n = 6 for the components F1 and F4 of the source term F . The
quadratic terms in those expressions with the lowest powers of Ω are of the

form Ω
n−5
2 G(Ω

n−1
2 f̂)∂f̂∂f̂ for F1 and Ω

n−5
2 Ĥ∂u and Ω

n−5
2 ∂Ĥ∂u for F4.

One can estimate the H α
k -norm of Ω

n−5
2 Ĥ∂u using instead (B.2.9):

‖Ωn−5
2 Ĥ∂u‖2H α

k
≤ ‖Ĥ∂u‖2

H
α−n−5

2
k

≤ C

(
‖Ĥ‖2

C 0
0
‖∂u‖2

H
α−n−5

2
k

+ ‖xn−5
2 Ĥ‖2

G 0
k
‖∂u‖2Bα

0

)

≤ C(‖u‖2L∞ + ‖∂u‖2Bα
0
)
(
‖u‖2

G 0
k
+ ‖∂u‖2H α

k

)
if n ≥ 5

≤︸︷︷︸
see (4.2.10)

C(‖u‖2L∞ + ‖∂u‖2Bα
0
)
(
1 + ‖∂u‖2H α

k

)

≤ C(‖u‖2L∞ + ‖∂u‖2H α
k
)
(
1 + ‖∂u‖2H α

k

)
, (4.2.18)

for k > n/2. Next,

‖Ωn−5
2 ∂Ĥ∂u‖2H α

k
≤ ‖∂Ĥ∂u‖2

H
α−n−5

2
k

≤ C

(
‖∂Ĥ‖2Cα

0
‖∂u‖2

H
−n−5

2
k

+ ‖∂Ĥ‖2H α
k
‖∂u‖2

C
−n−5

2
0

)

≤ C‖∂u‖2Cα
0
‖∂u‖2H α

k
if − n− 5

2
− α ≤ 0 i.e. n ≥ 5− 2α

≤ C‖∂Ĥ‖2Cα
0
Eαλ,k[u(τ)] ,

and so the last inequality will be true provided that
{

n ≥ 6 if α = −1
2

n ≥ 7 if − 1 < α < −1
2

.

A similar calculation applies to F1.
These estimates and the table show that

‖F (u, ∂u) ‖2H α
k
≤ C(‖u‖L∞ , ‖∂u‖Cα

0
)
(
1 + Eαk,λ[u(τ)]

)
(4.2.19)

for {
n ≥ 6 if α = −1

2
n ≥ 7 if − 1 < α < −1

2

.
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Inserting inequalities (4.2.11)-(4.2.13) and (4.2.14)-(4.2.19) in (3.2.33) of
Section 3.2.3 gives (4.2.8).

Now, at several places of the calculations above the term

ψ := yαyβĤ
αβ

is the one that occurs with the lowest power of Ω. It follows from the wave-
coordinates conditions that this term solves equation (4.1.12), which can be
written in the form

−yα∂αψ +
n− 5

2
ψ = ζ , (4.2.20)

where

ζ := Ω
(n− 1

2
trη(Ĥ) + yν

∂

∂yµ
(
Ĥµν +

1

2
ηµν trη(Ĥ)

))

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n−1
2 Ĥ)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n+1
2 ∂Ĥ)

+Ω−
n−1
2 Q(Ω

n−1
2 Ĥ,Ω

n−1
2 yα

∂

∂yα
Ĥ)

=: ζ1 + ζ2 + ζ3 + ζ4 , (4.2.21)

where ζi corresponds to the i-the line. The point is that all terms in ζ contain
effectively multiplicative powers of Ω.

Solutions of (4.2.20) take the form, for τ0 ≤ τ ≤ τ1 < 0,

ψ(τ, x) = (−τ)−(n−5)/2
(∫ τ

τ0

(−s)(n−7)/2ζ
(
s,
sx

τ

)
ds+ (−τ0)(n−5)/2ψ

(
τ0,

xτ0
τ

))
.

(4.2.22)
This gives immediately, for any γ,

‖ψ(τ)‖G γ
k
≤ ‖ψ(τ0)‖G γ

k
+ C(τ0, τ1)

∫ τ

τ0

‖ζ(s)‖G γ
k
ds , (4.2.23)

similarly for H γ- or C γ-norms. In the notation of (4.2.5) one thus finds

‖ψ(τ)‖G γ
k
≤ ‖ψ(τ0)‖G γ

k
+ C(τ0, τ1)

∫ τ

τ0

‖ζ(s)‖G γ
k
ds

≤ ‖ψ(τ0)‖G γ
k
+ C(τ0, τ1)(τ1 − τ0)‖ζ(τ)‖G γ

k
.

Using this to estimate h0 we obtain

‖h0(τ)‖G 0
k
≤ C

(
‖x(n−7)/2ψ(τ)‖G 0

k
+ ‖x(n−5)/2Ĥ(τ)‖G 0

k

≤ C
(
‖x(n−7)/2ψ(τ0)‖G 0

k
+ ‖x(n−7)/2ζ(τ)‖G 0

k
+ ‖x(n−5)/2Ĥ(τ)‖G 0

k

)
.
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We have, for example,

‖x(n−7)/2ζ1(τ)‖G 0
k
≤ C

(
‖x(n−5)/2Ĥ(τ)‖G 0

k
+ ‖x(n−5)/2∂Ĥ(τ)‖G 0

k

)
,

which, for n−5 ≥ −2α, can be controlled by ‖Ĥ(τ)‖L∞ and Eαk [u(τ)] in view

of (4.2.10). This requires n ≥ 6 if α = −1/2, or n ≥ 7 if α ∈ (−1,−1/2).
An estimation of the remaining ζi’s along the lines of those already done
above presents no difficulties.

The functions h1 and h have the same structure and so the same estimate
applies; the function hA has a higher multiplicative power of Ω so that the
original straightforward estimate applies.

The final inequality (4.2.9) follows immediately from this and from an
obvious version of the estimate (4.2.8) for the remaining terms in the equa-
tion.

We finish this proof by noting that the above treatment of yαyβĤ
αβ can

be used to improve the threshold on dimension for some of the entries of
Table 4.1; this will, however, not improve the threshold on n of the theorem.
�

We are now ready to prove existence of solutions in weighted Sobolev
spaces. For s > 0 consider the family of hyperboloids:

Ss =
{
(xµ) : x0 − s =

√
s2 + |~x|2

}
. (4.2.24)

Let φ be defined in (1.2.2). We have the following

Theorem 4.2.3 (Propagation of weighted Sobolev regularity) Suppose that
k >

[
n
2

]
+ 1, with n = 6 and α = −1/2, or n ≥ 7 with α ∈ (−1,−1/2], and

let t0 > 0. Suppose that

f̂
∣∣
φ(S0) ∈

(
H

α
k+1 ∩ L∞

)
(φ(S0)) ,

(
∂τ f̂ , ∂xf̂ , ∂Af̂

) ∣∣
φ(S0) ∈ H

α
k (φ(S0)) ,

(4.2.25)
where f and f̂ are defined by (4.2.1)-(4.2.2). In the case α = −1/2 and
n = 6 assume moreover that

x−1/2yαyβĤ
αβ

∣∣
φ(S0)

∈ G
0
k . (4.2.26)

Then there exists t∗ > t0 and a solution of (4.1.13) defined on ∪
s∈[t0, t∗]

Ss

such that, ∀τ ∈ [− 1
2t0
,− 1

2t∗
] =: [τ0, τ∗] we have:

f̂ ∈ L∞
(
[τ0, τ∗], H

α
k (Hτ ) ∩ L∞(Hτ )

)
, (4.2.27)
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(
∂τ f̂ , ∂xf̂ , ∂Af̂

)
∈ L∞

(
[τ0, τ∗], H

α
k (Hτ )

)
. (4.2.28)

Moreover, any solution for which M̂(τ), as defined in (4.2.4), is bounded on
[τ0, τ1] satisfies (4.2.27)-(4.2.28) with τ∗ = τ1.

Remark 4.2.4 Using the weighted Sobolev embedding theorem we conclude

f̂(τ) ∈
(
C
α
k−[n2 ]−1

∩ L∞
)
(Hτ ) , (4.2.29)

(
∂τ f̂(τ), ∂xf̂(τ), ∂Af̂(τ)

)
∈ C

α
k−[n2 ]−1

(Hτ ) . (4.2.30)

when the prescribed data are as in Theorem 4.2.3.

Proof: In order to apply the Gronwall-type Lemma 5.2 of [20], we need to
prove that all the norms in M̂ (see (4.2.4) and (4.2.8)) are controlled by the
energy or the L∞-norm of u. Since k >

[
n
2

]
+1, from the weighted Sobolev’s

inequality, we have:

‖(∂τ − ∂x, ∂x, ∂A)f̂‖2Bα
1
≤ ‖(∂τ − ∂x, ∂x, ∂A)f̂‖2H α

k
≤ Eαk,λ[u(τ)] . (4.2.31)

Let us look at the L∞-norm of (∂τ − ∂x)g
♯. Recall that the expression of g♯

is given by (4.1.23). We estimate here only its worse term which is of the

form Ω
n−5
2 Ĥ. We have:

‖(∂τ − ∂x)(Ω
n−5
2 Ĥ)‖2L∞ ≤ C

(
‖Ωn−5

2 (∂τ − ∂x)Ĥ‖2L∞ + ‖Ωn−7
2 Ĥ‖2L∞

)

≤ C
(
‖u‖2L∞ +Eαk,λ[u(τ)]

)
for n ≥ 7 .

Thus,

‖(∂τ − ∂x)g♯‖ ≤ C
(
‖u‖2L∞ +Eαk,λ[u(τ)]

)
for n ≥ 7 . (4.2.32)

‖g♯‖2
C 0

1
≤ ‖g♯‖2

G 0
k

≤ C
(
M1 + Eαk,λ[u(τ)]

)
, for n ≥ 5 (4.2.33)

Similarly,

‖h♯‖2
C 0

1
≤ ‖h♯‖2

G 0
k
≤ C

(
M1 + Eαk,λ[u(τ)]

)
for n ≥ 7 . (4.2.34)

If α = −1/2 the threshold n = 7 in (4.2.32) and (4.2.34) can be lowered
to n = 6 by using the estimate (4.2.23) on the slowest decaying term ψ.
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To estimate the C 0
1 -norms of the harmonicity functions, we use again as

in the previous estimate the Sobolev inequality and obtain a control of these
norms by the energy with the same constrains as in (4.2.12)-(4.2.15). Let
us estimate now the L∞-norm of u. Integrating backward along the integral
curve of the vector field Y ν∂ν = ∂τ − ∂x we can write the identity (here we
omit the variable vA)

u(τ, x)− u(τ0, τ − τ0 + x) =

∫ τ

τ0

(∂τ − ∂x) u(s, τ − s+ x)ds . (4.2.35)

Thus we have

|u(τ, x)| ≤ |u(τ0, τ − τ0 + x)|+
∫ τ

τ0

| (τ − s+ x)−α (∂τ − ∂x)u(s, τ − s+ x)| (τ − s+ x)α ds

≤ |u(τ0, τ − τ0 + x)|+
∫ τ

τ0

‖ (∂τ − ∂x)u(s)‖Cα
0
(τ − s+ x)α ds

≤ ‖u(τ0)‖L∞ +

∫ τ

τ0

‖ (∂τ − ∂x)u(s)‖Cα
0
(τ − s)α ds .

Since k > n
2 we can now write (−1 < α ≤ −1/2):

‖u(τ)‖L∞ ≤ ‖u(τ0)‖L∞ +

∫ τ

τ0

‖ (∂τ − ∂x)u(s)‖H α
k
(τ − s)α ds

≤ ‖u(τ0)‖L∞ +

∫ τ

τ0

√
Eαk,λ[u(s)] (τ − s)

α ds . (4.2.36)

Inequalities (4.2.31)-(4.2.36) show that from (4.2.8) we have the following:

‖u(τ)‖2L∞ + Eαk,λ[u(τ)] ≤ C
(
‖u(τ0)‖L∞ + Eαk,λ[u(τ0)]

)

+

∫ τ

τ0

Φ
(
Eαk,λ[u(s)], ‖u(s)‖L∞

)
(1 + (τ − s)α) ds; (4.2.37)

where Φ is bounded on bounded sets. Setting

χ(s) ≡ Eαk,λ[u(s)] + ‖u(s)‖L∞ ,

(4.2.37) reads

χ(τ) ≤ C (χ(τ0)) +

∫ τ

τ0

Φ (χ(s)) (1 + (τ − s)α) ds. (4.2.38)

We have the following:
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Lemma 4.2.5 There exists a time τ0 < τ∗ < 0, depending only upon C,
F (τ0), and the function Φ, such that any positive continuous function F :
[τ0, τ∗) → R satisfying the inequality (4.2.38) with α > −1 is bounded from
above by CF (T0) + 1 on [τ0, τ∗).

Proof: Let
M = sup

0≤ξ≤Cχ(τ0)+1
|Φ(ξ)| ;

if M = 0 the result is obviously true, so assume that M 6= 0. From Equa-
tion (4.2.38) we obtain that on any interval [τ0, τ) on which χ ≤ Cχ(τ0)+1
we have

χ(τ) ≤ Cχ(τ0) +

∫ τ

0
M (1 + (τ − σ)α) dσ = Cχ(τ0) +M

(
τ +

τα+1

α+ 1

)
.

(Equation (4.2.38) with τ = τ0 shows that Cχ(τ0) ≥ χ(τ0), and continuity
of χ implies that the set of such intervals is non-empty.) The result is
established by choosing

τ∗ = min

(
1

2M
,

[
α+ 1

2M

]1/(α+1)
)
.

�

By this Lemma, there exists a time τ0 < τ∗ < 0 depending on ‖u(τ0)‖L∞+
Eαk,λ[u(τ0)] and on the function Φ such that ∀τ ∈ [τ0, τ∗] ,

‖u(τ)‖L∞ + Eαk,λ[u(τ)] ≤ 1 + C
(
‖u(τ0)‖L∞ + Eαk,λ[u(τ0)]

)
, (4.2.39)

which provides the desired bounds.
If one knows a priori that M̂(τ) is bounded, (4.2.37) becomes effectively

a linear inequality, and the claimed global bound immediately follows.
Actually, the solution constructed here is defined on Uτ∗ (see Figure 4.1).

In order to obtain a solution in a whole neighborhood of the hyperboloid S0,
we proceed as follows: Let R > 0 be a real positive number such that the
level set r = R lies in the region where the energy estimates above apply.
We consider the Cauchy problem for (4.1.13) with initial data obtained by
restriction on

S0(R) = S0 ∩ {(xµ) : 0 ≤ |~x| ≤ R} .
We thus obtain a Cauchy problem on a compact region. We can now apply
to this problem the conclusion of Proposition 3.2, p. 378 of [50]: there exists
a time τ+ ∈]τ0, 0[ and a smooth solution on (see Figure 4.1)

V+ = ∪
t∈[t0,− 1

2τ+
]
φ(St(R)) ∩D

+(φ(S0(R))) ,
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V+

Uτ∗

Figure 4.1: The sets V+ and Uτ∗ .

where D+ denotes the domain of dependence, and where

St(R) = St ∩ {(xµ) : 0 ≤ |~x| ≤ R} .

From uniqueness in Proposition 3.2, p. 378 of [50], we conclude that the
solutions constructed on V+ and Uτ∗ coincide on V+∩Uτ∗ which is not empty
for R large enough. We thus obtain a solution of (4.1.13) with (4.2.1) in a
whole neighborhood of S0. �

Space-regularity of the solution

For smooth initial data the solution constructed in the previous section is in
C∞(V+ ∪Uτ∗). In this section we want to show that, for data given in the
space ∩

k∈N
H α
k , we can control the growth, near x = 0, of all space derivatives

of the corresponding solution. We have the following:

Theorem 4.2.6 Under the hypotheses of Theorem 4.2.3, suppose moreover
that the initial data given on the hyperboloid S0 satisfy

f̂
∣∣
φ(S0) ∈ (H α

∞ ∩ L∞) (Hτ0) and ∂f̂
∣∣
φ(S0) ∈ H

α
∞(Hτ0) . (4.2.40)

If α = −1/2 and n = 6 we also suppose that (4.2.26) holds for all k. Let
τ∗ be as in that theorem with k = k0, where k0 is the smallest integer larger
than [n/2] + 1. Then

∀τ ∈ [τ0, τ∗] f̂(τ) ∈ (H α
∞ ∩ L∞)(Hτ ) , ∂f̂(τ) ∈ H

α
∞(Hτ ) . (4.2.41)

Furthermore, any solution with smooth initial data as above for which M̂(τ),
as defined in (4.2.4), is bounded on [τ0, τ1] satisfies (4.2.41) with τ∗ = τ1.
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Proof: We provide the details for n > 6; the treatment of the case n = 6
is similar. From Theorem 4.2.3 there exists a time τ∗ and a constant C∗

depending on k0 such that ∀τ ∈ [τ0, τ∗[ ,

‖u(τ)‖2L∞ + Eαk0,λ[u(τ)] ≤ C∗ . (4.2.42)

Now let k ∈ N, k ≥ k0 , since f̂
∣∣
φ(S0) ∈ (H α

k ∩ L∞) (Hτ0) inequality

(4.2.8) holds. Now the function C3(M̂ (s)) appearing in this inequality is
controlled by Eαk0,λ[u(τ)] and thus by C∗, therefore, from (4.2.42) we have:

Eαk,λ[u(τ)] ≤ C(C∗)

(
1 +

∫ τ

τ0

Eαk,λ[u(s)]ds

)
.

Applying Gronwall’s inequality we obtain:

Eαk,λ[u(τ)] ≤ CeCτ∗ .

This inequality shows that, for all k,

∂u ∈H
α
k , (4.2.43)

as desired. �

4.2.2 Estimates on time derivatives of the solution

In order to estimate the time derivatives of the solution, we introduce a new
set of variables (y, x̃) (compare Figure 4.2):

{
τ = y−x̃

2 + τ0
x = x̃

which implies that

{
∂y =

1
2∂τ

∂x̃ = ∂x − 1
2∂τ

.

Note that in these new coordinates, the hyperboloid S0 is represented by
the set {y = x̃}. Since we are interested in the behavior of solution in a
neighborhood of the set {x = 0}, as in [19] we restrict our attention on the
subset U of Uτ∗ defined by:

U =
{
(y, x̃, vA) : 0 < x < y, v ∈ O , 0 < y < 2(τ∗ − τ0)

}
.

Recall that the definitions of the spaces

C
α
{x=0},k(U ), C

σ
{y=0},k(U ), C

α
{0≤x≤y},k(U ), and C

α,σ
{0≤x≤y},k(Ω) ,

can be found in Appendix A.2 page 191 with ∂x there corresponding to ∂x̃
here.
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(x = 0, τ = τ∗)

S0
↑ s

s

 
 
 
 
 
 
 
 

s

(x̃ = 0, y = 0)

(x̃ = 0, y = 2T ) (x̃ = 2T, y = 2T )

U
x̃ = 0

ց

տ S0
6
∂y

- ∂x̃

Figure 4.2: The variables (x, τ) and (x̃, y), with T := τ∗ − τ0. The function
σ has been introduced in (3.1.16). We hope that the reader will not get
confused by the fact that the boundary x = 0, at the left-hand sides of the
figures here, is depicted at the right-hand side of Figure 3.1.

Remark 4.2.7 In the coordinates (y, x̃) the components of the inverse of
the metric read (compare 4.1.39):

gyy = 4 (gττ + gxτ ) + gxx = O(x
n−5
2 ) (4.2.44)

gyx̃ = 2gxτ + gxx (4.2.45)

gyA = 2gτA + gxA (4.2.46)

gx̃x̃ = gxx = O(x
n−1
2 ) (4.2.47)

gx̃A = gxA . (4.2.48)

Recall that the hypersurfaces Ss have been defined in (4.2.24). As a first
step towards proving propagation of polyhomogeneity, we obtain some infor-
mation about the ∂y-derivatives of the fields:
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Theorem 4.2.8 Suppose that k >
[
n
2

]
+ 1. Under the hypotheses of Propo-

sition 4.2.1, there exists t∗ > t0 and a solution of (4.1.13) defined on
∪

s∈[t0, t∗]
Ss such that:

f̂ ∈
(
C
α
{0≤x≤y},k−[n2 ]−1

∩ L∞
)
(U ) . (4.2.49)

(
∂τ f̂ , ∂xf̂ , ∂Af̂

)
∈ C

α
{0≤x≤y},k−[n2 ]−1

(U ) , (4.2.50)

where f and f̂ are defined by (4.2.1)-(4.2.2).

Proof: The proof of existence is given by Theorem 4.2.3 and we have f̂ ∈
L∞(U ), ∂f̂ ∈ C α

{x̃=0},k−[n2 ]−1
(U ). We note that from (4.1.4) and (4.1.5)

we have:

Ω = x̃(−y − 2τ0), y∂yΩ = −x̃y, x̃∂x̃Ω = Ω and ∂AΩ = 0 .
(4.2.51)

Identities (4.2.51) show that if we apply to (4.1.21) the operator (∂A, x̃∂x̃, y∂y),
then we obtain a wave equation with (u, ∂Au, y∂yu, x̃∂x̃u ) as the new un-
known functions in which the coefficients have the same powers of x as in the
original equation, and the source term the same structure. More precisely,
set

U =




u
∂Au
x̃∂x̃u
y∂yu


 , we thus obtain

(
U
∂U

)
=




u
∂Au
x̃∂x̃u
y∂yu
∂u

∂(∂Au)
∂(x̃∂x̃u)
∂ (y∂yu)




, (4.2.52)

and let us derive a wave equation on U . Straightforward calculations lead
to the following identity (here we write the source term as a function of
variables p1 and pσ2 , that is F = F(·, p1, pσ2 ) ):

�g(y∂yu) = −(y∂ygαβ)∂2αβu+ 2gαy∂α∂yu− (y∂yΥ
α)∂αu+Υy∂yu

+(y∂yF)(·, u, ∂u) + (y∂yu)
∂F
∂p1

(·, u, ∂u)

+ (∂y(y∂σu)− δyσ∂yu)
∂F
∂pσ2

(·, u, ∂u) . (4.2.53)
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We write

(y∂yg
yy)∂2yu = ∂yg

yy (∂y(y∂yu)− ∂yu) ∼ Ω
n−5
2 (∂U + U)∂U ,

(y∂yg
x̃y)∂y∂x̃u = ∂yg

yy∂y(x̃∂x̃u) ∼ Ω
n−5
2 ∂U∂U ,

(y∂yg
x̃x̃)∂2x̃u = O(x̃

n−3
2 ) (∂x̃(x̃∂x̃u)− ∂x̃u) ∼ Ω

n−3
2 U∂U see (4.1.39),

gyy∂2yu = O(x̃
n−7
2 )

x̃

y
(∂y(y∂yu)− ∂yu) ∼ Ω

n−7
2 U∂U ,

and

2gαy∂α∂yu = gyy∂2yu−
{
gx̃x̃∂2x̃u+ 2gx̃A∂x̃∂Au+ gAB∂A∂Bu+Υσ∂σu−F(u, ∂u)

}
.

All the terms arising above have a structure similar to (4.1.50). A similar
comparison of the remaining terms shows that we have

�g(y∂yu) = F1(U, ∂U) , (4.2.54)

where the source term F1 is of the general form as in (4.1.50) with the dif-

ference that it has a term Ω
n−7
2 U∂U with a multiplicative Ω

n−7
2 ; this term

can be estimated as in (4.2.18) as long as n ≥ 7. Moreover, it is easily
checked that this remains compatible with the estimate of Proposition 4.2.1
(see Remark 4.2.2). Note that the procedure above introduces into the coef-
ficients of the source terms the function (y, x̃) 7−→ x̃

y , which is bounded on

U ; furthermore, x̃∂x̃
x̃
y = −y∂y x̃y = x̃

y , which implies that we will not loose
the regularity of the source terms, as needed for the problem at hand, when
iterating the process.

From the identities,

�g(x̃∂x̃u) = −(x̃∂x̃gαβ)∂2αβu+ 2gαx̃∂α∂x̃u− (x̃∂x̃Υ
α)∂αu+Υx̃∂x̃u

+(x̃∂x̃F)(·, u, ∂u) + ∂x̃(x̃∂x̃u)
∂F
∂p1

(·, u, ∂u)

+
(
∂x̃(x̃∂σu)− δx̃σ∂x̃u

) ∂F
∂pσ2

(·, u, ∂u) , (4.2.55)

�g(∂Au) = −(∂Agαβ)∂2αβu−(∂AΥα)∂αu+∂Au
∂F
∂p1

(u, ∂u)+∂∂Au
∂F
∂p2

(u, ∂u) ,

(4.2.56)
we deduce that the same analysis holds for �g(∂Au) and �g(x̃∂x̃u). There-
fore we have derived for the new unknown function U a wave equation of
the form (4.1.21), i.e.:

�gU = F(U, ∂U) . (4.2.57)
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In order to apply to this equation Theorem 4.2.3, we have to check that the
initial data for U are in the right spaces. Note that the initial data are
prescribed on the subset {x = y} of U . We denote this hypersurface by Σ0,
thus Σ0 = φ(S0) ∩U , and we set

Σs = φ(Ss) ∩U ⊂ H−1/2s . (4.2.58)

We want to prove the following.

Lemma 4.2.9 Under the hypotheses of Proposition 4.2.1 we have:

(u, ∂Au, x̃∂x̃u, y∂yu)|Σ0
∈ (H α

k ∩ L∞) (Σ0) , (4.2.59)

(∂u, ∂∂Au, ∂(x̃∂x̃u), ∂(y∂yu))|Σ0
∈H

α
k−1(Σ0) . (4.2.60)

Proof: By assumption, we have

u|Σ0 ∈ (H α
k ∩ L∞) (Σ0), and (∂Au, ∂x̃u , ∂yu)|Σ0

∈ H
α
k (Σ0) .

(4.2.61)
Now, using Sobolev’s embedding theorem, we have

x̃−α (∂Au, ∂x̃u , ∂yu)
∣∣
Σ0
∈ L∞(Σ0) . (4.2.62)

This leads to the following estimates:

|x̃∂x̃u|Σ0 | = x̃1+α
∣∣x̃−α∂x̃u|Σ0

∣∣ <∞,
|y∂yu|Σ0 | = |x̃∂yu|Σ0 | = x̃1+α

∣∣x̃−α∂yu|Σ0

∣∣ <∞ .

To see that ∂Au(τ0) is in L∞(S0), we proceed as follows: integrating ∂Au(τ0)
in x until x0 gives the inequality

∂Au(τ0, x0, v
A)− ∂Au(τ0, x̃, vA) =

∫ x0

x̃
∂x̃∂Au(τ0, s, v

A)ds ,

which leads to the estimate

|∂Au(τ0, x̃, vA)| ≤ |∂Au(τ0, x0, vA)|+ ‖∂x̃u(τ0)‖Cα
{x̃=0},1

∫ x0

x̃
sαds

≤ |∂Au(τ0, x0, vA)|+ ‖∂x̃u(τ0)‖H α
k

∫ x0

x̃
sαds

(recall k − 1 > n
2 ). Since

‖∂Au(τ0, x0, vA)‖L∞(O) <∞, ‖∂x̃u(τ0)‖H α
k
≤ Eαk [u(τ0)] <∞ ,
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and ∫ x0

x̃
sαds =

1

α+ 1

(
xα+1
0 − x̃α+1

)
<∞ ,

we conclude that ‖∂Au(τ0)‖L∞ <∞. Thus (∂Au) |Σ0 ∈ L∞(Σ0) and we then
obtain (4.2.59). On the other hand we have

‖∂ν(x̃∂x̃u)|Σ0‖H α
k−1(Σ0)

≤ ‖x̃∂x̃(∂νu)|Σ0‖H α
k−1(Σ0)

+ ‖δx̃ν∂x̃u|Σ0

∥∥
H α

k−1(Σ0)

≤ ‖∂νu|Σ0‖H α
k (Σ0)

< ∞ see (4.2.61) .

Similarly, we have ∂(y∂yu)|Σ0 , ∂∂Au|Σ0 ∈ H α
k−1(Σ0). We thus obtain

(4.2.59) and the proof of the lemma is complete. �

Now, we apply Theorem 4.2.3 to (4.2.57) and obtain that

(u, ∂Au, x̃∂x̃u, y∂yu) ∈ L∞
(
[0, 2(τ∗ − τ0)], (H α

k ∩ L∞) (Σǫ)
)
, (4.2.63)

(∂u, ∂∂Au, ∂(x̃∂x̃u), ∂(y∂yu)) ∈ L∞
(
[0, 2(τ∗ − τ0)], H

α
k (Σǫ)

)
. (4.2.64)

Using once more the Sobolev embedding theorem, we obtain that ∀ǫ ∈ [0, 2(τ∗−
τ0)]

(u, ∂Au, x̃∂x̃u, y∂yu)|Σǫ
∈ C

α
{x̃=0},k−[n2 ]−1

(Σǫ) .

‖(u, ∂Au, x̃∂x̃u, y∂yu)‖L∞(U ) = sup
τ∈[τ0,τ∗]

‖ (u, ∂Au, x̃∂x̃u, y∂yu)|Sτ
‖L∞(Sτ )

≤ sup
τ∈[τ0,τ∗]

‖ (u, ∂Au, x̃∂x̃u, y∂yu)|Sτ
‖H α

k (Sτ )

<︸︷︷︸
see (4.2.63)

∞ .

Using now (4.2.64) instead of (4.2.63) we have

‖(u, ∂A∂u, x̃∂x̃∂u, y∂y∂u)‖L∞(U ) <∞ .

This allows us to conclude that (u, ∂u) is in C α
{0≤x̃≤y},1(U ). Now, if we

repeat this process j times with j = k −
[
n
2

]
− 1 then we obtain that u is in

C α
{0≤x̃≤y},k−n

2
−1(U ). This completes the proof of Theorem 4.2.8. �

Corollary 4.2.10 Under the hypotheses of Theorem 4.2.6 we have the fol-
lowing:

f̂ ∈
(
C
α
{0≤x̃≤y},∞(U ) ∩ L∞

)
(U ) and ∂f̂ ∈ C

α
{0≤x̃≤y},∞(U ) .

Proof: The result is a combination of Theorems 4.2.6 and 4.2.8. �
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Chapter 5

Polyhomogeneous solutions

of the Einstein-Maxwell

equations

Let δ be a positive real number. We recall that the spaces of polyhomo-
geneous functions A{x=0}, A δ

{x=0}, A{0≤x≤y} and A δ
{0≤x≤y} are defined in

Appendix A.3 Equations A.3.1-A.3.2 (see also [19, Equations (A.1)-(A.2)]).
We consider the Cauchy problem for the Einstein-Maxwell equations (4.1.13)
with (4.2.1) in wave coordinates (xµ) and Lorenz gauge with prescribed data
on the hyperboloid S0 (see (4.2.6)) at the interior of the future light-cone
with vertex the origin of coordinates. The coordinate x in which the poly-
homogeneous expansion is taken is x = 1

t+r where t = x0 and r = |~x| =
n∑
i=1

(xi)2). Indeed we have (see (4.1.4)):

x = −τ − ρ = − t

−t2 + r2
−

(∑ (xi)2

(−t2 + r2)2

)1/2

= − t

−t2 + r2
− r

t2 − r2

=
1

t+ r
.

We want to prove that, polyhomogeneous initial data for the above Cauchy
problem lead to polyhomogeneous solution. We have the following:

Theorem 5.0.11 Consider the Einstein-Maxwell equations on R
1+n, n ≥ 8.

Let δ ∈ R be such that 1/(2δ) ∈ N when n is even and 1/δ ∈ N when n
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is odd. Suppose that the initial data for (4.1.13) in wave coordinates and
Lorenz gauge are polyhomogeneous on the hyperboloid S0 :

f
∣∣
S0
∈ xn−1

2 A
δ
{x=0} ∩ L∞, ∂τf

∣∣
S0
∈ xn−1

2 A
δ
{x=0} , (5.0.1)

with f = (gµν − ηµν , Aµ). There exists a time t+ > t0 and a solution defined
on ∪

t∈[t0,t+]
St such that ∀t ∈ [t0, t+] we have:

f(t) = f
∣∣
St
∈ xn−1

2 A
δ
{x=0} and ∂τf(t) = ∂τf

∣∣
St
∈ xn−1

2
−1

A
δ
{x=0} .
(5.0.2)

Moreover, the solution is polyhomogeneous at I , in the above polyhomo-
geneity class, as long as it remains in H α

k (Hτ ), for some α ∈ (−1,−1/2].

Proof: Choose any α < 0; we then have the inclusion A δ
{x=0}(φ(S0)) ⊂

H α
∞(φ(S0)). It follows from (5.0.1) that we have:

f̂
∣∣
φ(S0) ∈ (H α

∞ ∩ L∞) (φ(S0)) and ∂f̂
∣∣
φ(S0) ∈ H

α
∞(φ(S0)) . (5.0.3)

For definiteness set α = −1/2. From Theorem 4.2.6, there exists a time τ∗
and a smooth solution f̂ of (4.1.13)-(4.2.1)-(5.0.3) defined on Uτ∗ such that
∀τ ∈ [τ0, τ∗], f̂(τ) ∈ C α

j (Hτ ). Next, applying Corollary 4.2.10 one obtains
that

f̂ ∈
(
C
α
{0≤x≤y},∞ ∩ L∞

)
(U ) and ∂f̂ ∈ C

α
{0≤x≤y},∞(U ) .

From Theorem 1.2.8 of Section 1.2, with

ψ1 = f̂ , ψ2 = (∂y f̂ , ∂Af̂) , ϕ = ∂xf ,

we obtain (5.0.2), and the proof is completed. �

It is natural to find conditions which guarantee that solutions remain in
weighted Sobolev spaces on hyperboloids, and hence remain polyhomogeneous
if the initial data are. One such criterion is provided by the following:

Theorem 5.0.12 Suppose that k >
[
n
2

]
+ 1, with n = 6 and α = −1/2,

or n ≥ 7 with α ∈ (−1, 1/2]. Solutions of the Einstein-Maxwell equations
remain in H α

k , α ∈ (−1,−1/2] as long as f̂ remains in C κ
{x=0},1, with

κ > −(n− 7)

2
. (5.0.4)
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The same is true for

κ > −(n− 5)

2
provided that ‖xn−7

2 yµyνĤ
µν(τ0)‖L∞ <∞ . (5.0.5)

In particular, in dimensions n + 1 ≥ 9 the small data solutions of [39, 40]
evolving out from data stationary outside of a compact set are polyhomoge-
neous.

Proof: We want to use Proposition 3.2.9 to show that solutions as above
remain in H α

k , α ∈ (−1,−1/2]. For this, consider first the right-hand side
of (3.2.85). For κ ≥ −(n − 5)/2 one immediately finds that ‖δg♯‖C 0

{x=0},1

is finite, similarly for (∂x − ∂τ )δg
♯ when κ ≥ −(n − 7)/2. Finiteness of

‖δh♯‖C 0
{x=0},1

is straightforward for κ ≥ −(n − 7)/2 from (4.1.35)-(4.1.38).

The estimate on δΥ follows from (4.1.46) and (4.1.48) provided again that
κ ≥ (n− 7)/2.

For κ ≥ −(n−5)/2 the slowest decaying terms in h, Υ, and in (∂x−∂τ )g♯
are handled by the C 0

{x=0},1-spaces equivalent of (4.2.23),

‖x
(n−7)

2 ψ(τ)‖C 0
{x=0},1

≤ ‖x
(n−7)

2 ψ(τ0)‖C 0
{x=0},1

+ C(τ0, τ1)

∫ τ

τ0

‖x
(n−7)

2 ζ(s)‖C 0
{x=0},1

ds , (5.0.6)

under the supplementary condition that ‖x (n−7)
2 ψ(τ0)‖C 0

{x=0},1
is finite.

For any σ such that
σ < κ (5.0.7)

we have
C
κ
{x=0},1 ⊂ B

σ
1 .

Hence the right-hand side of (3.2.86) is finite for all such σ’s, and so (3.2.87)
applies. It remains to show that the integrand in the second line of (3.2.87)
can be bounded by a multiple of the energy:

‖(δg♯, δh♯, δΥ)‖2
G

α−σ
k (Hτ )

≤ CEαk [u(s)] .

This is easily checked to hold under (5.0.4) or (5.0.5) if we choose σ so that

σ > −n− 7

2
.

This, together with (5.0.7), explains (5.0.4).
The property that the solutions of the Einstein-Maxwell equations con-

structed by Loizelet are in C κ
{x=0},1 on all hyperboloidal slices has been verified

in (2.3.15). There −κ = δ ∈ (0, 1/4) �
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Conclusion of the first part

The results which are established in this first part of the thesis join within the
framework of a mathematical program the ultimate stage of which would be
to prove that hyperboloidal polyhomogeneous initial data lead to polyhomoge-
neous solutions of the coupled vacuum Einstein-Maxwell equations in space-
time dimension n+1 ≥ 4. This program was initiated by Piotr T. Chruściel
and his collaborators. As a first step towards the solutions of this problem,
they proved existence of polyhomogeneous solutions for hyperboloidal Cauchy
problem for semi-linear wave equations and waves maps. See [19, 20]. In-
spired by these works, we have proved propagation of weighted Sobolev reg-
ularity with uniform time of existence near the conformal null infinity for
solutions of the hyperboloidal Cauchy problem for a class of quasi-linear sym-
metric hyperbolic systems, under structure conditions compatible with the
Einstein-Maxwell equations in space-time dimensions n + 1 ≥ 7. Similarly,
for these equations, we have proved propagation of polyhomogeneity at null
infinity of solutions in space-time dimensions n+1 ≥ 9. In those dimensions
we obtained that the global solutions of the Einstein-Maxwell equations for
small data which are stationary outside of a compact set obtained in [39,40]
are polyhomogeneous. In the process we also proved a theorem of existence
of a solution within the class of polyhomogeneous solutions for the Einstein-
Maxwell equations in even or odd dimension of space n ≥ 8, complementing
the result known so far (see [9]) only when the space dimension n is odd and
greater or equal to 5.

The fact that our results are valid only in high space dimension is, in our
opinion, due to the choice of the conformal transformation we used and/or
to the choice of the gauges. We thus think that, if one wants to improve
the threshold on the space dimension n, one could for example think to a
different conformal transformation and/or to keep this transformation, but
use different gauges so as to get rid of the dangerous terms which impose to
the space dimension to be so large. For example, in [34], H. Friedrich gave a
conformal representation of the Einstein equations in a conformally invari-
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ant gauge as a system of first order partial differential equations with smooth
coefficients. We expect that in the case n = 3, using this representation of
Einstein equations and the energy estimates obtained by O. Lengard in the
second part of his thesis, one should be able to establish propagation near
I + of polyhomogenity of solution of Einstein equations in this dimension.

It would be interesting in view of its physical applications, (see [27,29,47]
and the references therein) to obtain a characteristic version of the results
obtained so far. In other words, one can enquire wether polyhomogeneous
initial data prescribed on one or several intersecting characteristic hyper-
surfaces can be evolved to obtain polyhomogeneous solutions of the vacuum
Einstein-Maxwell equations. We think that this can be overcome with a good
combination of the techniques developed by A. Cabet in her thesis, the corre-
sponding techniques of conformal compactification which is used here and the
results of M. Dossa [25–28]. The second part of the thesis is our contribution
towards the construction of solutions of this problem.
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Part II

Solutions with a uniform

time of existence of a class of

Characteristic semi-linear

wave equations near I +
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Introduction of the second

part

Let (Rn+1
x , ηx) be the usual Minkowski space time with the global canonical

coordinates system (xµ). We denote by C+a,x the translated half cone of equa-

tion x0 = r + a where a > 0, r2 =
n∑
i=1

(xi)2, r ≥ 0 and by Y+
a,x the interior

of C+a,x, that is the set of points (xµ) such that x0 > r + a (see Figure 5.1).
In this work, we are interested with the following characteristic semi-linear
Cauchy problem

{
�x,ηxf = F (·, f, ∂f) in Y+

a,x

f = ϕ on C+a,x
(5.0.8)

where ηx = (ηαβ) is the Minkowski metric on R
n+1
x , η = diag(−1,+1, . . . ,+1),

�x,ηx the flat wave operator,

f = (f I), ∂f =

(
∂f I

∂xα

)
, F = (F I), α = 0, 1 . . . , n, I = 1, . . . , N ,

and
ϕ = (ϕI), the initial data prescribed on C+a,x .

There exists in the literature a complete study (even in the quasi-linear case)
of problem (5.0.8) near the tip of the cone C+a,x, see the series of papers
[8,25,27,28] and the references therein; compare [35,44,45] for a very general
treatment of Lipschitz initial data hypersurfaces for the linear wave equation.
Under suitable conditions on the source term and/or on the initial data, in
these papers, it is shown that, in the semi-linear or quasi-linear case, there
exists a neighborhood of the tip of the initial cone in Y+

a,x on which one can
find a unique solution. As far as the global solution of (5.0.8) is concerned,
a lot remains to be done. It is well known that for an arbitrary nonlinear
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function F , in general it is not possible to solve globally or semi-globally this
problem, that is, without restriction on F and/or the space dimension n, it
is not possible to find a neighborhood of the whole half cone C+a,x on which
we can get existence and uniqueness of solution of such problem. In [5], A.
Cabet gave some example of nonlinearities for which the solution develops
singularities in finite time regardless the smallness and/or the smoothness of
the initial data in the case n = 1. To the best of our knowledge, three types
of nonlinearities have been considered so far, leading to global or semi-global
solution of (5.0.8):

• In [32], M. Dossa and F. Touadera assume that the space dimension n
is odd and greater than or equal to 3, that the source term F = F (f, ∂f)
is such that F (0, 0) = F ′(0, 0) = 0 and F (2) satisfies the null condition
of S. Klainerman when n = 3. With these conditions on the nonlinear
term and the space dimension n, it is shown that if the initial data
prescribed on the light cone are small in some appropriate norms, then
(5.0.8) has a global solution in the whole interior of the initial cone.

• In [30], the authors suppose that, the restriction to the initial cone of
the functions F (xµ, f(xµ), ∂f(xµ)) is a linear function with respect to
the restriction to same cone of the derivatives of the unknown function
f(xµ) with respect to x0. With this hypothesis, they proved that there
exists a neighborhood of the entire initial cone on which problem (5.0.8)
has a unique solution. We notice that this result does not guarantee
that the thickness of the obtained neighborhood does not shrink to zero
as one approaches infinity.

• In [5, 31, 36], analogous characteristic Cauchy problem are considered
with initial data specify on two intersecting smooth null hypersurfaces
under some suitable null condition on F . The results of these last refer-
ences combined with local existence results on a neighborhood of the tip
of the cone C+a,x of [26,27] can also permit to study problem (5.0.8) un-
der the condition that F is linear with respect to the derivatives of the
unknown function in the normal direction of the initial cone C+a,x. In-
deed, assuming this, one succeed in concluding as in the previous case.
We should point here that in the reference [5], it remains to fix a prob-
lem of regularity of initial data and of dependance of some constants
used in the iterative scheme on λ. In that reference, the definition of
the surface element dS′ = e−λΨ+dS on the slices N−u |V ≡ [0, V ] × Y
in the unnumbered equation after equation 4.2 page 2115, implies that
the Sobolev constant c′ of equation 4.4 page 2116, depends on λ. In
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fact as it is said there, c′ = cse
λV where cs is an universal Sobolev

constant coming from the embedding Hm(U) →֒ C1(U), U subset of
R
n and m > n

2 + 1. The consequence is that the constant c̃3(ρ) might
depends exponentially on λ and it will not be possible to choose λ such
that c̃3(ρ)− λc̃ ≤ 0 as stated there.

The difficulty here is due to the fact that, in the processus of solving such
problem, one needs to estimate the outgoing derivatives of the unknown func-
tion on the initial cone. The null property of this cone does not allow to
choose arbitrarily the first of these derivatives as it is the case in the classical
Cauchy problem. In order to obtain global solution, we need to solve glob-
ally a nonlinear ordinary differential equation with a nonlinear part which
is exactly F . In the third case we mentioned above, this equation is linear
and thus can be globally solved on C+a,x. We intend in this paper to show that
there exists a future neighborhood not only of the entire null cone C+a,x but
also by guaranteeing that the thickness of this neighborhood does not nullify
when one reaches infinity, on which there exists a unique solution of (5.0.8)
. To do this, we shall impose on the function F a hypothesis of nullity of
the kind of [20], see hypothesis 4.21 of this reference. More precisely, we
shall suppose that the function F has a uniform zero in (f, ∂f) = 0 of order
r which is related to the space dimension (regarless the fact that n is odd or
not) by the condition

n ≥ 1 +
4

r − 1
− 2α ,

and that the initial data ϕ are in some weighted Sobolev spaces near the
conformal infinity. The strategy here will be based on the techniques of con-
formal method used in [11, 12] by P.T. Chruściel and R. T. Wafo in the
case of classical Cauchy problem, the method of iterative scheme introduced
in [42] by A. Majda and repeated by A. Cabet in [5] and R. Racke in [46]
and finally the method of local solution developed by M. Dossa in [25–28].
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a

Y+
a,x

C+a,x

Figure 5.1: Characteristic cone C+a,x and its interior.
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Chapter 6

Transformation of the system

6.1 Conformal transformation

Let C0,x be the light cone of Minkowski space R
n+1
x of equation (x0)2 = r2.

We will denote by C+0,x and C−0,x the future and past light cone of the origin

of coordinate respectively, by Y+
0,x the interior of C+0,x, by Y−0,x the interior of

C−0,x and by V+
a,x the set {(xi) ∈ R

n
x, (r+a, x

i) ∈ C+a,x}, which is the projection
of the cone C+a,x on the space variables. As in the first part of the thesis, we
consider the map φ defined as:

φ : Rn+1
x \ C0,x → R

n+1
y by xα 7→ yα :=

xα

ηλµxλxµ
, α = 0, 1, . . . , n . (6.1.1)

Note that φ(Rn+1
x \ C0,x) ⊂ R

n+1
y . Any of the sets defined above in R

n+1
x has

its counterpart in R
n+1
y , we keep the same notations. The indices x or y

will be used to indicate if the set under consideration is a subset of Rn+1
x or

R
n+1
y . As an example, the set C0,y is the light cone with vertex the origin of

coordinates in R
n+1
y , its equation is given by (y0)2 = ρ2 where ρ2 =

n∑
i=1

(yi)2.

We have the following

Proposition 6.1.1 The map φ is a bijection from Y+
0,x onto φ(Y+

0,x) = Y−0,y,
with inverse

φ−1 : yα 7→ xα by xα :=
yα

ηλµyλyµ
. (6.1.2)

φ is also a bijection from Y+
a,x onto the relatively compact domain φ(Y+

a,x) =

Y+
− 1

a
,y
∩ Y−0,y (see Figure 6.1) with the same inverse as in (6.1.2).
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Proof: Let (xα) ∈ Y+
0,x, if (yα) = φ(xα) then we have

(ηαβx
αxβ)(ηµνy

µyν) = 1

and thus yα = xα

ηλµxλxµ
implies that xα = yα(ηλµx

λxµ) = yα

ηλµyλyµ
. Therefore,

φ is a bijection from Y+
0,x onto φ(Y+

0,x) with inverse given by (6.1.2). On the
other hand, let (xα) ∈ Y+

a,x and suppose (yα) = φ(xα), then

(xα) ∈ Y+
a,x if and only if

{
ηαβx

αxβ < 0
x0 > 0

if and only if





ηαβ
yαyβ

(ησλyσyλ)
2 < 0

y0

ησλyσyλ
> 0

if and only if

{
ησλy

σyλ < 0
y0 < 0

if and only if (yα) = φ(xα) ∈ Y−0,x .

thus, φ(Y+
0,x) = Y−0,y. Similar calculations establish the second part of the

proposition. �

6.2 Transformed wave equation

In this section, we want to show how the wave equation (5.0.8) transform
under the change of coordinates (6.1.1). For this purpose, we set

Ω = −ηαβyαyβ and f̂ = Ω−
n−1
2 f ◦ φ−1 . (6.2.1)

We have the following

Proposition 6.2.1 The identity

�x,ηxf = Ω
n+3
2 �y,ηy f̂ (6.2.2)

holds.

Proof: We have:

∂f

∂xµ
= Aαµ

∂f ◦ φ−1
∂yα

, (6.2.3)

∂2f

∂xλ∂xµ
=

∂2(f ◦ φ−1)
∂yα∂yβ

AαµA
β
λ +

∂(f ◦ φ−1)
∂yα

∂2yα

∂xµ∂xλ
(6.2.4)
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− 1
a

φ(Y+
a,x)

φ(C+a,x)

Figure 6.1: Images of the unbounded domain Y+
a,x and the cone C+a,x with

respect to the conformal map φ .

with

Aαµ =
∂yα

∂xµ
= −δαµΩ− 2yαyµ and

AαµA
β
λ = Ω2δαµδ

β
λ + 4yλyµy

αyβ + 2Ω(δαµyλy
β + δβλyµy

α)

∂2yα

∂xµ∂xλ
= 2Ωδαµyλ + 2Ωδαλyµ + 2Ωηµλy

α + 8yλyµy
α .

From these identities, we have:

ηλµAαµA
β
λ = Ω2ηαβ and ηλµ

∂2yα

∂xµ∂xλ
= 2(n − 1)yα .

It then follows that:

�x,ηf = Ω2�y,η(f ◦ φ−1) + 2(n − 1)yα
∂(f ◦ φ−1)

∂yα
. (6.2.5)

Now, f̂ = Ω−
n−1
2 f ◦ φ−1 implies that f ◦ φ−1 = Ω

n−1
2 f̂ and using identity

∂Ω
∂yα = −2yα, one is led to

∂(f ◦ φ−1)
∂yα

= Ω
n−3
2

{
Ω
∂f̂

∂yα
− (n− 1)yαf̂

}
(6.2.6)
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and thus,

yα
∂(f ◦ φ−1)

∂yα
= Ω

n−1
2

{
yα

∂f̂

∂yα
+ (n− 1)f̂

}
. (6.2.7)

On the other hand, we have:

∂2(f ◦ φ−1)
∂yα∂yβ

= Ω
n−1
2

∂2f̂

∂yα∂yβ
+ (1− n)Ωn−3

2

{
yα

∂f̂

∂yβ
+ yβ

∂f̂

∂yα

}

+(1− n)Ωn−5
2 {(3− n)yαyβ +Ωηαβ} f̂ .

From this last identity and from identities (6.2.6) and (6.2.7) we deduce
that:

�y,η(f ◦ φ−1) = Ω
n−1
2 �y,ηf̂ − 2(n − 1)2Ω

n−3
2 f̂ + 2(1− n)Ωn−3

2 yµ
∂f̂

∂yµ
.

Replacing now this expression of �y,η(f ◦ φ−1) in (6.2.5) and simplifying
using identity (6.2.7), one obtains:

�x,ηf = Ω
n+3
2 �y,ηf̂ .

This complete the proof. �

If we use expression (6.2.6) in (6.2.3) we obtain:

∂f

∂xµ
= Ω

n−1
2

{
(1− n)yµf̂ − Ω

∂f̂

∂yµ
− 2yµy

α ∂f̂

∂yα

}
; (6.2.8)

thus the right-hand side of equation (5.0.8) reads:

F (xν , f(xν), ∂µf(x
ν)) = F

(
φ−1(yν), f ◦ φ−1(yν), ∂µf(xν)

)

= F

(
φ−1(yν),Ω

n−1
2 f̂ ,Ω

n−1
2

{
(1− n)yµf̂ − Ω

∂f̂

∂yµ
− 2yµy

α ∂f̂

∂yα

})

≡ F̃

(
yν ,Ω

n−1
2 f̂ ,Ω

n−1
2
∂f̂

∂yµ

)
.

We obtain that under the coordination transformation (6.1.1) and the rescal-
ing (6.2.1), the wave equation (5.0.8) read:

(E0)

{
�y,ηf̂ = Ω−

n+3
2 F̃

(
yν ,Ω

n−1
2 f̂ ,Ω

n−1
2

∂f̂
∂yµ

)
in φ(Y+

a,x)

f̂ = ϕ̂ on φ(C+a,x)
(6.2.9)
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where
ϕ̂ =

(
Ω−

n−1
2 f ◦ φ−1

) ∣∣∣
φ(C+a,x)

.

Remark 6.2.2 1. On the behavior of ϕ̂: Since

Ω = (y0)2 − ρ2 and φ(C+a,x) ⊂ {(yα) ∈ Y−− 1
a
,y
: y0 = ρ− 1

a
},

we have Ω|φ(C+a,x) =
1
a

(
1
a − 2ρ

)
, 0 ≤ ρ < 1

2a . It then follows that, for

any (yi) ∈ R
n+1
y such that (ρ− 1

a , y
i) ∈ φ(C+a,x),

ϕ̂(yi) =

(
1

a

(
1

a
− 2ρ

))−n−1
2

ϕ(xi),

(xi) being such that (ρ− 1
a , y

i) = φ(r+a, xi) . These calculations show
that it will be possible to choose the initial data ϕ such that the initial
data ϕ̂ of the transformed equations (6.2.9) are smooth on the whole
φ(C+a,x) as long as {ρ < 1

2a}. In general these data will be singular at
{ρ = 1

2a}.

2. To the system 6.2.9 we can apply the results of [28] to obtain that there
exists a neighborhood which will be denoted by V0,y (see Figure 6.2)
of the tip of the cone φ(C+a,x) on which (6.2.9) has a unique smooth

solution. We denote this local solution by f̂0.

6.3 Goursat problem associated to the transformed

system

As in [7], we consider the Cauchy problem associated to the wave equation
(6.2.9) with prescribed data on two truncated (such as to get rid of the tips)
intersecting cones C+ ⊂ C+− 1

a
,y
∩ Y−0,y and C− ⊂ C−λ,y ∩ Y+

− 1
a
,y
, where λ is a

fixed parameter belonging to the interval ]− 1
a , 0[ sufficently close to − 1

a such
that C−λ,y ∩ Y+

− 1
a
,y

intercepts V0,y (see Figures 6.2 and 6.3 ):

�y,ηf̂ = Ω−
n+3
2 F̃

(
yν ,Ω

n−1
2 f̂ ,Ω

n−1
2
∂f̂

∂yµ

)
; (6.3.1)

in the future neighborhood of C+ ∪ C− with initial data

f̂ = ϕ̂ on C+ and f̂ = f̂0 sur C− ; (6.3.2)

127



− 1
a

C−λ,y

C+− 1
a
,y

V0,y

λ

Figure 6.2: Neighborhood V0,y of the tip of the cone C+− 1
a
,y
and the cone C−λ,y.

where f̂0 is the smooth function given by the second item of Remark 6.2.2
in the neighborhood V0,y of the tip (− 1

a , 0). We will be concerned now in
deriving a global process which solves (6.3.1)-(6.3.2). The next chapter is
devoted to this goal.
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− 1
a

C+
C−

V0,y

λ

Figure 6.3: Truncated cones C+ et C− .
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Chapter 7

Existence and uniqueness

theorem

7.1 Second transformation

In the space R
n+1
y we consider now the spherical coordinates (τ, ρ, θ) defined

as:





τ = y0 ,

ρ =
( n∑
i=1

(yi)2
)1/2

,

yi = ρωi(θ), i = 1, . . . , n

with





ω1 = cos θ1

ω2 = sin θ1 cos θ2

ω3 = sin θ1 sin θ2 cos θ3

. . . . . .
ωn−1 = sin θ1 sin θ2 . . . sin θn−2 cos θn−1

ωn = sin θ1 sin θ2 . . . sin θn−2 sin θn−1

where 0 < θn−1 < 2π and 0 < θi < π, i = 1, 2, . . . , n − 2 . We set:

{
x = τ + ρ ≤ 0
y = τ − ρ+ 1

a ≥ 0
i.e.

{
τ = 1

2(y + x− 1
a)

ρ = 1
2(

1
a + x− y) . (7.1.1)

We have the following

Proposition 7.1.1 In the new coordinate system (y, x, θ), we have the iden-
tity

�y,η = −4∂x∂y +
n− 1

ρ
(∂x − ∂y) +

∆Sn−1

ρ2
(7.1.2)

where ∆Sn−1 is the Laplace-Beltrami operator on the sphere Sn−1 endowed
with its canonical metric.
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Proof: From equation (7.1.1) we have

dy0 =
1

2
(dx+ dy) and dyi =

1

2
ωi(dy − dx) + ρdωi

thus,

(dy0)2 =
1

4

(
(dy)2 + (dx)2 + dx⊗ dy + dy ⊗ dx

)

and

(dyi)2 =
1

4
(ωi)2

(
(dy)2 + (dx)2 − dx⊗ dy − dy ⊗ dx

)

+ρ2d(ωi)2 +
1

2
ωiρ

{
(dx− dy)⊗ (dωi) + (dωi)⊗ (dx− dy)

}
.

We then obtain (recall that
n∑
i=1

ωidωi= 0),

−(dy0)2 +
n∑

i=1

(dyi)2 = −1
2
(dx⊗ dy + dy ⊗ dx) + ρ2

n∑

i=1

d(ωi)2. (7.1.3)

If we denote by h the round metric on the sphere, that is the metric induced
on S

n−1 by the Euclidean metric of Rn then, identity (7.1.3) takes the form:

ηy = −
1

2
(dx⊗ dy + dy ⊗ dx) + ρ2h .

The matrix of the metric ηy thus has the form:

(
ηy

)
αβ

=




0 −1
2 0 . . . 0

−1
2 0 0 . . . 0
0 0
...

... ρ2hAB
0 0




(7.1.4)

where the hAB’s are the components of the metric h of Sn−1 in the coordi-
nates θA, A = 1, 2, . . . , n− 1. It then follows that:

√
|det η| = 1

2
ρn−1

√
|det h| .

We then obtain the matrix form of the inverse metric η♯y

(
ηy

)αβ
=




0 −2 0 . . . 0
−2 0 0 . . . 0
0 0
...

... 1
ρ2
hAB

0 0




. (7.1.5)
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Now we have:

�η,y =
1√
|η̃αβ|

∂µ
(√
|η̃αβ | η̃µν∂ν

)

=
2

ρn−1
√
|hAB |

∂µ

(1
2
ρn−1

√
|hAB | η̃µν∂ν

)

=
1

ρn−1
√
|hAB |

∂µ

(
ρn−1

√
|hAB | η̃µν∂ν

)

= −4∂x∂y +
n− 1

ρ

(
∂x − ∂y

)
+
∆Sn−1

ρ2
, (7.1.6)

where ∆Sn−1 is the canonical Laplace-Beltrami operator on Sn−1. �

From this proposition, we deduce the new form of the transformed equa-
tion (6.2.9) with respect to the new coordinates system z := (y, x, θ) :
{
−4∂x∂y f̂ + n−1

ρ

(
∂x − ∂y

)
f̂ +

∆Sn−1 f̂

ρ2 = Ω−
n+3
2 F̃

(
z,Ω

n−1
2 f̂ ,Ω

n−1
2

∂f̂
∂yµ

)
in φ(Y+

a,x)

f̂ = ϕ̂ on φ(C+a,x)
(7.1.7)

Remark 7.1.2 We emphasise the fact that Ω = −x(1/a − y) and yµ ∂
∂yµ =

x∂x+(y− 1/a)∂y. Thus by identity (6.2.8), we will suppose without further
restriction on F that when replacing the first order derivatives ∂f̂

∂yµ in F̃ by

their value in terms of ∂y, ∂x, ∂A, any derivative ∂xf̂ comes with a pre-factor
x.

Remark 7.1.3 In the coordinates system (τ, ρ, θ) the Minkowski metric
reads:

η = −(dτ)2 +
n∑

i=1

(dyi)2 = −(dτ)2 + (dρ)2 + ρ2ds2

where

ds2 = (dθ1)2 + sin2 θ1(dθ2)2 + sin2 θ1 sin2 θ2(dθ3)2 + . . .

+ sin2 θ1 sin2 θ2 . . . sin2 θn−2(dθn−1)2 (7.1.8)

thus
η = −(dτ)2 + (dρ)2 + ρ2h2ABdθ

AdθB,

with hAB = 0 if A 6= B and hAA, A = 1, . . . , n−1 being defined by equation
(7.1.8). The inverse metric is then given by

η♯ = −(∂τ )2 + (∂ρ)
2 + hAB∂θA∂θB with hAB =

{
0 if A 6= B

1
ρ2hAA

if A = B
.
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Remark 7.1.4

• φ(Y+
a,x) = Y+

− 1
a
,y
∩ Y−0,y = {(y, x, θ) : −

√
2

2a ≤ x ≤ 0; 0 ≤ y ≤
√
2

2a } ;

φ(C+a,x) = C+− 1
a
,y
∩ Y−0,y = {(y, x, θ) : y = 0; −

√
2

2a
≤ x ≤ 0} .

• 1
a + x − y = 0 is equivalent to ρ = 0, thus the function x 7−→ 1

1
a
−x−y

is well defined as far as one does not reach {ρ = 0} (which will be the
case in the domain of interest).

• Setting x0 =
√
2/2λ , y0 =

√
2/2(λ+ 1/a) we have:

C− = C−λ,y ∩ Y+
− 1

a
,y
= {(y, x, θ) : x = x0, 0 ≤ y ≤ y0} .

and
C+ = {(y, x, θ) : y = 0, x0 ≤ x < 0} .

7.2 Functional spaces

We intend in this section to describe the slices (see Figure 7.1) on which
we will get our energy estimates. Let z := (y, x, θ), be a generic point and
denote by D the set defined by D = [0, y0]× [x0, 0[×O , where O is a subset
of the unit sphere S

n−1 of Rn . For any (u, v) ∈ [0, y0]× [x0, 0[, we set

Du,v = [0, u] × [x0, v]× O ,

C+u,v = {u} × [x0, v]× O = {(y, x, θ) : y = u; x0 ≤ x ≤ v}
and

C−u,v = [0, u] × {v} × O = {(y, x, θ) : 0 ≤ y ≤ u; x = v} .
Thus,

Du,v = ∪
0≤y≤u

C+y,v = ∪
x0≤x≤v

C−u,x .

For β = (β1, . . . , βn) ∈ N
n, we set ∂β = ∂|β|

(∂x)β1 (∂θ1)β2 ...(∂θn−1)βn
; for β =

(β0, β1, . . . , βn) ∈ N
1+n, we set Dβ = ∂|β|

(∂y)β0 (∂x)β1 (∂θ1)β2 ...(∂θn−1)βn
and ∂µ =

∂
∂yµ . We recall that from (7.1.1), we have:





∂
∂x =

1
2

(
∂
∂τ +

n∑
i=1

yi

ρ
∂
∂yi

)
= 1

2

(
∂
∂τ +

∂
∂ρ

)

∂
∂y =

1
2

(
∂
∂τ −

n∑
i=1

yi

ρ
∂
∂yi

)
= 1

2

(
∂
∂τ − ∂

∂ρ

) . (7.2.1)
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−1
a
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x

y

τ

ρ

λC−

C−u,v

C+u,v

D

Figure 7.1: Future neighborhood D of the union of truncated cones C+ and
C− .

Let m ∈ N, α ∈ R and U a subset of Rn+1. We will denote Hm(U) the usual
Sobolev space on U. Further for U = C+ or C+u,v we denote by

• C α
0 (U) the set of continuous functions f on U for which the quantity

‖f‖Cα
0 (U) := sup

p∈U
|x|−α|f(p)| is finite,

• C α
k (U) the set of k−times continuously differentiable functions f on

U such that the quantity ‖f‖Cα
k (U) :=

∑
0≤|β|≤k

‖|x|β1∂βf‖Cα
0 (U) is finite,

• H α
k (U) the space of those functions f in Hk

loc(U) for which the norm

‖f‖2
H α

k (U) :=
∑

0≤|β|≤k

∫

U
(|x|−α+β1∂βf)2 dx|x|dν

is finite. Here dν is a measure on O arising from a smooth Riemannian
metric on S

n−1.
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7.3 Existence and uniqueness for a Goursat prob-

lem

Let m ∈ N, α ∈ R. Let ω−0 , be a defined function on C− and ω+
0 , be defined

on C+ such that

ω−0 ∈ Hm+2(C−); ω+
0 ∈ H

α
m+1(C+) and ∂xω

+
0 ∈ H

α
m+1(C+), (7.3.1)

and satisfying the compatibility condition

ω−0 = ω+
0 sur C+ ∩ C− = O . (7.3.2)

Actually, ω+
0 ∈H α

m+1(C+) implies that ∂xω
+
0 ∈ H

α−1/2
m (C+), which will not

be sufficient to obtain the control of some of our constants, we thus assume
that ∂xω

+
0 ∈ H α

m+1(C+). The purpose of this section is to state and prove
an existence and uniqueness theorem for the following characteristic Cauchy
problem (z = (y, x, θ)):

{
�y,ηω = x−

n+3
2 G

(
z, x

n−1
2 ω, x

n−1
2 (∂yω, x∂xω, ∂Aω)

)
in D

ω = ω+
0 on C+ and ω = ω−0 on C−

. (7.3.3)

7.3.1 Hypothesis on the non linear term

In analogy with the procedure used in [20], we make the following assumption
on the non linear source term G:

(H) We suppose that the function G = G(yµ, p, q), is of Cm class in all its
variables and that the restriction G(y, x) on every slice {y = const} ∩
{x = const} has a uniform zero of order r ≥ 1 at p = q = 0 in the
sense that, for all B > 0 there exists a constant Ĉ(B) such that for
0 ≤ j + ℓ+ i1 + i2 ≤ min(r,m) and |(p, q)| ≤ B one has:

∥∥∥∥
|x|i1∂j+ℓ+i1+i2G(y, x, . , p, q)

(∂x)i1(∂y)i2∂pj∂qℓ

∥∥∥∥
Cm−(j+ℓ+i1+i2)({y}×{x}×O)

≤ Ĉ(B) ‖(p, q)‖r−j−ℓ .

(7.3.4)

We point out for later use that this hypothesis implies that for all σ ≥ 0,
there exists a constant C(Ĉ, r,m, σ,B) such that for all f ∈ Hm(O), with
‖f‖L∞(O) ≤ B, we have

‖G(y, x, ·, |x|σf)‖Hm(O) ≤ C|x|rσ‖f‖Hm(O) . (7.3.5)
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7.3.2 First inequality

As a first step towards an existence theorem of the characteristic Cauchy
problem (7.3.3), we prove now the equivalent of Lemma 7.1.2. of [51]. Let
ℓ, Λ ∈ R, Λ > 0 and ω a sufficiently differentiable function defined on
Y+
− 1

a
,y
, set

Lℓ[ω] = H(y, x)(∂xω + ∂yω)�η,yω with H(x, y) = (−x)ℓe−Λ(y+x),

and

∇ω = (∂xω, ∂yω, ∂θω), ∇xω = (∂xω, ∂θω), ∇y = (∂yω, ∂θω)

where ∂θω = (∂θ1ω, . . . , ∂θn−1ω) . Assume that c0 and c̄0 are two positive
constants such that:

c0|X|2 ≤ X2
x +

∑

A,B

hABXAXB

2ρ2
≤ c̄0|X|2 . (7.3.6)

we have the following proposition:

Proposition 7.3.1 There exists a positive constant c1 depending upon h, c0, c̄0
and n such that for all ℓ ≥ 0, u ∈ [0, y0], v ∈ [x0, 0[, and for any function
ω defined and at least of class C2 on φ(Y+

a,x) = Y+
− 1

a
,y
∩ Y−0,y, we have:

∫ v

x0

H(u, x)‖(ω,∇xω)(u, x)‖2L2(O)dx+

∫ u

0
H(y, v)‖(ω,∇yω)(y, v)‖2L2(O)dy ≤

∫ v

x0

H(0, x)‖(ω,∇xω)(0, x)‖2L2(O)dx+

∫ u

0
H(y, x0)‖(ω,∇yω)(y, x0)‖2L2(O)dy

+(c1(c0, c̄0, n, h)− 2Λ)

∫ u

0

∫ v

x0

H(x, y)‖(ω,∇ω)(y, x)‖2L2(O)dxdy

+
1

c0

∫

Du,v

∣∣∣Lℓ[ω]
∣∣∣ dydx dν . (7.3.7)

Proof: Recall that

�η,yω = −4∂x∂yω +
n− 1

ρ
(∂x − ∂y)ω +

∆Sn−1ω

ρ2

= −4∂x∂yω +
1

ρ2
hAB∂A∂Bω +

n− 1

ρ
(∂x − ∂y)ω −

1

ρ2
ΓA∂Aω ,
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where ΓA = hBCΓABC , the ΓABC ’s being the Christoffel symbols on the unit
sphere S

n−1 of Rn. We point out the following trivial identities

−4H∂xω∂x∂yω = −2∂y(H∂xω)2 + (2∂yH)(∂xω)
2 ,

−4H∂yω∂x∂yω = −2∂x(H∂yω)2 + (2∂xH)(∂yω)
2 ,

1

ρ2
HhAB∂xω∂

2
ABω = ∂A

(
1

ρ2
HhAB∂xω∂Bω

)
− 1

ρ2
H∂A(h

AB)∂xω∂Bω

− 1

ρ2
HhAB∂x∂Aω∂Bω .

The last term of the last identity can be written as

1

ρ2
HhAB∂x∂Aω∂Bω =

1

2ρ2
HhAB(∂x∂Aω∂Bω + ∂Aω∂x∂Bω)

=
1

2ρ2
HhAB∂x(∂Aω∂Bω)

= ∂x

(
1

2ρ2
HhAB∂Aω∂Bω

)
− ∂x

(
1

2ρ2
H

)
hAB∂Aω∂Bω .

It then follows that

1

ρ2
HhAB∂xω∂

2
ABω = ∂A

(
1

ρ2
HhAB∂xω∂Bω

)
− 1

ρ2
H∂A(h

AB)∂xω∂Bω

−∂x
(

1

2ρ2
HhAB∂Aω∂Bω

)
+ ∂x

(
1

2ρ2
H

)
hAB∂Aω∂Bω .

Similar calculations lead to

1

ρ2
HhAB∂yω∂

2
ABω = ∂A

(
1

ρ2
HhAB∂yω∂Bω

)
− 1

ρ2
H∂A(h

AB)∂yω∂Bω

−∂y
(

1

2ρ2
HhAB∂Aω∂Bω

)
+ ∂y

(
1

2ρ2
H

)
hAB∂Aω∂Bω .

We then obtain the following expression of Lℓ[ω] :

Lℓ[ω] = −∂y
(
2H(∂xω)

2 +
1

2ρ2
HhAB∂Aω∂Bω

)
− ∂x

(
2H(∂yω)

2 +
1

2ρ2
HhAB∂Aω∂Bω

)

+∂A

(
1

ρ2
HhAB(∂Bω)(∂xω + ∂yω)

)
+
n− 1

ρ
H

(
(∂xω)

2 − (∂yω)
2
)

+2∂yH(∂xω)
2) + 2∂xH(∂yω)

2)− 1

ρ2
H∂Ah

AB(∂Bω)(∂xω + ∂yω)

+
1

2
hAB∂Aω∂Bω(∂x + ∂y)(H/ρ

2))− 1

ρ2
HΓA(∂xω + ∂yω)∂Aω .
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Since x = τ + ρ and y = τ − ρ+ 1
a we have

∂xH = −ℓx−1H−ΛH, ∂yH = −ΛH and (∂x+∂y)(H/ρ
2) =

1

ρ2
(−ℓx−1H−2ΛH) .
(7.3.8)

Thus we have

Lℓ[ω] = −∂y
(
2H(∂xω)

2 +
1

2ρ2
HhAB∂Aω∂Bω

)
− ∂x

(
2H(∂yω)

2 +
1

2ρ2
HhAB∂Aω∂Bω

)

+∂A

(
1

ρ2
HhAB(∂Bω)(∂xω + ∂yω)

)
+
n− 1

ρ
H

(
(∂xω)

2 − (∂yω)
2
)

− 1

ρ2
H

(
∂Ah

AB + ΓB
)
(∂Bω)(∂xω + ∂yω)

−2ΛH
(
(∂xω)

2 + (∂yω)
2 +

hAB

2ρ2
∂Aω∂Bω

)

−ℓx−1H
(
(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
.

Integrating this identity on Du,v = [0, u] × [x0, v] × O and using Stokes
theorem, one is led to

∫

Du,v

Lℓ[ω]dydx dν = −
∫

∂Du,v

{
2(∂xω)

2 +
hAB

2ρ2
∂Aω∂Bω

}
nyHdσ

−
∫

∂Du,v

{
2(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

}
nxHdσ

+

∫

∂Du,v

hAB

ρ2
(∂Bω)(∂xω + ∂yω)nAHdσ

−ℓ
∫

Du,v

x−1
{
(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

}
Hdydx dν

−2Λ
∫

Du,v

{
(∂xω)

2 + (∂yω)
2 +

hAB

2ρ2
∂Aω∂Bω

}
Hdydx dν

+(n− 1)

∫

Du,v

1

ρ

{
(∂xω)

2 − (∂yω)
2
}
Hdydx dν

−
∫

Du,v

1

ρ2
(
∂Ah

AB + ΓB
)
(∂Bω)(∂xω + ∂yω)Hdydx dν. (7.3.9)

In equation (7.3.9),
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• dν is the surface element on S
n−1 defined by the induced metric on

S
n−1 by the Euclidean metric on R

n,

• n = ny∂y+nx∂x+
n∑

A=1

nθ∂θ is the unit outward normal of the boundary

∂Du,v,
• and dσ is the surface element on ∂Du,v induced by the volume element
dydx dν.

The right-hand side of equation (7.3.9) is made of seven terms which will
be labeled A, B , C, D, E, F and G where A is the terms of the first line, B
those of the second line and so on.

Remark 7.3.2 On the Riemannian manifold R
n+1 endowed with the Eu-

clidean metric, the family of vectors {∂τ , ∂ρ, ∂θ} is an orthogonal frame and
then we deduce that (note that ∂Du,v is made of four pieces: ∂Du,v =
C+0,v ∪ C−u,x0 ∪ C+u,v ∪ C−u,v):
• on C+0,v the unit outward normal is n = − 1√

2
∂y, thus ny = − 1√

2
, nx =

0, nA = 0, A = 1, . . . , n− 1;

• on C+u,v the outward unit normal is given by n = 1√
2
∂y, i.e. ny =

1√
2
, nx = 0, nA = 0, A = 1, . . . , n − 1.

• on C−u,x0 the unit outward normal n = − 1√
2
∂x, i.e. ny = 0, nx =

− 1√
2
, nA = 0, A = 1, . . . , n − 1.

• on C−u,v we have n = 1√
2
∂x, thus ny = 0, nx =

1√
2
, nA = 0, A =

1, . . . , n− 1.

In (7.3.9) we replace ∂Du,v by C+0,v ∪ C−u,x0 ∪ C+u,v ∪ C−u,v and after using on
each piece of ∂Du,v the corresponding value of the outward unit normal, we
find that:

A+B + C =
1√
2

∫

C+0,v

(
2(∂xω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ

− 1√
2

∫

C+u,v

(
2(∂xω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ

+
1√
2

∫

C−u,x0

(
2(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ

− 1√
2

∫

C−u,v

(
2(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ .
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Identity (7.3.9) then takes the form:

1√
2

∫

C+u,v

(
2(∂xω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ +

1√
2

∫

C−u,v

(
2(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ

=
1√
2

∫

C+0,v

(
2(∂xω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ +

1√
2

∫

C−u,x0

(
2(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdσ

−
∫

Du,v

Lℓ[ω]dydx dν − ℓ
∫

Du,v

x−1
(
(∂yω)

2 +
hAB

2ρ2
∂Aω∂Bω

)
Hdydx dν

−2Λ
∫

Du,v

(
(∂xω)

2 + (∂yω)
2 +

hAB

2ρ2
∂Aω∂Bω

)
Hdydx dν

+(n− 1)

∫

Du,v

1

ρ

(
(∂xω)

2 − (∂yω)
2
)
Hdydx dν

−
∫

Du,v

1

ρ2
(
∂Ah

AB + ΓB
)
(∂Bω)(∂xω + ∂yω)Hdydx dν . (7.3.10)

We then obtain the following estimate:
∫ v

x0

H(u, x)‖∇xω(u, x)‖2L2(O)dx+

∫ u

0
H(y, v)‖∇yω(y, v)‖2L2(O)dy

≤
∫ v

x0

H(0, x)‖∇xω(0, x)‖2L2(O)dx+

∫ u

0
H(y, x0)‖∇yω(y, x0)‖2L2(O)dy

+
(
c(c0, c̄0, n, ρ)− 2Λ

) ∫ u

0

∫ v

x0

H(x, y)‖∇ω(y, x)‖2L2(O)dxdy

+
1

c0

∫

Du,v

∣∣∣Lℓ[ω]
∣∣∣ dydx dν . (7.3.11)

On the other hand, we have:

1

2
(∂x + ∂y)(Hω

2) = Hω(∂xv + ∂y)ω −
ℓ

2
x−1Hω 2 − ΛHω2 ;

which implies that

(∂x + ∂y)(Hω
2) ≤ 2Hω(∂x + ∂y)ω − 2ΛHω2

≤
(
(1− 2Λ)ω2 + 2|∂xω|2 + 2|∂yω|2

)
H .

If we integrate once more on Du,v then we obtain via Stokes formula the
following inequality:
∫

∂Du,v

ω2nxHdσ+

∫

∂Du,v

ω2nyHdσ ≤
∫

Du,v

(
(1−2Λ)ω2+2|∂xω|2+2|∂yω|2

)
Hdydx dν ,
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which is equivalent to

∫

C+u,v
ω2Hdσ +

∫

C−u,v
ω2Hdσ ≤

∫

C+0,v
ω2Hdσ +

∫

C−u,x0
ω2Hdσ

+
√
2

∫

Du,v

(
(1− 2Λ)ω2 + 2|∂xω|2 + 2|∂yω|2

)
Hdydx dν .

The estimate thus follows

∫ v

x0

H(u, x)‖ω(u, x)‖2L2(O)dx+

∫ u

0
H(y, v)‖ω(y, v)‖2L2(O)dy ≤

∫ v

x0

H(0, x)‖ω(0, x)‖2L2(O)dx

∫ y0

0
H(x0, y)‖ω(y, x0)‖2L2(O)dy

+

∫

Dε,u

(
(1− 2Λ)ω2 + 2|∂xω|2 + 2|∂yω|2

)
Hdydx dν . (7.3.12)

Finally, adding side by side inequalities (7.3.11) and (7.3.12) leads to the
stated inequality:

∫ v

x0

H(u, x)‖(ω,∇xω)(u, x)‖2L2(O)dx+

∫ u

0
H(y, v)‖(ω,∇yω)(y, v)‖2L2(O)dy ≤

∫ v

x0

H(0, x)‖(ω,∇xω)(0, x)‖2L2(O)dx+

∫ u

0
H(y, x0)‖(ω,∇yω)(y, x0)‖2L2(O)dy

+
(
c1(c0, c̄0, n, h) − 2Λ

) ∫ u

0

∫ v

x0

H(x, y)‖(ω,∇ω)(y, x)‖2L2(O)dxdy

+
1

c0

∫

Du,v

∣∣∣Lℓ[ω]
∣∣∣ dydx dν .

�

7.3.3 Iterative scheme

Our aim now, is to show that there exists a real number u∗ ∈]0, y0] and a
sequence of smooth functions (ωk)k∈N which converges towards a solution ω
of (7.3.3) on the set D∗ := [0, u∗]× [x0, 0[×O. In order to use the C∞ results
of [47], first, we need to approximate the data ω+

0 and ω−0 with sequences

of smooth functions (ω+,k
0 )k∈N and (ω−,k0 )k∈N for which the compatibility

condition
ω+,k
0 (x0, θ) = ω−,k0 (0, θ) (7.3.13)
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holds at every step of the iteration. These sequences are constructed as fol-
lows: Denote by (ω̄+,k

0 )k∈N an arbitrary sequence of smooth functions which

converges towards ∂xω
+
0 in H α

m+1(C+) and by (ω−,k0 )k∈N an arbitrary se-
quence of smooth functions on C− which converges to ω−0 in the Sobolev
spaces Hm+2(C−). Then, for all (x, θ) ∈ [x0, 0[×O and k ∈ N, set

ω+,k
0 (x, θ) = ω−,k0 (0, θ) +

∫ x

x0

ω̄+,k
0 (s, θ)ds . (7.3.14)

For later use we point out in the following Lemma some properties of the
sequences (ω+,k

0 )k∈N and (ω−,k0 )k∈N.

Lemma 7.3.3 Suppose that −1 < α ≤ −1/2. Then, the sequences (ω−,k0 )k∈N
and (ω+,k

0 )k∈N given respectively by (7.3.14) satisfy the following:

1. ∀ θ ∈ O, ω+,k
0 (x0, θ) = ω−,k0 (0, θ) ;

2. ω+,k
0 −→ ω+

0 in H α
m+1(C+) and ∂xω

+,k
0 −→ ∂xω

+
0 in H α

m+1(C+) ;

3. sup
k∈N, x∈[x0,0[

(−x)−α‖∂xω+,k
0 (x)‖Hm−1(O) <∞ .

Proof: The first statement is obvious. As far as the second statement is
concerned, we write

‖ω+,k
0 − ω+

0 ‖2H α
m+1(C+) = ‖ω+,k

0 − ω+
0 ‖2H α

0 (C+) + ‖x∂x(ω
+,k
0 − ω+

0 )‖2H α
m (C+)

+‖∂A(ω+,k
0 − ω+

0 )‖2H α
m (C+) .

We have

‖x∂x(ω+,k
0 − ω+

0 )‖2H α
m (C+) = ‖ω̄+,k

0 − ∂xω+
0 ‖2H α−1/2

m (C+)

≤ c‖ω̄+,k
0 − ∂xω+

0 ‖2H α
m (C+) −→ 0

k−→∞
.(7.3.15)

On the other hand,

ω+,k
0 (x, θ)− ω+

0 (x, θ) = ω−,k0 (0, θ)− ω+
0 (x, θ) +

∫ x

x0

ω̄+,k
0 (s, θ)ds

= ω−,k0 (0, θ)− ω+
0 (x0, θ) + ω+(x0, θ)− ω+(x, θ) +

∫ x

x0

ω̄+,k
0 (s, θ)ds

= ω−,k0 (0, θ)− ω−0 (0, θ) +
∫ x

x0

(
ω̄+,k
0 (s, θ)− ∂xω+

0 (s, θ)
)
ds ;
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thus (recall −1 < α ≤ −1
2 implies (−x)−2α−1 ≤ (−s)−2α−1)

(−x)−2α−1|ω+,k
0 (x, θ)− ω+

0 (x, θ)|2

≤ c(x0)

(
|ω−,k0 (0, θ)− ω−0 (0, θ)|2 +

∫ x

x0

(−s)−2α−1|ω̄+,k
0 − ∂xω+

0 |2(s, θ)ds
)

≤ c(x0)

(
|ω−,k0 (0, θ)− ω−0 (0, θ)|2 +

∫ 0

x0

(−s)−2α−1|ω̄+,k
0 − ∂xω+

0 |2(s, θ)ds
)
.

Now integrating this inequality on C+ gives (the second inequality is obtained
by trace theorem):

‖ω+,k
0 − ω+

0 ‖2H α
0 (C+) ≤ c(x0)

(
‖ω−,k0 (0) − ω−0 (0)‖2L2(O) + ‖ω̄

+,k
0 − ∂xω+

0 ‖2H α
0 (C+)

)

≤ c(x0)
(
‖ω−,k0 − ω−0 ‖2H1(C−) + ‖ω̄

+,k
0 − ∂xω+

0 ‖2H α
0 (C+)

)
−→ 0
k−→∞

.(7.3.16)

Now let β ∈ N
n such that |β| ≤ m. Similarly to the previous calculations,

we have

∂β∂A

(
ω+,k
0 (x, θ)− ω+

0 (x, θ)
)

= ∂β∂A

(
ω−,k0 (0, θ)− ω−0 (0, θ) +

∫ x

x0

ω̄+,k
0 (s, θ)− ∂xω+

0 (s, θ)ds

)
.

If β1 = 0 then,

∂β∂A

(
ω+,k
0 (x, θ)− ω+

0 (x, θ)
)

= ∂β∂A

(
ω−,k0 (0, θ)− ω−0 (0, θ)

)
+

∫ x

x0

∂β∂A

(
ω̄+,k
0 (s, θ)− ∂xω+

0 (s, θ)
)
ds ,

thus (recall −1 < α ≤ −1
2 implies (−x)−2α−1 ≤ (−s)−2α−1)

(−x)−2α−1|∂β∂A
(
ω+,k
0 (x, θ)− ω+

0 (x, θ)
)
|2

≤ c(x0)

(
|∂β∂A

(
ω−,k0 (0, θ)− ω−0 (0, θ)

)
|2 +

∫ x

x0

(−s)−2α−1|∂β∂A(ω̄+,k
0 − ∂xω+

0 )|2(s, θ)ds
)

≤ c(x0)

(
|∂β∂A

(
ω−,k0 (0, θ)− ω−0 (0, θ)

)
|2 +

∫ 0

x0

(−s)−2α−1|∂β∂A(ω̄+,k
0 − ∂xω+

0 )|2(s, θ)ds
)
.

Integrating on C+, we have:

‖∂β∂A(ω+,k
0 −ω+

0 )‖2H α
0 (C+) ≤ c(x0)

(
‖ω−,k0 (0)− ω−0 (0)‖2Hm+1(O) + ‖∂β∂A(ω̄

+,k
0 − ∂xω+

0 )‖2H α
0 (C+)

)
.

(7.3.17)
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Suppose now β1 ≥ 1 and set β̃ = (β1 − 1, β2, . . . , βn). We have

∂β∂A

(
ω+,k
0 (x, θ)− ω+

0 (x, θ)
)
= ∂β̃∂A

(
ω̄+,k
0 (s, θ)− ∂xω+

0 (s, θ)
)
,

thus,

‖(−x)β1∂β∂A
(
ω+,k
0 − ω+

0

)
‖2H α

0
= ‖(−x)β1−1∂β̃∂A

(
ω̄+,k
0 − ∂xω+

0

)
‖2

H
α−1
0

.

(7.3.18)
By (7.3.17) and (7.3.18), we have

‖∂A
(
ω+,k
0 (x, θ)− ω+

0

)
‖2H α

m

≤ c(x0)
(
‖ω−,k0 (0)− ω−0 (0)‖2Hm+1(O) + ‖ω̄

+,k
0 − ∂xω+

0 ‖2H α
m+1

)
−→ 0
k−→∞

.(7.3.19)

From (7.3.15), (7.3.16) and (7.3.19) it follows that ω+,k
0 −→ ω+

0 in H α
m+1.

This proves that the sequence (ω+,k
0 )k∈N is such that

• ω+,k
0 −→ ω+

0 in H α
m+1(C+),

• ∂xω+,k
0 −→ ∂xω

+
0 in H α

m+1(C+).

Let now prove that the quantity sup
k∈N, x∈[x0,0[

(−x)−α‖∂xω+,k
0 (x)‖Hm−1(O) is

finite. We know that [x0, 0[= ∪
n∈N∗

[ x0
2n−1 ,

x0
2n ] and s = 2nx

x0
∈ [1, 2] if and

only if x = sx0
2n ∈ [x0, 0[. For any function f defined on [x0, 0[×O, set

fn(s, θ) = f(x = sx0
2n , θ). The H α

m (C+)− norm of f can be rewritten as
(see Equation (B.1.7) of Appendix B.1):

‖f‖H α
m (C+) ≈ (−x0)−2α

∑

n≥1
22nα‖fn‖2Hm([1,2]×O) . (7.3.20)

Here we write A ≈ B if there exist constant C1, C2 > 0 such that C1A ≤
B ≤ C2A. We have the following

sup
x∈[x0,0[

(−x)−2α‖f(x)‖2Hm−1(O) = sup
n≥1

sup
x0

2n−1≤x≤
x0
2n

(−x)−2α‖f(x)‖2Hm−1(O)

= sup
n≥1

sup
s∈[1,2]

(sx0
2n

)−2α
‖f(sx0

2n
)‖2Hm−1(O)

= (−x0)−2α sup
n≥1

{
22nα sup

s∈[1,2]
(s)−2α‖fn(s)‖2Hm−1(O)

}

≤ c(−x0)−2α
∑

n≥1
22nα sup

s∈[1,2]
‖fn(s)‖2Hm−1(O) .
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Now writing

∂γθ fn(s, θ) = ∂γθ fn(1, θ) +

∫ s

1
∂s∂

γ
θ fn(τ, θ)dτ ,

implies that

|∂γθ fn(s, θ)|2 ≤ |∂
γ
θ fn(1, θ)|2 + c

∫ s

1
|∂s∂γθ fn(τ, θ)|2dτ .

Integrating this estimate on O gives,

‖fn(s)‖2Hm−1(O) ≤ ‖fn(1)‖2Hm−1(O) + c

∫ s

1
‖∂sfn(τ)‖2Hm−1(O)dτ

≤ ‖fn(1)‖2Hm−1(O) + ‖fn‖2Hm([1,2]×O)

≤ c‖fn‖2Hm([1,2]×O) by trace theorem .

Therefore,

sup
x∈[x0,0[

(−x)−2α‖f(x)‖2Hm−1(O) ≤ c(−x0)−2α
∑

n≥1
22nα‖fn‖2Hm([1,2]×O)

≈ ‖fn‖H α
m (C+) (see (7.3.20)) .

Now choosing f = ∂xω
+,k
0 in the previous estimate leads to

sup
x∈[x0,0[

(−x)−2α‖∂xω+,k(x)‖2Hm−1(O) ≤ ‖∂xω+,k‖H α
m (C+) .

Since convergent sequences are bounded, we conclude that

sup
k∈N, x∈[x0,0[

(−x)−2α‖∂xω+,k(x)‖2Hm−1(O) <∞ .

This completes the proof of the Lemma. �

We denote by ωk0 the continuous functions defined on C+ ∪ C− which

coincide with ω+,k
0 on C+ and with ω−,k0 on C− . The sequence (ωk)k∈N is

then constructed by induction.

• Set ω0 = ω0 where ω0 is a smooth function defined on D and which
coincides with ω0

0 on C+ ∪ C− .

• Then, let ωk+1 be defined by iteration as the solution of the linear
characteristic Cauchy problem
{

�y,ηω
k+1 = x−

n+3
2 G

(
z, (−x)n−1

2 (ωk,∇ωk)
)

in D
ωk+1 = ωk+1

0 on C+ ∪ C−
. (7.3.21)
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In order to prove existence of the sequence
(
ωk

)
k∈N , first we have to prove

existence of the function ω0 used in the above iterative scheme. We define
ω0 for any (y, x, θ) ∈ R

n+1 by setting

ω0(y, x, θ) = ω+,0
0 (x, θ) + ω−,00 (y, θ)− ω−,00 (0, θ). (7.3.22)

Next we have to justify existence of a smooth solution of (7.3.21). We quote
Theorem 1 of [47]. Actually that reference gives a local solution on a neigh-
borhood of the intersecting hypersurfaces, but in the case of the linear prob-
lem (7.3.21), we will obtain a global solution on D.

7.3.4 Boundedness properties of
(
ωk

)
k∈N

Set

C0 = sup
k∈N, x∈C+

|x|−α
{
‖(ω+,k

0 ,∇xω
+,k
0 )(x)‖W 1,∞(O) + ‖∂yωk(0, x)‖W 1,∞(O)

}

+ sup
k∈N, y∈C−

{
(−x0)−α‖∂yω−,k0 (y)‖W 1,∞(O)

}

We will show later that C0 <∞. We have the following lemma:

Lemma 7.3.4 Assume (7.3.1) and (7.3.2) with −1 < α ≤ −1/2 and m >
n+7
2 . If the source term G satisfies hypothesis (H) page 135 with a zero order
r such that

n ≥ 1 +
4

r − 1
− 2α , (7.3.23)

then there exists a real number u∗ ∈]0, y0] for which we have

sup
k∈N, (y,x)∈[0,u∗]×[x0,0[

|x|−α‖(ωk,∇ωk)(y, x)‖W 1,∞(O) < 2C0. (7.3.24)

Proof: The proof will be made by induction on the integer k. Let us show
that the statement holds when k = 0 i.e

sup
(y,x)∈[0,u∗]×[x0,0[

|x|−α‖(ω0,∇ω0)(y, x)‖W 1,∞(O) < 2C0 .

From definition (7.3.22) of ω0, we have

∇ω0(y, x, θ) =
(
∂yω

−,0
0 (y, θ), ∂xω

+,0
0 (x, θ), ∂θω

+,0
0 (x, θ) + ∂θ

(
ω−,00 (y, θ)− ω−,0(0, θ)

))
,
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thus,

(−x)−α‖(ω0,∇ω0)(y, x)‖W 1,∞(O) ≤ (−x)−α‖(ω+,0
0 ,∇xω

+,0
0 )(x)‖W 1,∞(O)

+(−x)−α‖(ω−,00 (y)− ω−,00 (0)‖W 1,∞(O)

+(−x)−α‖∂yω−,00 (y)‖W 1,∞(O)

+(−x)−α‖∂θ(ω−,00 (y)− ω−,00 (0))‖W 1,∞(O)

≤ C0 + (−x0)−α‖(ω−,00 (y)− ω−,00 (0)‖W 1,∞(O)

+(−x0)−α‖∂θ(ω−,00 (y)− ω−,00 (0))‖W 1,∞(O)

Now recall that ω−,00 ∈ C∞
(
[0, y0]× O

)
, thus

(−x0)−α‖(ω−,00 (y)−ω−,00 (0)‖W 1,∞(O)+(−x0)−α‖∂θ(ω−,00 (y)−ω−,00 (0))‖W 1,∞(O) −→ 0
y−→0

.

It then follows that there exists a real number u0 ∈ [0, y0] such that, ∀y ∈
[0, u0],

(−x0)−α‖(ω−,00 (y)−ω−,00 (0)‖W 1,∞(O)+(−x0)−α‖∂θ(ω−,00 (y)−ω−,00 (0))‖W 1,∞(O) < C0 .

Therefore,

sup
(y,x)∈[0,u0]×[x0,0[

|x|−α‖(ω0,∇ω0)(y, x)‖W 1,∞(O) < 2C0 ,

and the property holds for k = 0. Note that the real u∗ will be determined
later from the induction scheme and will be less than or equal to u0. Let j be
an integer greater than or equal to 1, and suppose that for any integer k ≤ j
the following holds:

sup
(y,x)∈[0,u∗]×[x0,0[

|x|−α‖(ωk,∇ωk)(y, x)‖W 1,∞ < 2C0 . (7.3.25)

We want to prove that (7.3.25) holds with k = j + 1. Let γ ∈ N
n−1 be such

that |γ| ≤ m. If in Proposition 7.3.1 page 136 we choose ω = ∂γθω
k+1 and
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ℓ = −2α then we obtain the following inequality:

∫ v

x0

H(u, x)‖(∂γθ ωk+1,∇x∂
γ
θω

k+1)(u, x)‖2L2(O)dx

+

∫ u

0
H(y, v)‖(∂γθ ωk+1,∇y∂

γ
θ ω

k+1)(y, v)‖2L2(O)dy ≤
∫ v

x0

H(0, x)‖(∂γθ ωk+1,∇x∂
γ
θ ω

k+1)(0, x)‖2L2(O)dx

+

∫ u

0
H(y, x0)‖(∂γθ ωk+1,∇y∂

γ
θ ω

k+1)(y, x0)‖2L2(O)dy

+(c1(c0, c̄0, n, h)− 2Λ)

∫ u

0

∫ v

x0

H(x, y)‖(∂γθ ωk+1,∇∂γθ ωk+1)(y, x)‖2L2(O)dxdy

+
1

c0

∫

Du,v

∣∣∣Lℓ[∂γθ ωk+1]
∣∣∣ dydx dν .

Summing up the above identities for all multi-indices γ such that |γ| ≤ m,
one is led to:
∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dx+

∫ u

0
H(y, v)‖(ωk+1,∇yω

k+1)(y, v)‖2Hm(O)dy ≤
∫ v

x0

H(0, x)‖(ωk+1,∇xω
k+1)(0, x)‖2Hm(O)dx+

∫ u

0
H(y, x0)‖(ωk+1,∇yω

k+1)(y, x0)‖2Hm(O)dy

+(c(c0, c̄0, n, ρ)− 2Λ)

∫ u

0

∫ v

x0

H(x, y)‖(ωk+1,∇ωk+1)(y, x)‖2Hm(O)dxdy

+
1

c0

∑

|γ|≤m

∫

Du,v

∣∣∣Lℓ[∂γθ ωk+1]
∣∣∣ dydx dν . (7.3.26)

Let us control the terms with Lℓ[∂γθ ω
k+1]. In all the remaining of this section

we will use the symbol Gk(. . .) to denote quantity G
(
z, x−

n−1
2 (ωk,∇ωk)

)
.

We have:

Lℓ[∂γθ ω
k+1] = H(x, y)(∂x∂

γ
θ ω

k+1 + ∂y∂
γ
θω

k+1)�η,y∂
γ
θ ω

k+1

= H(x, y)(∂x∂
γ
θ ω

k+1 + ∂y∂
γ
θω

k+1)
(
∂γθ�η,yω

k+1 + [�η,y, ∂
γ
θ ]ω

k+1
)

= H(x, y)(∂x∂
γ
θ ω

k+1 + ∂y∂
γ
θω

k+1)
(
x−

n+3
2 ∂γθG

k(. . .) + [�η,y, ∂
γ
θ ]ω

k+1
)

=: A+B + C +D .
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We will use at many places the inequality ab ≤ a2/(4ǫ)+ ǫb2. The term A is
controlled as follows:

A = x−
n+3
2 H(x, y)∂γθ ∂xω

k+1∂γθG
k(. . .)

≤ c(ǫ)H|∂γθ ∂xωk+1|2 + ǫHx−(n+3)|∂γθGk(. . .)|2 ,
which implies

∑

|γ|≤m

∫

Du,v

Adνdxdy ≤ c(ǫ)

∫ u

0

∫ v

x0

H(x, y)‖∂xωk+1(y, x)‖2Hm(O)dxdy

+ǫ

∫ u

0

∫ v

x0

x−(n+3)H(x, y)‖Gk(. . .)‖2Hm(O)dxdy .

Now, recall that from the induction hypothesis (7.3.25) we know that

sup
y,x
|x|−α‖(ωk,∇ωk)(y, x)‖L∞(O) < 2C0,

thus, one can use (7.3.5) to control the Hm(O)−norme of Gk(. . .):

‖G(. . .)‖Hm(O) = ‖G
(
y, x, θ, |x|n−1

2
+α.|x|−α(wk,∇xw

k)
)
‖Hm(O)

≤ C(C0)|x|r(
n−1
2

+α)‖|x|−α(ωk,∇ωk)(y, x)‖Hm(O) .

Now, −(n+3)+2r
(
n−1
2 + α

)
− 2α ≥ 0 if and only if n ≥ 1+ 4

r−1 − 2α. The

constraint n ≥ 1+ 4
r−1−2α ensures that −(n+3)+2r

(
n−1
2 + α

)
−2α ≥ 0, and

(−x)−(n+3)+2r( n−1
2

+α)−2α is a bounded quantity in the range of coordinates
we are concerned with. We then obtain
∑

|γ|≤m

∫

Du,v

Adνdxdy ≤ c(ǫ)

∫ u

0

∫ v

x0

H(x, y)‖∂xωk+1(y, x)‖2Hm(O)dxdy

+ǫC(C0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy

for n ≥ 1 +
4

r − 1
− 2α . (7.3.27)

Similarly,

∑

|γ|≤m

∫

Du,v

Bdνdxdy ≤ c(ǫ)

∫ u

0

∫ v

x0

H(x, y)‖∂yωk+1(y, x)‖2Hm(O)dxdy

+ǫC(C0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk ,∇ωk)(y, x)‖2Hm(O)dxdy

for n ≥ 1 +
4

r − 1
− 2α . (7.3.28)
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As far as the terms C and D are concerned, we recall that the commutators
read

[�η,y, ∂
γ
θ ]ω

k+1 =
hAB

ρ2
∂A∂B∂

γ
θ ω

k+1 − ΓB∂B∂
γ
θ ω

k+1

−∂γθ
(
hAB

ρ2
∂A∂Bω

k+1

)
+ ∂γθ

(
ΓB∂B∂

γ
θ ω

k+1
)

= −
∑

γ1 6=0, γ1+γ2=γ

c(γ, ρ)∂γ1θ h
AB∂γ2θ ∂A∂Bω

k+1

+
∑

γ1 6=0, γ1+γ2=γ

c(γ, ρ)∂γ1θ Γ
B∂γ2θ ∂Bω

k+1 ;

whence, using inequality ab ≤ a2 + b2 one has:

∑

|γ|≤m

∫

Du,v

Cdνdxdy ≤ C(h, ρ)

∫ u

0

∫ v

x0

H(x, y)‖∇xω
k+1(y, x)‖2Hm(O)dxdy

(7.3.29)
and

∑

|γ|≤m

∫

Du,v

Ddνdxdy ≤ C(h, ρ)

∫ u

0

∫ v

x0

H(x, y)‖∇yω
k+1(y, x)‖2Hm(O)dxdy .

(7.3.30)
Summing inequalities (7.3.27)-(7.3.30) gives:

∑

|γ|≤m

∫

Du,v

∣∣∣Lℓ[∂γθ ωk+1]
∣∣∣ dydx dν ≤ c(ǫ)

∫ u

0

∫ v

x0

H(x, y)‖∇ωk+1(y, x)‖2Hm(O)dxdy

+ǫC(C0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy

for n ≥ 1 +
4

r − 1
− 2α .
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We can then rewrite (7.3.26) as:

∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dx+

∫ u

0
H(y, v)‖(ωk+1,∇yω

k+1)(y, v)‖2Hm(O)dy ≤
∫ v

x0

H(0, x)‖(ωk+1,∇xω
k+1)(0, x)‖2Hm(O)dx+

∫ u

0
H(y, x0)‖(ωk+1,∇yω

k+1)(y, x0)‖2Hm(O)dy

+(c(c0, c̄0, n, ρ) + c(c0, ǫ)− 2Λ)

∫ u

0

∫ v

x0

H(x, y)‖(ωk+1,∇ωk+1)(y, x)‖2Hm(O)dxdy

+ǫC(C0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy

for n ≥ 1 +
4

r − 1
− 2α .

All the derivatives appearing in the first term of the second line of the above
equation are interior derivatives to the hypersurface {y = 0} and those of
the second term are interior to {x = x0}, therefore we can rewrite this last
estimate using the initial data of the Cauchy problem (7.3.21):

∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dx

+

∫ u

0
H(y, v)‖(ωk+1,∇yω

k+1)(y, v)‖2Hm(O)dy

≤
∫ v

x0

H(0, x)‖(ω+,k+1
0 ,∇xω

+,k+1
0 )(0, x)‖2Hm(O)dx

+

∫ u

0
H(y, x0)‖(ω−,k+1

0 ,∇yω
−,k+1
0 )(y, x0)‖2Hm(O)dy

+(c(c0, c̄0, n, ρ) + c(c0, ǫ)− 2Λ)

∫ u

0

∫ v

x0

H(x, y)‖(ωk+1,∇ωk+1)(y, x)‖2Hm(O)dxdy

+ǫC(C0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy

for n ≥ 1 +
4

r − 1
− 2α .

We choose now in the above estimate the parameter Λ = Λ0 large enough so
that c(c0, c̄0, n, ρ) + c(c0, ǫ)− 2Λ0 < 0 and we have prove the following

Lemma 7.3.5 Suppose n ≥ 1 + 4
r−1 − 2α. ∀ǫ ∈]0, 1], there exists Λ0 =
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Λ0(c, c0, c̄0, ǫ, h) > 0 such that ∀(u, v) ∈ [0, y0]× [x0, 0[ and k ≤ j, we have:
∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dx+

∫ u

0
H(y, v)‖(ωk+1,∇yω

k+1)(y, v)‖2Hm(O)dy ≤
∫ v

x0

H(0, x)‖(ω+,k+1
0 ,∇xω

+,k+1
0 )(x)‖2Hm(O)dx+

∫ u

0
H(y, x0)‖(ω−,k+1

0 ,∇yω
−,k+1
0 )(y)‖2Hm(O)dy

+ǫC(C0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy . (7.3.31)

One would like to get rid of the dependence of k in the right-hand side of
the above estimate. We proceed as follows. Set

Ĉ(u, v) = |x0|−2αe−Λ0x0 sup
k∈N

∫ u

0
e−Λ0y‖(ω−,k0 ,∇yω

−,k
0 )(y)‖2Hm(O)dy

+sup
k∈N

∫ v

x0

|x|−2αe−Λ0x‖(ω+,k
0 ,∇xω

+,k
0 )(x)‖2Hm(O)dx

+
1

2(y0 + |x0|)

∫ u

0

∫ v

x0

H(y, x)‖(ω0,∇ω0)‖2Hm(O) . (7.3.32)

We notice that ∀(u, v) ∈ [0, y0]× [x0, 0], the quantity Ĉ(u, v) is finite. Indeed
we have

Ĉ(u, v) ≤ c(x0, y0,Λ0)

(
sup
k∈N

‖ω−,k0 ‖2Hm+1(C−) + sup
k∈N

‖(ω+,k
0 ,∇xω

+,k
0 )‖2

H α
m (C+)

)

+c(x0, y0,Λ0)

∫ u

0

∫ v

x0

|x|−2α‖(ω0,∇ω0)‖2Hm(O) .

The two terms in the first line of this estimate are bounded because conver-
gent sequences (see Lemma 7.3.3), are bounded. From (7.3.22) we have

∫ u

0

∫ v

x0

|x|−2α‖(ω0,∇ω0)‖2Hm(O) ≤

C
(
u‖(ω0,+

0 ,∇xω
0,+
0 )‖2

H α
m (C+) + (v − x0)‖(ω0,−

0 ,∇yω
0,−
0 )‖2Hm(C−)

+u(v − x0)‖ω−,00 (0)‖2Hm+1(O)

)
<∞ .

This proves that (7.3.32) defines a finite quantity. Now by the definition of
this constant, (7.3.31) implies:

∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dx ≤ Ĉ(u, v)

+ǫC(C0, c0)

∫ u

0

∫ v

x0

H(x, y)‖(ωk ,∇ωk)(y, x)‖2Hm(O)dxdy .(7.3.33)
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Suppose that for all u, v ∈ [0, y0]× [x0, 0[

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy ≤ 2Ĉ(y0, x0)(y0 + |x0|) .
(7.3.34)

After integration with respect to y on [0, u], inequality (7.3.33) gives

∫ u

0

∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dxdy ≤ Ĉ(y0, 0)y0 + 2ǫC(C0, c0)Ĉ(y0 + |x0|)y0

≤ 2Ĉ(y0, 0)y0 ,

if ǫ small enough. Using now this inequality in (7.3.31) leads to:

∫ u

0
H(y, v)‖(ωk+1,∇yω

k+1)(y, v)‖2Hm(O)dy ≤ Ĉ(y0, 0)+2ǫC(C0)Ĉ(y0, 0)(y0+|x0|) .

Again by integration, we have
∫ u

0

∫ v

x0

H(y, v)‖(ωk+1,∇yω
k+1)(y, v)‖2Hm(O)dy ≤

(
Ĉ(y0, 0) + 2ǫC(C0)Ĉ(y0 + |x0|)

)
|x0|

≤ 2Ĉ(y0, 0)|x0| if ǫ is small enough .

Therefore, assuming that (7.3.34) is true, we have proved that

∫ u

0

∫ v

x0

H(x, y)‖(ωk+1,∇ωk+1)(y, x)‖2Hm(O)dxdy ≤ 2Ĉ(y0, 0)(y0 + |x0|) .

Considering the definition of the constant Ĉ(u, v) ( see (7.3.32)), we then
obtain that (7.3.34) holds for k = 0, and one can conclude that for any k ∈ N

inequality (7.3.34) is satisfied. We have proved

Lemma 7.3.6 Suppose that the constant Ĉ is defined by (7.3.32). One can
choose ǫ = ǫ0(c0, c̄0, x0, y0, C0, h) such that

sup
k∈N, (u,v)∈[0,y0]×[x0,0[

∫ u

0

∫ v

x0

H(x, y)‖(ωk,∇ωk)(y, x)‖2Hm(O)dxdy ≤ 2Ĉ(y0, 0)(y0+|x0|) ,

(7.3.35)
and for any Λ ≥ Λ0,

∫ v

x0

H(u, x)‖(ωk+1,∇xω
k+1)(u, x)‖2Hm(O)dx

+

∫ u

0
H(y, v)‖(ωk+1,∇yω

k+1)(y, v)‖2Hm(O)dy ≤ 2Ĉ(y0, 0) .(7.3.36)
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Remark 7.3.7 Note that as we assume that the induction hypothesis holds
for any k ≤ j, inequality (7.3.36) hold for any k ≤ j.

Recall γ ∈ N
n−1, such that |γ| ≤ m−1. To proceed further we apply ∂γθ to

the differential equation satisfies by ωk+1 and then multiply the differentiated
equation by H∂γθ ∂yω

k+1. As in the proof of the Proposition 7.3.1, we obtain:

∂x

(
H(∂y∂

γ
θ ω

k+1)2
)

= (∂xH −H
n− 1

2ρ
)(∂y∂

γ
θ ω

k+1)2 +H
n− 1

2ρ
∂y∂

γ
θ ω

k+1∂x∂
γ
θω

k+1

+∂y∂
γ
θω

k+1
∑

γ1+γ2=γ

H
∂γ1θ h

AB

2ρ2
∂γ2∂A∂Bω

k+1

−∂y∂γθωk+1
∑

γ1+γ2=γ

H
∂γ1θ Γ

B

2ρ2
∂γ2θ ∂Bω

k+1

−1
2
|x|−n+3

2 H∂y∂
γ
θω

k+1∂γθG
k(. . .) .

(7.3.37)

We integrate this identity on the set {y}× [x0, x]×O. From Stokes’ theorem
we have for n ≥ 1 + 4

r−1 − 2α :

H(y, x)‖∂yωk+1(y, x)‖2Hm−1(O) ≤ H(y, x0)‖∂yωk+1(y, x0)‖2Hm−1(O)

+(c2(h, c0, c̄0) + c(ǫ)− Λ)

∫ x

x0

H(y, s)‖∂yωk+1(y, s)‖2Hm−1(O)ds

+c3(h, c0, c̄0)

∫ x

x0

H(y, x)‖∇xω
k+1(y, s)‖2Hm(O)ds

+ǫC(C0)

∫ x

x0

H(y, s)‖(ωk,∇ωk)(y, s)‖2Hm−1(O)ds.

As we did before, we choose in the above inequality Λ = Λ1(h, c0, c̄0, ǫ) large
enough so as to get rid of the terms containing ‖∂yωk+1(y, s)‖2Hm−1(O). We
then obtain

H(y, x)‖∂yωk+1(y, x)‖2Hm−1(O) ≤ H(y, x0)‖∂yω−,k+1
0 (y)‖2Hm−1(O)

+c3(h, c0, c̄0)

∫ x

x0

H(y, s)‖∇xω
k+1(y, s)‖2Hm(O)ds

+ǫC(C0)

∫ x

x0

H(y, s)‖(ωk,∇ωk)(y, s)‖2Hm−1(O)ds .

(7.3.38)
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Then according to Lemma 7.3.6, we estimates the terms containing ‖∇xω
k+1(y, s)‖2Hm(O)

and ‖(ωk,∇xω
k)(y, s)‖2Hm−1(O) by using inequality (7.3.36) twice: first as it

is written and secondly by replacing in that inequality k with k − 1 (which
remains true according to Remark 7.3.7):

H(y, x)‖∂yωk+1(y, x)‖2Hm−1(O) ≤ H(y, x0)‖∂yω−,k+1
0 (y)‖2Hm−1(O) + 2ǫC(C0)Ĉ(y, x)

+2c3(h, c0, c̄0)Ĉ(y, x)

+ǫC(C0)

∫ x

x0

H(y, s)‖∂yωk(y, s)‖2Hm−1(O)ds . (7.3.39)

We then integrate (7.3.39) with respect to x on [x0, v] for any v ∈ [x0, 0[
∫ v

x0

H(x)‖∂yωk+1(y, x)‖2Hm−1(O)dx ≤

|x0|
(
H(x0)‖∂yω−,k+1

0 (y)‖2Hm−1(O) + 2eλyǫC(C0)Ĉ(y, 0)
)

+2c2(h, c0, c̄0)Ĉ(y, 0)|x0|eλy

+ǫC(C0)

∫ v

x0

∫ x

x0

H(s)‖∂xωk(y, s)‖2Hm−1(O)dsdx ;

where H(x) = |x|−2αe−Λx. Let

C̃(y0, 0) = sup
k∈N, y∈[0,y0]

{
|x0|

(
H(x0)‖∂yω−,k+1

0 (y)‖2Hm−1(O)

+2eλyǫC(C0)Ĉ(y, 0)
)
+ 2c2(h, c0, c̄0)Ĉ(y0, 0)|x0|eΛy

}

+
1

2
sup

y∈[0,y0]

∫ 0

x0

H(x)‖∂yω0(y, x)‖2Hm−1(O)dx . (7.3.40)

Again we need to prove that C̃(y0, 0) is a finite quantity. For all γ ∈ N
n−1

such that |γ| ≤ m− 1, we have the following trivial identity

∂y|∂γθ ∂yω
−,k+1
0 |2 = 2∂y∂

γ
θ ∂

2
yω
−,k+1
0 .∂γθ ∂yω

−,k+1
0 ≤ |∂γθ ∂2yω

−,k+1
0 |2+|∂γθ ∂yω

−,k+1
0 |2 .

Integrating with respect to y on the interval [0, y0] gives

|∂γθ ∂yω
−,k+1
0 (y, θ)|2 = |∂γθ ∂yω

−,k+1
0 (0, θ)|2

+

∫ y0

0

(
|∂γθ ∂2yω

−,k+1
0 (s, θ)|2 + |∂γθ ∂yω

−,k+1
0 (s, θ)|2

)
ds.
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We integrate this new identity now with respect to the angular variables on
O and obtain that

‖∂yω−,k+1
0 (y)‖2Hm−1(O) ≤ ‖∂yω

−,k+1
0 (0)‖2Hm−1(O) + 2‖ω−,k+1

0 ‖2Hm+1(C−) .

By the trace theorem (recall ∂C− = ({0} × O) ∪ ({y0} × O)):

‖∂yω−,k+1
0 (0)‖2Hm−1(O) ≤ c‖∂yω−,k+1

0 ‖2Hm(C−) ≤ c‖ω−,k+1
0 ‖2Hm+1(C−) .

It then follows that

‖∂yω−,k+1
0 (y)‖2Hm−1(O) ≤ c‖ω−,k+1

0 ‖2Hm+1(C−) <∞ . (7.3.41)

On the other hand, by the Equation 7.3.22 page 146 which defined ω0, we
have
∫ 0

x0

H(x)‖∂yω0(y, x)‖2Hm−1(O)dx ≤ ‖∂yω−,00 (y)‖2Hm−1(O)

∫ 0

x0

|x|−2αe−Λxdx

≤ C independently of y . (7.3.42)

The estimates (7.3.41) and (7.3.42) prove that (7.3.40) defines a finite quan-
tity. By the definition of C̃(y0, 0) we have the following form of inequality
(7.3.39)
∫ v

x0

H(x)‖∂yωk+1(y, x)‖2Hm−1(O)dx ≤ C̃(y0, 0)

+ǫC(C0)

∫ v

x0

∫ x

x0

H(y, s)‖∂yωk(y, s)‖2Hm−1(O)dsdx .

(7.3.43)

Suppose that ∀v ∈ [x0, 0[,
∫ v

x0

H(x)‖∂yωk(y, x)‖2Hm−1(O)dx ≤ 2C̃(y0, 0). (7.3.44)

Then inequality (7.3.43) gives:
∫ v

x0

H(x)‖∂yωk+1(y, x)‖2Hm−1(O)dx ≤ C̃(y0, 0) + 2ǫC(C0)C̃(u0, 0)|x0|

≤ 2C̃(y0, 0), for ǫ small enough.

Note that from the definition of the constant C̃(y0, 0), inequality (7.3.44)
remains true when k = 0 and then one can conclude that it holds for any
integer k ∈ N. Inequality (7.3.39) then implies:

|x|−2α‖∂yωk+1(y, x)‖2Hm−1(O) ≤ C1(c0, c̄0, h, C0,Λ0,Λ1, ǫ, ĉ, C̃) . (7.3.45)

156



In order to obtain the analog of (7.3.45) with instead ∂xω
k+1, we repeat the

previous argument. Once more we differentiate with ∂γθ the equation satisfies
by ωk+1 and multiply the resulting equation by H∂γθ ∂xω

k+1 and obtain

∂y

(
H(∂x∂

γ
θ ω

k+1)2
)

= (∂yH +H
n− 1

2ρ
)(∂x∂

γ
θ ω

k+1)2 −Hn− 1

2ρ
∂y∂

γ
θ ω

k+1∂x∂
γ
θω

k+1

+∂x∂
γ
θ ω

k+1
∑

γ1+γ2=γ

H
∂γ1θ h

AB

2ρ2
∂γ2θ ∂A∂Bω

k+1

∂x∂
γ
θ ω

k+1
∑

γ1+γ2=γ

H
∂γ1θ Γ

B

2ρ2
∂γ2θ ∂Bω

k+1

−1
2
|x|−n+3

2 H∂x∂
γ
θ ω

k+1∂γθG
k(. . .) .

Then, we integrate on [0, y]×{x} ×O, and obtain for n ≥ 1 + 4
r−1 − 2α via

Stokes theorem

H(y, x)‖∂xωk+1(y, x)‖2Hm−1(O) ≤ H(0, x)‖∂xω+,k+1
0 (x)‖2Hm−1(O)

+(c4(h, c0, c̄0) + c(ǫ)− Λ)

∫ y

0
H(s, x)‖∂xωk+1(s, x)‖2Hm−1(O)ds

+c5(h, c0, c̄0)

∫ y

0
H(s, x)‖∇yω

k+1(s, x)‖2Hm(O)ds

+ǫC(C0)

∫ y

0
H(s, x)‖(ωk,∇ωk)(s, x)‖2Hm−1(O)ds

As we did previously, we choose in this inequality Λ = Λ2(h, c0, c̄0, ǫ) large
enough so as to get rid of the terms with ‖∂xωk+1(y, s)‖2Hm−1(O) and we
obtain:

H(y, x)‖∂xωk+1(y, x)‖2Hm−1(O) ≤ H(0, x)‖∂xω+,k+1
0 (x)‖2Hm−1(O)

+c5(h, c0, c̄0)

∫ y

0
H(s, x)‖∇yω

k+1(s, x)‖2Hm(O)ds

+ǫC(C0)

∫ y

0
H(s, x)‖(ωk,∇ωk)(s, x)‖2Hm−1(O)ds .

(7.3.46)
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By Lemma 7.3.6, we estimate the quantities ‖∇yω
k+1(y, s)‖2Hm and ‖(ωk,∇yω

k)(y, s)‖2Hm−1(O)

using inequality (7.3.36):

H(y, x)‖∂xωk+1(y, x)‖2Hm−1(O) ≤ H(0, x)‖∂xω+,k+1
0 (x)‖2Hm−1(O) + 2ǫC(C0)Ĉ(y, x)

+2c5(h, c0, c̄0)Ĉ(y, x)

+ǫC(C0)

∫ y

0
H(s, x)‖∂xωk(s, x)‖2Hm−1(O)ds . (7.3.47)

We integrate in y, and obtain that for any u ∈ [0, y0],
∫ u

0
H̃(y, x)‖∂xωk+1(y, x)‖2Hm−1(O)dy ≤ y0H̃(0, x)‖∂xω+,k+1

0 (x)‖2Hm−1(O)

+2y0e
ΛxǫC(C0)Ĉ(y0, x) + 2c5(h, c0, c̄0)Ĉ(y0, x)y0e

Λx

+ǫC(C0)

∫ u

0

∫ y

0
H̃(s, x)‖∂xωk(y, s)‖2Hm−1(O)dsdy ,

(7.3.48)

where H̃(y, x) = |x|−2αe−Λy. Now, we define a new constant Č(y0, 0) as

Č(y0, 0) = sup
k∈N, x∈[x0,0[

{
y0

(
H̃(0, x)‖∂xω+,k+1

0 (x)‖2Hm−1(O) + 2eΛxǫC(C0)Ĉ(y0, x)
)

+2c5(h, c0, c̄0)Ĉ(y0, 0)|x0|eΛx
}

+
1

2
sup

x∈[x0,0[

∫ y0

0
H̃(y, x)‖∂xω0(s, x)‖Hm−1(O). (7.3.49)

As before let us prove that (7.3.49) is finite. By the Lemma 7.3.3 page 142

sup
k∈N, x∈[x0,0[

H̃(0, x)‖∂xω+,k+1
0 (x)‖2Hm−1(O) <∞ . (7.3.50)

Next, by the definition of ω0 given by (7.3.22) page 146, we have
∫ y0

0
H̃(s, x)‖∂xω0(s, x)‖2Hm−1(O)ds ≤ ‖∂xω+,0

0 (x)‖2Hm−1(O)|x|−2α
∫ y0

0
e−Λsds

≤ C independently of x . (7.3.51)

From the estimates (7.3.50) and (7.3.51) we obtain that (7.3.49) define a
finite quantity. We thus obtain the following form of (7.3.48):
∫ u

0
H̃(y, x)‖∂xωk+1(y, x)‖2Hm−1(O)dy ≤ Č+ǫC(C0)

∫ u

0

∫ y

0
H̃(s, x)‖∂xωk(s, x)‖2Hm−1(O)dsdy .

(7.3.52)
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Suppose again that ∀u ∈ [0, y0],
∫ u

0
H̃(y, x)‖∂xωk(y, x)‖2Hm−1(O)dy ≤ 2Č(y0, 0). (7.3.53)

Then inequality (7.3.52) gives:

∫ u

0
H̃(y, x)‖∂xωk+1(y, x)‖2Hm−1(O)dy ≤ Č(y0, 0) + 2ǫC(C0)Č(y0, 0)y0

≤ 2Č(y0, 0), if ǫ small enough.

By the definition of the constant Č(y0, 0), (7.3.53) is satisfied for k = 0 and
so it is for any integer k ∈ N. Inequality (7.3.47) implies:

|x|−2α‖∂xωk+1(y, x)‖2Hm−1(O) ≤ C2(c0, c̄0, h, C0,Λ0,Λ2, ǫ, Ĉ, Č) . (7.3.54)

It remains to control the Hm(O) norms of ωk+1, that is to control its angular
derivatives. Let (y, x) ∈ [0, y0]× [x0, 0[, γ ∈ N

n−1 such that |γ| ≤ m

|x|−αe−Λ
2
y|∂γθ ωk+1(y, x)| ≤ |x|−α|∂γθ ω

+,k+1
0 (x)|+

∫ y

0
|x|−α|e−Λ

2
s∂y∂

γ
θ ω

k+1(s, x)|ds.

It then follows that:

|x|−2α|e−Λy∂γθ ωk+1(y, x)|2 ≤ 2

(
|x|−2α∂γθ ω

+,k+1
0 (x)|2 + y0

∫ y

0
|x|−2α|e−Λs∂γθ ∂yωk+1(s, x)|2ds

)
.

By integration we then obtain:

|x|−2αe−Λy‖ωk+1(y, x)‖2Hm−1(O) ≤

2

(
|x|−2α‖ω+,k+1

0 (x)‖2Hm−1(O) + y0

∫ y

0
|x|−2αe−Λs‖∂yωk+1(s, x)‖2Hm−1(O)ds

)

≤ C3(Č) .

We have proved the following Lemma:

Lemma 7.3.8 Let m ∈ N
∗. If n ≥ 1 + 4

r−1 − 2α, then there exists a positive
constant C4 = C4(c0, c̄0, h,Λ0,Λ1,Λ2, ǫ0) such that:

sup
(y,x)∈[0,y0]×[x0,0[

x−α‖(ωk+1,∇ωk+1)‖Hm−1(O) ≤ C4 . (7.3.55)
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Now to prove that (7.3.25) holds for k = j + 1 we are going to show that
it suffices to replace in (7.3.55) y0 with a certain u∗ sufficiently small. Let
j0 ∈ N

∗. if

m− 1 >
n− 1

2
+ j0 ,

then from (7.3.55) and the Sobolev embedding theorem, for all (y, x) ∈
[0, y0]× [x0, 0[, we have:

|x|−α‖(ωk+1,∇ωk+1)(y, x)‖Cj0 (O) ≤ C . (7.3.56)

It then follows from the differential equation satisfies by ωk+1 that

‖∂y(|x|−α∂xωk+1)(y, x)‖Cj0−1(O) ≤ C , (7.3.57)

‖x∂x(|x|−α∂yωk+1)(y, x)‖Cj0−1(O) ≤ C . (7.3.58)

Integrating (7.3.57) in y from (0, x) to (y, x) we find that for j0 ≥ 2,

|x|−α‖∂xωk+1(y, x)‖C1(O) ≤ |x|−α‖∂xω+,k+1
0 (0, x)‖C1(O) + Cy

≤ C0 + Cy

≤ 2C0 if y ≤ u1 . (7.3.59)

Note that inequality (7.3.59) shall be read as a first condition in the determi-
nation of u∗. Further, to control |x|−α‖∂yωk+1(y, x)‖C1(O), we y−differentiate

the differential equation satisfied by ωk+1. We write here

G(z, x
n−1
2 (ωk, ∂xω

k,∇yω
k) = G(z, x

n−1
2 (p1, p2, p3))

so that ∂yG
k(. . .) reads

∂yG
k(. . .) = (∂yG)

k(. . .) + |x|n−1
2 ∂yω

k

(
∂G

∂p1

)k
(. . .)

+|x|n−1
2 ∂y∂xω

k

(
∂G

∂p2

)k
(. . .) + |x|n−1

2 ∂y∇yω
k

(
∂G

∂p3

)k
(. . .) .

The differentiated equation reads

∂x(∂y∇yω
k+1) = ξ∂y∇yω

k+1 + ψk∂y∇yω
k + ϕk , (7.3.60)

where we have set

4ξ =
(
−n−1

ρ , 0
)
, 4ψk = −|x|−2

(
∂G

∂p3

)k
(. . .) ,

160



and where the components of ϕk are given by

4ϕky(y, x) =
n− 1

ρ
∂x∂yω

k+1(y, x) +
hAB

ρ3
∂A∂Bω

k+1(y, x) +
hAB

ρ2
∂y∂A∂Bω

k+1(y, x)

+
n− 1

2ρ2
(∂x − ∂y)ωk+1 − ΓB

ρ2
∂y∂Bω

k+1 − ΓB

ρ3
∂Bω

k+1 − (−x)n+3
2 (∂yG)

k(. . .)

−x−2
(
∂yω

k

(
∂G

∂p1

)k
(. . .) + ∂y∂xω

k

(
∂G

∂p2

)k
(. . .)

)
,

ϕkA(y, x) = ∂y∂x∂Aω
k+1 .

By hypothesis (7.3.4)) and the induction assumption (7.3.25), we have the
following estimate on ψk(y, x) for all (y, x) ∈ [0, y0]× [x0, 0[:

‖ψk(y, x)‖Cj0 ≤ C(|x|−α‖(ωk,∇ωk)(y, x)‖L∞(O))|x|−2+(r−1)(n−1
2

+α)

≤ C if n ≥ 1 +
4

r − 1
− 2α . (7.3.61)

By using simultaneously (7.3.56) and (7.3.57), for all (y, x) ∈ [0, y0]× [x0, 0[
we have:

|x|−α‖ϕk(y, x)‖Cj0−2(O) < C if n ≥ 1 +
4

r − 1
− 2α . (7.3.62)

On the other hand we have:

∂x

(
H(x)|∂y∇yω

k+1|2
)

= (2α|x|−1 − Λ)H(x)|∂y∇yω
k+1|2 + 2H(x)∂x∂y∇yω

k+1.∂y∇yω
k+1

≤ −ΛH(x)|∂y∇yω
k+1|2 + 2H(x)∂x∂y∇yω

k+1.∂y∇yω
k+1 .

Considering now inequalities (7.3.61) and (7.3.62), we deduce that for j0 ≥
2,

∂x

(
H(x)|∂y∇yω

k+1|2
)
≤ −ΛH(x)|∂y∇yω

k+1|2

+2H(x)∂y∇yω
k+1

(
ξ∂y∇yω

k+1 + ψk∂y∇yω
k + ϕk

)

≤ H(x)

(
(c+

C

ǫ
− Λ)|∂y∇yω

k+1|2 + ǫC|∂y∇yω
k|2

)
+ C|x|−αe−Λx .

Choosing Λ large enough, we have thus proved the following inequality

∂x

(
H(x)|∂y∇yω

k+1|2
)
≤ ǫH(x)C|∂y∇yω

k|2 + C|x|−αe−Λx , (7.3.63)
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which is then integrated in x to obtain:

H(x)|∂y∇yω
k+1|2(y, x) ≤ H(x0)|∂y∇yω

k+1|2(y, x0)+C
∫ x

x0

e−Λs
(
ǫ|s|−2α|∂y∇yω

k|2 + |s|−α
)
ds.

Equivalently this reads

H(x)|∂y∇yω
k+1|2(y, x) ≤ H(x0)|∂y∇yω

−,k+1
0 |2(y, x0)+C

∫ x

x0

e−Λs
(
ǫ|s|−2α|∂y∇yω

k|2 + |s|−α
)
ds

As we did many times before, for a convenient choice of ǫ, we obtain the
estimate:

|x|−2α|∂y∇yω
k+1|2(y, x) ≤ 2

(
C

∫ 0

x0

|s|−αe−Λsds+ sup
k∈N, y∈[0,y0]

H(x0)|∂y∇yω
−,k
0 |2(y)

)

≤ c(x0, α)

(
1 + sup

k∈N
‖ω−,k+1

0 ‖2C2([0,y0]×O)

)

≤ c(x0, α)

(
1 + sup

k∈N
‖ω−,k+1

0 ‖2Hm+1(C−)

)
<∞

i.e.
|x|−α|∂y∇yω

k+1|(y, x) < C . (7.3.64)

The same procedure can exactly be repeated by using instead the angular
derivatives of ωk+1 leading to

|x|−α‖∂y∇yω
k+1(y, x)‖Cj0−2 < C . (7.3.65)

Remark 7.3.9 The bound (7.3.65) follows from a control on the coefficients
ξ, ψk and ϕk in (7.3.60) after have y-differentiated the equation satisfied
by ωk+1. We notice that, if instead we have x∂x− differentiated the same
equation we should have been led to the bound:

|x|−α‖(x∂x)∇xω
k+1)(y, x)‖Cj0−2 < C . (7.3.66)

Now we integrate once more in y Equation 7.3.65 and obtain that for j0 ≥ 3:

|x|−α‖∇yω
k+1(y, x)‖C1(O) ≤ |x|−α‖∇yω

k+1(0, x)‖C1 + Cy

≤ 2C0 pour y < u2 . (7.3.67)

In order to finish the proof of Lemma 7.3.4, we write:

|x|−α‖ωk+1(y, x)‖C1(O) ≤ |x|−α‖ω+,k+1
0 (x)‖C1(O) +

∫ y

0
|x|−α‖∂yωk+1(s, x)‖C1(O)ds

≤ C0 + 2C0y

≤ 2C0 pour y < u3 . (7.3.68)
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We define u∗ as
u∗ = min{u0, u1, u2, u3}

and inequalities (7.3.59), (7.3.67), (7.3.68) allow us to write:

sup
(y,x)∈[0,u∗]×[x0,0[

|x|−α‖(ωk+1,∇ωk+1)(y, x)‖W 1,∞ < 2C0 .

This completes the proof of Lemma 7.3.4. �

The previous lemma will be useful only if we prove that the constant C0 is
finite. We thus have to prove that the quantity sup

k∈N, x∈C+
|x|−α‖∂yωk(0, x)‖W 1,∞(O)

is finite. This will be a consequence of the next Lemma. Set (recall that
H(x) = e−Λx|x|−2α )

Ĉ0 := sup
k∈N, x∈[x0,0[

H
1
2 (x)‖(ω+,k

0 ,∇xω
+,k
0 )(x)‖Hm(O) . Č(y0, 0) <∞

C̃0 := sup
k∈N

H
1
2 (x0)‖∂yω−,k0 (0)‖Hm−1(O)+ sup

x∈[x0,0[
H

1
2 (x)‖∂yω0(0, x)‖Hm−1(O) <∞ .

Here and elsewhere we write A . B if and only if there exists a constant
c > 0 such that A ≤ cB. We have the following:

Lemma 7.3.10 Under the hypotheses of Lemma 7.3.4, we have:

sup
k∈N, x∈[x0,0[

H
1
2 (x)‖∂yωk(0, x)‖Hm−1(O) < 2(Ĉ0 + C̃0). (7.3.69)

Proof: The proof will be carried out by induction on the integer k. By def-
inition of the constants Ĉ0 and C̃0 the assumption is fulfilled when k = 0.
Suppose that

sup
x∈[x0,0[

H
1
2 (x)‖∂yωk)(0, x)‖Hm−1(O) < 2(C0 + C̃0) .

We shall prove that this inequality remains true if we replace k with k + 1.
If in Inequality 7.3.38 page 154 we choose {y = 0} we have (note that in
(7.3.38) there is no ǫ in the second line but things can be arranged from
(7.3.37) so as to get an ǫ there):

H(0, x)‖∂yωk+1(0, x)‖2Hm−1(O) ≤ H(0, x0)‖∂yωk+1(0, x0)‖2Hm−1(O)

+ǫc3(h, c0, c̄0)

∫ x

x0

H(0, s)‖∇xω
k+1(0, s)‖2Hm(O)ds

+ǫC(C0)

∫ x

x0

H(0, s)‖(ωk,∇ωk)(0, s)‖2Hm−1(O)ds .
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This can be rewritten as

H(x)‖∂yωk+1(0, x)‖2Hm−1(O) ≤ H(x0)‖∂yω−,k+1
0 (0)‖2Hm−1(O)

+ǫc3(h, c0, c̄0)

∫ x

x0

H(s)‖∇xω
+,k+1
0 (s)‖2Hm(O)ds

+ǫC(C0)

∫ x

x0

H(s)‖(ω+,k
0 ,∇xω

+,k
0 )(s)‖2Hm−1(O)ds

+ǫC(C0)

∫ x

x0

H(s)‖∂yωk(0, s)‖2Hm−1(O)ds ,

which implies that:

H(x)‖∂yωk+1(0, x)‖2Hm−1(O) ≤ C̃2
0 + ǫc3(h, c0, c̄0)|x0|Ĉ2

0 + ǫC(C0)|x0|Ĉ2
0

+4ǫC(C0)|x0|(Ĉ0 + C̃0)
2

≤ 4(Ĉ0 + C̃0)
2 since ǫ is sufficiently small .

We then obtain

sup
x∈[x0,0[

H
1
2 (x)‖∂yωk+1(0, x)‖2Hm−1(O) ≤ 2(Ĉ0 + C̃0) ,

and the proof is complete. �

Lemma 7.3.11 Under the hypotheses of Lemma 7.3.4, there exists a con-
stant M0 > 0 such that:

sup
k∈N, (y,x)∈[0,u∗]×[x0,0[

‖ωk(y, x)‖W 1,∞(O) < M0 . (7.3.70)

Proof: let γ ∈ N
n−1, such that |γ| ∈ {0, 1}. By Lemma 7.3.4, for all (y, x) ∈

[0, u∗]× [x0, 0[, we have:

|∂γθ ωk(y, x)| ≤ |∂γθ ω
−,k
0 (y)|+

∫ x

x0

|∂x∂γθωk(y, s)|ds

≤ |∂γθ ω
−,k
0 (y)|+

∫ x

x0

|s|α|s|−α‖∂xωk(s, x)‖C1(O)ds

≤ sup
|γ|∈{0,1}, k∈N, y∈[0,u∗]

|∂γθ ω
−,k
0 (y)|+ 2C0

∫ 0

x0

|s|αds
︸ ︷︷ ︸

:=M0

.

�

We also have the following:

164



Lemma 7.3.12 Under the hypotheses of the previous lemma, there exists
two constants M1 > 0 and M2 > 0 such that:

sup
k∈N, (y,x)∈[0,u∗]×[x0,0[

‖ωk(y, x)‖Hm−1(O) < M1 (7.3.71)

and

sup
k∈N, (y,x)∈[0,u∗]×[x0,0[

|x|−α‖(∂xωk, ∂yωk)(y, x)‖Hm−1(O) < M2 . (7.3.72)

Proof: First we will prove (7.3.72) and secondly, we will show that (7.3.71)
is actually a consequence of (7.3.72). We proceed by induction on k. Set

C̄0 := sup
(y,x)∈[0,u∗]×[x0,0[

|x|−α‖(∂xω0, ∂yω
0)(y, x)‖Hm−1(O) <∞ ,

C̄1 := sup
k∈N, (y,x)∈[0,u∗]×[x0,0[

{
H(y, x0)‖∂yω−,k+1

0 (y)‖2Hm−1(O)

+H(0, x)‖∂xω+,k+1
0 (x)‖2Hm−1(O)

}

+2ǫC(C0)Ĉ(y0, 0) + 2c3(h, c0, c̄0)Ĉ(y0, 0) + 2ǫC(C0)Ĉ(y0, 0)

+2c5(h, c0, c̄0)Ĉ(y0, 0) <∞ , (7.3.73)

and suppose that

sup
(y,x)∈[0,u∗]×[x0,0[

H
1
2 (y, x)‖(∂xωk, ∂yωk)(y, x)‖Hm−1(O) < 2(C̄0 + C̄1) .

Let us show that this remains true when we replace k with k + 1. Adding
inequalities (7.3.39) and (7.3.47) leads to:

H(y, x)‖(∂yωk+1, ∂xω
k+1)(y, x)‖2Hm−1(O) ≤

C̄1 + ǫC(C0)

∫ x

x0

H(y, s)‖∂yωk(y, s)‖2Hm−1(O)ds

+ǫC(C0)

∫ y

0
H(s, x)‖∂xωk(s, x)‖2Hm−1(O)ds

≤ C̄1 + 2ǫC(C0)(C̄0 + C̄1)(y0 + |x0|)
≤ 2(C̄0 + C̄1) , even if it means redefining ǫ . (7.3.74)

Since ∀(y, x) ∈ [0, y0] × [x0, 0[, e
−Λy0 ≤ e−Λ(y+x), it then suffices to set

M2 := (2eΛy0(C̄0 + C̄1))
1/2.
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In order to obtain the uniform control (7.3.71), we repeat the argument
leading to the proof of Lemma 7.3.11. For all (y, x) ∈ [0, u∗] × [x0, 0[, we
have:

‖ωk(y, x)‖Hm−1(O) ≤ ‖ω−,k0 (y)‖Hm−1(O) +

∫ x

x0

‖∂xωk(y, s)‖Hm−1(O)ds

≤ ‖ω−,k0 (y)‖Hm−1(O) +

∫ x

x0

|s|α|s|−α‖∂xωk(s, x)‖Hm−1(O)ds

≤ sup
k∈N, y∈[0,u∗]

‖ω−,k0 (y)‖Hm−1(O) +M2

∫ 0

x0

|s|αds
︸ ︷︷ ︸

:=M1

. (7.3.75)

�

7.3.5 Convergence of the sequence (ωk)k∈N and existence

Set δωk = ωk+1 − ωk and δ∇ωk = ∇ωk+1 − ∇ωk. We have the following
(recall that D∗ = [0, u∗]× [x0, 0[×O):

Lemma 7.3.13 Under the hypotheses of Lemma 7.3.11, even if it means
to replace (ωk)k∈N by one of its subsequences, there exist two real numbers
σ ∈]0, 1[ and ς > 0 such that:

‖(−x)−α(δωk, δ(∇ωk))‖L2(D∗) ≤
ς

2k
+ σ‖(−x)−α(δωk−1, δ(∇ωk−1))‖L2(D∗) .

(7.3.76)

Proof: We apply Proposition 7.3.1 with ω = δωk, u ∈ [0, u∗], and v ∈ [x0, 0[.
We have:

e−Λu‖(δωk, δ(∇xω
k))H

1
2 ‖2L2([x0,0[×O) + e−Λv‖(δωk, δ(∇yω

k))H̃
1
2 ‖2L2([0,u]×O) ≤

‖(δωk, δ(∇xω
k))H

1
2 ‖2L2([x0,0[×O) + e−Λx0‖(δωk, δ(∇yω

k))H̃
1
2‖2L2([0,u]×O)

+(c1(c0, c̄0, n, h)− 2Λ)

∫ u

0

∫ v

x0

H(y, x)‖(δωk , δ∇ωk)‖2L2(O)dxdy

+
1

c0

∫

Du,v

∣∣∣Lℓ[δωk]
∣∣∣ dsdydν . (7.3.77)

Recall that:

Lℓ[δωk] = |x|−n+3
2 H(δ∂xω

k + δ∂yω
k)

(
Gk(. . .)−Gk−12 (. . .)

)
.
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We have:

|x|−n+3
2 H

(
Gk(. . .)−Gk−1(. . .)

)
= H

∫ 1

0
|x|−2ξk(t, y, x)dt

with

ξk(t, y, x) = δωk−1
∂G

∂p
(z, t|x|n−1

2 (ωk,∇ωk) + (1− t)|x|n−1
2 (ωk−1,∇ωk−1))

+δ∇ωk−1∂G
∂q

(z, t|x|n−1
2 (ωk,∇ωk) + (1− t)|x|n−1

2 (ωk−1,∇ωk−1)) .

Using once more hypothesis (7.3.4), one is led to the following estimate

|x|−2|ξ(t, y, x)| ≤ C5 |x|−2+(r−1)(α+n−1
2

)
(
|δωk−1|+ |δ∇ωk−1|

)

≤ C5

(
|δωk−1|+ |δ∇ωk−1|

)
; if n ≥ 1 +

4

r − 1
− 2α .

We should point out that the constant C5 depends on the quantity

sup
k∈N, (y,x)∈[0,u∗]×[x0,0[

|x|−α‖(ωk,∇ωk)‖L∞(O) ,

which does neither depend upon Λ nor on k. We then obtain that if n ≥
1 + 4

r−1 − 2α,

∫

Du,v

∣∣∣Lℓ[δωk]
∣∣∣ ≤ C5

∫ u

0

∫ v

x0

(
‖∂xδωk(y, x)‖2L2(O) + ‖∂yδωk‖2L2(O)

+‖(δωk−1,∇δωk−1)‖2L2(O)

)
H(y, x)dxdy ; (7.3.78)

and inequality (7.3.77) implies

e−Λu‖(δωk, δ(∇xω
k))H

1
2 ‖2L2([x0,0[×O) + e−Λv‖(δωk, δ(∇yω

k))H̃
1
2 ‖2L2([0,u]×O) ≤

‖(δωk, δ(∇xω
k))H

1
2 ‖2L2([x0,0[×O) + e−Λx0‖(δωk, δ(∇yω

k))H̃
1
2‖2L2([0,u]×O)

+(c1(c0, c̄0, n, h) + C5 − 2Λ)

∫ u

0

∫ v

x0

H(y, x)‖(δωk , δ∇ωk)‖2L2(O)dxdy

+C5

∫ u

0

∫ v

x0

H(y, x)‖(δωk−1,∇xδω
k−1)‖2L2(O)dxdy . (7.3.79)
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From this inequality and by a convenient choice of Λ we obtain:

e−Λu‖(δωk , δ(∇xω
k))H

1
2 ‖2L2([x0,0[×O) + e−Λv‖(δωk, δ(∇yω

k))H̃
1
2 ‖2L2([0,u]×O) ≤

‖(δω+,k
0 , δ(∇xω

+,k
0 ))H

1
2‖2L2([x0,0[×O) + e−Λx0‖(δω−,k0 , δ(∇yω

−,k
0 ))H̃

1
2 ‖2L2([0,u]×O)

+C5

∫ u

0

∫ v

x0

H(y, x)‖(δωk−1,∇δωk−1)‖2L2(O)dxdy . (7.3.80)

We have:

‖(δω+,k
0 , δ(∇xω

+,k
0 ))H

1
2‖2L2([x0,0[×O) + e−Λx0‖(δω−,k0 , δ(∇yω

−,k
0 ))H̃

1
2 ‖2L2([0,u]×O) =

‖e−Λx
2 |x|−α(δω+,k

0 , δ(∇xω
+,k
0 ))‖2L2([x0,0[×O)

+|x0|−αe−Λx0‖e−
1
2
Λy(δω−,k0 , δ(∇yω

−,k
0 ))‖2L2([0,u]×O)

≤ c(Λ, x0)
(
‖|x|−α(δω+,k

0 , δ(∇xω
+,k
0 ))‖2L2([x0,0[×O) + ‖(δω

−,k
0 , δ(∇yω

−,k
0 ))‖2L2([0,y0]×O)

)
.

Since the sequences
(
|x|−α(ω+,k

0 ,∇xω
+,k
0 )

)
k∈N

and
(
ω−,k0 ,∇yω

−,k
0

)
k∈N

are

convergent respectively in the spaces L2([x0, 0[×O) and L2([0, y0] × O), we
know that

lim
k−→∞

(
‖|x|−α(δω+,k

0 , δ(∇xω
+,k
0 ))‖2L2([x0,0[×O) + ‖(δω

−,k
0 , δ(∇yω

−,k
0 ))‖2L2([0,y0]×O)

)
= 0 .

Therefore, ∀i ∈ N, ∃ki ∈ N, such that

c(Λ, x0)
(
‖|x|−α(δω+,ki

0 , δ(∇xω
+,ki
0 ))‖2L2([x0,0[×O) + ‖(δω

−,ki
0 , δ(∇yω

−,ki
0 ))‖2L2([0,y0]×O)

)
≤ 1

2i
.

(7.3.81)
We then write inequality (7.3.80) with instead the subsequence (ωki)i∈N
which will be denoted again (ωk)k∈N and one obtains:

e−Λu‖(δωk, δ(∇xω
k))H

1
2‖2L2([x0,0[×O) + e−Λv‖(δωk , δ(∇yω

k))H̃
1
2‖2L2([0,u]×O) ≤

1

2k
+ C5

∫ u

0

∫ v

x0

H(y, x)‖(δωk−1,∇δωk−1)‖2L2(O)dxdy .

This leads to the following inequalities:

∀u ∈ [0, u∗], e−Λu‖|x|−α(δωk, δ(∇xω
k))(u)‖2L2([x0,0[×O)

≤ 1

2k
+ C5

∫ u

0

∫ v

x0

H(y, x)‖(δωk−1,∇δωk−1)‖2L2(O)dxdy ;

(7.3.82)
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∀v ∈ [x0, 0[, |v|−αe−Λv‖(δωk, δ(∇yω
k))(v)‖2L2([0,u]×O)

≤ 1

2k
+ C5

∫ u

0

∫ v

x0

H(y, x)‖(δωk−1,∇δωk−1)‖2L2(O)dxdy ;

(7.3.83)
∫ u

0

∫ v

x0

H(y, x)‖(δωk ,∇δωk)‖2L2(O) ≤
1

2ka(Λ)
+σ2

∫ u

0

∫ v

x0

H(y, x)‖(δωk−1,∇δωk−1)‖2L2(O) .

(7.3.84)
where

a(Λ) = 2Λ− C5 − c1(c0, c̄0, n, h) and 0 < σ2 <
C5

a(Λ)
<
1

2
,

provided that Λ is large enough. �

Now we have all we need to show that the sequence (ωk)k∈N converges
towards a function ω of class C2 on D∗ = [0, u∗] × [x0, 0[×O which is a
solution of the characteristic initial value problem (7.3.3). We have the
following consequence of the previous Lemma.

Corollary 7.3.14 There exists a continuous and bounded function ω on D∗
such that (ωk)k∈N converges to ω uniformly on any compact subset of D∗.
Proof: We point out the elementary implication: If (Un)n∈N is a sequence
of positive real numbers satisfying Un+1 ≤ αUn +

1
2n , then

Un ≤ αnU0 + 2

(
(1/2)n − (α)n

1− 2α

)
.

Therefore, the series
∑
Un will converge if 0 ≤ α < 1. This remark and in-

equality (7.3.84) show that the function series
∑
e−Λ(y+x)/2|x|−α(δωk,∇δωk)

converges in the space L2(D∗). Since the sequence of partial sums of this
series write Sk = e−Λ(y+x)/2|x|−α

(
(ωk,∇ωk)− (ω0,∇ω0)

)
, the sequence

((ωk,∇ωk))k∈N converges to a function (ωε, ω̃ε) in the space L2(D∗,ε), with
D∗,ε = [0, u∗]× [x0,−ε]×O, for any 0 < ε < −x0. Note that the continuous
embedding L2(D∗,ε) →֒ D ′(D∗,ε) implies that ω̃ε = ∇ωε. We define ω by
setting for any (y, x, θ) ∈ D∗, ω(y, x, θ) = ωε(y, x, θ) if (y, x, θ) ∈ D∗,ε. First
of all we need to prove that ω is a well defined function. Let ε1, ε2 ∈ [0,−x0[
such that ε1 > ε2. Since D∗,ε1 ⊂ D∗,ε2 , L2(D∗,ε2) embeds continuously in
L2(D∗,ε1) and then, the convergence of the sequence (ωk,∇ωk)k∈N towards
the function (ωε2 ,∇ωε2) in L2(D∗,ε2), also holds in L2(D∗,ε1). By uniqueness
of limits of sequences in this space one is led to

(ωε1 ,∇ωε1) = (ωε2 ,∇ωε2) almost everywhere on D∗,ε1 . (7.3.85)
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Let ε ∈ [0,−x0[. By Lemma 7.3.11, the sequence (ωk)k∈N is uniformly
bounded on D∗ and therefore is uniformly bounded on D∗,ε, by Lemma 7.3.4
page 146 there exists a contant C = C(C0, x0, ε) such that

sup
k∈N

‖∇ωk‖L∞(D∗,ε) < C(C0, x0, ε) ,

thus the sequence (ωk)k∈N is uniformly equicontinuous on D∗,ε. Then, By
Arzela-Ascoli theorem, there exists a subsequence (ωkj )j∈N of the sequence
(ωk)k∈N which converges uniformly on the compact set D∗,ε to a continuous
function ω′ε. The embedding C0(D∗,ε) →֒ L2(D∗,ε) proves that this conver-
gence also holds in L2(D∗,ε) and by uniqueness of limits in L2(D∗,ε) we
conclude that the equality in (7.3.85) holds everywhere and that:

• ω is a continuous function on D∗ ,

• the sequence (ωkj)j∈N uniformly converges to ω on any compact subset
of D∗ = [0, u∗]× [x0, 0[×O .

It remains to prove that ω is bounded on D∗. From the Sobolev embedding
theorem (recall m− 1 > n−1

2 + 2), by (7.3.71) we have:

sup
(y,x)∈[0,u∗]×[x0,0[

‖ωk(y, x)‖C2(O) < M1 ∀k ∈ N .

By taking the limits in this estimate we obtain that ω is a bounded function
as well as its angular derivatives up to order two on D∗. �

Lemma 7.3.15 ∀s ∈ [0,m−2]∩N, (ωkj (y, x))j∈N converges towards ω(y, x)
in Hs(O) uniformly in (y, x) on [0, u∗]× [x0, 0[ and

ω ∈ ∩
0≤s≤m−2

C0([0, u∗]× [x0, 0[; H
s(O)) .

Proof: By the previous corollary, for all (y, x) ∈ [0, u∗] × [x0, 0[, the se-
quence (ωkj(y, x))j∈N converges to ω(y, x) in C0(O) and since C0(O) →֒
L2(O), this convergence also holds in the space L2(O). On the other hand,
by Lemma 7.3.12 the sequence (ωkj(y, x))j∈N is bounded in the Hilbert space
Hm−1(O), uniformly in (y, x) ∈ [0, u∗]× [x0, 0[. By weak compactness there
exists a subsequence of (ωkj (y, x))j∈N denoted again by the same symbol
which converges weakly to a function ω̄ ∈ Hm−1(O). This weak convergence
also holds in L2(O), and by uniqueness of the weak limits, we obtain that
ω(y, x) = ω̄(y, x) ∈ Hm−1(O). Now, we use the interpolation Theorem C.0.9
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with p = r = 2, s = m − 1, u = ωkj1 − ωkj2 , j1, j2 ∈ N. We then obtain:
q = 2 and that for all i ∈ {0, 1, . . . ,m− 1},

∑

|γ|=i
‖∂γθ (ωkj1 − ωkj2 )‖2L2(O)

≤ c




∑

|γ|=m−1
‖∂γθ (ωkj1 − ωkj2 )‖L2(O)




2i
m−1

‖ωkj1 − ωkj2‖2(1−
i

m−1
)

L2(O)

≤ C(M1)‖ωkj1 − ωkj2‖
2(1− i

m−1
)

L2(O)
.

This estimate implies that, if s < m− 1, then the sequence (ωkj(y, x))j∈N is
a Cauchy sequence in the Hilbert space Hs(O) uniformly in (y, x). �

Corollary 7.3.16 The following holds:

• ω ∈ C2([0, u∗]× [x0, 0[×O) ,

• ω solves the characteristic initial value problem (7.3.3).

Proof: Let ε ∈]0,−x0[. Recall D∗,ε = [0, u∗]× [x0,−ε]×O. In order to show
that ω ∈ C1(D∗) we will show that ω ∈ C1(D∗,ε) for any epsilon. We repeat
what we did before to obtain that ω is continuous. Since

sup
k∈N

‖∇ωk‖L∞(D∗,ε) < C(C0, x0, ε) ,

we only need to show that the sequence of second order derivatives (∇2ωk)k∈N
is bounded on D∗,ε. This follows from (7.3.65), (7.3.66), (7.3.71) and (7.3.72)
(recall m − 2 > n−1

2 + 2). Thus again by Arzela-Ascoli theorem, the weak
compactness and the interpolation theorem, one obtains that:

• the sequence (or a subsequence of it) (∇ωk)k∈N converges uniformly
towards ∇ω on D∗,ε,

• ∇ω is a continuous function on D∗,ε and then on D∗,

• ∀s ∈ [0,m − 2] ∩ N, ∇ωk(y, x) −→ ∇ω(y, x) in Hs(O) uniformly in
(y, x) on the compact [0, u∗]× [x0,−ε] and that

∀(y, x) ∈ [0, u∗]× [x0, 0[, ∇ω(u, v) ∈ C2(O) .
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Let us show that ω ∈ C2(D∗). Again, we repeat the previous argument.
Let ε ∈]0,−x0] be fixed. We already know that the sequence of second or-
der derivatives (∇2ωk)k∈N is uniformly bounded on D∗,ε. Thus, it remains
to show that the sequence of third order derivatives (∇3ωk)k∈N is also uni-
formly bounded on D∗,ε. From this property, it will follow that the sequence
of second order derivatives is uniformly equicontinuous and then the theorem
of Arzela-Ascoli applies. From some inequalities obtained so far, we see that
the sequences (∂3µνβω

k)k∈N are uniformly bounded on D∗,ε for µνβ 6= xxx
and µνβ 6= yyy:

• By choosing j0 ≥ 3 (which is the case since m−1 > 3+ n−1
2 ), inequality

(7.3.57) shows that the sequence (∂3µνβω
k)k∈N is uniformly bounded on

D∗,ε for µνβ = xyA.

• From inequalities (7.3.65) and (7.3.66) with j0 = 3, we obtain that this
sequence is uniformly bounded on D∗,ε for µνβ ∈ {yyA, yAB, xxA, xAB}.

• The case µνβ = ABC will follows from inequality (7.3.71).

• The analysis of the right hand side of identity (7.3.60) gives the desired
control in the case µνβ = xyy whereas x∂x−differentiating the partial
differential equation satisfied by ωk+1 gives the result in the case µνβ =
yxx.

It thus remains to show that the sequences (∂3yyyω
k)k∈N and (∂3xxxω

k)k∈N are

uniformly bounded on D∗,ε. We start with (∂3yyyω
k)k∈N. If we ∂2y−differentiate

the differential equation satisfied by ωk+1 we obtain:

4∂x(∂
3
yω

k+1) +
n− 1

ρ
∂3yω

k+1 + (−x)−2∂3yωk
(
∂G

∂p3

)k
(. . .) = Φk (7.3.86)
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where

Φk = =
n− 1

ρ2
(∂x − ∂y)∂yωk+1(y, x) +

n− 1

2ρ3
(∂x − ∂y)ωk+1 +

n− 1

ρ
∂x∂

2
yω

k+1

+
hAB

ρ2
∂A∂B∂

2
yω

k+1 +
3hAB

2ρ4
∂A∂Bω

k+1(y, x) +
2hAB

ρ3
∂y∂A∂Bω

k+1(y, x)

−2Γ
B

ρ3
∂y∂Bω

k+1 − 3ΓB

ρ4
∂Bω

k+1 − ΓB

ρ2
∂B∂

2
yω

k+1

−(−x)n+3
2 (∂2yG)

k(. . .)− x−2∂2yωk
(
∂G

∂p1

)k
(. . .)− x−2∂yωk∂y

((
∂G

∂p1

)k
(. . .)

)

−x−2∂2y(x∂xωk)
(
∂G

∂p2

)k
(. . .)− x−2∂y(x∂xωk)∂y

((
∂G

∂p2

)k
(. . .)

)

−x−2∂2yωk∂y
((

∂G

∂p3

)k
(. . .)

)

−x−2∂2y∂Aωk
(
∂G

∂p4

)k
(. . .) + x−2∂y∂Aω

k∂y

((
∂G

∂p4

)k
(. . .)

)
.

From what has been said so far, we deduce that the coefficients of Equation
(7.3.86) are uniformly bounded on D∗,ε. Namely, we have ‖n−1ρ ‖L∞(D∗,ε) <
C and

sup
k∈N

‖(−x)−2
(
∂G

∂p3

)k
‖L∞(D∗,ε) < C(x0, ε), sup

k∈N
‖Φk‖L∞(D∗,ε) < C(x0, ε) .

(7.3.87)
As we did before, we have:

∂x

(
H(x)|∂3yωk+1|2

)
= (2α|x|−1 − Λ)H(x)|∂3yωk+1|2 + 2H(x)∂x∂

3
yω

k+1.∂3yω
k+1

≤ −ΛH(x)|∂3yωk+1|2 + 2H(x)∂x∂
3
yω

k+1.∂3yω
k+1 .

From (7.3.87), we deduce that

∂x

(
H(x)|∂3yωk+1|2

)
≤ −ΛH(x)|∂y∇yω

k+1|2

+2H(x)∂3yω
k+1

(
−n− 1

ρ
∂3yω

k+1 − (−x)−2∂3yωk
(
∂G

∂p3

)k
(. . .) + Φk

)

≤ H(x)

(
(c+

C

δ
− Λ)|∂3yωk+1|2 + δC|∂3yωk|2

)
+C|x|−αe−Λx .
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By choosing Λ large enough, we have:

∂x

(
H(x)|∂3yωk+1|2

)
≤ δH(x)C|∂3yωk|2 +C|x|−αe−Λx , (7.3.88)

which is then integrated in x to obtain:

H(x)|∂3yωk+1|2(y, x) ≤ H(x0)|∂3yωk+1|2(y, x0)+C
∫ x

x0

e−Λs
(
δ|s|−2α|∂3yωk|2 + |s|−α

)
ds.

Equivalently this reads

H(x)|∂3yωk+1|2(y, x) ≤ H(x0)|∂3yω−,k+1
0 |2(y, x0)+C

∫ x

x0

e−Λs
(
δ|s|−2α|∂3yωk|2 + |s|−α

)
ds

As we did many times before, for a convenient choice of δ, we obtain the
estimate:

|x|−2α|∂3yωk+1|2(y, x) ≤ 2

(
C

∫ 0

x0

|s|−αe−Λsds+ sup
k∈N, y∈[0,y0]

H(x0)|∂3yω−,k0 |2(y)
)

≤ c(x0, α)

(
1 + sup

k∈N
‖ω−,k+1

0 ‖2C3([0,y0]×O)

)

≤ c(x0, α)

(
1 + sup

k∈N
‖ω−,k+1

0 ‖2Hm+1(C−)

)
<∞

i.e.
|x|−α|∂3yωk+1|(y, x) < C . (7.3.89)

The same holds for |x|−α|∂3xωk+1 if instead we ∂2x−differentiate the differen-
tial equation satisfied by ωk+1: |x|−α|∂3xωk+1|(y, x) < C. Therefore we have
proved that

sup
k∈N

‖∇3
yω

k‖L∞(D∗,ε) < C . (7.3.90)

It then follows that the family of functions {∇2ωkj , j ∈ N} is uniformly
equicontinuous and from the Arzela-Ascoli theorem there exists a subse-
quence of (∇2ωkj)j∈N denoted again by the same symbol which converges
uniformly to a continuous function ω̃ on D∗,ε. Since the sequence (∇ωkj)j∈N
converges uniformly to ∇ω on D∗,ε we conclude that ∇ω is differentiable on
D∗,ε and ∇2ω = ω̃ which proves that ω ∈ C2(D∗,ε) for all ε ∈]0,−x0] i.e.
ω ∈ C2(D∗). To end the proof, it remains to show that ω solves the charac-
teristic Cauchy problem (7.3.3). Recall that the partial differential equation
satisfied by ωk+1 reads

∂x∂yω
k+1 = Ψk (7.3.91)
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where

Ψk =
(n − 1)

4ρ

(
∂x − ∂y

)
ωk+1 +

hAB∂A∂Bω
k+1

4ρ2

−1
4
ΓB∂Bω

k+1 − 1

4
|x|−n+3

2 G(z, |x|n−1
2 (ωk,∇ωk))

being a continuous function on D∗. To conclude we consider the limits point-
wise in (7.3.91) and we are led to

�y,ηω = |x|−
n+3
2 G(z, |x|n−1

2 (ω,∇ω))
thus ω is a classical solution of the characteristic initial value problem (7.3.3).
�

7.3.6 Uniqueness and statement of the results

We are now going to show that the solution of (7.3.3) constructed in the
previous section is the unique C2 solution. Let ω1, ω2 be two functions of
differentiability class C2 on D∗ both solution of (7.3.3). Set δω = ω2−ω1 and

δG(z) = G(z, |x|−n−1
2 (ω2,∇ω2))−G(z, |x|−

n−1
2 (ω1,∇ω1)). It follows that δω

solves the characteristic initial value problem with vanishing data
{

�y,ηδw = x−
n+3
2 δG dans D∗

δω = 0 sur C+ ∪ C− . (7.3.92)

We repeat the proof of Lemma 7.3.13 with instead δω and obtain the follow-
ing inequality which is the equivalent of (7.3.84) there:

‖H 1
2 (y, x)(δω,∇δω)‖2L2(D∗) ≤ σ2‖H 1

2 (y, x)(δω,∇δω)‖2L2 (D∗) .

This proves that ω1 = ω2 almost everywhere and since these functions are
continuous functions they are equal everywhere. We have thus proved

Theorem 7.3.17 Consider the characteristic initial value problem (7.3.3)
on the subset D = [0, y0]× [x0, 0[×O of Rn+1

y . Suppose that the initial data

ω+
0 and ω−0 satisfy (7.3.1) and (7.3.2) with m ≥ n+7

2 and −1 < α ≤ −1/2.
Moreover suppose that the nonlinear source term G satisfies the nullity prop-
erty (H) page 135 with a uniform zero of order r being such that

n ≥ 1 +
4

r − 1
− 2α . (7.3.93)

Then there exists a positive real number u∗ ∈]0, y0] and a unique function ω
of differentiability class C2 on D∗ = [0, u∗] × [x0, 0[×O, solution of (7.3.3)
with the following properties:
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• sup
z∈D∗

|ω(z)| <∞ ,

• sup
z∈D∗

|x|−α|∇ω(z)| <∞ ,

• ∀s ∈ [0,m− 2] ∩ N, ω ∈ C0([0, u∗]× [x0, 0[; H
s(O)) .

A direct consequence of Theorem 7.3.17 is an existence and uniqueness
result for the Cauchy problem (5.0.8) on the light cone. We want to solve
this problem on a neighborhood of the entire cone. For this purpose, we need
to make sure the data are such that, the problem at hand can be solved locally
on a neighborhood V0,x of the tip of the initial cone and that the restriction of
this local solution on any incoming cone intersecting this neighborhood is of
Hm+2−regularity class (as in (7.3.1)). In order to obtain this local solution,
we will use the result of [27] (see Théorème 2, page 47 of this reference).
For any τ > 0 set

Y τ = {(yµ) ∈ φ(Y+
a,x), 0 ≤ y0 ≤ τ} , (7.3.94a)

Cτ = {(yµ) ∈ φ(C+a,x), 0 ≤ y0 ≤ τ} , (7.3.94b)

∀ε > 0, C+(ε) = φ
(
C+a,x

)
\Cε . (7.3.94c)

we have the following

Theorem 7.3.18 Let m ∈ N. Consider the characteristic initial value prob-
lem (5.0.8) on the light cone in the unbounded domain Y+

a,x of Rn+1
x . Assume

that the source term F is a smooth function of all its variables and that the
initial data ϕ are such that:

• there exists a real number 0 < ε0 <
1
2a such that ϕ̂ =

(
Ω−

n−1
2 ϕ ◦ φ−1

) ∣∣∣
Cε0

satisfies the last hypothesis Hm+2 of [27, Théorème 2, p. 47],

• and ∀ ε ∈ ]0, ε0],

Ω−
n−1
2 ϕ ◦ φ−1

∣∣∣
C+(ε)

; ∂x(Ω
−n−1

2 ϕ ◦ φ−1)
∣∣∣
C+(ε)

∈ H
α
m+1(C+(ε)),

(7.3.95)

where m ≥ n+7
2 and −1 < α ≤ −1/2. Further assume that the function F̃

of equation(7.1.7) has a uniform zero of order ℓ satisfying

n ≥ 1 +
4

ℓ− 1
− 2α . (7.3.96)
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Then, there exist three real numbers a0, C, R such that a0 > a, C,R >
0 and a unique function f of class C2 on the future neighborhood V of
C+a,x defined by V = ∪

a≤b≤a0
C+b,x solution of (5.0.8) with the following decay

property

∀(t, xi) ∈ V , |f(t, xi)| ≤ C(t+ r)−
n−1
2 , r =

√√√√
n∑

i=1

(xi)2 > R

∀(t, xi) ∈ V , |∂tf(t, xi)| ≤ C(t+ r)−
n−1
2
−α, r > R

∀(t, xi) ∈ V , |∂rf(t, xi)| ≤ C(t+ r)−
n−1
2
−α, r > R .

Proof: Since m+ 2 > n
2 + 1, the last statement of hypotheses Hm+2 of [27,

Théorème 2, page 47], assumes that ϕ̂ can be decompose as ϕ̂ = ϕ̄
∣∣
φ(C+a,x)+ϕ̂1

where ϕ̄ is a polynomial function of degree 2(m+1) on Y τ , τ > 0, and where
ϕ1 belongs to a weighted Sobolev space of differentiability class 2m + 3 on
Cτ , the weight being choose so as to control the singularities at the tip of
the cone. The results of this reference yield a neighborhood V0,y of the tip

of the cone φ(C+a,x) in φ(Y+
a,x) and a local solution f̂0 which restriction on

any incoming cone intersecting V0,y is in the usual Sobolev space Hm+2.
We then apply Theorem 7.3.17 to the Goursat problem (6.3.1)-(6.3.2) with

ω−0 = f̂0

∣∣∣
C−

and ω+
0 = ϕ̂|C+ and obtain a bounded solution f̂ of this problem

on the future neighborhood

D∗ = [0, u∗]× [x0, 0[×O = ∪
0≤u≤u∗

C+u,0

of C+ ∪ C+. Note that by uniqueness f̂ and f̂0 coincide on the intersection
of D∗ with V0,y the future neighborhood of the tip of the initial cone C+x,a on

which we obtain from Dossa’s results [27] the local solution f̂0. Therefore,
there exists a constant c > 0 such that for all (yµ) ∈ D∗, |f̂(yµ)| < c. This
estimate can be rewritten as |f̂ ◦ φ(xµ)| < c, for all (xµ) ∈ φ−1(D∗), i.e (see

(6.2.1)) |f(xµ)| < c |Ω ◦ φ|−n−1
2 . By the definition Ω, (see (6.2.1)) we have

|Ω| = | − ηαβyαyβ| = | − (y0)2 + ρ2| = 1

(t+ r)(t− r) ≤
c̃

t+ r
.

This proves that for all (t, xi) ∈ φ−1(D∗), |f(t, xi)| ≤ c(t + r)−
n−1
2 . Now

according to some of our previous calculations, we have:

∂

∂xµ
= −Ω ∂

∂yµ
− 2yµy

α ∂

∂yα

= x(
1

a
− y) ∂

∂yµ
− 2yµ

(
x∂x + (y − 1

a
)∂y

)
.
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This identity implies that (recall t = x0 and τ = y0 = −y0)

∂

∂t
= x(

1

a
− y)∂τ + 2τ

(
x∂x + (y − 1

a
)∂y

)
.

Using identities (7.1.1) and (7.2.1) leads to:

∂

∂t
= x2∂x +

(
y − 1

a

)2

∂y . (7.3.98)

On the other hand, we have ∂
∂r =

xi

r
∂
∂xi

and xi

r = −yi

ρ thus,

∂

∂r
= Ω

yi

ρ

∂

∂yi
+ 2yi

yi

ρ

(
x∂x + (y − 1

a
)∂y

)

= −x(1
a
− y) ∂

∂ρ
+ 2ρ

(
x∂x + (y − 1

a
)∂y

)
.

Again from identities (7.1.1) and (7.2.1) we obtain

∂

∂r
= x2∂x −

(
y − 1

a

)2

∂y . (7.3.99)

For all (t, xi) and (τ, yi) such that (τ, yi) = φ(t, xi), we have (recall x∂xΩ =(
y − 1

a

)
∂yΩ = Ω)

∂tf(t, x
i) = x2∂xf ◦ φ−1(τ, yi) +

(
y − 1

a

)2

∂yf ◦ φ−1(τ, yi)

= x2∂x

(
Ω

n−1
2 f̂(τ, yi)

)
+

(
y − 1

a

)2

∂y

(
Ω

n−1
2 f̂(τ, yi)

)

=
n− 1

2

(
x+ y − 1

a

)
Ω

n−1
2 f̂(τ, yi) + x2Ω

n−1
2 ∂xf̂(τ, y

i) +

(
y − 1

a

)2

Ω
n−1
2 ∂y f̂(τ, y

i) .

From Theorem 7.3.17 we know that for r > R,

|f̂ | . 1 , (−x)−α|∂xf̂ | . 1 and (−x)−α|∂y f̂ | . 1 .

Thus for all (t, xi) such that r > R, we have (recall |Ω| . 1
t+r )

|∂tf(t, xi)| . (t+ r)−
n−1
2 + (t+ r)−

n−1
2
−2−α + (t+ r)−

n−1
2
−α

. (t+ r)−
n−1
2
−α.

The same holds for |∂rf(t, xi)|. This proves that in general, the decay at
infinity of the derivatives of the solution is not as fast as the decay of the
solution itself and complete the proof. �
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7.4 Application to wave maps

The aim of this section is to show that Theorem 7.3.18 applies to wave maps
with source manifold the Minkowski space-time. Let (N , g) be a smooth
Riemannian manifold with finite dimension N , we wish to find a map f :
(Rn+1

x , η)→ (N , g) solving the Cauchy problem for the wave map equation.
As in [20], we will be interested in maps f which have the property that f
approaches a constant map f0 as r tends to infinity along lightlike directions,
f0(x

µ) = p0 ∈ N for xµ ∈ R
n+1
x . Introducing normal coordinate around p0,

we can write f = fa, a = 1, . . . , N, with the functions fa satisfying the
following system of semi-linear partial differential equations

�ηxf
a = F a(f, ∂f) ; (7.4.1)

with

F a(f, ∂f) := −ηαβΓabc(f)
∂f b

∂xα
∂f c

∂xβ
;

and where the Γabc’s are the Christoffel symbols of the metric g. Using as
before the conformal transformation

φ : Rn+1
x \ C0,x → R

n+1
y by xα 7→ yα :=

xα

ηλµxλxµ
, α = 0, 1, . . . , n .

and setting again Ω = −ηαβyαyβ; f̂ = Ω−
n−1
2 f ◦ φ−1, (7.4.1) reads ( see

(6.2.8), page 126):

�ηy f̂
a = Ω−

n+3
2 F̃ a(f̂ , ∂yµ f̂), (7.4.2)

with

F̃ a(f̂ , ∂yµ f̂) = −ΩΓabc(Ω
n−1
2 f̂)

{
Ωηαβ(Ω

n−1
2 ∂yα f̂

b)(Ω
n−1
2 ∂yβ f̂

c)

−(1− n)2(Ωn−1
2 f̂ b)(Ω

n−1
2 f̂ c) + 2(1− n)(Ωn−1

2 f̂ b)yµ(Ω
n−1
2 ∂yµ f̂

c)
}
.

This expression shows that when transforming (7.4.2) with data on a null
cone into a Goursat problem as in (6.3.1) we will instead have a pre-factor

Ω−
n+1
2 . On the other hand, from the assumption on f , we know that F̃ here

has a uniform zero of order r = 3, thus in the case of wave maps condition
(7.3.23) reads:

n ≥ 2− 2α .

We have proved the following:
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Theorem 7.4.1 Let a > 0, n,m ∈ N, n ≥ 3. Consider Equation (7.4.1)
on the Minkowski space-time R

n+1
x with initial data given on the translated

cone C+a,x and are such that:

• there exists a real number 0 < ε0 <
1
2a such that ϕ̂ =

(
Ω−

n−1
2 f ◦ φ−1

) ∣∣∣
Cε0

satisfies the last hypothesis Hm+2 of [27, Théorème 2, p. 47],

• and ∀ ε ∈ ]0, ε0],

Ω−
n−1
2 f ◦ φ−1

∣∣
C+(ε)

; ∂x

(
Ω−

n−1
2 f ◦ φ−1

∣∣
C+(ε)

)
∈ H

−1/2
m+1 (C+(ε)) ,

(7.4.3)

with m ≥ n+7
2 . Then, there exists three real numbers a0, C, R such that a0 >

a, C,R > 0 and a unique function f of class C2 on the future neighborhood
V of C+a,x defined by V = ∪

a≤b≤a0
C+b,x solution of (7.4.2) with the following

decay property

∀(t, xi) ∈ V , |f(t, xi)| ≤ C(t+ r)−
n−1
2 , r > R

∀(t, xi) ∈ V , |∂tf(t, xi)| ≤ C(t+ r)−
n−1
2
−α, r > R

∀(t, xi) ∈ V , |∂rf(t, xi)| ≤ C(t+ r)−
n−1
2
−α, r > R .

7.5 High regularity of the solution

In order to prove higher regularity theorem for a solution of (5.0.8), we
restrict our attention to the case where the function F does not depend on
the normal (with respect to the initial cone) derivative of the solution. This
implies that the function F̃ in (6.2.9) does not depend on ∂yω. We thus
suppose that the characteristic Cauchy problem (7.3.3) takes the form:

{
�y,ηω = x−

n+3
2 G

(
z, x

n−1
2 (ω, x∂xω, ∂θω)

)
in D

ω = ω+
0 on C+ and ω = ω−0 on C−

. (7.5.1)

We need first to show that for any solution of (7.5.1), we control its outgoing
derivatives on the surface {x = x0}. We have the following

Lemma 7.5.1 Suppose that ω is the solution of the Cauchy problem (7.5.1)
with data satisfying

ω−0 ∈ C∞(C−) ; ω+
0 ∈ H

α
∞(C+) .
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Then, there exists a real number u∗∗ ∈]0, y0] such that ∀j,m ∈ N, one can
find a positive constant C∗ = C(y0, j,m) satisfying

sup
y∈[0,u∗∗]

‖∂jx(ω, ∂yω)(y, x0)‖Hm(O) < C∗ . (7.5.2)

Proof: The proof will be carried out by induction on j. The case j = 0 is
given by hypotheses. Let us handle the case j = 1. Again we differentiate the
partial differential equation satisfied by ω with ∂γθ , and multiply the resulting
equation by ∂γθ ∂xω and obtain

∂y(∂x∂
γ
θω)

2 =
n− 1

2ρ
(∂x∂

γ
θ ω)

2 − n− 1

2ρ
∂y∂

γ
θω∂x∂

γ
θ ω

+∂x∂
γ
θω

∑

γ1+γ2=γ

∂γ1θ h
AB

2ρ2
∂γ2θ ∂A∂Bω

+∂x∂
γ
θω

∑

γ1+γ2=γ

∂γ1θ Γ
B

2ρ2
∂γ2θ ∂Bω

−1
2
|x|−n+3

2 ∂x∂
γ
θ ω∂

γ
θG(. . .) .

Then, we integrate on [0, y]× {x0} × O, and obtain via Stokes theorem

‖∂xω(y, x0)‖2Hm(O) ≤ ‖∂xω+
0 (x0)‖2Hm(O) + c(h, c0, c̄0)‖ω−0 ‖Hm+2(C−)

+c(h, c0, c̄0)

∫ y

0
‖∂xω(s, x0)‖2Hm(O)ds

+c(x0)

∫ y

0
‖G(. . .)(s, x0)‖2Hm(O)ds .

Now,
‖G(. . .)(s, x0)‖ = G

(
s, x0, θ, ω

−(s), ∂xω(s, x0)
)
,

thus from the usual Moser inequality (see [50], Proposition 3.9, page 11 )
we have

‖G(. . .)(s, x0)‖Hm(O) ≤ C(‖∂xω(s, x0)‖L∞(O))(1 + ‖∂xω(s, x0)‖Hm(O))

≤ Φ(‖∂xω(s, x0)‖Hm(O)) ;

where Φ in an increasing real-valued function bounded on bounded set (to
obtain the last inequality, we have used the Sobolev’s imbedding theorem).
We thus obtain the following:

‖∂xω(y, x0)‖2Hm(O) ≤ C

(
1 +

∫ y

0
Φ(‖∂xω(s, x0)‖Hm(O))ds

)
. (7.5.3)
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We can now apply Lemma 5.2 of [20] and obtain that there exists a time
0 < u∗∗ ≤ y0 such that

∀y ∈ [0, u∗∗], ‖∂xω(y, x0)‖2Hm(O) < C ,

which provides the desired bounds. Suppose now that (7.5.2) holds for a
certain j ∈ N and let us show that it remains true when we replace j there
by j+1. We x−differentiate j times the partial differential equation satisfied
by ω and obtain an equation linear in ∂j+1

x ω of the form:

�∂jxω =
(
∂j+1
x ω

)
G1(z, ω, ∂x∂

γ
θω, . . . , ∂

j
x∂

γ
θ ω) +G2(z, ω, ∂x∂

γ
θω, . . . , ∂

j
x∂

γ
θ ω)

where |γ| ≤ 2. To this equation we apply what we did earlier in the case
j = 1 and using the induction hypothesis, instead of (7.5.3), we are led to
an linear inequality:

‖∂j+1
x ω(y, x0)‖2Hm(O) ≤ C

(
1 +

∫ y

0
‖∂j+1

x ω(s, x0)‖2Hm(O))ds

)
.

This proves that the higher derivatives are controlled on the same time in-
terval as in the case j = 1. It remains to have similar estimates on ∂yω.
This will follow easily from the equation:

∂x∂yω =
n− 1

4ρ
(∂x − ∂y)ω +

hAB

4ρ2
∂A∂Bω −

ΓB

4ρ2
∂Bω +

1

4
x
−n+3

2 G(. . .)

︸ ︷︷ ︸
:= ξ(y,x,θ)

.

From the first part of this proof, ξ(y, x0, θ) ∈ L∞ ([0, u∗∗];Hm(O)) , ∀m ∈ N.
It then follows by induction that

∀j,m ∈ N, ∀y ∈ [0, u∗∗], ‖∂jx∂yω(y, x0)‖2Hm(O) < C .

�

We have the following:

Theorem 7.5.2 Consider the characteristic initial value problem (7.5.1) in
the neighborhood D = [0, y0] × [x0, 0[×O of the truncated cones C+ ∪ C−.
Suppose that the initial data ω+

0 and ω−0 are such that the compatibility
condition (7.3.2) holds and satisfy

ω−0 ∈ C∞(C−) ; ω+
0 , ∂ω

+
0 ∈H

α
∞(C+) ; (7.5.4)
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with −1 < α ≤ −1/2. Further assume that the function G satisfies the nullity
hypothesis (H) page 135, with a uniform zero of order r > 1 such that

n ≥ 1 +
4

r − 1
− 2α .

Then there exists a real number u∗ ∈]0, y0] and a unique smooth (i.e. C∞)
function ω on D∗ = [0, u∗] × [x0, 0[×O solution of the Goursat problem
(7.5.1) satisfying:

ω ∈ L∞
(
[0, u∗], (H

α
∞ ∩ L∞) (C+u,0)

)
, (7.5.5a)

∂ω ∈ L∞
(
[0, u∗],H

α
∞(C+u,0)

)
. (7.5.5b)

Moreover, we have:

∀j ∈ N, ∂jyω ∈ L∞
(
[0, u∗],H

α
∞(C+u,0)

)
. (7.5.6)

Proof: Let m0 be the smallest positive integer lager than n+7
2 . Since the

hypersurface C− is a bounded subset of Rn+1, for all k ∈ N, we have

ω−0 ∈ C∞(C−) →֒ Hk+2(C−) and ω+
0 ∈ H

α
∞(C+) →֒H

α
k+1(C+) . (7.5.7)

For k = m0, the data of (7.5.1) satisfy the hypotheses of Theorem 7.3.17. By
this theorem, there exists a real number u∗ ∈]0, y0], a unique function ω of
regularity class C2 on D∗ such that ‖(ω, |x|−α∂ω)‖L∞(D∗) < ∞. In (7.5.5)

it thus remains to prove that ∀u, (ω, ∂ω)(u) ∈ H α
∞(C+u,0). Let m ∈ N and

β ∈ N
n such that m > m0 and |β| ≤ m. We apply again Proposition 7.3.1

page 136 with ℓ = −2α − 1 + 2β1 ≥ 0 and ω there replaced by ∂βω. For all
u ∈ [0, u∗], we have:

∫

C+u,0
H(u, x)|∂β(ω,∇xω)(u, x)|2dx dν ≤
∫

C+
H(0, x)|∂β(ω,∇xω)(0, x)|2dx dν +

∫

C−u,x0
H(y, x0)|∂β(ω,∇yω)(y, x0)|2dydν

+(c1(c0, c̄0, n, h)− 2Λ)

∫ u

0

∫ 0

x0

H(x, y)‖∂β(ω,∇ω)(y, x)‖2L2(O)dxdy

+
1

c0

∫

Du,0

∣∣∣Lℓ[∂βω]
∣∣∣ dydx dν . (7.5.8)
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The quantity in the last integral reads:

Lℓ[∂βω] = H(x, y)(∂β∂xω + ∂β∂yω)�η,y∂
βω

= H(x, y)(∂β∂xω + ∂β∂yω)
(
∂β�η,yω + [�η,y, ∂

β ]ω
)

= H(x, y)(∂β∂xω + ∂β∂yω)
(
x−

n+3
2 ∂βG(. . .) + [�η,y, ∂

β ]ω
)

=: A+B + C +D .

We estimate these quantities as we did in the proof of the Lemma 7.3.5. We
repeat these estimates here as we need to consider the H α

m−norms on C+u ,
we have to make sure that none of the constants in front of the norm of ∂yω
depends on Λ.

A = x−
n+3
2 H(x, y)∂β∂xω∂

βG(. . .)

≤ H|∂β∂xω|2 +Hx−(n+3)|∂βG(. . .)|2 ,

which implies
∫

Du,0

Adνdxdy ≤
∫ u

0

∫ 0

x0

H(x, y)|∂β∂xω(y, x)|2dxdydν

+

∫ u

0
e−Λy‖x−n+3

2
−α− 1

2
+β1e−

1
2
Λx∂βG(. . .)‖2

L2(C+u,0)
dy .

To estimate the second term of the right-hand side of this inequality, we want
to use the second part of Proposition A.2 page 53 of [20]. For this purpose,
we recall that hypothesis (7.3.4) page 135 implies that for all (p, q) such that
|(p, q)| ≤ B, and for all u ∈ [0, y0],

∥∥∥∥
∂j+ℓ+iG(u, ·, · , p, q)

(∂y)i∂pj∂qℓ

∥∥∥∥
C 0

m−(j+ℓ+i)
(C+u,0)

≤ Ĉ(B) ‖(p, q)‖m−j−ℓ ,

thus the conclusion of this Proposition applies. By Theorem 7.3.17 page 175
we have the a priori estimate M := ‖|x|−α(ω,∇xω)‖L∞(D∗) <∞. Thus,

‖x−n+3
2
−α− 1

2
+β1e−

1
2
Λx∂βG(. . .)‖2

L2(C+u,0)
≤ e−Λx0‖G(. . .)‖2

H
α+n+3

2
m (C+u,0)

≤ c(M)e−Λx0‖(w,∇xw)‖
H

2α+n+3
2 −r(n−1

2 +α)
m (C+u,0)

≤ c(M)e−Λx0‖(w,∇xw)‖H α
m (C+u,0)

for n ≥ 1 +
4

r − 1
− 2α .
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We then obtain∫

Du,0

Adνdxdy ≤ c(M)e−Λx0
∫ u

0
e−Λy‖(w,∇xw)(y)‖2H α

m (C+y,0)
dy (7.5.9)

for n ≥ 1 +
4

r − 1
− 2α .

Similarly,
∫

Du,v

Bdνdxdy ≤
∫ u

0

∫ 0

x0

H(x, y)‖∂β∂yω(y, x)‖2L2(O)dxdy

+c(M)e−Λx0
∫ u

0
e−Λy‖(w,∇xw)(y)‖2H α

m (C+y,0)
dy

for n ≥ 1 +
4

r − 1
− 2α . (7.5.10)

As far as the terms C and D are concerned, we recall that the commutators
read

[�η,y, ∂
β ]ω =

n− 1

ρ
(∂x − ∂y)∂βω +

hAB

ρ2
∂A∂B∂

βω − ΓB∂B∂
βω

−∂β
(
n− 1

ρ
(∂x − ∂y)ω

)
− ∂β

(
hAB

ρ2
∂A∂Bω

)
+ ∂β

(
ΓB∂B∂

βω
)

= −
∑

|β1|<|β|
c(β, ρ)∂β

1
(∂x − ∂y)ω

−
∑

|β1|6=0, β1+β2=β

c(β, ρ)∂β
1
hAB∂β

2
∂A∂Bω

+
∑

|β1|6=0, β1+β2=β

c(β, ρ)∂β
1
ΓB∂β

2
∂Bω ;

whence, using inequality ab ≤ a2 + b2 one has:
∫

Du,0

Cdνdxdy ≤ c(h, ρ)e−Λx0
∫ u

0
e−Λy‖∇xω(y)‖2H α

m (C+u,0)
dy

+c(h, ρ)
∑

|µ|<|β|

∫ u

0

∫ 0

x0

H(x, y)‖∂µ∂yω(y, x)‖2L2(O)dxdy,(7.5.11)

and∫

Du,0

Ddνdxdy ≤ c(h, ρ)e−Λx0
∫ u

0
e−Λy‖∇xω(y)‖2H α

m (C+u,0)
dy

+c(h, ρ)
∑

|µ|≤|β|

∫ u

0

∫ 0

x0

H(x, y)‖∂µ∂yω(y, x)‖2L2(O)dxdy.(7.5.12)
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Summing inequalities (7.5.10)-(7.5.12) gives:
∫

Du,0

∣∣∣Lℓ[∂βω]
∣∣∣ dνdydx ≤ c(h, ρ)e−Λx0

∫ u

0
e−Λy‖∇xω(y)‖2H α

m (C+u,0)
dy

+c(c0, c̄0, h, ρ)
∑

|β|≤m

∫ u

0

∫ 0

x0

H(x, y)‖∂β∂yω(y, x)‖2L2(O)dxdy

for n ≥ 1 +
4

r − 1
− 2α .

We can then rewrite (7.5.8) as (note that 1 ≤ e−Λx ≤ e−Λx0):

e−Λu‖(ω,∇xω)(u)‖2H α
m (C+u,0)

≤

e−Λx0‖(ω,∇xω)‖2H α
m (C+) +

∫

C−u,x0
H(y, x0)|∂β(ω,∇yω)(y, x0)|2dydν

+(c(c0, c̄0, n, ρ) + c(h, ρ) − 2Λ)

∫

Du,0

H(y, x)‖∂β∂yω(y, x)‖2L2(O)dxdy

+e−Λx0c(c0, c̄0, h, ρ)
∫ u

0
e−Λy‖∇xω(y)‖2H α

m (C+u,0)
dy

for n ≥ 1 +
4

r − 1
− 2α .

As we did before, we choose Λ sufficiently large so that the term in the second
line of the previous estimate is negative and for n ≥ 1+ 4

r−1 −2α, we obtain

(note that e−Λu∗ ≤ e−Λy ≤ 1):

e−Λu‖(ω,∇xω)(u)‖2H α
m (C+u,0)

≤

e−Λx0‖(ω+
0 ,∇xω

+
0 )‖2H α

m (C+) + c(h, ρ,Λ)

∫ u

0
‖∇xω(y)‖2H α

m (C+u,0)
dy

+(−x0)−2α−1e−Λx0
∑

|β|≤m

∫ u∗

0
‖∂β1x (ω, ∂yω)‖2Hm+1(O) .

Note that in the last line of this estimate, it appears the outgoing derivatives
of ω on the initial null surface C−. By Lemma 7.5.1, there exists a constant
C0 = C(c0, c̄0, h, n,Λ) such that for all u ∈ u∗ we have:

‖(ω,∇xω)(u)‖2H α
m (C+u,0)

≤ C0

(
1 +

∫ u

0
‖∇xω(y)‖2H α

m (C+u,0)
dy

)
.

Gronwall’s Lemma then gives the following estimate:

∀m > m0, ∀u ∈ [0, u∗], ‖(ω,∇xω)(u)‖2H α
m (C+u,0)

≤ C0e
C0u <∞ .
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Therefore,

(ω,∇xω) ∈ L∞
(
[0, u∗]; H

α
∞(C+u,0)

)
.

In (7.5.5b), it remains to prove that ∀u ∈ [0, u∗], ∂yω(u) ∈ H α
∞(C+u,0). Recall

that the partial differential equation satisfied by ω reads

∂y∂xω −
n− 1

4ρ
∂xω +

n− 1

4ρ
∂yω =

hAB∂2ABω

4ρ2
− ΓB

4ρ2
∂Bω −

1

4
x−

n+3
2 G(. . .) ,

which can be rewritten as

∂x

(
ρ

n−1
2 ∂yω −

n− 1

4
ρ

n−3
2 ω

)
= ξ , (7.5.13)

where

ξ = ρ
n−1
2

(
hAB∂2ABω

4ρ2
− ΓB

4ρ2
∂Bω −

1

4
x−

n+3
2 G(. . .)− (n− 1)(n − 3)

16ρ2
ω

)
.

Integrating (7.5.13) leads to

∂yω(y, x, θ) =
n− 1

4ρ
ω(y, x, θ)

+ρ−
n−1
2

(
ρ

n−1
2

0 ∂yω
−
0 (y, θ)−

n− 1

4
ρ

n−3
2

0 ω−0 (y, θ) +
∫ x

x0

ξ(y, s, θ)ds

)
,

(7.5.14)

where ρ0 =
1
a − y + x0 . The above identity implies that

∀u ∈ [0, u∗], ∂yω(u) ∈ H
α
∞(C+u,0) .

The last statement (7.5.6) of Theorem 7.5.2 will be proved by induction. The
cases j = 0 and j = 1 follow from (7.5.5). Assuming now that (7.5.6) holds
for a certain j ≥ 1, we y−differentiate (7.5.14) j times and obtain:

∂j+1
y ω(y, x, θ) =

∑

0≤i≤j

(
σ1(y, x)∂

i
yω(y, x, θ) + σ2(y, x)∂

i+1
y ω−0 (y, θ) +

∫ x

x0

σ3(y, s)∂
i
yξ(y, s, θ)ds

)

where the σi’s are bounded smooth functions on the set [0, u∗]× [x0, 0]. From
this identity it follows that (7.5.6) holds with j replaced by j + 1 and the
proof is complete. �
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Conclusion of the second

part

In this part of the thesis, we obtained existence and uniqueness of solutions
of a class of semi-linear characteristic Cauchy problem with data on the light
cone. By assuming that the data satisfy the property of those of [27] near the
tip of the cone, and that near {r =∞} they are in some appropriate weighted
Sobolev space, we proved that these solutions exist on a neighborhood of
the entire initial cone which contains a subset of the future null infinity
S +. We showed that this result applies to wave map on Minkowski space
time with target manifold an arbitrary smooth Riemannian manifold of finite
dimension. Next by assuming that the source term does not depends on
the normal derivative of the unknown function, we state and prove a high
regularity result which might leads to polyhomogeneity of solutions of such
null Cauchy problem. To obtain polyhomogeneity of solution in the case of
null initial Cauchy data, it remains to check that in this case, one can prove
the characteristic version of Theorem 1.1.1 of the first part of the thesis.
This will be done later.

188



General Conclusion

At the end of this work, we have stated and proved existence and unique-
ness theorems of semi-global solutions of ordinary and characteristic Cauchy
problems for symmetric hyperbolic systems of second order in high space di-
mension. The originality of these results is the fact that on one hand, in
our approach there is no need to impose:

• the null condition of S. Klainerman to the source terms of our equa-
tions (this condition is too restrictive for Einstein equations in space
dimension n = 3)

• smallness of the Cauchy data

• further restrictions on the oddness of the space dimension,

and on the second hand, in both cases, the constructed solutions are defined
on a neighborhood of the whole initial data hypersurface which thickness does
not shrink to zero as one approaches future null infinity. Nevertheless, these
results need to be improved: one can consider a polyhomogeneous existence
of solutions result for the Einstein equations in lower space dimension for
ordinary or characteristic Cauchy problem. The idea would be to use a
conformal compactification which preserve the smoothness of equations at
hand as the conformal transformation introduced by H. Friedrich in [34] and
to prove the characteristic analog of Theorem 1.1.1 on the polyhomogeneity
of solutions. We intend to focus on these questions in a forthcoming future.
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Appendix A

Spaces of

polyhomogeneous functions

and their properties

A.1 Introduction

The aim of this Appendix is to give a detail presentation of the spaces of
smooth and polyhomogeneous functions with their properties. In both cases,
these are weighted spaces, the weight being choose in order to control the
singular behavior near infinity of the functions involved. We notice that this
is essentially the presentation made by P. Chruściel and S.  Leşki in their
paper [19]. As the need arises from the problem at hand, some times we
have made some slight generalizations of some definitions there and sated
and proved some new properties.

The spaces of polyhomogeneous functions (i.e functions which are ex-
pandable in terms r−j logj r) were first introduced by L. Anderson and P.Chruściel
in [1]. In their analysis of the constraints equations of the vacuum Ein-
stein equations for asymptotically hyperboloidal initial data, they find that
log terms arise in asymptotic expansion of the solutions of the constraints.
Here, we also use the formalism stated on the space of polyhomogeneous
functions in this last reference. (See Appendix E of [1]).

In what follows, M̄ will be a smooth compact manifold of dimension
n + 1. The boundary of M̄ will be denoted by ∂M and M the interior of
M̄ as a topological space so that ∂M is also the boundary of M . The letter
x will denote a defining function of ∂M in the sense that x ≥ 0, ∀p ∈
M̄, x(p) = 0 ⇐⇒ p ∈ ∂M, and |dx|

∣∣
∂M

> 0. It turns out that, there exists
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a neighborhood K of ∂M in M̄ on which the positive function x can be used
as coordinate in any local coordinate system on K. We assume that there
exists a global coordinate system on K denoted by (y, x, vA), A = 1, . . . , n−1
which gives a product decomposition of K. We are going to introduce now
some spaces of functions with controlled singular behavior at {x = 0}, {y =
0} or {y = x = 0}.

A.2 Spaces of differential functions with weight

For k ∈ N and any open subset Ω of M , we denote by Ck(Ω) the set of all
functions which are k times continuously differentiable on Ω. We denote by
Ck(Ω̄) the set of Ck(Ω)-functions which can be extended by continuity to Ck
functions defined in an open neighborhood of Ω. Consider the set denoted
U and defined by

U =
{
(x, vA, y) : 0 < x < y , v = (vA) ∈ O , 0 < y < y0 <∞

}
, (A.2.1)

where O is a compact manifold without boundary. We will write z for the
joint set of variables (x, y, vA). We use the multi-index notation of Schwartz,
thus if β = (β0, β1, . . . , βn), then

∂β = ∂βz = ∂β0y ∂
β1
x ∂

β2
v1
. . . ∂βn

vn−1 = ∂β0y ∂
β1
x ∂

γ
v

where γ = (β2, . . . , βn).

Definition A.2.1 Let k ∈ N, α, σ ∈ R and Ω an open subset of U . We
define the spaces

1. C α
{x=0},k(Ω) as the space of all function f ∈ Ck(Ω) such that ∀i, j ∈

N, γ ∈ Nn−1, i + j + |γ| ≤ k, the quantity sup
Ω
|x−α∂γv [∂y]i[x∂x]jf | is

finite.

2. C σ
{y=0},k(Ω) as the space of all function f ∈ Ck(Ω) such that ∀i, j ∈

N, γ ∈ Nn−1, i + j + |γ| ≤ k the quantity sup
Ω
|y−σ∂γv [y∂y]i[∂x]jf | is

finite.

3. C α
{0≤x≤y},k(Ω) as the space of all function f ∈ Ck(Ω) such that ∀i, j ∈

N, γ ∈ Nn−1, i + j + |γ| ≤ k, the quantity sup
Ω
|x−α∂γv [y∂y]i[x∂x]jf | is

finite.
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4. C
α,σ
{0≤x≤y},k(Ω) as the space of all function f ∈ Ck(Ω) such that ∀i, j ∈

N, γ ∈ Nn−1, i+ j + |γ| ≤ k, the quantity sup
Ω
|x−αy−σ∂γv [y∂y]i[x∂x]jf |

is finite.

We shall write
C
α
{x=0},∞(Ω) =

⋂

k∈N
C
α
{x=0},k(Ω) ,

and similarly for C∞(Ω), C α
{x=0},∞(Ω), etc. Not that the estimates

(x∂x)
i(y∂y)

j∂βv (x
αf) = xα

i∑

ℓ=0

Cℓ,α(x∂x)
ℓ(y∂y)

j∂βv f

≤ Cxαyβ = Cxα−δxδyβ ≤ Cxα−δyβ+δ

shows that
∀k ∈ N, α, β ∈ R and δ ≥ 0, we have

xαC β
{y=0},k(Ω) ⊂ C

α−δ,β+δ
{0≤x≤y},k(Ω) .

Example A.2.2 Any finite linear combination of functions of the form fp,ℓ =
xp lnℓ x where p and ℓ are nonnegative integers, belongs to the space C

−ǫ
{x=0},k(U ),

for all ǫ > 0. Indeed since the operator x∂x obeys the Leibnitz rule, we have:

∣∣∣(x∂x)i(xp lnℓ x)
∣∣∣ =

∣∣∣∣∣

i∑

m=0

Cmi (x∂x)
m(xp)(x∂x)

i−m lnℓ x

∣∣∣∣∣ < Cx−ǫ .

Similarly,
M∑

m=0

Cmx
pmykm lnℓm x lnqm y ∈ C

ǫ,ǫ′

{0≤x≤y},k(U ) .

Remark A.2.3 The estimates

∣∣∂ix∂jy∂γv f
∣∣ =

(
x

y

)j
x−i−j

∣∣xiyj∂ix∂jy∂γv f
∣∣

≤ Cx−i−j
∣∣(x∂x)i(y∂y)j∂γv f

∣∣

shows that C α
{0≤x≤y},k(U ) ⊂ Ck(U ) for k < α .

Notation: Let Wα be a family of spaces, where α is a decay index, e.g.
Wα = C α

{x=0},k(U ), or Wα = C α
{0≤x≤y},∞(U ), etc. We define

W<α = ∩σ<αW σ .
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This notation is very useful to accommodate lnn x factors that arise in the
problem at hand: for example, in this notation we have

xα lnN x ∈ C
<α
{x=0},∞(U ) .

We point out the following:

Lemma A.2.4 For 0 ≤ x ≤ y ≤ ẙ consider the system

∂xψ + bψ = c ,

and suppose that there exists ǫ < 1 such that the linear map b has co-
efficients in C

−ǫ
{x=0},0. For α ∈ R \ {−1} there exists a constant C =

C(α, ǫ, ‖b‖
C
−ǫ
{x=0},0

, ẙ) such that

1. For α > −1 we have

‖ψ‖L∞ ≤ C
(
‖ψ|x=y‖L∞ + ‖c‖Cα

{x=0},0

)
, (A.2.2)

2. while for α < −1 it holds that

‖ψ‖
C

α+1
{x=0},0

≤ C

(
‖ψ|x=y‖Cα+1

{x=0},0
+ ‖c‖Cα

{x=0},0

)
. (A.2.3)

The proof of this Lemma can be found in [19] Lemma 3.12.

A.3 Spaces of polyhomogeneous functions

Definition A.3.1 We define the space of polyhomogeneous functions at
{x = y = 0} denoted by A{0≤x≤y} as the collection of functions f ∈ C∞(U )
such that there exists integers Ni, real numbers ni, n̂i and functions fijl ∈
C∞(U ) with the property that

∀m ∈ N, ∃N(m) ∈ N, f −
N(m)∑

i=0

Ni∑

j,l=0

fijly
n̂ixni lnj y lnℓ x ∈ Cm(U ).

(A.3.1)

To avoid repetitions of terms with identical powers in (A.3.1) it is convenient
to impose (ni, n̂i) 6= (nj, n̂j) for i 6= j, and we will always assume that this
condition is satisfied.
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Definition A.3.2 Let δ ∈ R
+
∗ such that 1/δ ∈ N

∗. We define the space
A δ
{0≤x≤y} as the space of functions f ∈ A{0≤x≤y} such that the corresponding

real numbers ni and n̂i in (A.3.1) satisfy {ni, i ∈ N} ⊂ δN, {n̂i, i ∈ N} ⊂
δZ and n̂i > −ni.
We have the following

Proposition A.3.3 For all function f ∈ A δ
{0≤x≤y}, there exists and integer

N and a positive conctant C such that, ∀z ∈ U , |f(z)| ≤ C(1+| ln x|N ) .
Proof: We write (A.3.1) with m = 0 and we obtain that there exists N(0) ∈
N and a function r0 ∈ C0(U ) such that

f =

N(0)∑

i=0

Ni∑

j,l=0

fijly
n̂ixni lnj y lnℓ x+ r0 .

Since U is a compact subset of M̄, there exists a positive constant C0 such
that

∀z ∈ U , |f(z)| ≤ C0


1 +

N(0)∑

i=0

Ni∑

j,l=0

|yn̂ixni lnj y lnℓ x|


 .

Now, since the function y 7−→ yǫ lnℓ y, ǫ > 0 is bounded on any neighborhood
of 0, we have

|yn̂ixni lnj y lnℓ x| = |
(
x

y

)ni

yn̂i+ni lnj y lnℓ x| ≤ C1| lnℓ x| .

This last inequality completes the proof. �

We see that the spaces of functions A δ
{0≤x≤y} are made of function f with

eventually a singular behavior at x = 0 and/or at y = 0. The last proposition
shows that this singularity can be controlled by the multiplication with any
positive power of x. We introduce now the space of functions with singular
behavior only at x = 0 or only at y = 0. We have the following

Definition A.3.4 We define the space A{x=0} as the space of all functions
in A{0≤x≤y} with n̂i = 0 for all i and no non-trivial powers of ln y in (A.3.1).
Thus f ∈ A{x=0} if and only if f ∈ C∞(U ) and there exists integers Ni,

real numbers ni, and functions fij ∈ C∞(U ) such that

∀m ∈ N, ∃N(m) ∈ N, f −
N(m)∑

i=0

Ni∑

j=0

fijx
ni lnj x ∈ Cm(U ). (A.3.2)

Similarly, we define the spaces A δ
{x=0}, A{y=0} and A δ

{y=0} .
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The following proposition will be use repeatedly.

Proposition A.3.5 1. We have the inclusion

A
δ
{0≤x≤y} ∩ L∞ ⊂ C

0
{0≤x≤y},∞ .

It follows that for any ǫ > 0 we have A δ
{0≤x≤y} ⊂ C

0−ǫ
{0≤x≤y},∞ .

2. Similarly
A

δ
{x=0} ∩ L∞ ⊂ C

0
{x=0},∞ ,

and for any ǫ > 0 we have A δ
{x=0} ⊂ C

0−ǫ
{x=0},∞ .

The proof can be found in [19] Proposition A.2. We have the following
characterization of the space of polyhomogeneous functions A{x=0} :

Proposition A.3.6 f ∈ A{x=0} if and only if for every m ∈ N there exist

N(m), Ni(m) ∈ N , ni(m) ∈ R and functions fij ∈ Cm(U ) such that

f −
N(m)∑

i=0

Ni(m)∑

j=0

fij x
ni(m) lnj x ∈ Cm(U ) , (A.3.3)

with a similar property for A δ
{x=0}, A{0≤x≤y}, etc.

The proof can be found in [19] Proposition A.3.
We will need the following characterisation of functions which are polyho-

mogeneous up to lower order terms. To avoid annoying special cases involv-
ing logarithms we assume σ 6∈ N, though the proof gives also a corresponding
statement in this case:

Proposition A.3.7 Suppose that σ 6∈ N, let S = {(y, x, vA) ∈ U : x = y} ,

f |S ∈ xβA{0≤x≤y} , f ∈ xβA δ
{0≤x≤y} + yβA δ

{0≤x≤y} + C
σ
{0≤x≤y},k ,

and assume that for all i, j satisfying i+ j ≤ k + 1 there exists

gi,j ∈ xβA δ
{0≤x≤y} + yβA δ

{0≤x≤y}

such that for every multi-index γ for which i+ j + |γ| = k + 1 we have

|(x∂x)i(y∂y)j∂γv (f − gi,j)| ≤ Cxσ .

Then
f ∈ xβA δ

{0≤x≤y} + yβA δ
{0≤x≤y} + C

σ
{0≤x≤y},k+1 . (A.3.4)
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The proof of this Proposition can be found in [20], Propostion A.5. We
will use a slight generalization of a definition of [20]:

Definition A.3.8 We shall say that a function H(z, w) is A δ
{0≤x≤y}-polyhomogeneous

in z with a uniform zero of order l in w if the following hold: First, H is
smooth in w ∈ R

N at fixed z ∈ U . Next, it is required that for all B ∈ R

and k ∈ N there exists a constant Ĉ(B) such that, for all |w| ≤ B and
0 ≤ i ≤ min(k, l),

∥∥∥∥
∂iH(·, w)
∂wi

∥∥∥∥
C 0
{0≤x≤y},k−i

(U )

≤ Ĉ(B)|w|l−i . (A.3.5)

Further,
∀i ∈ N ∂iwH(·, w) ∈ A

δ
{0≤x≤y} (A.3.6)

at fixed constant w. Finally we demand the uniform estimate for constant
w’s: ∀ǫ > 0,M ≥ 0, i, k ∈ N ∃ C(ǫ,M, i, k) ∀|w| ≤M such that

‖∂iwH(·, w)‖C−ǫ
{0≤x≤y},k

(U ) ≤ C(ǫ,M, i, k) . (A.3.7)

The qualification “in w” in “uniform zero of order l in w” will often be
omitted. Similarly to [20], the small parameter ǫ has been introduced above
to take into account the possible logarithmic blow-up of functions in A δ

{0≤x≤y}
at x = 0; for the applications to the nonlinear scalar wave equation or to
the wave map equation on Minkowski space-time, the alternative simpler
requirement would actually suffice: ∀ M ≥ 0, i, k ∈ N ∃ C(M, i, k) ∀|w| ≤
M

‖∂iwH(·, w)‖C 0
{0≤x≤y},k

(U ) ≤ C(M, i, k) , (A.3.8)

again for constant w’s. Functions which are smooth in (w, z), and have a
zero of order l in w at w = 0, satisfy the above conditions. We have the
following

Lemma A.3.9 If H(xµ, ω) is A δ
{0≤x≤y}-polyhomogeneous in z with a uni-

form zero of order m in ω and g ∈ A δ
{0≤x≤y} ∩ L∞ then,

H(., xqδg) ∈ xqmδA δ
{0≤x≤y} .
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Proof: If we Taylor expand H up to order r > m, we obtain:

H(., xqδg) = xqmδ

{
r∑

ℓ=max(0,m)

∑

i1+...+iN=ℓ

r!

i1! . . . iN !
x(l−m)qδgi11 . . . g

iN
N

∂ℓH(xµ, 0)

∂ωℓ

+

∫ 1

0


(1− t)

r

r!

∑

i1+...+iN=r+1

(r + 1)!

i1! . . . iN !
x(r+1−m)qδgi11 . . . g

iN
N

∂r+1H

∂ωr+1
(xµ, txqδg)


 dt

}

= I + II

Since the term I is polyhomogeneous (product of such functions), it suffices
to show that for all k ∈ N, the term II is in Ck(U ), provided that r = r(k)
is chosen large enough. Recall that C α

{0≤x≤y},∞ ⊂ Ck(U ) for k < α . See
Remark A.2.3. For fixed k, we choose r large enough such that we can write
q(r + 1−m)δ = n1 + n2 with n1 , n2 > k , we will then obtain

xn1gi11 . . . g
iN
N ∈ C

n1

{0≤x≤y},∞ ⊂ Ck(Ω̄)

and as g ∈ L∞, (1.1.10) gives

xn2
∂r+1H

∂ωr+1
(xµ, txqδg) ∈ C

n2−ǫ
{0≤x≤y},∞ ⊂ Ck(Ω̄),

i.e.
II ∈ Ck(Ω̄) and thus H(., xqδg) ∈ xqmδA δ

{0≤x≤y} .

�

A.4 Auxiliary spaces: The F− and T −spaces
For α ∈ R and k ∈ N we set

F
α
{0≤x≤y},k =

{
f | ∀ 0 ≤ i+ j + |γ| ≤ k ∃N ∈ N :

|∂ix∂jy∂γv f | ≤
{
Cyα−i−j(1 + | ln y|)N if α− i− j ≥ 0
Cxα−i−j(1 + | ln x|)N if α− i− j < 0

}
. (A.4.1)

We will also need a version of the F -spaces where the functions involved
are “almost independent of x when α is large”, in the following sense:

F̊
α

{0≤x≤y},k =

{
f | ∀ 0 ≤ i+ j + |γ| ≤ k ∃N :

|∂ix∂jy∂γv f | ≤
{
Cyα−j(1 + | ln y|)N if α− j ≥ 0, i=0
Cxα−i−j(1 + | ln x|)Notherwise

}
. (A.4.2)
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Let α, β ∈ R, k ∈ N. To be able to estimate in terms of powers of | lnx|
rather than 1 + | lnx| it is convenient to assume 0 < y0 < 1. We have the
following

Definition A.4.1 We say that f ∈ T
α,(β;k)
{0≤x≤y},∞ if for all i, j, γ there exist

constants C > 0 and N ∈ N such that, for 0 < x ≤ y ≤ y0 we have

|∂ix∂jy∂γv f | ≤ C
(
xα+β−i−j + xα−iyβ−j + xα+β−i−kyk−j

)
| lnN x| . (A.4.3)

We will write f ∈ T
α,β
{0≤x≤y},∞ for f ∈ T

α,(β;0)
{0≤x≤y},∞, and we note that for

k = 0, or for β = k, the last term in (A.4.3) is not needed, e.g.:

f ∈ T
α,β
{0≤x≤y},∞ ⇐⇒ |∂ix∂jy∂γv f | ≤ C

(
xα+β−i−j + xα−iyβ−j

)
| lnN x| .

(A.4.4)

Finally, for β ≤ 0 the last term in (A.4.4) can be dropped altogether.

Strictly speaking, the only space out of the T
α,(β;k)
{0≤x≤y},∞’s which is ab-

solutely necessary in our proofs is the one with k = β = 0. However, we
have decided to include a short discussion of the other ones as well, as those
spaces appear naturally in the problem at hand.

Let {Fi}i∈N be any countable family of function spaces, we shall write

⊕̇nFn = {f : ∃N ∈ N , fn ∈ Fn , 0 ≤ n ≤ N , f =

N∑

n=0

fn} .

The dot over the symbol ⊕ is meant to emphasise the fact that only finite
linear combinations are considered.

For further use we note the following elementary properties:

Proposition A.4.2 1. If f ∈ T
α,(β;k)
{0≤x≤y},∞ then ∂xf ∈ T

α−1,(β;k)
{0≤x≤y},∞ and

∂yf ∈ T
α,(β−1;max(k−1,0))
{0≤x≤y},∞

2. For α′ ≥ α and β′ ≥ β we have T
α′,(β′;k)
{0≤x≤y},∞ ⊂ T

α,(β;k)
{0≤x≤y},∞.

3. For σ ≥ 0 we have T
α+σ,(β;k)
{0≤x≤y},∞ ⊂ T

α,(β+σ;k)
{0≤x≤y},∞.

4. If N ∋ ℓ < α and ℓ ≤ k ≤ β we have T
α,(β;k)
{0≤x≤y},∞ ⊂ C

β
{y=0},ℓ.

5. C α
{x=0},∞ ⊂ C α

{0≤x≤y},∞ ⊂ T
α,(0;k)
{0≤x≤y},∞, and C

β
{y=0},∞ ⊂ T

0,(β;k)
{0≤x≤y},∞

for all k.
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6. If f ∈ T
α,(β;k)
{0≤x≤y},∞ and g ∈ C∞, then fg ∈ T

α,(β;k)
{0≤x≤y},∞.

7. If g ∈ C α
{x=0},∞ and h ∈ C

β
{y=0},∞ then gh ∈ T

α,(β;k)
{0≤x≤y},∞ for all k.

8. We have xσT
α,(β;k)
{0≤x≤y},∞ = T

α+σ,(β;k)
{0≤x≤y},∞ for all k ∈ N and σ ∈ R.

9. For f ∈ T
α,(β;k)
{0≤x≤y},∞ and ℓ ∈ N we have xℓf ∈ T

α,(β+ℓ;k+ℓ)
{0≤x≤y},∞ for all k.

The proof can be found in [19] Proposition A.6.
We have the following

Proposition A.4.3 For all α, α′ ∈ R, ǫ, ǫ′ > 0, k ∈ N,

(a) If α′ ≥ α then F̊
α′

{0≤x≤y},k ⊂ F̊
α
{0≤x≤y},k

(b) yǫ
′
F̊

λ−ǫ−ǫ′
{0≤x≤y},∞ ⊂ F̊

λ−ǫ−ǫ′
{0≤x≤y},∞ for all R ∋ λ > 0 and λ−ǫ−ǫ′ > 0.

Proof: (a). Let f be in F̊α′

{0≤x≤y},k; (i, i, γ) ∈ N
n+1 such that i+j+ |γ| ≤ k,

we want to show that,

∂ix∂
j
y∂

γ
v f ≤

{
cyα−j(1 + |lny|)N if α− j ≥ 0, i = 0
cxα−i−j(1 + |lnx|)N otherwise

• If i = 0 then ∂jy∂
γ
v f ≤

{
cyα

′−j(1 + |lny|)N if α′ − j ≥ 0

cxα
′−j(1 + |lnx|)N if α′ − j < 0

.

- If α− j ≥ 0 then α′ − j ≥ 0 and

∂jy∂
γ
v f ≤ cyα

′−j(1 + |lny|)N ≤ cyα−j(1 + |lny|)N .

- If α− j < 0 then for α′ − j < 0 we have

∂jy∂
γ
v f ≤ cxα

′−j(1 + |lnx|)N ≤ cxα−j(1 + |lnx|)N ,

and for α′ − j ≥ 0 we have

∂jy∂
γ
v f ≤ cyα

′−j(1 + |lny|)N ≤ cxα−j(1 + |lnx|)N .

Thus for i = 0 we have:

∂jy∂
γ
v f ≤

{
cyα−j(1 + |lny|)N if α− j ≥ 0
cxα−j(1 + |lnx|)N if α− j < 0

.
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• If i > 0 then,

∂ix∂
j
y∂

γ
v f ≤ cxα

′−i−j(1 + |lnx|)N ≤ cxα−i−j(1 + |lnx|)N .

Thus F̊α′

{0≤x≤y},k ⊂ F̊α
{0≤x≤y},k for α′ ≥ α .

(b). Let f be in yǫ
′
F̊

λ−ǫ−ǫ′
{0≤x≤y},∞ i.e. f = yǫg with g ∈ F̊

λ−ǫ−ǫ′
{0≤x≤y},∞. We

want to show that f ∈ F̊
λ−ǫ−ǫ′
{0≤x≤y},∞ . For this purpose, we choose an arbitrary

k ∈ N, (i, j, γ) ∈ N
n+1 such that i+ j + |γ| ≤ k and we will show that

|∂ix∂jy∂γv f | ≤
{
Cyλ−ǫ−ǫ

′−j(1 + | ln y|)N if λ− ǫ− ǫ′ − j ≥ 0, i=0

Cxλ−ǫ−ǫ
′−i−j(1 + | lnx|)Notherwise

.

• If i = j = 0 then (recall λ− ǫ− ǫ′ ≥ 0),

|∂γv f | = |∂γv yǫ
′
g| = yǫ

′ |∂γv g| ≤ yǫ
′
yλ−ǫ−ǫ

′
(1 + |lny|)N ,

and we obtain that
|∂γv f | ≤ yλ−ǫ−ǫ

′
(1 + |lny|)N .

• i = 0 and j 6= 0

∂jy∂
γ
v f = ∂jy∂

γ
v y

ǫ′g =
∑

j1+j2=j

c(j1, j2, ǫ
′)yǫ

′−j1∂j2y ∂
γ
v g .

- If λ− ǫ− ǫ′ − j ≥ 0 then λ− ǫ− ǫ′ − j2 ≥ 0 and we have:

|∂jy∂γv f | ≤ yλ−ǫ−ǫ
′
(1 + |lny|)N .

- Suppose that λ− ǫ− ǫ′ − j ≤ 0 :

∂jy∂
γ
v f = yǫ

′
∂jy∂

γ
v g +

∑

j1+j2=j, j1 6=0

c(j1, j2, ǫ
′)yǫ

′−j1∂j2y ∂
γ
v g

≤ yǫ
′
xλ−ǫ−ǫ

′
(1 + |lnx|)N +

∑

j1+j2=j, j1 6=0

c(j1, j2, ǫ
′)yǫ

′−j1∂j2y ∂
γ
v g .

For j1 6= 0 we have |yǫ′−j1∂j2y ∂γv g| ≤ xλ−ǫ−j(1+ |lnx|)N , if λ− ǫ− ǫ′− j2 < 0
and

|yǫ′−j1∂j2y ∂γv g| ≤ yǫ
′−j1yλ−ǫ−ǫ

′−j2(1 + |lny|)N , if λ− ǫ− ǫ′ − j2 ≥ 0

≤ cyλ−ǫ−j(1 + |lny|)N
≤ cxλ−ǫ−j(1 + |lnx|)N .

200



Thus
|∂jy∂γv f | ≤ cxλ−ǫ−ǫ

′−j(1 + |lnx|)N .

• If i 6= 0 and j = 0 then

|∂ix∂γv f | = yǫ
′ |∂ix∂γv g|

≤ cyǫ
′
xλ−ǫ−ǫ

′−i(1 + |lnx|)N
≤ cxλ−ǫ−ǫ

′−i(1 + |lnx|)N .

• If i 6= 0 and j 6= 0 then,

|∂ix∂jy∂γv f | ≤
∑

j1+j2=j

cyǫ
′−j1 |∂ix∂j2y ∂γv g|

≤ yǫ|∂ix∂jy∂γv g|+
∑

j1+j2=j, j1 6=0

cyǫ
′−j1∂ix∂

j2
y ∂

γ
v g|

≤ cyǫ
′
xλ−ǫ−ǫ

′−i−j(1 + |lnx|)N

+
∑

j1+j2=j, j1 6=0

cxǫ
′−j1xλ−ǫ−ǫ

′−i−j(1 + |lnx|)N

≤ cxλ−ǫ−ǫ
′−i−j(1 + |lnx|)N .

Finally , we have shown that, ∀(i, j, γ) ∈ N
n+1,

|∂ix∂jy∂γv f | ≤
{
cyλ−ǫ−ǫ

′−j(1 + |lny|)N , if λ− ǫ− ǫ′ − j ≥ 0, i = 0

cxλ−ǫ−ǫ
′−i−j(1 + |lnx|)N , otherwise

,

which proves that
f ∈ F̊

λ−ǫ−ǫ′
{0≤x≤y},∞ .

�

We point out the following

Lemma A.4.4 Assume that O is convex, compact, with interior points. Let
q ∈ N∗, R ∋ λ ≥ 0, and let H(xµ, w) be A δ

{0≤x≤y}-polyhomogeneous with
respect to xµ with a zero of order m in w. If for all ǫ > 0 we have

g ∈
(
A

δ
{0≤x≤y} +A

δ
{x=0},⊕̇ixiδF̊

λ−iδ
{0≤x≤y},∞

+T
λ−ǫ,(0;0)
{0≤x≤y},∞

)
, (A.4.5)

then it also holds, for all ǫ > 0,

H(·, xqδg) ∈ xmqδ
(
A

δ
{0≤x≤y} +A

δ
{x=0},⊕̇ixiδF̊

λ−iδ
{0≤x≤y},∞

+T
λ−ǫ,(0;0)
{0≤x≤y},∞

)
.

(A.4.6)
If λ > 0 and (A.4.5) holds with ǫ = 0, then (A.4.6) also holds with ǫ = 0.

The proof of this Lemma can be found in [19] Lemma 3.13
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A.5 Extensions of a class of functions

Let 0 ≤ ϕ ∈ C∞(R), suppϕ ⊂ [−1/2, 1/2],
∫
R
ϕ(x)dx = 1. For 0 < x ≤ y ≤

y0 we set

E[f ](x, y, v) :=

∫ ∞

0

ϕ(w−yx )

x
f(w, v)dw (A.5.1a)

=

∫ 3y/2

y/2

ϕ(w−yx )

x
f(w, v)dw (A.5.1b)

=

∫ ∞

−∞

ϕ(w−yx )

x
f(w, v)dw (A.5.1c)

=

∫ ∞

−∞
ϕ(z)f(y + xz, v)dz (A.5.1d)

=

∫ 1/2

−1/2
ϕ(z)f(y + xz, v)dz (A.5.1e)

(there is no need to know the values of f for negative w when using (A.5.1c)
as ϕ = 0 there; a similar comment applies to (A.5.1d)).

The results here are an adaptation to the problem at hand of [1, Sec-
tion 3.3]. In the lemma that follows one can think of µ as belonging to
[0, 1), but this restriction is not necessary for the result:

Lemma A.5.1 For k ∈ N and µ ∈ R suppose that

|∂γv ∂ℓyf | ≤ Cyk+µ−ℓ(1 + | ln y|)N for 0 ≤ ℓ ≤ k , (A.5.2)

then
E[f ] ∈ yµF k

{0≤x≤y},∞ . (A.5.3)

If moreover there exists λ > 0 such that

|∂γv ∂kyf(y, v)−∂γv ∂kyf(y′, v)| ≤ Cyµ−λ(1+| ln y|)N |y−y′|λ for |y′−y| ≤ y/2 ,
(A.5.4)

then we also have

E[f ](x, y, v) ∈ yµ−λF k+λ
{0≤x≤y},∞ . (A.5.5)

The proof can be found in [19] Proposition A.7.
We continue with
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Lemma A.5.2 Let µ ≥ 0 and for 0 ≤ i ≤ m let fi satisfy (A.5.2) with k
there replaced by m− i. There exists h ∈ yµFm

{0≤x≤y},∞ such that

0 ≤ i ≤ m ∂ixh|x=0 = fi . (A.5.6)

If the fi’s satisfy (A.5.4) with k = m− i then h ∈ yµ−λFm+λ
{0≤x≤y},∞.

The proof can be found in [19] Proposition A.8.

A.6 Two important integral operators

For 0 ≤ x ≤ y ≤ y0 <∞ set

I1(f)(x, v
A, y) =

∫ y

x
f(s, vA, y)ds , (A.6.1)

I2(f)(x, v
A, y) =

∫ y

x
f(x, vA, s)ds . (A.6.2)

In our arguments we will need to understand the action of I1 and I2 on
various spaces defined above. We start with polyhomogeneous functions:

A.6.1 Integral operators on A –spaces

Lemma A.6.1 Let f ∈ C∞(U ), p ∈ R, j ∈ N. For every m ∈ N there exist
an integer N , sequences of numbers ki ∈ N, ℓi ∈ N, a sequence of smooth
functions fi and a function rm ∈ Cm(Ω) such that

∫ y

x
f(s, vA, y)sp lnj s ds =

N∑

i=1

fi

(
yp+ki+1 lnℓi y − xp+ki+1 lnℓi x

)
+ rm .

(A.6.3)

The proof can be found in [19] Proposition A.12.

Proposition A.6.2 1. Let g ∈ xβyγA δ
{0≤x≤y}. Then

I1(g) ∈ yβ+γ+1
A

δ
{y=0} + xβ+1yγA δ

{0≤x≤y} ,

I2(g) ∈ xβ+γ+1
A

δ
{x=0} + xβyγ+1

A
δ
{0≤x≤y} .

It follows in particular that A{0≤x≤y} is stable under both integrations
above.
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2. Let g ∈ xβyγA δ
{x=0}. Then

I1(g) ∈ yβ+γ+1
A

δ
{y=0} + xβ+1yγA δ

{x=0} ,

I2(g) ∈ xβ+γ+1
A

δ
{x=0} + xβyγ+1

A
δ
{x=0} .

Proof: Applying Proposition A.3.6 repeatedly gives the result . �

A.6.2 Integral operators on C–spaces

We continue with a study of the action of I1 and I2 on the C
α,σ
{0≤x≤y},k spaces.

Note that the action on the C α
{0≤x≤y},k spaces is obtained as a special case

from
C
α
{0≤x≤y},k = C

α,0
{0≤x≤y},k .

Lemma A.6.3 Let α, σ ∈ R, k ∈ N ∪ {∞},

1. If f ∈ C
α,σ
{0≤x≤y},k, α < −1, then I1(f) ∈ C

α+1,σ
{0≤x≤y},k.

2. If f ∈ C
α,σ
{0≤x≤y},k, α > −1, then I1(f) ∈ C

α+σ+1
{y=0},k + C

α+1,σ
{0≤x≤y},k.

The proof can be found in [19] Proposition A.10.

Lemma A.6.4 Let α, σ ∈ R, k ∈ N ∪ {∞},

1. If f ∈ C
α,σ
{0≤x≤y},k, σ > −1 then I2(f) ∈ C

α,σ+1
{0≤x≤y},k.

2. If f ∈ C σ
{y=0},∞, then I2(f) ∈ F

σ+1
{0≤x≤y},∞.

The proof can be found in [19] Proposition A.11.

A.6.3 Integral operators on T – and F–spaces

Proposition A.6.5 Let α > −1, β ≥ k. For any ǫ > 0 we have

I1(T
α,(β;k)
{0≤x≤y},∞) ⊂ yǫF̊α+1−ǫ+β

{0≤x≤y},∞ +T
α+1−ǫ,(β;k)
{0≤x≤y},∞ .

The proof can be found in [19] Proposition A.12.

Remark A.6.6 We expect the result to remain valid with ǫ = 0, but the
proof below fails for this value of ǫ. In any case the current result is sufficient
for our purposes.
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Proposition A.6.7 Let α+ pδ > −1. For any ǫ > 0 we have

1. I1(x
pδ lnℓ xF̊α

{0≤x≤y},∞) ⊂ yǫF̊α+pδ+1−ǫ
{0≤x≤y},∞ +A δ

{x=0},xF̊α
{0≤x≤y},∞

.

2. I1(A
δ
{x=0},xpδF̊α

{0≤x≤y},∞

) ⊂ yǫF̊α+pδ+1−ǫ
{0≤x≤y},∞ +A δ

{x=0},xpδ+1F̊α
{0≤x≤y},∞

.

The proof can be found in [19] Proposition A.14.

Proposition A.6.8 1. I2(F̊
α
{0≤x≤y},∞) ⊂ F̊α

{0≤x≤y},∞ .

2. I2(A
δ
{x=0},xnF̊α

{0≤x≤y},∞

) ⊂ A δ
{x=0},xnF̊α

{0≤x≤y},∞

.

3. I2(T
α,(β;k)
{0≤x≤y},∞) ⊂ T

α,(β+1;k+1)
{0≤x≤y},∞ .

The proof can be found in [19] Proposition A.15.
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Appendix B

Function spaces,

Embeddings, Inequalities

B.1 Definitions of some weighted spaces.

We recall that

Hλ,τ0 = {(τ, x, vA); τ = τ0, σλ(τ) < x < x0} ≡ ]x2, x0[×O

and
Hτ0 = {(τ, x, vA); τ = τ0, 0 < x < x0} ≡ ]0, x0[×O ,

with x0 = σ(τ0) and x2 = σλ(τ0). In what follows the symbol Ω will generally
denote one of the sets Hλ,τ0 , or Hτ0. Any subset of Hτ0 can be locally
coordinatized by coordinates yi = (x, vA), where the vA’s can be thought of
as local coordinates on O. We cover O by a finite number of coordinate
charts Oi so that the sets Ωi, where

Ωi := (0, x0)×Oi ,

cover Hτ0 . We use the usual multi-index notation for partial derivatives:

for β = (β1, . . . , βn) ∈ N
n we set ∂β = ∂β11 . . . ∂βnn . We will write ∂βv for

derivatives of the form ∂β22 . . . ∂βnn , which do not involve the x1 ≡ x variable.
If O is an open set, for k ∈ N ∪ ∞ we let Ck(O) denote the usual

space of k-times differentiable functions on O; the symbol Ck(O) is used to
denote the set of those functions in Ck(O) the derivatives of which, up to
order k, extend by continuity to O. We emphasise that no uniformity is
assumed in Ck(O), so that functions there could grow without bound when
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approaching the boundary . Nevertheless, the symbol ‖ · ‖Ck
will denote the

usual supremum norm of f and its derivatives up to order k. For α ∈ R and
k ∈ N , we define C α

0 (Ωi) (respectively C α
k (Ωi) as the spaces of appropriately

differentiable functions such that the respective norms

‖f‖Cα
0 (Ωi) ≡ sup

p∈Ωi

|x−αf(p)| ,

‖f‖Cα
k (Ωi) ≡

∑

0≤|β|≤k
‖xβ1∂βf‖Cα

0 (Ωi) , (B.1.1)

are finite. We define the spaces H α
k (Ωi) as the spaces of those functions in

H loc
k (Ωi) for which the norms ‖ · ‖H α

k (Ωi) are finite, where

‖f‖2
H α

k (Ωi)
=

∑

0≤|β|≤k

∫

Ωi

(x−α+β1∂βf)2
dx

x
dν . (B.1.2)

Here dν is a measure on O arising from some smooth Riemannian metric
on O. This is equivalent to

∑

0≤β1+|β|≤k

∫

Ωi

(x−α(x∂x)
β1∂βv f)

2dx

x
dν , (B.1.3)

and it will sometimes be convenient to use (B.1.3) as the definition of
‖f‖2

H α
k (Ωi)

. We note the equivalence of norms,

‖f‖H0(O) ≈ ‖f‖H −1/2
0 (O)

,

and that H α
k (Hλ,τ0) = Hk(Hλ,τ0) for all α and k whenever x2 > 0, the

norms being equivalent, with the constants involved depending upon x2 and
x0, and degenerating in general when x2 tends to zero. In order to have
global system of coordinate on Hλ,τ0 we use the global vectors field (Xi)1≤i≤r
defined in [20] (see Appendix A) related to coordinates (vA) of O by

∂A =

r∑

i=2

f iA(v
B)Xi , (B.1.4a)

Xi =
n∑

A=2

XA
i (v

B)∂A , (B.1.4b)

for some locally defined smooth functions f iA,X
A
i ; and where

X1 = ∂x .
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Clearly things can be arranged so that those functions are bounded, together
with all their partial derivatives. For any multi-index β = (β1, β2, . . . , βr) ∈
N
r we set, on Hτ0 ,

D
βf = Xβ1

1 Xβ2
2 · · ·Xβr

r f = ∂β1x X
β2
2 · · ·Xβr

r f . (B.1.5)

It follows that we have

‖f‖Cα
k (Mx0 )

≈
∑

0≤|β|≤k
‖xβ1Dβf‖Cα

0 (Mx0 )
,

‖f‖2
H α

k (Hτ0 )
≈

∑

0≤|β|≤k

∫

Mx0

(x−α+β1Dβf)2
dx

x
dν

(where ≈ denotes the fact that the norms are equivalent), etc. Here, |β| =
β1 + . . . + βr. From the identity

]0, x0] = ∪
n∈N∗

[x0
2n
,
x0
2n−1

]

and the equivalence

s ∈ [1, 2] ⇐⇒ x0
x

2n
∈
[x0
2n
,
x0
2n−1

]

we see that there is a useful way of rewriting ‖ · ‖H α
k (Hτ0 )

which proceeds as
follows: for f ∈ H α

k (Hτ0), s ∈ (1, 2), and n ∈ N
∗ we set

fn(s, v) = f(x = x0
s

2n
, v) ; (B.1.6)

letting ≈ denote again equivalence of norms one then has, after a change of
variables,

‖f‖2
H α

k (Hτ0 )
=

∑

n≥1

∑

0≤|β|≤k

∫

[2−nx0,21−nx0]×O

|x−α+β1Dβf(x, v)|2 dx
x
dν

≈ x−2α0

∑

n≥1

∑

0≤|β|≤k
22nα

∫

[1,2]×O

|Dβfn(s, v)|2ds dν

= x−2α0

∑

n≥1
22nα‖fn‖2Hk([1,2]×O) . (B.1.7)

More precisely, we write A ≈ B if there exist constants C1, C2 > 0 such that
C1A ≤ B ≤ C2A. In (B.1.7) the relevant constants depend only upon α and
k.
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It turns out to be useful to have a formula similar to (B.1.7) for functions
in H α

k (Hλ,τ0)); this can be done for any x0 and x2, but in order to obtain
uniform control of certain constants it is convenient to require 2x2 ≤ x0.
For such values of x0 and x2 we let n0(x0, x2) ∈ N be such that x0

2n0+1 ≤
x2 ≤ x0

2n0 . For n ∈ N, n ≥ 1, and for any f : Hλ,τ0 → R
N we then define

fn : (1, 2) × O → R
N by

n ≤ n0 , fn(s, v) = f(x0
s

2n
, v) ,

n = n0 + 1 , fn(s, v) = f(x2 s, v) ,

n > n0 + 1 , fn = 0 . (B.1.8)

(This coincides with the definition already given for Hτ0), when this set
is thought of as being an “Hλ,τ0 with x2 = 0”, if we set n0 = +∞.) A
calculation as in (B.1.7) shows that for any 2x2 ≤ x0, there exist constants
C1 and c1, independent of x0, and x2, such that for all f ∈H α

k (Hλ,τ0),

c1x
−2α
0

∑

n

{2nα‖fn‖Hk([1,2]×O)}2

≤ ‖f‖2
H α

k (Hλ,τ0
) ≤ C1x

−2α
0

∑
n{2nα‖fn‖Hk([1,2]×O)}2 . (B.1.9)

Equation (B.1.7) leads one to introduce (the symbol B might suggest to
the reader that we specifically have Besov spaces in mind; this is not the
case, and we hope that the notation will not lead to confusion) spaces Bα

k ,
that arise naturally from weighted Sobolev embeddings, cf. Equation (B.2.2)
below: we define

‖f‖2
Bα

k (Hτ0 )
= x−2α0

∑

n≥1
22nα‖fn‖2Ck([1,2]×O) , (B.1.10)

fn as in (B.1.6), and we set

B
α
k (Hτ0) = {f ∈ Ck(Hτ0) | ‖f‖Bα

k (Hτ0 )
<∞} .

Clearly
B
α
k (Hτ0) ⊂ C

α
k (Hτ0) .

We have the trivial inclusion,

α′ > α =⇒ C α′

k (Hτ0) ⊂ H α
k (Hτ0) . (B.1.11)

The fact that the inequality α′ > α in (B.1.11) is strict has various annoying
consequences, which are best avoided by introducing yet another space — the
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space G α
k of functions in Hk

loc(Hτ0)) for which the norm squared

‖f‖2
G α
k (Hτ0 ))

= sup
n≥1




∑

0≤β≤k

∫

[2−nx0,21−nx0]×O

|x−α+β1Dβf(x, v)|2 dx
x
dν





(B.1.12)
is finite. We note that ‖f‖Gα

k (Hτ0 )
is equivalent to

x−α0 sup
n≥1

{
2nα‖fn‖Hk([1,2]×O)

}
, (B.1.13)

with fn(s, v) = f(x0s2n , v), as in (B.1.6). To define the G α
k (Hλ,τ0)’s, assuming

again that x2 ≤ x0/2, we let In(x0, x2) be defined as

n ≤ n0 , In = (2−nx0, 2
1−nx0) ,

n = n0 + 1 , In0+1 = (x2, 2x2) ,

n > n0 + 1 , In = ∅ , (B.1.14)

where n0 is as in (B.1.8). For all f ∈ H loc
k (Hλ,τ0) we set

‖f‖2
Gα
k (Hλ,τ0

) = sup
n
{
∑

i

∑

0≤|β|≤k

∫

Ωi∩{In×O}
(x−α+β1Dβf)2

dx

x
dν } (B.1.15)

Similarly to (B.1.9), there exist constants c2 and C2, which do not depend
upon x0 and x2, such that for all 2x2 ≤ x0,

c2x
−α
0 sup

n
‖fn‖Hk([1,2]×O) ≤ ‖f‖G α

k (Hλ,τ0
) ≤ C2x

−α
0 sup

n
‖fn‖Hk([1,2]×O) .

(B.1.16)
We have the obvious inequality

‖f‖G α
k (Ω) ≤ ‖f‖H α

k (Ω) , (B.1.17)

together with the modified version of (B.1.11),

α′ ≥ α =⇒ C α′

k ⊂ G α
k ; (B.1.18)

in particular the function (x, v)→ xα is in G α
k (Hτ0).

B.2 Embeddings and inequalities

If Sk denotes a space of functions, where k ∈ N is a differentiability index,
we set

S∞ ≡ ∩k∈NSk ,
e.g., G α

∞ ≡ ∩k∈NG α
k , etc.

We note the following:
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Proposition B.2.1 Let Ω = Hτ0 , or Ω = Hλ,τ0 , 2x2 < x0, and let H α
k =

H α
k (Ω), etc. For k′ ∈ N, 0 ≤ k′ ≤ k− n/2 6∈ N or 0 ≤ k′ < k− n/2 ∈ N we

have the continuous embeddings

H
α
k ⊂ B

α
k′ ⊂ C

α
k′ , H

α
k ⊂ G

α
k ⊂ C

α
k′ , (B.2.1)

and there exists an x2-independent constant C such that we have

∀f ∈ H α
k ‖f‖Bα

k′
(Ω) ≤ C‖f‖H α

k (Ω) , (B.2.2)

∀f ∈ G α
k ‖f‖Cα

k′
(Ω) ≤ C‖f‖Gα

k (Ω) . (B.2.3)

Proof: (B.2.2)-(B.2.3) follow immediately from (B.1.7) and (B.1.9), to-
gether with the standard Sobolev embedding; the remaining inclusions in
(B.2.1) are trivial. �

All other inequalities involving Sobolev spaces have their counterpart in
the weighted setting; we shall in particular need various weighted versions of
the Moser inequalities. The reader should note the different weights for the
members of Equation (B.2.8) below — this shift of weights in this inequality
is the key to our handling of nonlinear equations.

Proposition B.2.2 Let Ω = Hτ0 , or Ω = Hλ,τ0 , 2x2 < x0, and let H α
k =

H α
k (Ω), etc.

1. There exists a constant C = C(α,α′, β, k, x0) such that, for all f ∈
H α′

k ∩ C α
0 and g ∈ H

β
k ∩ C

α+β−α′
0 , we have

‖fg‖
H

α+β
k

≤ C
(
‖f‖

Cα
0
‖g‖

H
β
k
+ ‖f‖

H α′
k
‖g‖

C
α+β−α′

0

)
. (B.2.4)

Further, ∀ |γ| ≤ k,

‖xγ1Dγ(fg)− (xγ1Dγf)g‖
H

α+β
0

≤ C

(
‖f‖Cα

0
‖g‖

H
β
k
+

‖f‖
H α′

k−1

(
‖x∂xg‖

C
α+β−α′

0

+

r∑

i=2

‖Xig‖
C

α+β−α′

0

))
,(B.2.5)

where the vector fields X are defined in Equation (B.1.4).

2. Let F ∈ Ck(Hτ0 × R
N ) be a function such that for all B ∈ R

+ there
exists a constant C1 = C1(B) so that, for all p ∈ R

N , |p| ≤ B, we
have

‖F (·, p)‖
C 0

k (Hτ0 )
≤ C1 .
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Then for all α < 0, β ∈ R, and B ∈ R
+ there exists a constant

C2(B, k, α, β, x0) such that for all RN -valued functions f ∈ H
α−β
k (Ω)

with ‖xβf‖L∞(Ω) ≤ B we have

∥∥∥F (·, xβf)
∥∥∥

H α
k

≤ C2(1 + ‖f‖H α−β
k

) . (B.2.6)

Further, if F has a uniform zero of order l > 0 at p = 0, in the sense that
for all B ∈ R there exists a constant Ĉ(B) such that for all |p| ≤ B and
0 ≤ i ≤ min(k, l),

∥∥∥∥
∂iF (·, p)
∂pi

∥∥∥∥
C 0

k−i(Mx0)

≤ Ĉ(B)|p|l−i , (B.2.7)

then for all α ∈ R, β ≥ 0, there exists a constant C3(Ĉ, l, k, α, β,B) such

that, for all f ∈ H
α−lβ
k (Ω) with ‖f‖L∞(Ω) ≤ B, we have

∥∥∥F (·, xβf)
∥∥∥

H α
k

≤ C3‖f‖H α−lβ
k

. (B.2.8)

Remark: The hypothesis (B.2.7) will hold if F is e.g. a polynomial in p
with coefficients of pj vanishing for j < l, and being functions belonging to
C 0
k for j ≥ l.

The proof can be found in [20] Proposition A.2.
We have the following sharper version of (B.2.4)-(B.2.5):

Proposition B.2.3 Let Ω = Hτ0 , or Ω = Hτ0 , 2x2 ≤ x0, and let H α
k =

H α
k (Ω), etc. There exists a constant Cs = Cs(α, β, k) such that, for all

f ∈ H α+β−α′ ∩Bα
0 and g ∈ G

β
k ∩ C α′

{x=0},0 we have

‖fg‖
H

α+β
k

≤ Cs(‖f‖Bα
0
‖g‖

G
β
k
+ ‖f‖

H α+β−α′‖g‖Cα′

{x=0},0
) , (B.2.9)

Moreover it also holds that

∀|γ| ≤ k , ‖xγ1Dγ(fg)− (xγ1Dγf)g‖
H

α+β
0

≤ C

(
‖f‖Bα

0
‖g‖

G
β
k
+ ‖f‖

H
α+β−α′

k−1

(
‖x∂xg‖Cα′

0
+

r∑

i=2

‖Xig‖Cα′
0

))
,

(B.2.10)

where the vector fields X are defined in Equation (B.1.4).

212



Remark B.2.4 A useful, though less elegant, inequality related to (B.2.9)
is

∀ |γ+σ| ≤ k ‖xγ1(Dγf)xσ1(Dσg)‖
H

α+β
0

≤ Cs(‖f‖Bα
0
‖g‖

G
β
k
+‖f‖H α

k
‖g‖

C
β
0
) .

(B.2.11)
The proof can be found in [20] Proposition A.3.
Similar results can be proved in weighted Hölder spaces:

Lemma B.2.5 Let Ω = Hτ0 , 0 < x1 ≤ x0, or Ω = Hλ,τ0, 2x2 ≤ x0, and let

C α
k = C α

k (Ω). Let f ∈ C α
k ∩ C

β
0 and g ∈ C

γ
k ∩ C δ

0 with α + δ = γ + β = σ.
Then we have fg ∈ C σ

k and

‖fg‖Cσ
k
≤ Ci(‖f‖Cβ

0
‖g‖C γ

k
+ ‖g‖

C δ
0
‖f‖Cα

k
) , (B.2.12)

The proof can be found in [20] Lemma A.4.

We have the following C
β
k equivalent of the second part of Proposi-

tion B.2.2, with a similar proof, based on Lemma B.2.5:

Lemma B.2.6 Let F be a function satisfying the hypotheses of point 2 of
Proposition B.2.2, with a uniform zero of order l in p in the sense of Equa-
tion (B.2.7). Then, for any ǫ > 0, β ∈ R and f ∈ C

β
k ∩ L∞ we have

F (., xǫf) ∈ C
β+lǫ
k , and there exists a constant C depending upon ‖f‖L∞

such that
‖F (., xǫf)‖

C
β+lǫ
k

≤ C(‖f‖∞)‖f‖Cβ
k
. (B.2.13)
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Appendix C

Some classical results

Theorem C.0.7 (Gronwall’s Lemma) Let f, g, ϕ, ψ be four positive and
continuous functions on [a, b] ⊂ R, a < b, such that

f(t) ≤ g(t) + ϕ(t)

∫ t

a
f(s)ψ(s)ds . (C.0.1)

Then

f(t) ≤ g(t) + ϕ(t)

∫ t

a
ψ(u)g(u)e

∫ t
u
ϕ(s)ψ(s)dsdu . (C.0.2)

Proof: Set F (t) =
∫ t
a f(s)ψ(s)ds and multiply (C.0.1) by ψ. We have:

f(t)ψ(t) ≤ g(t)ψ(t) + ϕ(t)ψ(t)

∫ t

a
f(s)ψ(s)ds

i.e.
F ′(t)− ϕ(t)ψ(t)F (t) ≤ ψ(t)g(t) .

Multiply this last inequality with the positive function e−
∫ t
a ϕ(s)ψ(s)ds and

obtain

G′(t) ≤ ψ(t)g(t)e−
∫ t
a ϕ(s)ψ(s)ds with G(t) = F (t)e−

∫ t
a ϕ(s)ψ(s)ds .

Since G(a) = F (a) = 0, by integration, we have

F (t)e−
∫ t
a
ϕ(s)ψ(s)ds ≤

∫ t

a
ψ(u)g(u)e−

∫ u
a
ϕ(s)ψ(s)dsdu ;

i.e. ∫ t

a
f(s)ψ(s)ds ≤

∫ t

a
ψ(u)g(u)e

∫ t
u ϕ(s)ψ(s)dsdu,

214



which is multiply with ϕ(t) afterwards adding g(t) to each member of the
resulting inequality to:

g(t) + ϕ(t)

∫ t

a
f(s)ψ(s)ds ≤ g(t) + ϕ(t)

∫ t

a
ψ(u)g(u)e

∫ t
u ϕ(s)ψ(s)dsdu .

By hypothesis, the result follows. �

Theorem C.0.8 (Arzela-Ascoli Theorem) Suppose that (fk)k∈N is a sequence
of real-valued functions defined on R

n such that there exists a positive con-
stant M satisfying

sup
k∈N, x∈Rn

|fk(x)| < M .

Assume further that the functions {fk, k ∈ N} are uniformly equicontinu-
ous.Then there exists a subsequence (fkj)j∈N ⊆ (fk)k∈N and a continuous
function f such that (fkj)j∈N converges to f uniformly on compact subsets
of Rn.

For the proof of this theorem, we refer the reader to [] page ...

Theorem C.0.9 (Interpolation Theorem for Lp−norms) For any function

f ∈ W s,p and any i ∈ [1, s] ∩ N, set ‖∇if‖p =
(
∑
|α|=i

‖Dαf‖pLp

)1/p

. Let

1 ≤ r, p ≤ ∞, s ∈ N. There exists a constant c > 0 such that

‖∇ju‖q ≤ c‖∇su‖j/sp ‖u‖1−j/sr , forall f ∈W s,p,

where j ∈ {0, 1, . . . , s} and 1
q =

j
s
1
p + (1− j

s)
1
r .

The proof of the interpolation theorem can be found in [46], page 38.

Theorem C.0.10 (Trace Theorem) Let U be an open subset of Rn. Assume
that U is bounded and ∂U is C1. Then there exists a bounded linear operator
T : W 1,p(U) −→ Lp(∂U) such that:

1. Tf = f |∂U if f ∈W 1,p(U) ∩C(U),

2. ∀f ∈ W 1,p(Ω), ‖Tf‖Lp(∂Ω) ≤ C‖f‖W 1,p(Ω), with the constant C de-
pending only on p and U .

The proof of this theorem can be found in [33] page 258.
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Theorem C.0.11 (Weak compactness). Let X be a reflexive Banach space
and (xn)n∈N a sequence of elements of X. If (xn)n∈N ⊂ X is bounded, then
there exists a subsequence (xnj )j∈N ⊂ (xn)n∈N and x ∈ X such that

xnj ⇀ x
j−→∞

.

For the proof of this theorem, we refer the reader to [33] page 639
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[16] P.T. Chruściel and E. Delay, Existence of non-trivial asymptotically
simple vacuum space-times, Class. Quantum Grav. 19 (2002), L71–L79.
MR 1902228 (2003e:83024a)

[17] , On mapping properties of the general relativistic constraints op-
erator in weighted function spaces, with applications, Mém. Soc. Math.
de France 94 (2003). MR 2031583 (2005f:83008)
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Annales de la Faculté des Sciences de Toulouse XL, No3 (2002), 351–
376.
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Mills-Higgs, Annales de l’Institut Henri poincaré No4 (2003), 385–411.
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