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Résumé

Dans la premiere partie de la these, on démontre ’existence de solutions dans
un espace de Sobolev a poids de probleme de Cauchy hyperboloidal pour
une classe de systemes d’équations aux dérivées partielles symétriques hy-
perboliques non linéaires, compatibles avec les équations d’Einstein-Maxwell
en dimension d’espace-temps supérieure ou égale a 7. De méme, on démontre
pour de tels systemes 'existence des solutions polyhomogenes au voisinage
de l'infini isotrope en dimensions d’espace-temps n + 1 > 9. Il en découle
pour ces dimensions, que les solutions globales des équations couplées Einstein-
Maxwell du vide obtenues par évolution des données initiales petites, station-
naires en dehors d’un compact sont polyhomogenes au voisinage de l'infini
isotrope. Dans la seconde partie de la these, sous des hypotheses de nullité
sur le terme source, on démontre un résultat d’existence et d’unicité pour
une classe d’équations d’ondes semi-linéaires dont les données initiales sont
prescrites sur le cone lumiere futur de sommet 'origine des coordonnées
dans 'espace-temps de Minkowski. Les hypotheses imposées sur la partie
non linéaire du systéme considéré garantissent que 1’ épaisseur du voisinage
du cone future tout entier sur lequel nous obtenons notre solution ne s’annule
pas lorsqu’on atteint I'infini isotrope. Le résultat obtenu est appliqué aux
applications d’ondes sur Iespace-temps de Minkowski R"*avec n > 3.

Mots clés:

Equations d’ondes, Equations d’Einstein-Maxwell, Jauge harmonique, Jauge
de Lorenz, Problemes de Cauchy hyperbolidaux, Problemes de Cauchy Car-
actéristiques, Espaces de Sobolev a poids, Solutions polyhomogenes.
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Abstract

In the first part of the thesis, we prove propagation of weighted Sobolev
regularity for solutions of the hyperboloidal Cauchy problem for a class
of quasi-linear symmetric hyperbolic systems, under structure conditions
compatible with the Einstein-Maxwell equations in space-time dimensions
n + 1 > 7. Similarly we prove propagation of polyhomogeneity in dimen-
sions n +1 > 9. As a byproduct we obtain, in those last dimensions, poly-
homogeneity at null infinity of small data solutions of vacuum Einstein, or
Einstein-Maxwell equations evolving out of initial data which are stationary
outside of a ball. In the second part of the thesis, we prove existence and
uniqueness of solution of a class of semi-linear wave equations with initial
data prescribed on the light-cone with vertex the origin of the Minkowski
space-time. The nonlinear term is assumed to satisfy a nullity condition
which guarantee that the neighborhood of the initial cone on which we ob-
tain our solution does not shrink to zero as one approaches infinity. This
result is applied to wave maps on Minkowski space-times R"*! with n > 3.

Keywords

Wave equations, Einstein-Maxwell equations, Harmonic gauge, Lorenz gauge,
Hyperboloidal Cauchy Problem, Characteristic Cauchy problem, Weighted
Sobolev spaces, polyhomogeneous solutions.
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General Introduction

In this thesis, we study the asymptotic behavior of the solutions of Cauchy
problems for systems of second order hyperbolic equations. In the first
part, we are interested with a class of quasi-linear wave equations compat-
ible with the coupled vacuum Einstein-Maxwell equations in harmonic and
Lorenz gauges. The Cauchy data which are considered for such systems
are prescribed on a hyperboloid . and are polyhomogeneous (i.e. around
infinity, they are expandable in terms of 77 log’ r rather than in terms of
r=7). We intend to prove an existence and a uniqueness theorem on a fu-
ture neighborhood of the initial data hypersurface by guaranteeing that the
thickness of this neighborhood does not shrink to zero as one approaches
infinity and that the asymptotic properties of the initial data are preserve
by evolution near infinity. The motivation of studying such problem arises
from the fact that in [1], L. Andersson and P. T. Chrusciel have constructed
a large class of solutions of the constraint of the Einstein equations which
are polyhomogeneous. This leads naturally to the question, whether poly-
homogeneity of initial data is preserved under evolution dictated by wave
equations. The results of [19,20] constitute a first step towards an affir-
mative answer to this question. In these references, the authors consider
a hyperboloidal Cauchy problem for semi-linear scalar wave equation and
wave map equation on Minkowski space-time and, using the techniques of
conformal transformation they prove that there exists a neighborhood (with
a uniform thickness) of the whole initial hyperboloid on which existence in
weighted Sobolev spaces (the weight being choose in order to control the sin-
gular behavior of the data near conformal boundary) and polyhomogeneity
of solutions with appropriate polyhomogeneous initial data is obtained. We
adapt this method to the quasi-linear case. First, by following step by step
the proof of Theorem 3.7 of [19] (semi-linear case), we generalize this theo-
rem to quasi-linear case (see Theorem 1.1.1 page 8): If the coefficients and
the initial data are polyhomogeneous, if the source terms depend upon the
unknown function as well as its first order derivatives and satisfy the N L—



condition (which is compatible with the Einstein-Maxwell equations), then
the solution is polyhomogeneous provided that it belongs to some spaces
of differentiable functions with singular behavior on the boundary, these
singularities being controlled with appropriate weight. Next, to conclude
that polyhomogeneous Cauchy data lead to polyhomogeneous solutions of
the coupled Einstein-Maxwell equations, we need to show that one can con-
struct solutions of these equations which satisfy in a neighborhood of null
infinity the necessary estimates for the polyhomogeneity theorem. It turns
out that the estimates on the global solutions obtained in [37,38] in the
case of space dimension n = 3 and in [40] in high space dimensions case
are not sufficient to apply Theorem 1.1.1. To obtain those properties, we
consider a more general quasi-linear wave equation (see Equation (4.1.13)
page 85) and after a gauge transformation which transforms the hyperboloid
s into relatively compact sets, by the means of energy momentum tensor
contracted with a suitable vector field, we establish some energy inequalities
on the slices {7 = const}. Using afterwards these energy estimates, we solve
locally (in time) the transformed equation on a future neighborhood of the
initial data hypersurface {7 = 79}, obtaining at the same time the needed
estimates for our polyhomogeneity theorem. In that way, we have proved
that, hyperboloidal Cauchy data in weighted Sobolev space lead to solutions
of the vacuum Einstein-Maxwell equations near null infinity in space-time
dimension n + 1 > 7 odd or even and that polyhomogeneous hyperboloidal
Cauchy data for the same partial differential equations lead to polyhomoge-
neous solutions near £ in space-time dimensions n + 1 > 9. In those last
dimensions, as a consequence of our approach, we obtain that the global so-
lution of the Einstein-Maxwell equations obtained by J. Loizelet in [39, 40]
by evolving small initial data which are stationary out of a compact set are
polyhomogeneous near null infinity.

Because of its applications to physical phenomenon, notably to the the-
ory of general relativity (see [27,29,47] and the references therein for the
importance of characteristic Cauchy problem in GR), it would be very inter-
esting to state and prove the characteristic analog of the results mentioned
above. In other words, one can enquire whether polyhomogeneous Cauchy
data prescribed on one or several intersecting characteristic hypersurfaces
lead to polyhomogeneous solutions of the Einstein equations. The second
part of the thesis can be seen as a first step towards the resolution of this
problem. Indeed, in the second part of the thesis, we consider a class of
semi-linear wave equations for which the data are given on the light cone
with vertex the origin of the canonical coordinates in the Minkowski space-
time. By assuming that the nonlinear term satisfies an appropriate structure



condition and that the prescribed data on the cone satisfy the hypothesis
of those of [27] near the tip of the cone and that near {r = oo} they are in
some weighted Sobolev spaces, we state and prove for the considered prob-
lem, an existence and uniqueness of solution theorem on a neighborhood
of the whole future light cone. The approach which is used here is a good
combination of the techniques of conformal compactification of the first part
of the thesis, the techniques of local solutions developed by M. Dossa in [28]
and those of iterative scheme of [42]. This is achieved in two steps. First,
from the results of [28] we obtain a local solution of the problem at hand
near the tip of the cone and following [6], we use this local solution to re-
duce the transformed characteristic Cauchy problem to characteristic initial
problem with data prescribed on two intersecting characteristic hypersur-
faces. Next, as in [5] we use the method of iterative scheme introduced by
A. J. Majda in [42]. The solution of our problem is obtained as a limit of
solutions of linear Goursat problems on a neighborhood of the entire cone
which intersect the future null infinity ..



Part 1

Solutions of quasi-linear
wave equations
polyhomogeneous at null
infinity in high dimensions



Introduction of the first part

A problem of current interest is the asymptotic behavior of solutions of hy-
perbolic equations in the radiation zone. For large (however, not for all) sets
of initial data, this question can be reduced to one where the initial data are
given on a Cauchy surface that resembles a hyperboloid in Minkowski space-
time. In recent works [19,20], polyhomogeneity of solutions of such Cauchy
problems, with polyhomogeneous initial data, has been proved for a large
class of semi-linear symmetric hyperbolic systems. The object of this work
is to extend those results to quasi-linear equations satisfying certain struc-
ture conditions which are compatible with the vacuum Einstein equations,
or with the Einstein-Maxwell equations, in space-time dimensions n+1 > 9.

A special case of our results is Theorem 5.0.12 below, where polyhomo-
geneity at null infinity of small data global solutions of the Einstein-Maxwell
equations, evolving out of initial data which are stationary outside of a com-
pact set, is established; this is perhaps the most significant result in this
work. For clarity we repeat the relevant part of that theorem here:

Theorem 0.0.1 In dimensions n + 1 > 9 the global solutions of Finstein-
Mazwell equations constructed in [39,40] out from small initial data station-
ary outside of a compact set are polyhomogeneous at null infinity.

The polyhomogeneous expansions above are in terms of powers of log r
and negative integer powers of r in odd space dimension, while one has
powers of log r and negative half-integer powers of r in even space dimension.

Theorem 0.0.1 should be compared with [9], where even space-time di-
mension n+1 > 6 is assumed, where initial data Schwarzschildian outside of
a compact set are considered, and where solutions which are smooth at null
infinity are obtained. The methods of that last reference completely fail in
odd space-time dimensions. Furthermore, in odd space dimensions, generic
initial data which are only stationary, as opposed to Schwarzschildian, are
likely to be polyhomogeneous, but not smooth, at null infinity, and generic



such initial data are expected to be too singular to be covered by the ap-
proach in [9]. We also note the analysis in [4], which implies smoothness at
null infinity of ezactly stationary vacuum or electro-vacuum space-times, in
even space-dimension, in space-time harmonic gauge. But the dimensions
covered in [4] are precisely those not covered by the evolution theorems
in [2,9].



Chapter 1

Polyhomogeneous solutions

The purpose of this chapter is to state and prove the main theorem of
the first part of this thesis. In order to have a complete presentation (we
need a self-contained document) of this theorem on the polyhomogeneity of
solution of a class of quasilinear hyperbolic systems of first order, we choose
to give a detailed presentation of the spaces of smooth and polyhomogeneous
functions with their properties in Appendix A page 190. We also refer the
reader to this Appendix for notations and definitions involved in this chapter.

1.1 The main theorem

Let b = (11,19) and set
f = (1/}790) ) .f:: (¢1,$¢271’90) . (111)

We shall say that a function G satisfies the NL-condition if there exist
N, pi,qi,m; € N* and functions H;(z,w) 427{%<$<y}—polyh0m0geneous m z
with a uniform zero of order m; in the variable

w o= (f,x23xf,$2ayfa$aAf)
= (Y1, 20,20, 2°0, f, 270y f, 204 f)

such that N
G = Zaj_pi‘sHl-(z,xq“sw) , (1.1.2)
i=1
with, fori=1,...,N,
pi — :
m; > 7 (1.1.3)
4i



Our first main result is the following:

Theorem 1.1.1 Let % be defined in (A.2.1), suppose that p € Z, q,1/ €
N*, k € NU {oo}, and let

¥ = (Y1, 12)
and o, with

U1 € Coargypoo VCoosiro V2P € cacyer  (L14)

be a solution on % of the following system of equations:

{ Oy + Bopp + Boy) = Loy + Loyt +a+ Gy (1.1.5)
Oz + By + Byyt) = Ly + Lyyt) + b+ Gy 7
with the operators
Lij = Lijj0a + xLY,0, + 2 Lj;0, (1.1.6)
satisfying
0 790 H H Iz )
Lop € T Focasyy » Ly Loy + Ly € iosasy) (L.L.7)
(no symmetry hypotheses are made on the matrices ij ), while
74 0 /0 0
By € Coo ) + 2°Hycpcyy» Bows By, Bup € Hpcpeyy (1.1.8)
—1+40 /0
abea MG (1.1.9)

90|x:y =€ 3371+6527{(;:0} ) w|x:y =y e $71+642/{(;:0} . (1.1.10)
If the non-linear terms G, Gy, satisfy the NL-condition, then
§ o— )
(1,0) € Fpcacyy X ¥ Focpayy
more precisely

b e mé%%gmgy} +%i:0} 7 (1.1.11a)
o€ ‘Td_lﬁ{{dmzo} +x5_1y‘52{{%§z§y} . (1.1.11b)

In particular for any T > 0 we have
§ o— §

which shows that the solution is polyhomogeneous with respect to {x = 0}
on{y >}



Proof: This theorem is a generalization of the semi-linear case, Theorem
3.7 of [19], and we will follow step by step the proof given there.

By hypothesis we have
By, = éws@ -+ Bsiso with li’w, € Coo(%) and Biw € JZZ{%SxSy} )

We rewrite the system (1.1.5) as:

8y90 + é(p(p(p = Cp
1.1.12
{ O = Cap | )
with
{ ¢p = Lppp+ Loyt + a+ Gy — Bl — Boytp (1.1.13)
¢y = Lpg1p + Lyypt) + b+ Gy — Byop — Byyt)

The first step in the proof is to prove the following:

Lemma 1.1.2 Under the hypotheses of Theorem 1.1.1, we have:

Y e Cg{f)%xﬁy},oo + 536527{%99} + ‘Q{{i/=0} (1.1.14a)
P EClanioy oo T8 Y pepeyy T2 )y (11.14D)

Proof: Integration of the second equation of (1.1.12) yields:

Blevty) = bty + / e (5,04, y)ds
Yy

o

= o)+ [ dsot s
Y
+/ {Lyppp + Lyyt) — Bypo — Byyth + Gy} (s,07,y)ds .
Y

By hypotheses, we have: zp € sz{‘;:()} and b € 2012 we

{0<z<y}’
deduce from Proposition A.6.2 that

L(b) = —/y b(s, v, y)ds € a:‘sxzf{%gxgy} + y‘sﬂfézo}.

°

If we set 1o png =1 + I1(b) then, we have:

¢ = wo,phg + 1/16,1 + 1/]672 )



with
[ 5 68 5
Yophg € T A o<yey Y Fyy + Fp gy (1.1.15a)

Ye1 1= / {Lypp + Lyyt) — By — Byyib} (s, v y)ds  (1.1.15b)
y

/ Gy(s, v, y)d (1.1.15¢)

Since the space %{Bix<y} « 18 invariant under the operators 0a, x0, and

x0y, and since we have the embedding

JZi{OS;BSy} - Cg{o<x<y} oo

one obtains that

Lyop, Lyyth, Bypps Bypth € Cicacyy oo (1.1.16)
and from Lemma A.6.3, we deduce that:

Ve € Choe ey oo - (1.1.17)
On the other hand, recall

N

Gy(z) = 3 o P Hyy (7, 29%).
1=0

Let € > 0, if we apply (A.3.5) page 196 to Hyy, with k =1 =0, one obtains:

—p; 0= o
o728 Hig (2, 698 ey = NP Hig (2,055 250) o

< Cl‘_piéuxqié_miixmiiw”zlgo(@/)

< Cgpitami)i—e
We recall that from (1.1.4) we have w € %{B%Ky} o(%) which implies that
xw is in L°(%); thus,

2P0 Hyy (2, 2990) = O (g ~Pitaims)o—e) (1.1.18)

and

N
x
Yeo = /Zx_pi‘us(s,y,vA,sqi‘sw)ds

Y oi=0 O(Sfpitﬂ»qimiéfe)
N

— Z {O(x(_pi+Qimi)5—5+1) + O(y(_pi+Qimi)5—€+1)}‘
i=0

10



Since (—p; +q¢m;)0 +1 > 0, we have
Yeo = O(@ )+ 0@y ) = O(z™)
and we obtain that,
Y — Yophg = O(x™°), (1.1.19)
1.€.
6 70 6 70 4
¥ € %{ngéy},o ta ”Q{{Oéwéy} TY d{yzo} T JZ{{yzo}
0 6 70 4
C Chocascyyo T2 Hozozyy T Hy—oy-

We would like to have the same estimations on the first order derivatives of
Y — Yo phg- From (1.1.16) and (1.1.18) we have

205(Y — Yophg) = T[Lyep + Lyptp — Bypw — Byyth +Gy] € G5, -
i.€.
xaﬂ:(w - wo,phg) = O(x_e)7 Ve > 0.
We have,
yay(&w) = yay [LMDQO + Liﬁdﬂw — BWP()D — wa -+ b + Gw] .
Again (1.1.16), gives
YOy Ly + Lyyth — Byop — Byyd] € €5 om0
and from (1.1.8) we have

148 68 —1+6
yoy(b) € 27 Ay cue iy C 5N oo -

On the other hand,

N

y0y(Gy) =Y a7 P0yd, (Hyy(z,2%°w)) .
i=0

Recall that

w= (f, 220, f,2*0, f, 20Af) = (wj)]lil
thus
N
¥y (Gy) = Doy Hip) (2" )
1=0
- OH;
+ ; ; x—(pi—qi)aaTz;ﬁ(z, 2¥0w)ydy (w;) (1.1.20)
= A+B.

11



A can be estimated as follows: Ve > 0,

0 5 =~ —p:s qi0—
P 0, o) (2.a%0w)| €GP Hyg(a® Fa )y
< C_'x—pié”x%CS—mLixm—inanéo
< Qg pidtaimid—c

Which implies that,

N
A= Z O(z~Pid+amio=€y — O (717 since — pid + qym;d > —1.
i=1

If we use again the hypothesis (A.3.5) with k =i =1, we find that

OH; s
Ta(zat ) = O
For
J# 1 yaywj € %{E%QTSy}vOO
thus,
8 N
ZZ —(pi—qi)6 T (2, 2%0w)yd, (w;) = ZO(x(_Pi+Qimi)5_€) (1.1.21)
i=0 j=2 Wi =0
We can then write
B =0z 7%) 4+ K(2)(ydy, )i (1.1.22)

where IC is a sum of terms each of which being of order O(x(*pﬁq;mm%)
with p;, ¢; and m; satisfying (1.1.8). We obtain finally the equation

0u (YD) + K(ah) (ydyr) = O(a™'7°), (1.1.23)
and Lemma A.2.4 apply to this equation gives
YOy = O(z™°). (1.1.24)
Since 04 can be estimated in the same way, we have shown that:
() 6 70 4
v € = "Q{{OS:USy} TY “Qf{y:O} + “Q/{y 0} T %{ng@} (%)

= xé%%gxgy} + "(Z{{i/:()} + %{ng<y} 1(%)
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We pass now to the analysis of o .
 can be calculated as:

Y
SO(-CU,’UA,Z/) = R(.%',UA;y,.CL‘)(,D(l',UA,J}) +/ R(l‘,’l}A; S,l‘)C@(.f,’l)A,s)dS
T

(1.1.25)
where R(x,v?;y,y1) is the family of resolvents (smooth up to boundary in all
variables) of the family of ODE’s Oyp(z,v4;y) = By ,(z, v 9)0(z, 043 y),
with parameters (as,vA) and with initial value at y1. By hypothesis we have
oz, v, z) = H(z,01) € x_l‘*"sxzf{‘sxzo} which implies that the first term
R is in x 11079

{z=0}"
On the other hand we recall that: c, = Lopp + Loyt +a + Gy — Bg@go —
By .
By hypothesis, a € a:_l““s;zf{%gxgy}, and from (1.1.7) we have, L, €

d 70 )
T ”Q{{nggy} C ‘K{nggy}voo . Thus,

A <—1+6
(Lpp0a + xL5,0. + LY ,0,)p € %{Oéiéy},oo )

To estimate the terms of Ly, we proceed in a similar way, using the

supplementary hypothesis that ¢ € ‘K{ng <y and obtain that

Loyt € sy ol ).

]?[n the other hand, Biwgo € %{B;iz‘;}’oo(%), Byt € ‘K{E%xgy}’l(%).
ow,

N
Go(z) = Z x PO H; (2, 290 2)
=0

and as in (1.1.18) we have :
N
Gp =Y O(alPHam)i=e) — O(z~1=4) Ve > 0. (1.1.26)
=0

The last equality follows from the following

1

1
pl_i(; = ¢;m; —p; > —5 and since ¢;m; — p; and

Remark 1.1.3 m; >
—% are integers, we have, g;m; —p; > —% +1 = (gm;—p;)d > —1+06.

Thus, Ve > 0, we can write , ¢, = Cp phg + Cp,e With
6—1 _,6
Cophg €T ‘Q{{Ogmgy} (1.1.27)

13



and

Cpe = O(x107¢) (1.1.28)
If we come back to the expression of p we have:
y
plety) = Bty oot o) + [R5 e mgle ot s) ds
x
*=%0,phg
Yy
+/ R(ZE,UA;S,.’L‘)C%G(:L‘,UA,S) ds.
€T

:O(x—l+5—e)

Now, we have
R € "'y

Ry phg € :L‘(S_IJZf{%SxSy} thus, from Proposition A.6.2, we have

Iy (Rey phg) € waily%%gxgy} + xéd{izo}'

Therefore,

Y — Qo,phg = O(z~1107)

with
6—1 76 6—1 )
Pophg € 27 Fpgp T YL ooy
At this stage we have proved that

v € xéﬂf{%ﬁméy} + yaﬁf{izo} + ‘%{52/:0} + Cg{%gzﬁy}l(%) (1.1.292)

p € Aoy + TS fneyy + Coatty o (1.1.29b)
As in the proof of theorem 3.1 of [19], we have the following

Lemma 1.1.4 Under the hypothesis of the theorem 1.1.1, the fields

® (0
- Oap | . . | Oay
YOy Yo

satisfy a system of equations of the form (1.1.5), with coefficients L;; , Bij
and sources a, b, Gy, , Gy satisfying the hypothesis of the main theorem,

with 7’21 < (%{E;iﬁy}m * Cg{f)%:cﬁy}ﬁ)(%) ) Y2, P € %{E;iﬁy}»w(%) and

Pliy=a} € x—1+6£¢{6$:0}, Pliy=a} € ﬂ{émzo} :

14



Proof: The original system can be written as:

Oyp = Cp 1= Ccp — EW,QO
. 1.1.31
{ e (1.131)

Thus, differentiating @ and ¥ leads to:

écp Cw
. 8145@ 7 3A6¢
= h = . 1.1.32
Oy? x03C and - O cy + 20zcy (1.1.32)
Co + YOyCy YOy cy

We want to obtain a system of the form

82/9? + Bopp + Bwﬂ% = Lppp + ﬁwﬂ% + @ + C?@
Oz + Byop + Byt = Lypp + Lyyth + b+ GJ)

with L35 and Byj having the same structure as in (1.1.6)-(1.1.7), and
G¢, é{, satisfying the NL — condition . Following the proof of Lemma 3.5

of [19], one easily obtains the coefficients [,fj, Bij, a and b of the linear
terms, and verify that they are in the right spaces. It remains to show that

the non-linear terms satisfy the NL — condition. We have

Gy, Gy
= 0BG, = 0BGy
G, = ©0,G, and Gy = Gy + 20,y (1.1.33)
G, + y0,G, Y0y Gy
We write,

f = (11; = (1/;17%;2)7 @)7 and we set f: = (1/;1)1:1;27‘7:95) and w := (f? 1"28:6.]2:7 $2ayf7 .TaAf)

and we notice that, all the terms in w are in w. Thus, a function of w can
be considered as a function of w. On the other hand,

dpw = (98(f),7°0.(98f),2*0,(0nf),204(5))

= A'w

where the coefficients of the rectangular matriz Ay are all equal to 0 or 1,
and 'w is the transpose of w . Similarly,

yayw = (yay(f)7 3328x(yayf)a $28y(yayf) - $28yf7 xaA(yayf))
= Atw

15



where again the coefficients of the rectangular matriz As are all equal to
—1,0 or 1. Continuing this way,

2O,w = (20,(f),x(@0uf) + 2205 (x0: f), 22°0y f + 220y (205 ), 20Af + 204 (20, f))
= As'w

where the coefficients of the rectangular matriz As are all equal to 0, 1 or
2. Now, we have

N
08{Go(2)} = D a "% (0pH,)(z, 2% w)
i=0
N 12
H;
+sz—(m qz)d%wz;p(z 290 w)Opw
=0 j=1
N
= Zx*pi‘s(aBHw)(z,xq“sw)

1=0
33 el sty (4
1=0 j=1
= A+B. (1.1.34)

From the definition of 427{0<$<y}-p0lyh0mogeneous in z with a uniform

zero of order £, we conclude that A has the desired form.

From (A.3.5) of Definition A.3.8 Hie i 4&7{%<z<y} -polyhomogeneous in

’Bw

z with a uniform zero of order m; —1 in w and then %H“” (2,299 )(Alt&?)

18 ,527{0<$<y} -polyhomogeneous in z with a uniform zero of order m; in w, this
allows us to conclude that B has the desired structure, thus OpG, satisfies

the NL — condition i.e. 0pG, = Z T 7PN, (x%0W) where the Hi,'s are
A

(0<a<y} -polyhomogeneous in z wzth a uniform zero of order m; in w.

The same analysis holds for

N
y0y(Gy) = Y a P (ydyHy)(z, 2% w)
1=0
N 12

0H,;
+ZZIE (Pi—ai)o S w(z 20 w)ydy (wj).
wj

=0 j=1

16



As far as the term x0,G, is concerned we notice that it has supplementary
terms:

N N
:Cax(Gg,) = Z_p(;x Pid q/,(Z 240 )+Z$_pi5($3xﬂw)(z,l‘q"6w)
=0 i=0

P 5T o) (w0,

szl

+ZZQ53: (pi q"s%Hw( 29%w)w wy-

=0 j=1

The above analysis holds for each term of this expression, and we conclude
that G¢ satisfies the NL — condition. Similarly, Gd) satisfies the NL —
condition.

The last step in the proof of this lemma is to show that the restriction
to the hypersurface {y = x} of ¢, and 775 are in the right spaces. We proceed
exactly as in [19]. The difference here is that we have supplementary terms
coming from the nonlinearity of the problem at hand. We have to make sure
that these terms will have the right structure.

For the components @, 1, dap, and 041 this is again hypothesis (1.1.10).

Therefore it remains to show that x0,p, YOy, x0, Yoy € x 1+5¢52f{‘; 0}
From the second equation of (1.1.31), we have
. y
vlav,y) = o)+ [ eols,op)ds
which implies that
0yt (,v,y) = Byt (y,v) — cy(x, v, y) +/ Oycy(s,v,y)ds . (1.1.35)
y
Now, we take the limit x — y in (1.1.35) to obtain
Yoyl = y(Oy0) — eyl - (1.1.36a)

Similarly from

Y
90($7UA7y) = QD(:E7UA7£E)+/ é@(x7UA7S) dS .
— T

la0?)

17



we find (again for x =y)
20yl r = 2(0pp) — wéy|.7 - (1.1.36b)

Equations (1.1.5) further give

Y(OuY)|.r = yeyls (1.1.36¢)

Y(Oyp)lr = ylyls - (1.1.36d)
The terms y(8,0)(y,v?) and y(0:@)(y,v?) in (1.1.36a)-(1.1.36b) are in
y*H‘S,Qf{‘;:O}. Now,

yécp‘y = y(LgogoSO + chzp¢ +a+ ch — By — Bsmbw)’ﬂ .

The restrictions to .7 of the terms a, B,,p, Byyt and the derivatives of
© and ¥ with respect to v3, give a contribution which is in y*H‘Sd{‘ZZO}.
As far as the restriction to . of G is concerned, we use Lemma A.3.9
and obtain again a contribution which is in y*H‘S;zi{‘;:O}. The remaining
terms are of the form y(0yv)|.», y(Oyp)|.#, Y(0x)|., Y(Onp)|.sr multiplied
by coefficients from o/ The same analysis applies to ycy|.», so that we

{y=0}
can write the system of equations (1.1.36) as
y(Oy )|~
Y(Oyp)| —1+6 /8
Id —yK € e o -
W=V Yoy | SV o0
Y(0rp)|

Here K s a matriz with components in JZZ{(;:O}. There exists € > 0 so that

for 0 < y < € the matriz Id — yK has an inverse in 1d + y&zf{‘;y:o}, and
polyhomogeneity (with appropriate power structure) of the initial data for
(@,1) follows. O

Thus, applying Lemma 1.1.4 , we have again (1.1.29) with ¢ and 1)
instead of ¢ and ¢ i.e.

b€ Ay + VA gy + Aoy + %{gngyM (1.1.37a)
g e gy + T Y fcueyy + (g{f);alcg/},o (1.1.37b)

and from Proposition A.3.7 one obtains that

V€T Focpeyy TV Km0y + Fymop + sy (111382)
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o— 6 6— § —1+6
R A ‘ffogiéy},l - (1.1.38b)
Continuing this way, we obtain

V€A pcweyy YA ygy + Hyop + Cotacyy o (11.39)

p € xé_léy{i;:o} + xé_ly’Q{{é()gmgy} + %{T);alczi},oo (1139b)

and the proof is complete. O

To next step of the proof of the main theorem, is to show that for all
integers k, we can decompose ¢ and ¢ in the following way:

w= Pk + P2k + ©3.k ;
~— ~—~ ~—~
§—1 78 5—1 5 N i85 Sr<kS—14+5—i8 ks—1+6,(0;0
e {Q{{T:O}J’_J: yd{ofzgy} Ed{ézio}’@ix 6g{I<()§z§y},oo eg{ESTSy-;,OE) )
(1.1.40)
Y= U1k + Y2k + bz . (1.141)
~— ~— ~—~
5 5 o706 N s S <kS—id £6,(0;0
€0y T Hocozyy €y @it TR L0 00 €TGEEN
The embeddings
<0 <0,(0;0) <—146 <—146,(0;0)
Clozozyy.oc © Tp0<a<ytoor Clozuogyroo © Fioayhoo

and Equations (1.1.38) justify the case k = 0 of the induction, where g2 =0
and Qﬁg,o =0.

We suppose now that (1.1.40) and (1.1.41) hold for an integer k and we want
to show that these decompositions also hold for k replaced by k + 1 there .
From (1.1.40) we have

5, 6 5 46 5 <ké46,(0;0)
T E T y%{OSrSy} T M{IZO} - sz{{gg:()},eiaimiﬁ1g°7<’“5‘1+‘5—i5 + g{OSaséy},oo :

{0<z<y} 00

Note that if we set 10 + 1 =: j0 then —id = +1 — j0 and the above equation
can be written as

T § 68 5 <(k+1)4,(0;0)
rp € B°YAfgcpcyy + A0y + %$20}7®i$i5?§)$;22§7£ + To<u<ytioo -
(1.1.42)

It then follows from (a) of Lemma (A.4.3) that

F_ 5 5 <kd,(0;0)
= W2, 20) € Fococyy T Vpogy @ aissio s+ o<asypoo
(1.1.43)

19



On the other hand, from (1.1.40) and (1.1.41)

_ ) ) <(k41)6—1,(0;0)
f=(ta0) € %OSxSy}+°Q{{x:o},@ixwﬁ{<(g;;y“}j;—“+9{0§z§y},oo '
(1.1.44)

and since all the spaces in the above equation are invariant under x0,, x0,
and 04, we have:
g <(k+1)5,(0,0)

2 2 6 70 é >
(@00, 270y, 204]) € & Aoy Moy g wis st Togecyh oo

(1.1.45)
Thus, from (1.1.43) and (1.1.45), we have,
%) 5 <ké,(0;0)
w E %ogzgy} + %xzo}’éaixwﬁ{%?;gii}m + ‘j{ogxgy},oo . (1.1.46)
It then follows from Lemma A.4.4 that
—pid 7. 0 (—=pit+gqimi)d 79 1)
7P HZ¢(.,$‘1 w) c p\TPiTam JZ{{Ongy} + «527{9620}7®jx(_pi+qimi+]-),;j{<0k§5;§jz}m

—pi+qim;+k)d,(0;0
+ 9{3;2;}‘{00 RSO0 (1.1.47)

Applying Propositions A.6.2, A.6.5 and A.6.7 we obtain the following:

I ($_pi5Hi¢(., $q¢6w)) c y(milh_pi)(s“!‘léy{éy:o} 4 x(miqi_pi)é—i_l‘ly{%gzgy}

8
+ P s
{m:()},®j$(]+mz‘h Pz)5+1g{<0,;‘51§]§}’00

<(k+m;iq;—pi)d+1,(0;0) e &<(k+m;qi—p;)d+1
T 0<w<y} o0 TY P f0<a<y} o

(1.1.48)
Using again the inequality (—p; + ¢im;)0 + 1 > 6, one obtains:

—pid 7. q;0 5 70 5, 70 ) . ) )
(2P i a®w)) €y gy + 2 Hocasyy T gy @y s i

<(h+1)5,(0:0) | /2 r<(k+1)6
+ T ocmegyoe T YT oreyy oo -

The embedding y5/2§7(k+1)5—e — ye/2§7(k+l)§—e/2—e/2 C j(/ﬁ-l)&—e (866 part
(b) of Proposition A.4.3) gives:

—pid . 40 8 o0 b 5 .
B € oy Ty By

<(k+1)8,(0;0
+ Tl M) (1.1.49)
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Recall that
Pz, v, y) = Yo phg(z, v, y)+/ {Lao1p + Laath — Bypp — Byyth + Gy} (s, 0™, y)ds |
Yy

thus
¥ = Yophg + L1 (Lypp + Lyt — Bypp—Byyph + Gy) -

Equation (1.1.49) shows that 11(Gy,) gives a contribution in 1 y41, V2 k10nd
Y3 k1 - Therefore it remains to show that the same works for g png +
I (Lypp + Lyt — By Byy) . We proceed exactly as in [19].

Integrating the equation for 1 and using Propositions A.6.2, A.6.5 and
A.6.7 one finds

Yl vty) = Yopng(a,vty) + 4 (stﬁl,k; + Lypt1 k — Bypopi ke — wa%,k)

. § 5
=11 €A TV A (e

+1; (stf)zk + Lyyptbar — Byopar — de}zk)

0 kot1—c—is CH° (k+1)5 5
_ NLoi8 S —€e—1 - i§ & (k+1)0—e—1
R A e (R R (ITE W

+ I (szgo@:a,k + Lyyp3r — Byopar — Bw%,k) , (1.1.50)

S kd+1—e ké+1—e,(0;0) — S (k+1)6—e€ (k+1)5—€,(0;0)
€F 0<r<yt oot T(0<a<ytioo CF {0<a<y} 00t T(0<a <y} 00

showing that the result is true for 1 with k replaced by k+ 1. Thus (1.1.41)
holds for k replaced by k + 1,

i.e. Y= 1 k41 + V2 k+1 + Y3kt
—— —— ——

E'Q{{éyzo}‘l_xéd{éogzgy} EW{‘sI:o}:@ixi‘sﬁfo?:glfﬁf Ey{g(gk;;x,go)

(1.1.51)

Equations (1.1.42) and (1.1.51) show that, (1.1.43) holds with k replaced by

k+1,

, F_ 5 5 <(k+1)5,(0:0)

1.€. f - (¢17$¢27$¢) € %OSCESZJ}+$Z{{z:0}’®zzléjé)2:§1;§}jéj+z0§x§y},oo ‘
(1.1.52)

(1.1.45) and (1.1.52) show that (1.1.46) holds for k replaced by k + 1

. 5 5 <(k+1)3,(0;0)
e WE Hogesyy T “Q{{x:o},@ixwﬁ;gg;f; + Tocacyyoo -+ (1:153)
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We want now to show that we can obtain (1.1.40) with k replaced by k + 1
there. Recall (1.1.25):

y
(p(xﬁ UA? y) = R(.CL‘, UA; Y, .’IJ)QO(.CL‘, UA7 I’) + / R(JZ‘, UA; S, JZ‘)C@(I, UA7 S)d37
1.€.
o =Ro+ L[R(Lyppp + Loy +a+ Gy — Biw90 — Boy))] - (1.1.54)
R stands for the family of resolvent (smooth up to boundary in all variables)

of the family of ODE’s 0,p(x, viiy) = ésw(xv v y)e(x, vy y), with param-
eters (x,v?) and with initial value at ;.

e From Proposition A.6.2, I;(Ra) € acéLQf{‘LZO} + $*1+5y%%§x§y} and
(‘?’ince R is in .’L‘_1+5527{5x:0}, the term Ry + Ix(Ra) will give a contribution
mn ©1,k+1-

o As in the previous case, the analysis of the term Iy(Lypp + Loyt —
By — Boytp) will be made as in the linear case in [19]:

Inserting (1.1.53) into (1.1.54) one similarly finds, using Propositions A.6.2
and A.6.8, that (1.1.40) with k replaced by k + 1 holds for ¢ :

oz, vt y) = ©0,pheg (T, vt y) + I [R' (Lpprk + Loyt — B&p@l,k - Bgmpwl,k)}

=1 €P A H Aoy
+ 1 [R (Lgppak + Loptha g — Biww,k - wa%,k)]

cafd o
{z=0},&,;2%0 F

(k+1)5—i6
{0<z<y},c0

+1z [R (Lops e = Bapwsn + Loyt — Boyts )] - (LL5)

(k+1)5—,(050)
€T 0<a<y} o0

(k+1)6—e,(1;1) (k+1)5—€,(0;0)
€ 0<agyt oo 00y} 00

e [f we use again Lemma A.4.4 with 1.1.58 then, we obtain that:

—pid 7. q;i6 (—pi+qim;)d 70 §

T H;po(.,x%°w) € x N4 + o . . i

el 2t w) {0<osy} {0=0},@, o pitaimi+i)s kD38
<(=pi+gqim;+1+k)s,(0;0)

+ Tl - (1.1.56)
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Applying now Propositions A.6.2 and A.6.8 we obtain:

I (xipiéHiQO(-, xqiéw)) c x(miqrm)&rl%t;:o} + x(miqiipi)éy%%gzgy}

/0
T i G —D > k §—j6
{2=0},p, a0 +miai—pid g0

<(k+1+miqi—pi)d,(1;1)
+ T . (1.1.57)
Using again the inequality (—p; + gim;)d +1 > &, one obtains:

Ig(xfpiaHigo(.,xq“sw)) € x‘;@QZ{iZO}—i—:}:*H‘SyQZ{%SISy}

§ <(k+1)5—1+6,(0;0)

T a0y yais 1o 5008 T Toagyoo
This shows that I5(Gy) will give a contribution in ¢ g1, V2 k+10nd O3 k1 ,
thus (1.1.40) holds for k replaced by k + 1 and the induction step is com-
pleted. We then conclude that (1.1.40) and (1.1.41) hold for all integer k.
To end the proof of the main theorem, for any m € N, we can choose k
large enough so that the last terms in (1.1.40) and (1.1.41) are in Cy (%),
and that all the coefficients of an expansion of fay in terms of powers of

x and Inx are also in Cp (% ). The result follows now by an application of
Proposition A.3.6. Thus we have proved

p € a0y + 2" YA ycqeyy T Fpmy C 2T H om0y 27 Y 1casy

and

ve JZ{{(;:()} + $5°(Z{{%§x§y} + ‘d{izo} :

1.2 Propagation of the polyhomogeneity for the
Einstein-Maxwell equations
Let us show that Theorem 1.1.1 applies to the source-free Einstein-Mazwell

equations; we will make extensive appeal to [9]. More generally, consider a
system of second order wave equations of the form
0% f

f
B — OBt oy u
Smopgd = —H @M 1,00,00f) 5 oo 5+ F(f,0f,2"), (1.2

for a map f with values in RN for some N, where 1 is the (n+1)-dimensional
Minkowski metric. (The map f in this section should not be confused with
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the map f appearing in (1.1.1), compare (1.2.37) below.) The FEinstein-
Mazwell equations in the harmonic-Lorenz gauge can be written in this form,
with f = (Guw — Nyw, Ap), then

HY = g — gV = n“o‘nyﬁ(gag — Nag) + quadratic terms

depends only upon g, — N, while F' is a quadratic form in Of with coef-
ficients depending upon g, — N ; see [37, 38, 40]. Thus, in the Einstein-
Mazwell case the source function F has a uniform zero of order two, while
the functions H* all have a uniform zero of order one.

1.2.1 Gauge transformation and its properties

As in [9] (in that reference one works within I,f,(0), while in [20] the com-
plement of III(O) is considered. However, the methods of [20] apply to both
situations), and similarly to [20], we use a mapping ¢ : x — y from the
future timelike cone with vertex 0, I;fx(O), of a Minkowski space-time, which
we denote (R n,), into the past timelike cone with verter 0 of another
Minkowski space-time, (Rgﬂ,ny), defined by

xa

¢ I;fx(O) — RZH by z%— y* = (1.2.2)

ek
We have the following

Proposition 1.2.1 The map ¢ is a bijection from I;fz(O) onto I (0), with

muverse
o

_ Y
p iyt s 2 by Y= ——— . 1.2.3
My Y (123)
naﬁxaacﬂ <0
Proof: Let (z*) € I",(0) and set (y*) = ¢(x®). We have 2% >0 }

yh = e
This implies that (nagxaxﬁ)(nw,y“y”) =1, and then n,y'y” < 0. There-

Muwyty” <0
& = ya(n $)‘33"u) — y* . On the other
Ap MApYAYH

fore y* = m:;iiw implies
hand, z° = myyw > Oand  nuy"y” < Oimply that y° < O . Thus
m

(y*) € 1,,(0) and then ¢ is a bijection from I, .(0) onto I, (0) with
inverse given by (1.2.3).
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Remark 1.2.2 We emphasize on the fact that the transformation ¢ maps
the hyperboloid

Hy = {(ﬂco‘) € Rg;l/xo —t =/t? -1-7‘2}

onto

1
_ +1/,0 _ -
o) = { ) € Ry = 5, £ 1,00,
Here ¢ is a non-negative parameter.
We also have the following

Proposition 1.2.3 The map ¢ is a conformal mapping between Minkowski
metrics:

nagdxadwﬁ = Q_Qnagdyadyﬁ , (1.2.4)
where ) is a function defined on all RZH, given by
Q:= —naﬁyo‘yﬁ . (1.2.5)
Proof: We have
(0% a «
ae=d( ) = (L Yay
My Yyt YT Ny y*
« « A
=050 -2y muévy“d N
02 v

Thus,

wp (= 029 — 2y, 80yH) (— 02 — 2yPn,087y°
naﬁdxozdxﬁ _ 77/3( 2 Y M ’Yy)( ynorl/)dy,YdyT

Q4
= Q %napdy®dy”.

We work within 1, (0) and to the future of a hypersurface
yTO::{yOZTO}7 TO<07

where we set

n

SR, w=—fil—" 20, yi=y |7 +120,
=1

so that we have the following
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Proposition 1.2.4 We have the following identities

O =a(1—y), ax:—l( Y %i+io), ay:—%( L a,—i),
i=1 ‘

2 5] 9y~ Oy — |yl 0y" 0Oy°
and 5
yo‘a—:( —1)0y + 20, (1.2.6)
Proof:
Q= —napyy’ = (°) =D () =) —p* =21 —y).
i=1
We introduce here the spherical coordinate on the sphere S™~1: vl v?, ..., v" !
and we set:
0_1
, y=5y—z-1)
P ERT v A (27
Note that,
Z(ofﬁ =1 and Zwidwi =0onS" L (1.2.8)
We have:
g Z@y@ 8y08 0 oy* 9 Z@y@ 8y08
oy 8y 8y oy Oyt ay ayo’ dr Oz Iy~ oz 0y* Ox 3y
and since
ol 1 oy 1, 1y y° 1 oy 1, 1y

w2 oy 2T A e 2 oar s 20T Al

the second and third identities follow.
Finally, from y —1=19° — |§] and x = —y° — |ij| we have:

and obtain that, 20, + (y —1)9, = y*+% O

Furthermore we have
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Proposition 1.2.5 The flat d’Alembertian U, , associated with the coordi-
nates y* equals

4N,

2(n—1)
(1 -z —y)?’

Oy = 40:0, = T —

(&E + 8y> +

where Ay, is the canonical Laplacian on S™ 1.
Proof:
0? 02

0, (v Inln™8,) = — Gkl > G (1.2.9)
i=1

1

Vil

From (1.2.7), we have,

Dn,y =

1 , 1 1 ,
dy® = §(dy —dz) and dy' = —§wz(dy +dx) + 5(1 -z —y)dw'

thus,
(dy®)? = i((cly)2 + (dz)? — dz ® dy — dy @ dz)
and
(@) = (@ ((dy)? + (@) + do @ dy + dy @ d)
%(1 = y)2d(w)? — %wi(l — = y)(de + dy) @ ()
+iwi(1 —z —y)(dw®) ® (dx + dy)
and then,

n n

—(dy°)2+;(dyi)2 = %(dw@dy—i—dy@da:)—i—% ;(1—x—y)2d(wi)2 (1.2.10)

From this equation we deduce that, if we write 17 = ﬁaﬁd&fﬂ with (£%) =
(z,y,v4) then

0 3 0 0
1

3 00 0
00

(ﬁaﬁ) - (1.2.11)

11—z —y)hap

[an)
[an}
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where the hap’s are the components of the canonical metric on S From
the above equality we deduce that:

(1) = 522 ) s = (22

and
0 20
2. 00
(ﬁa5>: 00 (1.2.12)
o hAB
i (k)
Therefore,

1 ~ oy 2%
Upy = fau(\/ ‘77046’ " 3u)
Mo

M

ot (T i)

]. — T — A/ |h‘AB|
1
- 0u((1 =2 =) VIhanl 70, )
(1—2—y)"'/hap
2(n—1) 4Ay,
— 40,0, — 7(8 8) 2 1.2.13
¥y 1— o + (1 —r— y)g ( )
where Ay, is the canonical Laplacian on S*~1. It should be kept in mind that
we are interested in x small and y bounded away from one. U

We point out the following

Proposition 1.2.6 For any function f sufficiently differentiable on a neigh-
borhood of I,J]fm(O), we have the following identities

s 007 = (=0 - (- D+ o)) ot (1214)

Ozh 0
and
a2f —1 2 2 82 o 0 2
Dok o = {37 (1-y) o +4nemey’y ((y — 1)0y + 20;)

0
+4x(1 — y)ng(AyQW ((y = 10y + 20,)

—1—2(977#)\ + 2y>\yu) ((y - 1)0, + x@m) }f 0o¢1.(1.2.15)
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Proof: We have

of 1 0(foeh) o, Oy

@ o ¢) = TyaAH’ where A:U' = w o ¢
oy* 0 ( ¢ ) = Op o Muoa®a’
dxh  Oxk ‘mygarx®’  myeaixc (Mroxrx7)2 "

Thus,

A (1.2.16)

and we obtain (1.2.14) from (1.2.6). We emphasize the occurrence of a
factor of x in front of each deriwative except 0,. On the other hand,

—Q0,, — 210y~ y°

Pf 9 [(of e\ O [Of\oyr  Of 0%
OxrrOzH ox* \ Oy Ozt ) Oz \ Oy> ) Ozt Oy« Qxrdz?
B 0*f 8y5 oy~ of 0%y”
 Oy@oyP Ox* Oxr - Oy OxHOzA
and then,
2 2 -1 B « -1 2, .«
o°f O¢—1:8(fo¢ ) Oy O¢_13y O¢—1+‘9(f0¢ ) 0%y O<Z>_1
Ox Ozt oy*yP  Ox? Oz oy>  OzHdxA
1.€.
PI o PUo™) s AosT) Py
OxrOxk dyeoyB A oy>  Oxkdx ’
Next
o (o
Oxrdx* Ox> \ Ox
_ 0 Op o Murata’
OxA 77005176«730 (negmexo)Q
U VAR ) U g L)
K2 K4
where K = ngealz’ = —é, we thus deduce that,
82ya —1 « o « T « o, o, T
Spioer OO = 2W0umey” + 2003mury” + 20mny" + 8o sy Yy
= 400,00y + 200,y + 8oy Yy y” (1.2.17)
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and then,

82 ya
Oxtoz

and since yo‘ai =(y—1)0, + xax one obtains:

0 6 ;0
-1 (o'

829a -1
0a? 3

(e} o 8 @ 8
= 4Q§(M’I7)\)Uy @‘FQQUNAQ 8—ya+8y)\y,u ((y - 1)811 + x0,)
(1.2.18)
On the other hand

ACAT = (—08% — 20,0y°y7) (—2055 — 2mrey°y”)
= Q%6%6) + dnuomey”y 'y Y’ + 20850y Y + 010y y7)

This allows us to write,

B i 2 B s s
A G = RN G s + temey” vy yﬁay aP
82
8,0
+QQ((50‘77)\99 Y +(5)\77qu Yy )ayayg
= A+B+C+D
—_ 02 82
Iy yr
B_4 0’904582 _4 Uaai(ﬂi)_ll 5ﬂ0’00¢_
= AMuctNoY Y Y'Y a yﬁ = NueXeY Y'Y 3y0‘ Yy (‘9y/3 Nuo N0 Y Y Y a B

0 0 0
_ o, 0, « 153 0 ,8
= Aomey’y'y" 5 o (y —ayﬂ) uomoy’y'y" 5 5

= 477u077A9y0y0((y - 1)83/ + xax)2 - 477;w77)\0y ) (( - 1)821 + xaﬂﬁ)

82

= 206%mey’y’
C WYY 5 a5
Ay 85 oyP

0 0
— 2977*91’0@ ((y — 13y + 20,) — 2Qmxey° By (1.2.19)

= 2Q00m01° ) — 2Q6555m01°
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Similarly

o o 0? 0 0
D = 295,[\3’%024 Y W = 2977#9@/68—3/,\((3/ - 1)ay + 333;1:) - 29%91/98—1//\-
(1.2.20)

Thus,

82 (o (on
A+B+C+D = QQW + 4nomey Y’ ((y — 1)y + 20:)? — An0mey”y’ ((y — 1)0y + 20,)

0 0
_2Qm6y08—y# ((y — 10y + x0,) + QQTD\Q?Jea—yM
0 0
—QQnugyea—y)\((y —1)0, + :1:336) + QQnugyea—y)\
2

)
= Vot namrey”y’ (y — D)0y + 202)* — 410maoy”y’ ((y — 1)y + 20s)

0 0
+4Qmp0 Y — ((y — 1)0y + 20,) — 4y’ ——

oyr) Ayt
and finally,
*f y 0* o ) iy
oo 00 = 10 BT + 4000y’ Y ((y — 10y + 202)" — dnuemrey’y” ((y — 1)9y + 20s)
9 d
0 )
ML ((y = 1Oy + 20;) — 4Oy 7
o s 0 o 0 _
Q8 m0y" 55 + 2My” 55 + 8y = 1)y +2d:)}f o 7
(1.2.21)
i.€.
Ff , 0 o )
Jam P = {Q apgn T ooy’ y” ((y — 1)9y + 20;)

0
0

+2(Qm0+ 2029,) (5 = 19, +20,) | f 067"
g

1.2.2 Application of the main Theorem

The general relation between the wave operator on scalar functions in two
conformal metrics transforms the left-hand-side of (1.2.1) into the following
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partial differential operator

PO T o) | wws oy Of
af =0 af
g Oy oyP " 8:):0‘8965)

o L. (1.2.22)

We introduce the following new set of scalar functions on RZH

F=Q T fopl Qe fopl=QTF, (1.2.23)
so that the system (1.2.1) reads
0? f _nit3 o0 f _
apf af _ 1
W s = 0 T HY @, 1,00,000) 5 55— PN oo

(1.2.24)
and we need to analyze the structure of the right-hand side. We have the
following:

Proposition 1.2.7 The set of functions f satisfies the following identity:

O o = @ -g) TR0 mn % (40 1)0
oo 00 = (@l-y) 2 3271 -y) apay (1 = y)na(y @(ﬂfﬂ-(y— )9y)

o 1o}
+Ayayu((y — DOy + 20,)° +2(n — Dz(1 —y)y Mo gyt

+ 4y + 221 =y (v = 19, + 20,)

N

+(n = 1) [(n + Dyayu + (1 — y)nx,] }f . (1.2.25)

Proof: We have to write the four terms of identity (1.2.15) with f o p 1
there replaced by f . Since

o0 89
we have
dfod™h) _0QFf) s df
By = oy =02 B0 +(1-—n)Q 2 yof (1.2.27)

O*(foo) w1 O2f ws [ Of of
ogUee )~ g (-1 ol
Oy oyP ’ Oy oyP (n=1)Q= (w855 oy ty oyP




with
Dag :=2(3 —n)yays + 22ag - (1.2.28)
Thus the first term of (1.2.15) is

P(foo™) nis OPf wir [ Of of

27 p— J— —

Q DDy = Q2 D0y (n—1)Q 2 “8 3 +y’\8y“
MChall) Q"7 Dy f - (1.2.29)

Nezxt,
(@0 + (y—1)0,)(fo ™) = (20 + (y — 1)3,)(X°T f)

= (n-1DQT f+Q"F (20, + (y - 1)9,)f (1.2.30)
and thus

(@0 + (y = 1)9)*(fod™") = (20 + (y —1)9,){(n - 1)Q"T F + Q"7 (20, + ( )f)

= @5 {(n - 1)?+2(n - Dt + (y— 1)9,) + (ac(?x + yay }f
and the second term of (1.2.15) is
Ayu(@0a+(y=1)0,)*(Fed™) = dya9, Q7 { (1) +2(0—1) (00, +(y—1)9,) +@0u+0,)* } ]

(1.2.31)
As far as the third therm of (1.2.15) is concerned, we have

3

g @0+ (5 =10 f 007 = @7 = (1= 1P+ (0= Dy
+(1 = n)yayu(edz + (y — 1)9y)

5o (@0s+ (s = D9}

From this, we deduce that the third term of (1.2.15) reads

+Qy

n

0 1
Sos@h (=19 oo™t = Q% {—dln -1y,

AMa Yy dyh

o 0

+4(n — 1)977a(>\y W

—4(n — 1)yryu(x0z + (y — 1)0y)
L0 i
Ay 5 (@0 + (- 100,)}f. (12.32)
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Using (1.2.30), the fourth term of (1.2.15) is:

n—1

2(Qpu + 2yayp) ((y — 1)9y + 20,) }f 0opt = 2(Qm + QyAyu){(n -7 f

T (20, + (y — 1)ay)f}. (1.2.33)

Summing side by side equations (1.2.29), (1.2.31), (1.2.32) and (1.2.33),

we obtain (1.2.25) and the proof is complete. O
The second term on the right-hand side of (1.2.24) is
-3 of -1 _ o—nk2 4 of -1
I=0"% F(f,axu> o t=0"" F(fo¢> 50 ® ) :

Since

8f —1 aa(f o ¢_1) . « aya -1 _ « «@
5o ©¢ :AMW with Ag = 2= 0 ¢ = —05; — 2 Nusy”
(1.2.34)

which is bounded on any bounded set of RZ“, it follows from (1.2.27) that
Of 1 @d(fod))  aig D ,
(1.2.35)

and we obtain that

n—1 » n—1 a
F(QTf, 0" (Qa—y“ + 2, ((y — 1)y + 20,) + (n — 1)yu>f .

_n+3
2

171 = Q

Now, we see that the right-hand side of the last equation can be rewritten as

(z(1—y)) "% x
F((e(1=9) "7 1, (@ =) % (o0 = 150~ 200 ( — DO, F +200) = (0= D f) )
(1.2.36)
Since
8(30 —0,— 0, and 822. - —1_233@’i_y(ay +0,) + : %”;aA .
To make contact with (1.1.2) we set
pi=f, d2=0,f. ¢=(0.f.04]). (1.2.37)
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Here Oaf = O,af, where the v4’s are local coordinates on the sphere. To
bring (1.2.36) to the desired form (1.1.2), the choice

n—+3 6_n—3
2 ) q20 = 9 )

P20 =

provides the supplementary power of x needed in the arguments of F to
satisfy the structure conditions of Theorem 1.1.1, provided that we choose
1/(20) € N* in even space-dimensions; any 1/6 € N* is admissible in odd
ones. If we assume that F' has a uniform zero of order ma, condition (1.1.3)
will now be satisfied for

6, n=4;
n+1 4 4, n=>5;
_ = > > Y 12

m2>n_3 1+n—3 <~ n>4 and mo > 3. =67

2, n>8.

(1.2.38)

(In the FEinstein-Mazwell case we have ms = 2, which enforces n > 8.)
Let us turn our attention to the first term at the right-hand side of
(1.2.24). Recall that this term is

[=-Q "5 H™fog !, ;jy o ¢—1)85ng ot
and from (1.2.15) and (1.2.27), it can be written as
I=AxB (1.2.39)
with,
A= —@l-y)T B0 -y)7 f, @1-y)7 (21— y) g;

20y ((y — DO, f +2 ) — (0= Dy f) ) (12.40)
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and
o
Oz Oxt

n-1 0? 0 0
= (z(1-y) > {952(1 - y)QW +4x(1 = Y)nany By (202 + (y —

. 9
+Ayayu((y — 1Dy + 20,)* + 2(n — Da(1 — y)y o\ Gy

+ [4nga + 221 = g (v = 13, + 20,)

~

+(n— 1) [(n 4+ Dyryu + z(1 — y)na,] }f :

In what follows we will consider the following restricted class of non-
n—1 »

linearities: we assume that, after replacing f by Q1 2 f and changing vari-
ables z — y* as above, the terms H® takes the form

HP = GoP(Q"2 §,Q"2 10, f, Q"2 20,0, f) , (1.2.41)

with a uniform zero of order my. Such a structure will clearly be obtained

from a function in (1.2.1) which depends only upon f, in particular this will

be the case for the Einstein or the Finstein-Mazwell equations, with mg = 1.
Using (1.2.39) we can write

O H™ 000 f = 2~ "5 % Fy(H, f,0,00,5 f, 0,0 )
where Fy is linear in the second, third, and fourth argument. Assuming
(1.2.41), this can be rewritten as

n+7

Q" HM 0yu0pr f = —*Fl(H T +2f 27 20,00, 0T Y20, f)
_LW n—1 n—1 N
- FZ( f,l‘ 2 yQ yﬁf7x 2 +18y'yf)7
where Fy has a uniform zero of order m1 = mgy + 1. With the restrictions
on 0 as before, we will obtain the right structure by setting

n+7 n—1
po="0 ="
and the N L-condition will hold provided that mq := mqg + 1 satisfies
7, n=2;
4, n=3;
5 6 ) 7
my > —Jrl =1+ 1. == moz§ 3 n=4 (1.2.42)
- e 2, n=>5,6,7;
1, n>8.
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In particular the structure conditions will be satisfied by the Finstein-Maxwell
equations in space-dimensions larger than or equal to eight.

The hypothesis (1.2.41) will not be satisfied in general if H* in (1.2.1)
is a non-linear function of f and Ouu f, for then H will belong instead to the
following class of functions (compare (1.2.36))

n—1

H=GQ"T {07 0, f, Q"7 19,0, f) , (1.2.43)

An analysis similar to the one above shows that, for H"’s which are a
finite sum of terms of the form (1.2.43), we will obtain the right structure
by setting
n+5 n—3

9 ) Q15 = 9 )

and the NL — condition will hold provided that my = mg + 1 satisfies

P16 =

7, n=4;

4, n=2>5,;

3 6 M bR

m1>n+3:1—|— 3 <~ n>4 and mgy > 3, n=06;
- e 2, n="1,8,9;

1, n>10.

(1.2.44)

The reader should have no troubles similarly working out the conditions

on the nonlinearity for general H ’s which depend on f, Opn f and OpnOyv f: In

the general case where the nonlinearity H depends on f, Opnf and OpuOyv f
(not necessary linearly), we choose as before,

_n+3 5_71—5
— 9 P77y

po

and if H has a uniform zero of order mg, then the N L-condition will hold
provided that my satisfies

8, n==~6;
5, n=71;
1 9y )
n@>n+5 = n>6 andmy>{ 4, n=S§; (1.2.45)
" 3, n=09,10,11;
2, n>12.

Summarizing, we have proved:

Theorem 1.2.8 Let f be a solution of equation (1.2.1), define 1, 12, and
© by (1.2.37), where f is given by (1.2.23). Suppose that (1.2.38) holds, and
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assume that either (1.2.41) with (1.2.42) hold, or (1.2.43) with (1.2.44) hold.
If (1.1.4) and (1.1.10) hold, then the conclusions of Theorem 1.1.1 apply.
In particular Theorem 1.1.1 applies to the FEinstein-Maxwell equations in
space-time dimensions n+ 1 > 9.

38



Chapter 2

Towards solutions with a
polyhomogeneous Scri

In order to establish existence of solutions of the vacuum FEinstein equations,
in sufficiently high dimensions, with a polyhomogeneous Scri, it remains to
construct appropriate initial data, and show that the corresponding solutions
are in the right function spaces.

Recall, now, that large classes of polyhomogeneous hyperboloidal initial
data have been constructed in [1] (the emphasis in that reference is on
n = 3 at several places, but the general results there show that the confor-
mal method, starting from smooth or polyhomogeneous seed fields, provides
polyhomogeneous solutions of the general relativistic vacuum constraint equa-
tions in any dimension n > 3). There is little doubt that large collections of
watial data so constructed provide polyhomogeneous data for the harmoni-
cally reduced equations of the last section, but we have not checked this in
detail. Instead, we will follow the standard-by-now strateqy of using initial
data which are stationary outside of a compact set. So, in Section 2.2, we
provide large classes of Corvino-Schoen type initial data with polyhomoge-
neous asymptotics on hyperboloids. One of the reasons for proceeding this
way 18 that small such initial data lead to global, geodesically complete solu-
tions [40, 41].

One then needs to verify that the associated solutions satisfy the space-
time weighted reqularity conditions needed in Theorem 1.1.1. One could hope
that the Lindblad-Rodnianski type estimates of Loizelet [40,41] would provide
that information. It turns out that the available estimates, for space-times
obtained by evolving small initial data of Section 2.2, are not sufficient for
our polyhomogeneity result; this is analyzed in Section 2.3. This means that
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the desired estimates have to be derived from scratch, which will be done in
the remainder of this first part of the thesis.

2.1 Stationary vacuum metrics in higher dimen-
sions

The only way, so far, of obtaining space-times with controlled asymptotic
behavior near i¥ is to use initial data sets which are stationary at large
distances. We will outline the construction of such data in Section 2.2, but
before doing this it is convenient to start with a short discussion of stationary
metrics in higher dimensions; our presentation follows [4].

Consider a vacuum Lorentzian metric "tlg in any space-time-dimension
n+1 >4, with Killing vector X = 0/0t. In the region where X is timelike
there exist adapted coordinates in which "tlg takes the form

ntlg = —V2(dt + 0;dx" )% + gijda‘da’ | 2.1.1
g ( :U) gijdr'dz (2.1.1)

= =g
8tV:3t9:8tg:0. (212)

The vacuum Einstein equations (with vanishing cosmological constant) read
(see, e.g., [22])

VVIVV = 1[A2,
Ric(g) — V" 'Hess ,V = ﬁ)\ oA, (2.1.3)
div(VA) =0,

where
Nij = =V — 950;) , (Ao A)ij = AiFhyj .

We assume that there exists o > 0 such that
gij — 0ij = O(r™®), Okgij = O(r 1), (2.1.4)

similarly for V. — 1 and 6;. A redefinition t — t + 1, introduces a gauge
transformation
0—0+dy,

and one can exploit this freedom to impose restrictions on 6. For our pur-
poses it is convenient to impose the harmonic gauge, [t = 0, which reads

9i(\/det gV g0;) = 0. (2.1.5)
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Equation (2.1.5) can always be achieved by replacing 6 by 0+di, and solving
the resulting linear equation for 1, cf., e.g., [3, 10] for the relevant isomor-
phism theorems.) One can then introduce new coordinates [3] which are
harmonic for g.

In space-harmonic coordinates, and in the gauge (2.1.5), the system
(2.1.3) is elliptic, and standard considerations show that the functions g;;,
V' and 0; have a polyhomogeneous expansion in terms of logr and inverse
powers of r. Furthermore, "1 9w s Schwarzschild in the leading order, and
there exist constants oy such that
ozijacj

0; = +0(r™").

Tn
It is of interest to enquire whether or not the logarithmic powers are
essential in the polyhomogeneous expansion. It has long been know in space-
dimension three that, for metrics which are stationary and vacuum in the
asymptotic region, coordinate systems exist where no logr terms arise when-
ever the ADM mass is non-zero [48]. The same property is true for static
solutions with non-zero ADM mass in space-dimension four [{]. Now, in
the evolution theorems used below we need all coordinates to satisfy the wave
equation,
Oat =0, (2.1.6)

and the transition from the coordinates used in [4] to the coordinates satis-
fying (2.1.6) might introduce log terms: This is exactly what happens for the
Schwarzschild metric in n = 4, which does have a logarithmic term in its
asymptotic expansion in a natural choice of wave coordinates [9], but this is
the only dimension where this happens for Schwarzschild.

In general, (2.1.6) is achieved by changing space-coordinates x* — x* +
Wi(x?) (recall that t is already harmonic), thus solving a linear equation for
Wi by standard results (see, e.g., [13]) the ¥ ’s will have a full asymptotic
expansion in terms of powers of Inr and inverse powers of v, and so will
the space-time metric in the new coordinate system, when transformed from
the space-harmonic ones. In view of the calculations in [9], this implies the
existence of polyhomogeneous asymptotics of the initial data on hyperboloids
at &, as needed in Theorem 1.1.1.

Rather surprisingly, in even space-dimensions larger than or equal to
siz the space-coordinates used in [4] satisfy (2.1.6), and so does the time
coordinate. It follows that the analysis of stationary solutions in [4] directly
provides wave coordinates in which no log terms occur in those dimensions.
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2.2 Corvino-Schoen data in higher dimensions

So far we have considered metrics which are exactly stationary. Now, there
exists a construction due to Corvino and Schoen [23,24] (see also [16, 17],
and also the more recent Reference [15], where the construction is carried
out under considerably weaker asymptotic conditions) which allows one to
glue exactly stationary ends to asymptotically Fuclidean initial data sets.
Some details of this construction have been presented in those references in
dimension three only, but the construction generalises to any dimension, as
follows: Recall that the construction requires a family of stationary reference
metrics which cover the whole range of asymptotic charges. In dimension
3 + 1 this is provided by the family of metrics obtained by boosting and
translating the Kerr metrics. In higher dimensions one such family can be
obtained by boosting and translating the Myers-Perry metrics [43]. Note that
the question, whether or not the reference solutions have naked singularities
is irrelevant for the problem at hand because here one only needs the solutions
at large distances. (Similarly to the Kerr family, all the metrics in the family
so obtained have a timelike ADM momentum, and therefore can only be
glued to asymptotically flat initial data which also have this property; this
is no restriction for well behaved initial data sets which are spin, or for
space-dimensions up to seven, and is expected not to be a restriction for
well behaved initial data sets in general, but this has not been proved at the
moment of writing of this work.)

So let Ry, €}, be positive constants and consider the collection, say Cg, ¢,
of general relativistic electro-vacuum initial data sets (R™, g, K) which are
stationary outside a coordinate ball B(R;) and with weighted Sobolev norm
controlling k-derivatives of the metric smaller than €. Here k should be
sufficiently large as in [9, 41], and the norm should be the one described
in those references. From what has been said this collection is non-empty,
and contains an open set (in the topology associated to the morm) around
Minkowski space-time.

Now, for the Schwarzschild metric in dimension n + 1 with n > 4, and
wn harmonic coordinates, the boundary of the domain of influence of a ball
is sandwiched between two hypersurfaces t —r = const [9, Section 5.3]. This
remains true for stationary electro-vacuum metrics because the leading order
behavior of the metric coincides with the Schwarzschild one (compare [14,
Appendiz A]). This implies that the maximal globally hyperbolic develop-
ment of all initial data in Cg, ., contains hyperboloidal hypersurfaces, the
asymptotic region of which is contained in that part of the space-time where
the metric is stationary. So our considerations of the previous section apply
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to this region, leading to polyhomogeneous initial data on such hypersur-
faces. Since the leading order deviation of the metric from the flat one is
Schwarzschildian, the tensor field o= anTfl(g — 1), that plays a key role
in our analysis, is O(x"=2==D/2) = O(2("=3)/2) and in fact

hea" () _ynL®), 0phea" (A _ynL®),  (221)

with 6 = 1 on any hyperboloid whose asymptotic part is contained in the
stationary region.

2.3 Lindblad-Rodnianski-Loizelet metrics near .

In this section we analyze how the asymptotic behavior of the small-data
space-times constructed in [40] (compare [37, 38]) relates to the differentia-
bility conditions needed in Theorem 1.1.1. We find that sharper decay rates
along outgoing null geodesics would be meeded for a direct proof of poly-
homogeneity using our approach. The estimates established here are then
combined with the results of our analysis in subsequent sections to provide a
rather more involved proof of polyhomogeneity.

We start by recalling some notation of [37, 38, 40]. Let Z denote the
following set of vectors on Minkowski space-time:

0

Ox®’

O a=0,1,...,n;

Zap = 1008 — 2804, a,3=0,1,...,n;
n n
Zy = Zm"‘&a :t8t+2mi8i =t0; + 10, .

a=0 i=1

Here, as usual, xg = —2° = —t, x; = 2' for i = 1...,n. Let the spherical

coordinates (r,0%) be defined as
n i 1/2
r= (2 @)?)"?, (2.3.1)

where 84 denotes any local coordinates on the sphere S~ 1. The vector fields

L:8t~|—8,«:8t~|—wi8¢, Lz@t—@:@—wiai.
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are tangent, respectively transverse, to the light cones t —r = const. We
note
ZO = t@t + r@r .

Furthermore, the Z;;’s, i,j = 1...,n are tangent to the spheres s c R”,
and can be purely expressed in terms of the 04 s.
Let T > 0, set TH = (T,0,...,0), in this section it is more convenient
to consider instead the following variation of (1.2.2):
axHt +TH y,u

B ot L TH = )
T e T et 1) YV Ya

(2.3.2)

This provides a conformal transformation from the future causal cone centred
at T in the Minkowski space-time with coordinates x* to the past causal
cone of the origin in the Minkowski space-times with coordinates y*, and
with conformal factor = y*y, = m
To make contact with Section 1 we set

n
=" —p. y=1y"—p+1 where p= (Y (4",

so that

—y—x+1) ‘ . (2.3.3)

Here w' is a unit vector, and the v3’s denote local coordinates on S™ ' in

the y—coordinates. One can take w'(#4) = wi(v?), i = 1,...,n; we will

make this choice, and simply write W' in both z* and y* coordinates.
Letting 7¢; be the following family of hyperboloids,

%:{xo—s:\/s2+r2} ,5 >0,

we will have i

O(H) = {ZJO = 9

in particular ¢(74) = {y° = —1}.
The methods of Section 1 involve the vector fields

20z, YOy, aA:%, A=1,...n— 1.
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By straightforward calculations one finds, keeping in mind that p = m
fort+T >r,

1 1 1 1 1 1

T T L T 2(1—vy)’ 2J:+2(1—y)
20y = =3t +T+71)(0 +0) ,
(1—y)0y=2t+T—r)(0 —9,), (2.3.4)
0a = linear combinations of Z;j, i,j =1,...,n .

The coefficients in the equation for 0a above depend only upon the angular
variables, and a finite number of coordinate patches v can be chosen so that
in each of those patches the coefficients are uniformly bounded together with
derivatives of any order.

This leads us to

Proposition 2.3.1 Let T, Ty > 0, t > 0 and suppose that

1-T<t-r<Ty <+<— 0<y<1l-

. 2.3.5
T+ Ty ( )

For allk € N,V (i,7,7) € NxNx N1 satisfying i + 7 +|vy| < k, and for
any function f € C* we have

oSOl f = S HP(0,9)7'f (2.3.6)
|I|<k, Z€Z

Proof: Using (2.3.4) one can rewrite x0, and 0y as

1

0, = —§(Zo — W' Z0i + T(0r + w'Dy)) (2.3.7)
1 i ig.
\w—/ ::Z
=:1(y)

It is thus clear that x0,, and any of its powers, have the right structure.
Next, the factor v1(y) appearing in (2.3.8) is bounded on any compact subin-
terval of [0,1) (note that y = 1 corresponds to the tip of the past causal cone
centred at the origin of the y*-coordinates). One easily finds by induction
that '
. j ~ .
%= )7,

i=1
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where the functions p; are bounded on compact subsets of [0,1), whence the
result. O

We wish to obtain the asymptotic behavior of the fields occurring in The-
orem 1.1.1 for the global solutions

[= (huwAu)

of the Einstein-Mazwell equations constructed in [40]. In order to apply
Theorem 1.1.1 we need

V1= f € GGl cy i (V2= 0,f,0af), 0 =0.f) €65t

where R )
f=Q72 fog .
Now,
Q=—z(l-y)

which implies that for any o € R we have

(202)/(Q°f) = Q%> Cla,i, j) (@0, ) f - (2.3.9)

j=0
Similarly,

(Y9 (2 f) = Q* Y Cavi, jow, ) (wdy YV f 9% f) = Q> C"(avi, j,a,9)d) f
j=0 j=0
(2.3.10)

where the functions C' and C" are bounded for x in, say, [0,x0], and fory
bounded away from 1.

The solutions constructed in [40] satisfy the following: there exists 0 <
d < 1/4 such that for t > 0 and |t —r| < C1, and for all I there exists a
constant C, depending upon I and C7, such that

1ZTf(t,2") < Cl+t+r)z 19, (2.3.11)
0Z1f(t,a") < C(l+t+r) 2+, (2.3.12)

where
de{oro. on) = {20, 2 "Wy ) (2.3.13)
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Now,

txT+r T irTar

14+t4+7r 1+T [ 1+T
T

1—] for T'>0,t>0,

s0 (2.8.11)-(2.3.12) imply
1ZTf(t, %) < Ca"T 0, |0Z1f(t,2Y)| < Ca"T IO (2.3.14)
From (2.3.9)-(2.3.10) and Proposition 2.3.1 we obtain

[20,)' 007 f (1, v)
= [0, f(t,a')
= 02 SN i gom o, x,y) w0, 0L0] £ (¢, ")

0<m<i 0<0<j

= 0 YN cigmtnay) Y HMO,9)Z ().

0<m<i 0<4<j |[|<k, Z€Z

Using the first inequality in (2.3.14) we conclude that for any 0 < e <1 and
for 0 <y <1—¢€ we have

120/ [y0, P01 f (0, 9,0)| < |[w0a] 0307 f @,y )| < €2~

while it should be clear from (2.53.13) that the second inequality in (2.3.14)
does not provide any new information in the coordinate ranges assumed
above. In any case the property

(01=F 02 =01.041)) € Gelzyor £ =0f € Gl
(2.3.15)
immediately follows. Unfortunately, to apply Theorem 1.1.1 one would need
d to be an arbitrary positive number, while in (2.3.15) § is a small number
determined by the initial data. So, as already pointed out, we need to derive
the necessary estimates by different methods. This is the purpose of the
chapters that follow.
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Chapter 3

Weighted energy estimates
near a null boundary

Let (A ,g) be an (n + 1)-dimensional space-time. We consider systems of
quasi-linear wave equations, with diagonal principal part of the form

Ogu = F(. ,u,0u) , (3.0.1)

on a neighborhood of a null hypersurface of A . We suppose that the back-
ground metric g is a smooth function of the coordinates, of the unknown
vector valued function u, as well as its first order derivatives.

All calculations below will be done for a real valued function u, the result
for a vector valued function is obtained by summing over the components.

3.1 The hypotheses, and the geometry of the prob-
lem

3.1.1 The hypotheses

We will consider the Cauchy problem associated to equation (3.0.1), the
wniatial data will be given on a hypersurface .#y. We will evolve these initial
data to obtain a solution of our problem in a past one-sided neighborhood

of a null hypersurface
N ={x =0}

forming the boundary, or a subset thereof, of the domain of dependence of
. Here, and throughout, x stands for a positive function such that dx has
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no zeros on {x = 0}. We will be working in a neighborhood of {x = 0},
chosen so that x is a coordinate there, of the form

7/5[7'0, Tl[X]O,.iL‘o[Xﬁ,

where |19, T1[ corresponds to the time interval, ]0,z¢[ the range of the
variable x, and O is an (n — 1)-dimensional compact submanifold of .#
without boundary. The coordinates will be denoted by (T,z,v), with v =
(v the coordinates on . We assume that O, is timelike, and we
choose the time-orientation on # such that the vector O is everywhere
future directed.

One can think of the set % of (A.2.1) as a subset of the coordinate patch
above, compare Figure 4.2, page 108.

On the components of the metric g with respect to the coordinates (T,x,v),
we assume the following:

1. We suppose that
Jeo >0, such that —g™" > € (3.1.1)
everywhere on V.
2. The components g'" and g™ can be written as
g7 =14 zb0(r, z,0Y) and g7+ g7 = zhl(r,z,01)  (3.1.2)
where the functions h° and b' are bounded on bounded sets.
3. On the components g** and g™ we assume that
¢ = O0(x) and g7 +2¢7 + ¢ = 1+ O(x) (3.1.3)

and we set g* = xh? and g7 4+ 2¢7% + g** = 1 + xb, where b and h?
are bounded functions on bounded sets. We further suppose that

gTT +2g7':0 _|_gmc >0.
4. The vector field
Y0, =0, — 0, (3.1.4)

is assumed to be everywhere timelike on ¥ and future directed. This
vector will be used to contract the energy momentum tensor.

The set of functions (b ,b*) will be denoted by h* and g* will denote the
inverse matriz of the matriz (g, ).
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Remark 3.1.1 Tt follows from the above that the vector Vz (where V is
the covariant derivative compatible with the metric g) can be decomposed

as
Vi = w + g(z)w® (3.1.5)

where w(®) is causal future directed, and that there exists a constant Cy such
that
B(x)] < Cox, [w| < ColbF] . (3.1.6)

Example 3.1.2 As an example, consider a conformally rescaled asymptot-
ically flat solution of asymptotically vacuum Einstein equations in Bondi
coordinates near Scri [49], with the metric taking the form

ap = X daddy + xdy@dy + 2y@dy + 1 (3.1.7)

for some functions 8 and y, and a one-form field . (Here y corresponds to
the Bondi retarded time w, and x = 1/2r is half the inverse of the luminosity
distance r. E.g., for the Minkowski metric in any dimensions, § = x =0 =
~.) In 3 4+ 1 dimensions, for smoothly compactifiable metrics, the Einstein
equations imply, for matter fields decaying sufficiently fast, that 8 = O(x?)

as well as
x=0(?), ~a=0(z?, (3.1.8)

with derivatives behaving in the obvious way. Equation (3.1.8) remains
valid for asymptotically vacuum metrics which, after conformal rescaling, are
polyhomogeneous and C* (see [21, Section 6] or [18, Appendix C.1.2]), while
for general JZZ{(;:O} N L*°—polyhomogeneous asymptotically vacuum metrics
one has [21, Equations (2.15)-(2.19) with H = X% = 0] the asymptotic
behaviors 8 = O(z?In’¥ ) and

x=0=?), ~va=0(@*Nz), (3.1.9)

for some N. Here “asymptotically vacuum” requires, for polyhomogeneous
metrics, that the components of the energy-momentum tensor in asymptot-
ically Minkowskian coordinates satisfy (see [21, end of Section 2])

Ty = o(r™2) . (3.1.10)

We have 1
detg = —Zdet,u,
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which, for a Lorentzian metric, shows that g must be a non-degenerate
(n—1) x (n — 1) tensor field. It is simple to check that the inverse metric
of = go‘”fé?aéb@w is given by the formula

g = 4(—x+ )00, + 40,00, — 4400, + if
- 4ax®(ay + (=X + 12)d. — fyﬁ) b (3.1.11)
with p!f = pAB0,00p, where pf is the matrix inverse to puap, 7 =
A8y 408, Mi = 14 (v,7) = pByayp, and ® denotes the symmetric tensor

product. We note
a(Vy, Vy) =g" =0,

which makes clear the null character of the level sets of y, and implies, by a
well-known argument, that the integral curves of

Vy = g% 0,y0, = g0, = 20,

are null geodesics.
Consider a new coordinate system (z,v?,7), where

(2.y) — (2.7 = 15) (3.1.12)
so that 1 1
Oy — Oy — 587 , Oy = 537 . (3.1.13)
Thus
. ) 1. 1 1, .1 . 1 ﬁ
g = 4(—x+ "7|u)(ax - 587')@(896 - 567') + 4(0, — 587)@)(537) (e 587) +ut,
giving

g =A-x+ Pl e =1-2(-x+ ), ¢ = —2u4Pp(3.1.14)
gt =pPyp, g7 =—1+(—x+hl2), ¢*F=pP (3.1.15)

This, together with (3.1.9), shows that (3.1.2)-(3.1.3) hold for such metrics.

3.1.2 The slices

In this section we describe the sets within which we obtain our estimates,
see Figure 3.1. Let t € [1g,0[ run over the range of the time coordinate T of
the previous section.
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Figure 3.1: The sets %\ r (shaded) and % (the outermost trapezium).
In this picture (but not in our hypotheses) the light-cones have forty-five
degrees slopes, as in Minkowski space-time.

o Let A € [0,1] parameterize a family of spacelike hypersurfaces Sy,
which approach {x = 0} when X approaches zero, of the form

Sy =A{(rz,v?) s w=0x(7)},
where oy, is a C function such that:

—oo(r) =0 de Sp={x=0}

— S\ is everywhere spacelike.

One can legitimately raise concerns about existence of the family S
with global behaviour as above when the space-time under consideration
is being constructed as a solution of a Cauchy problem. While the
aim of this work is to prove that the resulting space-time will have
properties as in Figure 3.1, this is not known a priori. Now, one way
to proceed is to construct the solution as the limit of solutions of linear
equations on a sequence of metrics, each of those meltrics satisfying
controlled weighted energy estimates as proved below. In particular
each space-time in this sequence s globally hyperbolic, with the set
{z = 0} being part of the boundary of the domain of dependence of the
wiatial surface. For each metric in the sequence a relevant family S)
can be constructed using e.qg. Cauchy time functions; no details will be
given as no significant difficulties are involved. This can then be used
to justify our estimates for each metric in the sequence, and for the
solution.
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e By S we denote a smooth spacelike hypersurface transverse to {T = 19}
defined by
S={(r,z,0"): z=0(r)}, (3.1.16)

where o is a smooth function of T such that

0<o(n) <o(r)<o(mn)=x.

e Hy, = {(T,.CL‘,’UA); T=t, o)1) <x<o(r)}, Ur = . <LtJ<r H),.
0XUXT1

o Hy={(r,z,0%); 7=t,0<2<o(r)}, %, = U H,.

Note that the boundary 0%\, of the region \; is made of four pieces,
Sx, S, Hy, and Hy;. We recall that, for 6 € R, j € N the spaces
‘KJQ(HAJ), %’?(H)\J), %?G(H)\J) and E%G(HA,T) are defined in the Ap-
pendiz B Section B.1 page 206 .

3.1.3 The causality properties of the boundary

We want to show that under the assumptions we made on certain components
of the metric, all the hypersurfaces defined above have the nature which will
be needed when applying the Stokes’ theorem or when we will like to use the
positivity of the stress energy momentum tensor.

The vector V1 = VH(1)9, = ¢"/670, = §770r + "0y + 1704 is normal
to the hypersurfaces Hy and Hy 4, and the square of its norm is g(V1,VT1) =
g7 < 0. Therefore VT is time-like and thus these hypersurfaces are space-
like. Their past directed unit normal s

(0770, + %70, + g 704) . (3.1.17)

1
n=n0 = e
Ve
We also note de following

1 vT T

. v __ —
77/.1 - g/.tl/n - \/Wg/ﬂ/g - \/W(Sp

that is

Nudet = (3.1.18)

! dr
Vg™
As far as the hypersurfaces Sy are concerned, the functions oy are assumed
to be such that the normal N = V{—x +ox(7)} is timelike and the outward
unit normal to this hypersurface is such that the integral of the contracted
energy momentum tensor is negative (see (3.2.18)). The same remark holds
for the hypersurface S.
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3.2 Estimates on the space derivatives of the so-
lution

We want to derive weighted energy inequalities for solutions of (3.0.1).
These inequalities will be used to prove existence of a solution satisfying
the hypothesis of the theorem of polyhomogeneous solution of quasi-linear
wave equation near Scri.

3.2.1 The stress energy momentum tensor and its properties

The stress-energy tensor of the system (3.0.1) is given by
1
Ty = V,uV,u — §ngauvau .

The explicit form of T,°, (the component of the tensor T which in general
determines the energy density of the system) in local coordinates system is
given by:

1
TOO = Vouvou—ivauvau

1
= ¢"VauVou — 5g‘lﬁvauvﬁu

) 1 ) -
= {g"VouVou + g"V;uVou} — 3 {a"VouVou + 2" VouVu + ¢ V;uVu}

1 . 1
- 5{900(%“)2 —g"ViuVu} = _5{ — g”(Vou)® + | Dul?}

with |Dul? := gV, uV ju.
The tensor T is symmetric and its divergence is given by
v, 1," = OguVyu
= FV,u when u solves (3.0.1) . (3.2.2)

Further, one of the useful properties of the tensor T is its positivity: For
any vectors fields v* and w® both causal future-pointing we have:

T,"v w, > 0. (3.2.3)

Remark 3.2.1 In the particular frame (7, x,v?) we will be interested with,
let us calculate the quantity 7Y := T(0; — O,,dr) = T.™ — T, ™ which we
will use as energy density. From (3.2.1) we have:

1

TTT — 5 {gTT (87-'&)2 o gxx (axu)Q - QQang;uaAU o gABaAuaBU} .
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This expression shows that in the case we are concerned with, 7" cannot
be used to control the energy of the system near {x = 0} since the metric
component g** can degenerate there. On the other hand we have

T, =g 0;ud,u+ g’ (8$u)2 + g™ 0, udau

therefore we deduce the following expression of T :

1
T = {7 (0)’ — 207 Orudu — (6% +207) ()’

—2 (" + ¢™") Opudau — gABaAuaBu} (3.2.4)
Now, if we set

A=g""+g" +2¢"" =1+ 0(z) >0 (by hypothesis)
§A — g:cA + gAT

AB_fAEB
=7

then we obtain the following decomposition of TV

(gwA + gAT)

2
3 8Au) + (gAB — /@AB) 0Au0Bu

1
TY = —5 _QTT (&—U - 8$u)2 +A (afu +

(3.2.5)
The above decomposition shows that the quantity 7 controls uniformly
the energy of the system if and only if there exists ¢g > 0 (which can be
made to coincide with the one occurring in (3.1.1)) such that

A > €, and (g8 — k4B) CaCp > €0 > 4(Ca)? (3.2.6)

the existence of such a constant follows already from our previous hypothe-
ses. It turns out that if we have a priori bounds on the L> norms of g* from
above and below, this expression can be used to control all the components
of the stress energy tensor. In fact we have

1
T, "| = |97 Opudyu — fﬁgaﬁaauaw < ClgH||ou]®* < Cle*|T, " — T,7| ;
(3.2.7)

here the constant C' depends upon ¢y, and is allowed to change after each
inequality symbol in general.

Remark 3.2.2 For further purposes we note that, using the vector field
Or — Oy, the principal part of the d’Alembertian has the following form:

00,5 = 070y —02)* +2(g7" +97") (8 — 0y) Oy + 207 (0r — D) Da
+ (g7 4+ 207" + g") 02 + 2 (6" + ™) 0,04 + g P00 .
(3.2.8)
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3.2.2 Estimates on the first derivatives of the solution

We want to derive some energy inequalities for the solution u of the system
(8.0.1). For this purpose, we consider the weighted energy at an instant t
of the evolution of the system defined using the vector field 0, — 0,; recall
Y =T,.7 —T,":

d
Elu(t)] = — /H e Ly, (3.2.9)
t

where d""'v; , is the measure defined on {t} x {x} x O by the metric g (as
will be made precise shortly), and o < 0 a real parameter the range of which
will be given later. We set

d
Ey[u(t)] = —/H 2oy %dnflut,x. (3.2.10)
ALt

Our strategy will be to obtain a bound of Elu(t)] from an uniform bound
(with respect to X) of Ex[u(t)]. We will apply the divergence theorem to the

energy-momentum tensor; this holds e.g. for Cﬁ)’i functions u (first deriva-

tives locally Lipschitz continuous). We want to establish the following (recall
that ey is the constant arising in (3.1.1) and in (3.2.6), while Cy is defined
in (3.1.6)):

Proposition 3.2.3 Leta < —3. Under hypotheses (3.1.1)-(3.1.3) and (3.2.6),
there exists a constant C'y depending upon €y, Cy, v such that for all
relrn,m] and ueCh

loc

satisfying (3.0.1), we have

Byu(r)] < cl{EA[uvo)H [ {IFO R+ (1 161 + 1812~

70

X (1 N8l a1, ) + 101 ety )+ O = 02) 0¥ e, o)) Ex[u(s)]}ds}
(3.2.11)

Proof: Stokes’ theorem for the vector field A* = 727 YT,MYY on U,
(compare Fig. 3.1) gives

L, s = [ e meyay 212
U U~
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for an arbitrary differentiable vector field Y. Here
dV = +/|det gldr Adx A d" v, (3.2.13)

where det g is the determinant of the metric g. Further, on non-characteristic
parts of the boundary, n, is the unit outwards pointing conormal, and

dsS = /| dety|d"y , (3.2.14)

withy', i = 1,...,n, a system of coordinates on the corresponding boundary,
and v the metric induced on it by the metric g; i.e. v = j*g , j being the
canonical injection of the boundary into the manifold. (On characteristic
parts of the boundary, a convenient choice of n, and dS will be made as
need arises). In the case under consideration, 0%  is made of four pieces
H) ,,, H) -, together with

Sxr =5 N{0<t<t}and ST:=SN{0<t<T}.

Therefore the identity (3.2.12) reads:

/ =27y vy, dS  + /
H)\,T H)\,TO

+ / x 2 RY U ,dS = /% Vu{a 2T, Y v
T A, T

(3.2.15)

g2 By vy, dS + / =2l ryvy,dS
S)\,‘r

The left-hand-side of equation (3.2.15) is made of four terms which will
be labeled in their order of appearance L1, Lo, L3 and L4. As mentioned
before, we choose the vector field Y = Y+*0, to be equal to O; — 0,. Once
this choice is made, let us look at each of the terms L;,i = 1,2,3,4. Recall
that (see equation (3.1.18)) on Hy . we have:

nudt = dr  which implies that T,"Y"n, = —{T," - T,"}

1 1
VAl vari
and dS = \/|dety|dx A d" v is the surface element denoted in equations
(3.2.9) and (3.2.4) by dxd" v ,. Since nov/detg = /dety on Hy ., we
obtain that (remember that n*0,, is past directed)

Ly = —E\[u(7)] . (3.2.16)
From this, the sign coming from the Stokes’ identity shows that
L2 = EA[U(T())] . (3.2.17)
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On the hypersurfaces Sy and S, since the unit outward normal is also
past directed and the vector field Y0, = 0. — 0, future directed, we deduce
from the positivity of the stress energy tensor that:

L3<0 and L;<0. (3.2.18)

We can now rewrite (3.2.15) as:

—E)\[u(T)]+EA[u(To)]+L3+L4:/% YV {z727 T,y hav . (3.2.19)

AT

Now, let us consider the right-hand side of the above equation. We have:
Vu{z727 T, YY)
= 22 (VY TV, ) — (20 4+ 12 T,V () |
= & 2 (VY T, T, - T )

~Q2a+ )z 'V, {T* ~ T, "} }

=: R;+ Ro+ Rs, (3.2.20)
where 1
Fﬁu = §gap(augau + OuBpuo — 8(;9;,,”),
are the Christoffel’s symbols of the metric g. From (3.2.2), we have:
1
2Ry | = |F||V,uY?| = |F|| (Oyu — dpu) | < 3 {F2 + (Oru — 8xu)2})
< cleo) (F?+|T,7 - 1T,7]) .
(3.2.21)
As far as the second term is concerned, we have:
1 1
T,'Ty = iTuaagg,w = —ETW@,gg’w.

Thus, replacing successively in the above expression 6 with T and x and
subtracting the two expressions we find that

1
$2a+lR2 —_ _iTuygVU (&_ _ ar) g;w )

From (3.2.7) we obtain:
PRyl = [Ty (0 = 0,) 7| < (n+1)Claf| (| + 107 — 0)e?) | 7,7 T,
(3.2.22)
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For the third term we have, keeping in mind (3.1.5):

MRy = —(2a+ D)2 T, V,2Y"
= —(2a+ 1)3:_lg”UTWVNx Yv
= —(2a+1)27'T, VFrY"
= —(2a+ 1)z T, Y 'wWr (20 + 1)MTNVYVM(2)“ for a< —1/2
X
>0
> —(2a+ 1)MT,WY%<2># = — (20 + 1)M (Tyr — Tpy) W
x T
> —C(a,Co,mIb¥| (1+ o + |6°2) IT,7 = 1,7 . (3.2.23)

Let us justify the last inequality. In other words let us show that the expres-
sion Tyr — Ty is controlled by |T,™ —T,7|. We have:

]' (03
‘Tm— - T;w‘ = ‘8uu (87' - 8$) O 5 (g/.LT - gu;t) g 58au85u|
< (O’ +[(0r = 0)u + (|af? +16°?) (97 0audsu)

IN

C(eo) (1 + g + Ig”IQ) T." —T,7|.  See (3.2.5)

Inequalities (3.2.21), (3.2.22) and (3.2.23) show that the right-hand side of
(3.2.20) can be estimated as:

RitRotRy > =Cra™ D { (14 57 + (7)) (1+ a2 + |6% +1(0r — 0@ ) ITY | + F2}
(3.2.24)
where C; = C(«, €9, Cy,n) . Now from (3.2.19) we have

—E)\[u(t)] + Ex[u(ro)] + L3 + Ly = Ry + Ry + R3,

thus, using (3.2.18), we obtain the following:

B0 < Blutrl) + O [ [ e { (1 w4 ig) (14 b + g

dzx
8_

+ 10r = 0P ) 1TV + F2(s) | ds=-d" v .
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Therefore, there exists a constant Cy > 0 depending upon n, €y, a and Cy
such that

70

Bxlu(r)] < cl{EA[um)H [ {IEO e, + (141000 + 672

% (14 8l a1, ) + 1691 i, ) + (O = 02) 1, ) Eﬂu(s)}}ds}
(3.2.25)

and the proof is completed. O

3.2.3 Estimates on the higher space derivatives of the solu-
tion

To proceed further, we would like to have an estimate similar to (3.2.11)
on space derivatives of the unknown function in equation (3.0.1). For this

purpose, for k € N, = (51, B2,...,0r) € N, with || < k; we set:

(8)
T W = g 201420 {v#gﬁqu@f’u — ;5V“va9/3uva@%} ,

where a < —1/2 is the real parameter of the previous section, 9P = XIB1 ng ... Xfr,
with the X;’s being the vector fields defined in [20] page 51: fori=2,...,r,
T

X, = 3 XA (v)0a, where the X{*’s are smooth functions bounded on bounded
A=2

set with all their derivatives, and X1 = 0,. Since the operator V is linear,
as in (3.2.2), we have

(8) 8
V,T," = 2711200 (9Pu)V,(2°u) + (—2a — 1 + Qﬁl)vux(x)Tl,“ .
Now
Dg(@ﬁu) = Qﬁ(l]gu) + [0, PP lu = 9°F + (O, PP, (3.2.26)

for any solution of the equation (3.0.1). Thus

(B)
vV, T,1 =g 201420 {QﬂF + [0, @B]U} Vo (2°u)+(—2a—1+20)

v

V() T,g)#

x v
3.2.27)

—
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Similarly to the previous section, we set:

k k

(8) (8)

Bfu(r) = > / —T Y dad" e and  EX\[u(t)] = ) / ~T Y ded" v, .
|8]=0 7 Ht 18)=0 7 Hx.r
(3.2.28)
(8)

Remark 3.2.4 From (3.2.5) we deduce the following decomposition for 7" ¥:
(8) 1 2
TY _— _5{ . grr (x—a—%+5195(87 _ &v)u)

—a—14B1 f (6" +97) —am 1181 B i
A [ze2 g (axu)+faA(x 3+h1g u)

n (gAB _ IiAB) o4 (':U*Oé*%Jr,Bl@,Bu) op (xfaf%ﬁ&@ﬁu) } . (3.2.29)

Since the coefficients of the terms arising in commutating 94 and 2° are
uniformly bounded, from the above we find that the energy of order k£ con-
trols the JZ;*-norms of the first order derivatives of the unknown function
u. That is:

[(0- — az)u||iﬁ€a(HA7T) + ||833u||2.%’j€a(HA7.r) + Z ||8AU||<2;Q&(HM) < Egafu(r)]
A

(3.2.30)
Let us set
TV = —gTY, = |;etg|au (vIdetglg™ ) - (3.2.31)
Let us define
M(1) = |Fl 2, + (8,0 = 0:)0%) T ar,)
(RN Ol R (3.2.32)

We claim that:
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Proposition 3.2.5 Let A > 0, k£ € N and suppose that a < —%. Under hy-

potheses (3.1.1)-(3.1.3) and (3.2.6), there exists a function Ca(eg, Co, o, k,m, M).
monotonously increasing in M, which we write as Co(M), such that for all
T € [10,71]

and for all u satisfying (3.0.1) we have

Ekc,y,\ [u(7)]

< Epilu(n)] + /T CQ(M(S)){EI?,A[U(S)] +IF) e,

HI((0r = D), By, 0410) 2 ag, Ly x I (655, 7) ||?4,3(HA,T>}ds :
(3.2.33)

Remark 3.2.6 The reader should note that Cy does not depend upon A.

Proof: If the right-hand side of (3.2.33) is infinite there is nothing to prove.
Otherwise, the calculations that follow should be done assuming smoothness
of u, and the inequality for general u’s can be obtained by a density argument.

The equivalent of (3.2.15) for space-derivatives of the solution of (3.0.1)
reads:

k
(5)
> / T,"Y"n,dS + Z / T“Y”nMdS—l— Z / T“Y”n ds
181=0/Hrr |/3| 0t |/3| 075"
+ Z / T“Y”n#dS Z / (T “Y”) dv (3.2.34)
18/=0 18]=0 " xr

which gives the following equation:

B ) + Euln)] + 3 / Ly s + 3 / Ty n,ds
181=0 |8l=0" 0.7
= L3+L4 <0
(8)
= Z/ VT, Y }dz dv. (3.2.35)
181=0" ¥
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Again as in the previous section we take YV 0, = 0, — 0., then the divergence
in the right-hand side of (3.2.35) reads:

) (8) ®)
VAT, 'Y}y = V,I,*YY+T,"V,Y"Y

= 272712 GIF & [Og, 97} (0r - 0,) (970)

(8) ) )]
+ T a (FZT - FLVL:E) + (—204 -1+ 261)vu(x) (TTH - Tac'u>

v T
= R+ Ry+ Rs. (3.2.36)

If we repeat the calculations in the previous section that led to (3.2.22) and
(8.2.23), we obtain that there exists a constant C = C(n,k,Cy, a,€9) > 0
such that:

- )
|Rs| < Clgf| (Igl2 + (07 — 8x)gﬁ|2) T Y| (3.2.37)

and, keeping in mind that the term with the worst power of x can be discarded

because of a favorable sign,
. 4 5 412 B)
Ry > =CIo¥| (1+ o + 16%2) | T V] . (3.2.38)

As far as the term ﬁl s concerned, from the inequality ab < %(a2 +b%), we
have:

202 R = {DOF + [0, 2°u} (8, — 8,) (2°u)]
< 5@+ ([00.2°]w) + [0 —00) (2%)]
< (PP +C)T Y|+ (|5, 2] u)2 L (3.2.39)

From inequalities (3.2.37), (3.2.38) , (3.2.39) and the fact that Ly , Ly < 0
we obtain that:

B\u(m)] - B u(T)]) < C /T (1 10 + gPllzee ) (14 gl + ¥l
0

(@ = 82) 13 ) B aus)] + I1F(9) 0ty | 45

k T
+ Z/ / g~ 2020, 9P|u)? (s)da duy pds
To JHy s

[8]=0
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with C = C(n,a, k,Cy,€p). Now, let us estimate the last term of the right-
hand side of the above inequality. From the definition (3.2.31) of T" we

have
Oy = g9, + Y70, (3.2.41)

and then
g, 2°u = ¢[00y, 2°u — TY[2°,0,)u — {@ﬂ (Y*8,u) — TV PP (&,u)}
- {@5 (g Dadyu) — g1 PP ((%auu)}
= A4+ Ay + A3+ A (3.2.42)

To estimate the first and second terms, we use the explicit form of the dif-
ferential operator 9 : 9P = &’legQ...XTBT = 851)(5”. Since 0, and O,
commute with 2°, we have (see (3.2.8))

Ay = g"0,00, 2% = 2g74((0r —0:)0a, 27 ut2(g" 9™ (004, 2°ut+9P (0405, 2°)u,
and since
0™ (07 —0,)04, 2P u = g7A0P 94 X7 [(0r— 8, )u) —g AP X P DA (07—, )]

we obtain that (see (3.2.50):

IN

2
[ et (A0, = 0004, 2%0) dvdv < el e, 0~ O0)ul
A, T

IN

cllo* 1o e, ) Eralu(m)] -

Similarly, we have
(674 +97) 0,04, 7°u = (" +57) (947° (010) = 7704(0))
which leads to:

/ p20—1+28: {(ng + gTA) [8958A) @ﬁ]u}2 (S)d:ZI dv
H)\,T

IN

Clg* 30 a1, . 19

IN

C||9ﬁ||%00(HX,T)E1€C,YA[U(T)] .

Similar calculations give:

[ e 0,05, 9N s)drdy < el e, ) 2 Ioaule
AT A

IN

C”QﬁHZLOQ(HA,T)EkaA[U(T)] :
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We obtain thus the following estimate for the first term of the identity
(8.2.42):

/H 2012 A2 dy < C”gﬁ|’%OO(H>\7T)E]€O7£>\|:U(T):| . (3.2.43)
A, T
Again since 0- and 9, commute with 27 | if we develop the second term of
(8.2.42), we find that:
Ay = YY[2°,8,)u = TA[2°, 8.4]u
and we then have the estimates:
[ e o < e 0l < TR B ()]
A, T

(3.2.44)
As far as the third term is concerned, we write
As = 2P (YYOu) — Y DP (Ou) = 2P (Y7(0; — dp)u) — Y™ 2P ((0r — 9,)u)
+2° (Y% + Y7)0pu) — (Y2 4+ Y7) PP (Opu)
+2° (T404u) — Y427 (9au)
= I+I1I+1II.

Now we will use the weighted Moser-type inequality B.2.10 of Proposition B.2.3
to estimate the components of As. Its first component gives the following

/ g2 120 V2 g dy
I_I/\,‘r

B B1 3 - BiyT B 2
= 27 2° (X7(0r = Oa)u) = ™17 F° (0r — 0u)u) oo,

2 12 2 T2
e (u<aT — 8o )ullZgg |7 [0 + 1187 — 8o )ulZpn I H%;;_o},l)
<c (H(aT = OuJullZag T g + 1177 I _ 1Ezf[u<7>1) (3.2.45)

For the second term:

/ a2 2B TV s dy
H)

1 BLOB (YT 4 Ty A BLCE 1+ TYDB( A ) (12
_||,13 9 (T +7T )azu x (T + 7 )-@ (8zu)||%a+0(H>\,T)

< ¢ (Ha:cUH?@gHTx + Y7o + 10zullSpe 107+ T7llog0 )

< c (Haxuu?@g\m F TN+ T+ XTI 1Ek“[u(f)]> .
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The same holds for the third term of As:

/ g2 IR LTIV da dy
H)\,T

_ B1 pB A L BivAgB 2
= ||z 2" (T204u) — 2 T2 DP (Dau) H%MO(HA,T)

IN

2 A2 2 A2
C, <‘|8AU||%3‘|T lgo + 10aullSe 1T H%{OIO}J

IN

2 A2 A2 o
¢ (Ioxuliss 141 + 17412, ETulr]) |
We then obtain the following estimate for the third term of equation (3.2.42)

/ o212 (A2 du (3.2.46)
H)\,T
< (107 — Da)ull g 17150 + 100ullZg 1 X7 + TG0 + [10aulZs HTAIIé,g

T2 T T2 A2 o
STy T TR LB
(3.2.47)

In order to estimate the fourth term Ay of (3.2.42), we need to look separately
at each of its components as we have to make sure that every 02 comes with
a factor of x. We write

Ay =A% £ 247 £ 2ATA 4 ATT 4 9ATA | AAB (3.2.48)

where the labeling A% corresponds to the terms obtained when in Ay we
replace gaﬁaiﬁ with its expression as in (3.2.8). Now we use again the
weighted Moser-type inequality of Proposition B.2.3 Equation B.2.10 to es-
timate these terms. We have:

/ p20-1+281 {AAB}2 da dv
H)\,T

= |27 2° (g*P0a0pu) — 27 g 2P (940pu) || O, )

< % (lowullag g + lowulee Iy, )
A )

< C (Z 0l g + 16712 1E§,A[u<f>1> (3249
. ,
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and
/ w2020 L AT g gy (3.2.50)
Hy.»
= 2727 (¢7404(0; — 0)u) — & g™ D% (04(0- — D)) || ey
< € (100~ duullg Il + 1607 — OyulBeelafl )
< (100, - 2aullg g + Iy BRalur)]) - (325
Continuing in this way we have:
/H w20 1420 f ge A2 o gy (3.2.52)
ar
= 12727 {(g"* + g7*) 0a0,u} — 2 (8" + g7*) 270400 g

C (10a0eull (67 +97) 2 + l0adeulle 1 (6™ + 57 I )

z=0},1

IN

IN

¢y (uay;uu?%gu (" + ™) ligp + 10sulZell (87 + 0™ 70 )
) o

C X (el 0™+ 97 I 411 6+ 674) iy BRAlul)])
A

0},1

IN

(3.2.53)

We recall that g™ + g°" = xb!(,2,v4), we then obtain the following ea-
pression for AT,

AT = 9P [§'20,(0; — Op)u] — 2627 [0,(0r — 0,)u]
= 27 [6'20,(0; — 0y)u] — b' 2° [20,(0; — D))
+ ' PP [20,(8; — 0,)u] — 2h' PP [8,(0; — )] .

= /Blblgﬁ(a'r_az)u

Since

2
[ a0, o} dedv < [0, - 22)ully
H)\,T
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we have

/ x72a71+251 {ATx}Z dx dv
Hy -
2 12 2 1112
< G (100, = 2l 0 g + 105 - 2o)ulle 1y )

< 0 (160r 0 I I + 01 ERAu(r)]). (3250
On the other hand, since 9" + 29" + g™ = 1 + zb, we have

/ g2 2B L A2 gy < (|2 9P (920, [0pu]) — 270D (20,[0,u]) H%;wo (H,.)
H/\ T

+/1p {;1:51@5 (20 [0u]) — 2P 29" (35“)} oo, )

= B12P1 DB (0yu)
2 2 2 2
< Ca(lleaudullag 01 + losdeul e 1015y
10113 2:ul3 )
< O <Hc‘9xu\l2@?llh|@£ + 1110 E,?,/\[U(T)]) . (3.2.55)

{z=0},1

We note that H:Ejﬁg{(l)H%a < ”@H%ﬁrj which can be shown by induction. In

order to estimate the term A%, we proceed as follows:
W= [2°, 07 (0~ 0| u = 27 (-1 + 20" (9, — 01)2u) = [-1+ 2b)27 (9, - )%
= 98 ([xr;O] (aT—ax)%) — %) 28 (8, — 0,)%u . (3.2.56)
Now using equation (3.0.1), (3.2.41) and (3.2.8), we obtain the following
expression of (8; — 0,)*u
(0r —0)%u = —2(§7+§7) (0r — 0y) 0 — (§77 + 287 4+ §7%) 82 — 274 (9, — 9,) Da
—2(g" + §7) 0,04 — 9*P0u0p — T0pu+ F'. (3.2.57)

Here the hat means multiplication with 1/g™" (recall |g""| > ¢y > 0). We
will need the following:

Lemma 3.2.7 Let

d = (20,,04), keN*, 0HeR, z/?:i,

gTT
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We have the following estimates:

HZDH%{OIZO}’O < —HI/JH%{OI 030’ (3.2.59)
~ 1 1 -~ 0
Il < G_Hl/)H%@ o T %H@(:rh Mell$llge o (3:2:60)
and
A 1
19l e < ;Hd}llyfke + 119l C (116" o) (1 + ||h°||%ok_1> . (3.2.61)

with identical estimates with ‘5{9;3:0}70 replaced by 938 and %”,f replaced by
0.

Proof: The first inequality is obvious. Next:

R 1 1
—0 0
Wllgr,_, < Tl + o 8{gTT }Hm

=0}.1

1 —0
< = 0 —a s
< EOIWH% oo T2 {¢ (g )+ 5 w} Iz
1 ~ 1 -~
< = - ANxh)l70e + — |0
- 60”¢H(g€z=0},0 T E(Q)Hw”(g{gz=o},0” (:Ub )”L * 60” wH(g{Gz:o},o

1 1., =
< = - 0l 700
< Wl + 10z~ [l

{z=0},0

On the other hand, from Inequality B.2.4 of Proposition B.2.2, we have:

N 1
[Fle = =¥l <\|¢ugggug”u g+ 1ol ==t
< e+ Il - (3.2.62)
Now, from hypothesis we have,
1 B 1 _ g wmaet)
g (1,2, v4) —14abO(r,z,0d) —1 + 2h0(7, z,v4)

= -1+ G(T,I’,UA,QZ‘bO) )

where G is any function which takes the correct values in the range of inter-
est, e.q.,

G(r,z,v4,p) = f)i((—]:)p with  x € C*°(R) such that x(p) = {
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Recall that hypothesis (3.1.1) reads xh° < 1 — €y. We have (note that the
space of functions %,f contains constant functions)

1
I gy < Wlgp + G a8)lgp < € (141G, 28 lgp) - (3263)

The function G satisfies the following:

1GC )l =IGC Pl < Cleo)
and fori=0,1;
'G(. ,p i
‘ %‘ < Cleo)lp|" ™"
p (g?z:O},kfi

These two inequalities show that G has a uniform zero of order 1 at p =20 .
Therefore, we can apply Inequality B.2.8 of Proposition B.2.2 and obtain
that

IG( 26%)llgo < CUB° o)A 1 -
This implies (see (3.2.63))

1 0 0
I el < CUD° e (1418001 ) (3.2.64)

and (3.2.62) leads to (3.2.61).

If we insert (3.2.57) into equation (3.2.56), we obtain seven commutators
which we label A% a=1,... 7. These terms can be estimated in the same
way as we did before, using B.2.9, B.2.10 and Lemma 3.2.7. They will be
analyzed in the order 7T—3—5—1—2—4—6. Let us estimate the term A%
containing the source term F. We have

/ p—20—14+281 {A90}2 drdv = |25 9P ([JJUO]F> _ P [xbo]@ﬂﬁ”?ﬁ%‘“
H)\,T
A2 012 12 02
< C <||F||ggg||mb o + 1F 150, b llcggz_w)
< Cl)IF g et + Cleo) 12N
(I3, + 112 OOl (14 10l )} -
(3.2.65)
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The third term can be estimated as follows:
/ p 201428 {AgO}Z dx dv
H)\,T

= 2|27 (20°5704(0r — Dp)u) — 2§° D7 (§7404(07 — Du)u) |20

< C (H@”‘aA(aT = Ou )l 2010 + 1670 (0r = o)ullZe 120 I )
< CI@ 17 110r = Dn)ullZsg 26117
02 2 112 2 ~f112
+Cllatll0 {H(& = mullZ l§*lGp | +11(0- = ax>urr%a\|gﬁucg&:0},o}
< Cleo)lg Iz 1100 = Or)ullZg lab°ligo + Cleo)llat’ I 19%l1Zo D7 = Du)ull e

bl 1@ = Tl {1615, + laFocC OB ) (14 28”1 )} -
(3.2.66)

A similar analysis gives (A and A have the same structure):
/ p2em 1428 {AgO}Z dx dv
H)\,T
= |27 ([2b")[§" P 040pu)) — [26°)2” ([P 0405u]) | e
< Cleo)lghFox 1 9aullZag 126 [0 + Cleo)l2t 150 6% 1 9aull e

bl NoaullZey {Ila%p , + 18030 C %) (1 -+ 12600 ) -
(3.2.67)

As far as the first term AY is concerned, we have
1 . .
— AP = 97 (g;h%l(xax)(af - 3x)u) — 2y’ P (bl(xﬁx)(ﬁT - 8x)u> :

Using again the weighted Moser-type Inequality B.2.10, we can evaluate the
square of its norm as follows:

/ $_2a_1+261 (A(I)O)de dl/

H) -
= 22”77 ()6 (@0,) (0r — Do)u]) — 2”26”12 (5 (w0,) (0r — D)) I
< C (H61<wax><af — O)ull g [l20° [0 + 1" (202) (97 — B )ull 3 | Hxhou?g&_o}’l)

< Cleo) (1010, = 0nJullg ol + 19" (200 — Ol Jot®lEy )
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Using now Inequality B.2.9 of Proposition B.2.3 gives (the last inequality is
obtained by using (3.2.61):

16" (20:)(8 — 8x)ul%n

< C (2020, — O )ullZgg 18150 | + 120.(0r — Du)ulZee 15112,
< Cl(0 = da)ullZg 10150+ Cleo) 18" [Z< [1(0r — Oa)ull e
< Cle)lID* 3 11(Dr — B )ull 3 + Cleo)|(Br — O )ulls

{1950+ BNl 3 (1 + 18120 )}

which gives

/ x 2o 1428 (A?O)de dv
H/\,T
< Cl)lIn" < 0r = D)ullZ bl + Cleo) 2 116" (D5 — Ou)ul5e
+Ce)llab 10 = D)l {IM 5 | + U )10 Moo (L + b )}
< Cleolletllgy_, 1613010 — Do)l
+C(eo) (1+ 1atllgy ) 1I@r = B)ulles {I6M1%  + CCUI oo )lIb I3 (1 + 12t Z0) }
(3.2.68)

Since the terms A and AY° have the same structure, to estimate the second
one, we just have to replace in the estimate on A%, ||(0; — 3x)u|]%a by

H@zuﬂ%a and ”xblHnggq by HﬁTA—l—ﬁmAHQggil . Thus we have
/ g 2071425 {AQO}Z dx dv
H, ,
=1 2” ([°][(67" + §°)0a(0sw)]) — [2°127 (67 + §°)0a(000)) 55
< Cleo)llaobllgo M@+ 8" 7o 10rul 0
+C(eo) (1 126°lly ) l0sulg

< I@EA + 820+ CUB°N)l@™ + 873 (1 + l2blZ) } -
(3.2.69)

We continue with the most dangerous term A’ . We have (recall that
1=1/¢"")
—AP = 77 ([ob°)(1 + 2b)02u) — [26°)27 ([i +2h]02u) ;
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/ p20-1+261 {A80}2 de dy
Hy -
= 2”27 (I0°)1 + 2b](@,) ) — 2™ [6°]2% ({1 + wh]62u) |2
< 2" 27 (2b°(1.0;u)) — 2™ [26°)2° (1.05u) 130
e 27 (020, (9,u) ) — 2™ 26°]19° (hads (D) ) e
= (a)+ (b).

Now, estimating these two expressions as we did with A?O, we obtain the
following

) < C(Ihteoaonulis oy + Ih(aon)0ule, ol )

C o) IBlIZ< [10zullZa |20 50 + Cllb(200) Dzl Z4a Hrvbo\l?g&:

A

0},1

Inequations B.2.9 and 3.2.61 give,

1(@0)0,ule < C <|r<xax>axuuégu6|@gl + @) 0sul3pe 1B )
Cleo)llb} o 9l

+C() Bl {150+ 1013 CUB%N ) (1 + 250050 )}

IN

(3.2.70)
which gives the following estimate for (b):
< bl (10ulplen 2y + 1ol lon’l, )
re)|Bnulig {1015+ I013= OO =)+ a1y )} el
(3.2.71)

In order to estimate the term (a) we write here 8 = (81,8") and 2° =
ooy, with 8 = X5 .. X[

7 (6%2(1.02u)) — (260127 (1.02u) = 28 (6%2(1.02u)) — 7 (1.20%u)
+h°2P (1.202u) — [26°]2° (1.02u)
= (1) +(2). (3.2.72)
We have

271(2) = 81527107 9% -1 (1.62u)
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and we have

x72a71+251(2)2 _ B%(h0)2I72(a71)—1+2(ﬂ171) (35/85171(1.@%@)2

This identity leads to
127 256 < ClB° |2 11.07u]

2 1
P55

< O (1Rl 1y + 1020l o112 )

A

IN

A 1
O (Il 1115 |+ l0sulBe )
Using again (3.2.61) we have:
A 1
2 < 2112 0, ( 2,02 )
Wligo_, = Tl + CCUBTz=) (T + 112700, )

that is
1% < COB°N) (14 27612, ) - (3.2.73)

Thus,

1
% @I < C(I°l=) {Iorulsy (14 1671y ) + = BB
(3.2.74)
As far as the first term of (3.2.72) is concerned, we have:

127 (D360 = 12727 (1°(1.(20:)0pu)) — &"15° 27 (1.(20,) 0w (|3

1 2 012 1 2 012
< {000l IV + 11-o0e)0ul e, 1571y )
< 0(60){||3zu||2%§||50||2g£

HII, {1000l 1115 |+ w00l I, ) }

0},1 z=0},0

IN

N 1
2 02 02 2 2 2
C(eo) {Haqu%ng) lego + 1B H%{Oz:o},l {Haxu\@g”lugg_l + %Haquﬁ,g}}

IN

Cleo) { Iomul%e IV + Iy ERAlutr)]}

FO@ID o 10eulley {CUN°N) (14 et )} - (3279)
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Fquations 3.2.7} and 3.2.75 show that

(@ < Ofe) {\|3xu\|2@$”f)0||2glg - |rh0||?g&=0}ylEz,A[u<T>]}

FOEID o 19ullap {CUD°Nz) (14 et ) -
(3.2.76)

Inequalities 3.2.71 and 3.2.76 show that
/ p 2o 14+28 {A80}2 dx dv
H/\,T

< el (Weullg et + 100131y, )

+C(eo)|9ulldag {191Z0 -+ 1013 CUD ) (1 + 18%lZ0 )} 2502

{o=0},1
(3.2.77)
Now let us consider the sizth term A of A%. We have
T, = 17 (0; — 8,) + (?w n ?T) 8y + Y404,
and we decompose AL as
A =a+b+c. (3.2.78)

We have
a:=9° ([xho]TT(& - am)u) — [2h°] 2" (?T(@T - az)u) ,
and

/ a2 120 62 g dy
H)\,T
= 2”77 ([eb"1T7 (0, = O)u) — 2™ 2”127 (T7(3r — 0u)u) e

AT 2 012 AT 2 02
< (IR0 = 0l It + 17 (0r — d)ulle Il )

< Cleo)I 71 Z< 1107 — Do )ullZag 126”150 + Hxhollgg&:

0},1
X (07 — O )ulZa 1T 1250+ 11(9r — Bx)ulPpa [|T72 :
T r 25 g}?—1 T r %—1 <g?aszo} 0
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Now, from (3.2.59) and (3.2.61) we have
17715, | < Ol Xl
and
17120 . < Cleo) {ITlhgp, + I I3 CCU la) (1 + 260130 )} -

Thus

[ ey < Ol TR 0, — 02l et
A, T
0112 T2 2
FOl oty T IRl @ = D2)uli
0 012 2 T2
OO e )llzb Ny 100 — Oa)ulizg 1T ligp

+C() el 110r = Deullag [T e (14 bl ) -
(3.2.79)
On the other hand,

b= 9P ([th](TT + ?x)axu) ~ [zh%) 2P ((YT + Yw)axu)
and we have

/ 20712812 e (3.2.80)
H)\,T

= | 2P ([a:r,o](TT + ?x)azu) — PP ((YT + ?x)azu) 13

< CI™ +17)aull g 126° 50 + CII(XT + L)l 550 Hwbo\l?g&:o} 1
< L)X+ 0% [Fee Ol g5 16l + Cllwt°lTp

x {Haxuuggguw + %50+ 100ul3ea X7 + Tzu?ggz_w}
<

Cle0) 107 + T Dl 16 1
FO()lah T+ 7 e B ()]
0 012 2
FOIB ) 2%y l0sullsy
AT+ + I+ (1 2805 )}
(3.2.81)

76



The same holds for the term
c:=9° ([:J:ho]'/anAu> — [z6%2° ('/anAu>
and we have
/H R dady < Ol T el 0l 1ot g
#Ceo)lletly IRl Oaule

0 012 2 A2
OO )l N 10aullsgg T g0

0112 2 A2 0112
2%y ol 1T (1+ bl ) -

(3.2.82)

+C(€0)

This provides the right estimate for AL, and hence for of A.

An identical estimate is obtained on the fourth term Ay of the commu-
tator (8.2.42). This finishes the estimation of the commutator [0y, 2°]u
appearing in (3.2.40), and the proof is complete. O

Conclusion

The proof of the Proposition 3.2.5 used essentially Stokes’s theorem, the
weighted Moser-type Inequalities A.34 and A.35 of Proposition A.3 of [20],
and the weighted substitution inequality type (A.31) of the same reference
(see also Appendixz B). One of the points there is that all the constants
appearing in these inequalities are independent of xo (recall that the sets
My, 2, there corresponds to the sets Hy ; here) which is the distance between
the boundary of My, 5, and the null hypersurface N = {x = 0}. So, in
our case, all the constants involved in the proof of the previous proposition
are independent of X. This allows us to take the limit as A goes to 0 in
(3.2.33) and obtain an identical inequality with EY \[u(T)] there replaced
with E[u(t)]. Therefore we have proved the followiﬂg:

Proposition 3.2.8 Proposition 3.2.5 remains true with A = 0.

Inequality (3.2.33) with X\ = 0 is the key in deriving an existence theorem
for the Einstein-Mazxwell equations with data on a hyperboloid, singular near
{z = 0}. In this case, we will show that all the 7, and %, norms appearing
in this inequality are controlled by the energy.
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It turns out that the proof, in Chapter 5, of global polyhomogeneity of
the geodesically complete metrics constructed by Loizelet requires a slightly
different inequality. For this we need to split the metric into two parts as

g% = g% 1 67 . (3.2.83)

The rationale behind such a splitting is, that the Lorentzian metric g will
be fized (in fact, it will be the flat Minkowski metric in our applications),
while the correction dg will eventually depend on the fields. This leads to the
obvious corresponding decomposition of T,

T = T 4677 . (3.2.84)

We assume that there exist constants o, M and N such that for T €
[10, 1] we have

M = H(Gti,flﬁ,f)Hg]g(Hf) + H(&)ﬁﬁgﬁv5T)H<g{0z:0}’1(ﬂf)
(02 — 01)g* | Lo ar, ) » (3.2.85)
N > [[(0ru, Opu, 0au)|| gz ) + (6%, 1)l o (m1,)

I8 g,y + 16060l - (32:86)

We then have:

Proposition 3.2.9 Letk > n/2+1, 0 € R, a < —1/2. There exist functions
Cs(eq, Co, a0, kyn, M) and Cy(eg, Co, ,0,k,n, N), monotonously increasing
in M and N, which we write as C3(M) and Cy4(N), such that for all

T € [10,71]

and for all u satisfying (3.0.1) we have

T

{Ca1) (B + IF() B, )

+Cu(N) (14 11085, 005, 07) |20 gy ) Jls - (32.87)

Bilu(n) < Bflu(m))+ [

70

Proof: The result is obtained by calculations very similar to those of Propo-
sition 3.2.8. We follow that proof until (3.2.41), which is rewritten as

O = g 02, + 0g" 07, + 170, + 6170, . (3.2.88)
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This leads to the following rewriting of (3.2.42):

[Og. 2% = §°[0a0), 2°Ju+ 6°" (000, 2°Ju
—A =104,
1125, 8,]u— {_@5 (Y”a,,u) 198 (&,u)}

—_———
=:Ap

=:A3

—5TV[25, 0, Ju — {@5 (5T u) — 5T 9P (&,u)}
—_——
=:0Az

=:0A3
. {@/3 (5" 0aB,u) — 421 2° (aaauu)}

Y
—{@5 (697000, u) — 5g°2° (aaauu)} . (3.2.89)

=:0A4

The terms A; := A; + 6A;, i=1,2 are estimated as in (8.2.43)-(3.2.44). For
As, instead of (3.2.45) the estimates proceed as before, except that at the
end one invokes the weighted Sobolev embedding of Proposition B.2.1; e.g.,

/ g 201426 {1}2 dx dv
H/\,'r

= 2" 2° (T7(0; = a)u) = 2”797 (0r = 0)0) |20,
< G (100~ du)ullg 171 + 10, = e 1Ty )
< (I + 1Ty, ) BeTutr)]. (3.2.90)
For §As, we use Proposition B.2.5. Instead of (3.2.45) we then have
/ =228 (52 da du
H,
= |27 2” (Y7 (8 — 8x)u) — 2P16YT PP (8 — D)) |0 (ua, )

2 T2 2 7|2
<C, <||(aT = 0 )ullzgg 107 Moo + 1107 — Ou)ullSge (167 II%gz_O}J)

<C <H(8T = 0 )ullZgg 07 o + ”(STTH%PZ:O} lEka[u(T)D (3.2.01)
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An identical treatment applies to the remaining three displayed equations
following (3.2.45).

The term Ay is split into A*’s as in (3.2.48), and then for pv # 00
we split AMY = AR 4 SAM in the obvious way. All the terms AP with
uv # 00 are then treated as in the proof of Proposition 3.2.8, and at the end
we invoke the inequality, for k > n/2 +1,

1£1Z50 < Cllf 1360 -
1 k

The terms involving JA* with puv # 00 are treated as in (3.2.91); for ex-
ample, (3.2.49) becomes

/ g2 1426 {5AAB }2 dx dv
H)\,T
= |27 2" (69" P0a0pu) — 2769 PP (0408u) || 70, )

<.y (uaAuu;Wuagﬁuég + uaAuu?;fkaHégﬂl%&:m,l)
A

<0<Zufuuu;?auagﬁué;+Hagﬁ@&ZO}JE;%,AW(T)]) . (3:2:92)
A

In (3266) it is convenient to use the splitting h = b+ 8. The terms
involving by are estimated, using the Sobolev embedding, by E,*[u(T)], while
for those involving o we write

/ 201428 {5A80}2 dx dv
H)\,T

= 2|2” (20h°§7404(0r — Dp)u) — 20b° PP (§740a (D — D )u) [Pz
< Clla™04(0r — Oa)ullZgg 106° ||

+C||7404 (07 — Do )ul e ||:c5r,0||?g{0z: : (3.2.93)

0},1
The first line above is estimated as
Cll*17 107 — Dn)ullZa 196120
k

as desired. The second is estimated as

1112 _ 2 ~TA2 _ 2 atl12
Clisg ||<ggzo}yl{||<a 0rYul g5 |67 5 + 1107 — O2)ull 3 6 H%gmo}

k—

< #1(2 _ 2 1aTA2 #12 a
< Clogiligy | {||<aT Or ullZag |8 s + ¥y ERAlu()]} -

(3.2.94)
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To estimate the term AL (compare (3.2.68)) we need to split both b* and g
into two. The terms there involving h? and §° can be estimated by Efu(T)].
The terms involving 8g* are estimated as in the analysis of SAL. The mized
term involving g* and 8h is handled in the obvious way

A~
°

Jo% 27 ([2ob)[a*Foadpu] ) — 2™ [206°)27 ([3*FDa081) ) |

5 AB °AB
C(llg™? 0a0pullz5 204" oo + 1266l _ 16" Da0pullz0 )
C(l16° < |0aull 5 1200° [ ga—o + ¥ llgo_ Oaull e 28H° l450

IN

A

{z:O},l)
< C(18%] < 10aull g 166 oo + 188 ll0 1106 log0 ER Alu()]) -(3.2.95)

A similar analysis of the remaining terms proves the proposition. ([l
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Chapter 4

Application to the
Einstein-Maxwell Equations
in wave coordinates and
Lorenz gauge

4.1 Change of coordinates

4.1.1 On the gauge condition

Throughout this section, the (unphysical) conformally rescaled metric is de-
noted by g, and the (physical) metric is denoted by g; thus g,, = Q2glw.
Remember that in the original system of coordinates (x*) we have

Oyt =0 with g=n+h,

which leads to

9u(g" /| detg) =0. (4.1.1)

We want to rewrite the above equation in the new system of coordinate (y®)
(see (4.1.4)). We have

1 (0%
Vldetgl =1+ on Phas +Q(h) ,

where @ has a uniform zero of order two in h. We set

g ="+ H" . (4.1.2)
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In what follows, we use a generic symbol Q for functions which have a
uniform zero of order two. We have

0u(g V/Tdetgl) = Dulo {1+ 57" has + QA
= Ol + HY 4 D has + Q(A)]
= OuH {1+ 5o + QU + [ 4 HP Y50 Ohas + ,Q(h))
Using this identity, equation (4.1.1) takes the form:
O H" + %n““naﬁé)uhag
= O (L R QUNY — B[ 0hes + 0,Q()) — 0 0,Q() . (113

Let us rewrite this equation in the system of coordinates (1,x,v4) where

IJ . .
yﬂznﬂ:iw’ T:yOSO’ x:_yo_pzo and yl:pwl(vA).
«
(4.1.4)
Recall that
Q= —yoy® =7 —p’ =2(-7+p) >0, (4.1.5)

and f = Q‘nT_lf (not to be confused with division by g"", as used in the
previous chapter), so that

of n—1 0 0 ;
= { = (- 1y, SR e iR (4.1.6)
thus the left-hand-side of (4.1.3) can be rewritten as
(h—-1)0"7" v Lo aBi _0"t 9 9 guv Lo aBi
(n—1)Q 2 yu<H —1—277 n haﬁ) O 2 {Qa “+2y#y By }(H —1—277 n haﬂ)

We want to analyze the structure of the right-hand side of (4.1.8). This
expression is made of three terms which will be labeled Ry, Ry, and Rs. We
have (see (4.1.6) and recall that y & & 69 =2Q):

n1 (1 _n-1 o n-1a 0 0\ 5w

Ry = Q2> {59 2 try(h) + Q2 2 h)} {(n—l)yu—l—Qay + 2y,y° By }H“
= QTR O ) QO 0T 9)

+QQ"T h, Q"7 gy 8(3 H™Y | (4.1.7)
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Now, since % has a uniform zero of order one, we have

9 0Q Ok 0Q, nia a 9 AT

9on @M = G = T M {<n—1>yu+ﬂa—w+2yuy @}h
QT )+ 0@ i 0T O g oyt L
= Q( , yuh) + Q( : ayu) Q( : Uy 5 )

Thus Ry reads:

Ry = opfes v {0}

QT R, QT ) + QT M, Q0,0 + QT B 0Ty %h)
(4.1.8)
Next
Rs = —10,Q00)

~

n—1~ n— n—1 n ~ n—1 » n— 8 ~
= " {Q(Qzlh,mlyuh) + QT R0, )+Q(QJh,QJyuy“@W}(‘l‘lf’)

From this, we obtain the following form of the gauge condition (4.1.3):

. 1 . 1 ) D/~ 1 R
M - v of o _ {Q 9 « }(Hp,u - oouv, af N )
Y™+ Sy " hagp 1 g T2Y 50 +5m N  hag
+Q "7 (Ri+ Ry + Ry) . (4.1.10)

Now we recall that
HI = g = 1+ QM ()
where h*¥ = n“an”ﬂhag. Therefore
1

1 hes = 1B + Q"2 Q"2 H).

Equations (4.1.7)-(4.1.10) lead finally to the following form of the gauge
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condition (4.1.3):
~ 1 ~ 1 0 0 ~ 1 =~
17 _ N 11
v, H 5Y try(H) l—n{Qa m + 2y,y” 8 }(H 51 trnH>
+O"T Q" H,Q" H)
+QTT QT H,Q " oH)

)
V5 ). (4111)

We will need the following consequence of this equation: multiplying by vy,
and commuting derivatives one is led to

+Q7 QO By

(n = 5)ypy " = anﬁ (yuyyH“” + §QtrnH>
-5 0
”’n(H) + y”a_yu
— n—1 -~ n—1 -~
+Q_7Q(Q*H Q" H)
+OT QT H Qn+18H)

+o(" (B — S iy (D))

e (4.1.12)

0" QO H,Q
+ 2 Q(Q 2 H, R 8y

4.1.2 On the wave equation

In wave coordinates (x*), we consider the following wave equation

R BT e SRS (41.13)
Ox*0xP ' Ox*dxP ’ o
In order to check all the hypotheses made on components of the metric in
our theorem on the energy estimate, we have to rewrite this equation with
respect the system of coordinates (T,a:,vA) used there. According to our
previous calculations, equation (4.1.13) can be written as

9% f O2f nis
At L g =0z F 4.1.14
ay)\ay“ (f7 8f) a;vu 2 (f7 8f) 9 ( )
where R )
f=Q"2f.

So, let us express the second term of the above equation in terms of coordi-
nates y”. We already know the identity:
0% f P(fod™h) ya,n, Ofod™) %y”
A% A =K
Oz Ox dyxoys "~ H At dy>  dzrdz? °¢™ Mt Vs
(4.1.15)

op! =
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with
82 ya
OxtOx?
and

0 ¢! = 2007 y” + 22051ry” + 20,09 + o0y Yy’

AfjAf = 925355 + 4y yuy®y” + QQ(éz‘y)\yﬁ + 5fyuya) .
These identities lead to

of
HYVy,, = B {206500y7 + 2008005 + 20m00” + Siamoy”y™y’ | oy

(4.1.16)
Now we also know that
of ns | Of A
— =0 — —(n—1 . 4.1.1
8ya 2 { 8ya (n )yaf} ( 7)

This implies that (note that in this equation, the term yuy,\H“’\ s the one
which has the the smallest multiplicative power of 2):

n-1 i « “ ) 0
HMV,, =20"s H A”{(n—l) {nx - 2yn} £+ (2905 + Qg™ + 4yny”) 8y{“

(4.1.18)
On the other hand we have

P(fod™t) _ onslge OF of , of
dyeOyP = 2740 8yaayﬂ_(n_1)9 yﬁa—ya"‘yaa—yﬁ

+(n = 1) [(n = 3)Yays — Magp] f} 7

which leads to the following expression of H)‘“KM :

n—>5
H)‘“K,\u = Q=2 g™ {92(52‘55 + 4yuny*y” + Qde(n,\géz‘y’B + nﬂgéfya)}

0% f of of :
{QQWgyB —(n -1 (yﬁay{y + yaay];) +(n=1)[(n = 3)Yays — Mag] f} :

and after simplifications, we find that
& f

n—1
IRy = 9 {92508+ s + 205 + S} 50

n—= o o 0 f R
+ (n—-1QT HM™ {2 (2yryuy™ + Q0% yu) agj; +[(n = 3)yuya — gl f} :

(4.1.19)
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With the expressions (4.1.18) and (4.1.19) and writing HM = Q"5 HMw ,
equation (4.1.14) reads after simplifications

{ B T g [925 5B+4yuy>\y y” +2Q(5, y>\y5+5fyuy )]} 907077

of
8&

1+ 20" H’\“{ {2 n+ Dy, yy® + (n + 1)Q(5ay>\ + a0y }

+(n =D {(n + Dyuys + D} f}

8

(n—Uw}O

QR n Of
= 0 ( ENAER 5 ) (4.1.20)

= Q"f’p( fQ("1/2

We want to apply the energy estimates of Section 3.2.3 to the equation
considered here. So for consistency of notation in that section, we write the
above equation in the form (recall that Q = x(p —7)):

Ogu = F(u,0u) , (4.1.21)
with R
u=f, (4.1.22)
o = "+ {a(p— )} HM x
{{alp = 7)20203 + 4y’ + 2alp = D} E0” + 6yuy™) }
::"Z)aﬁku
(4.1.23)

(in order to reduce the typographical length of formulae we will sometimes
write wﬁ,’? for 8 ,,,) and

8U n+3 ~ — n—1 8U
— = O P (QT w0
}7<u’3y”> 2 < T 3y“>

{T“ — 90" [ {2(n + Dyuyay® + (n + Q3G yx 4 maSy® } } By

—2(n = 1)Q" B {(n + Vyus + Qad u
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So, we have to check that the metric g defined by (4.1.23) and the harmonic-
ity functions

1
T = 73,,{ det g|g’“’} (4.1.25)

/| det g

satisfy the hypotheses of our theorem.
The tensor 1/)0‘5“,, defined in (4.1.23) has the property

Nag = P, (4.1.26)
which implies that the contraction
Nap(g®? —n°%) = Q"% tr, H

gains two powers of , as compared to a direct power-counting based on
(4.1.23). Furthermore, the structure y"‘yﬁyuyy of the term without powers of
Q in P w tmplies that any contraction of the form PP wNap®P’ s acquires
an overall multiplicative factor of Q. So if we set

6g%p == g™ nup — o5 ,

it follows that for k > 2 we have

n—>5 =

((5g)k) aﬁ = 5gaa1(59a1a2 . (590%_1,8 _ Qk_le(QTH) ,

where we use the symbol Q. to denote a smooth function (in this case, a
polynomial) with a uniform zero of order k, and which may change from
line to line. A similar analysis shows that, again for k > 2, the trace

Di(6g) = tr(0g)F = 0g%, 60, - - 0g™ 1o = QFQL(Q"T H)  (4.1.27)

(no summation over k) gains one more power of ().
Set
Aa/j = (sg + 59“5 . (4.1.28)

Equation (4.1.27) implies

pi(A) = tr(I+35g)" = > CIp;(dg) = n+1+itrog+02Qo(Q"z H) . (4.1.29)
3=0

Let W () denote the characteristic polynomial of A,

W(A) = det(A = AI) = det A+ wid + ...+ wp A" + (=3
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Then the coefficients w; are homogeneous polynomials of order n+ 1 —1 in
the entries of A = I + dg, with w, = (—=1)"trA = (=1)"(n + 1 + trog). It
is a well known consequence of the Cayley-Hamilton theorem (see, e.g., [52,
Theorem 1]) that both det A and the w;’s can be written as polynomials in
the p;’s, and since each p;(A) has a factor Q2 in front of the Qo terms, we
find that the w;’s take the form

wi(A) = wi(I) + L (trdg) + Q2Qa(Q"2 H) | (4.1.30)
where £;(trdg) is linear in trog.
Now
g’ = g, = (65 +0g%,) n? = A% PP (4.1.31)
hence

det g* = —det(A) ,
which shows that

detgf = —1 + 02 (—Q"T* try H + QQ(Q"T’E’EI)) — 14+ Q20" H) .
(4.1.32)

From the Cayley-Hamilton theorem we have

-1 _ _ﬁ (Wil + - 4w, AL (1)1 A
and we conclude that gos = (N ' A™1)ap takes the form

1 n=5 Suv 2 n=5 75
g = 1+Q2Q1(QHT75) (naﬁ—ﬂ > H" )agu + Q°Q2(Q 2 H))
= s — Q"2 H™yy,y%y” +QQ1(Q" H)
+O2Q,(0 "2 H) (4.1.33)

where the indices on VYo, have been lowered with the metric nqg.

4.1.3 On the components of the metric

Recall that, to obtain energy inequalities, our hypotheses on certain compo-
nents of the metric were

0 =—1+a2b% ¢% =—ab’s " +9"" = —ab? and ¢ =1+zb,
(4.1.34)
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where the functions b, h°, b4 are bounded on bounded sets. Since (compare

(4-1.4))

QOp = gOiwiv g 8—2/2'7 gpA = gljwja—yz and gpp = g”wlw] ;

from (4.1.23) we have (note that y'w; = p, pwidli =yu +76),):

n—"7 n—>5 =
00 = 2" (p—7)"7 H {{z(p — 7)}28705 + 4r2yyn + dr{a(p — )35}
(4.1.35)
n—"7 n—>5 = . .
b' = -7 (p—7)"T HM {{z(p — 7)}?6,85wi + 47pyuyx + 20{x(p — 7)}ya(80p + 7000 }
(4.1.36)
T "——F)ﬁ/\u CN28E 5 it dp 4 _ 5 ]
h=a72 (p—7)2 {2(p—7)}76, 0 wiwj+4p yuyr+Hx(p—7) fyapd, yawi ¢
(4.1.37)
A
A_ _ m3 0 8 _ 730i A N 3L
b 2" (p— 1) {(p 7) (H +wH ) 211 }W . (4.1.38)

We see that the components of the metric (4.1.23) have the right structure
(4.1.34) if the space dimension n is greater then or equal to 7. We will see
in Section 4.2.1 (see (4.1.12)) that this can be lowered to n > 6 using the
harmonic coordinates condition.

We note the identities,

i ov oot ot
Wi = Y Wi =
% oy — T Oy or

=0,

which justify that g4 + gP4 has the right structure. In particular, for this
component the condition n > 4 suffices to fulfill the structure condition.
We will also need

¢ = 14 0E"T), ¢ =1+0(E"T), ¢ =O0("7)(4.1.39)
n—>5

¢ =0E"T), ¢ =P +oE"T).

4.1.4 On the harmonicity functions

Now let us look at the harmonicity functions, defined as
1
TH = 7&,{ |detg|g“”} .

V| detg|

Since our energy estimates have been established using the coordinate system
(z,7,v4) as defined in (2.3.3), we need to calculate Y* in that coordinate
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system. But so far we only have the expression of the metric in the y"—
coordinate system. To avoid confusion let us write DY for T associated to
the coordinates (1, z,v4) and DY for that associated to the coordinates y*.
To understand the behaviour of Y under coordinate changes, it is useful to
write the Christoffel symbols F%‘,Y of the metric g in the form

5y = UGy +Chy s

where the F%‘V ’s are the Christoffel symbols of the Minkowski metric n, and
C’g‘ﬂ/ 1s a tensor. Then, in the coordinate system y* we have

Wye = —ghcyg (4.1.40)
C

since the ng ’s vanish in the y*—coordinates. Note that C'* as defined in
(4.1.40) is a vector field, being the contraction of two tensors. In the coor-
dinates (1,x,v4) we have

@yo — _ghr (fg7 + cgv) — g1y — . (4.1.41)

Thus, to calculate DY we need to vector-transform C< to the (1, z,v4)
coordinates, and calculate the missing term gmfgv above. We start by cal-
culating the vector field C*. We set

g% =% 4 Q" K (4.1.42)

thus R
K = By

as in (4.1.23); we hope that the clash of notation with the completely different
K.p appearing in (4.1.15) will not confuse the reader.
From (4.1.32) we have (recall that QQ means Q2)

F1 1 n- ~ n—5 ~
(\/| det g|) — 1+ 5QTlm,(H) FO2QQTH) .

Thus in the coordinate system y*,

1 n- ~ n—
g\/|detg] = 7 (1—5921%15{) LQU R

+O2QM Q"2 H) | (4.1.43)
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Dy (g’“’M) = %Q%B {(n - 1)y“t7’anf - n“"Q@,,tranI}
T+ (5 — )y K+ 00,K" } + 0, {02Qm (03" 1)}
and since
QKM ~ y, KM = —Qys HYP {Q6F + 2yay™} (4.1.44)
and
0, K" = 0, HP 1Y +2(n+3)ys H*? {Q08 + 2oy} +2Qu" try H , (4.1.45)
we obtain
Oy (g’“’M) = %Q%S {(n + 3)yPtr, H — n“"Q&,tran}
0% {ayf[“%g” + (3n + 1)y5ﬁ“6(ﬂ55 + 2yay'3)}
FO2QE(Q" H) + Q2QM ("2 H, Q"2 0, H) .

Multiplying this last identity with (\/ | det g|) ~ we then obtain the following

expression for the vector field C*:
1 o ~ ~
or =" = 20 {(n+ 3yt on H — Q0,1 |
n=5 N v ~
+Q°7 {0, H*P gLy + (3n + 1)y5HaB {Q(S“ + 2yayt} }
+O2QM(Q"T H) + Q2QM (0" H,Q"2 0,H) . (4.1.46)
Now writing the vector field C' as
C=Cro, = CT0, +C%, +C4 ,

one is led to:

T 0 T T i A aUA i
cT=Cc", C"4+C"=—-ww)C", C%= 81.0
Y
In order to have all the harmonicity functions in the (1,x vA)—coordinates,

it remains to calculate the term gBVF of the formula (4.1.41). In these
coordinates the Christoffell’s symbol of the Minkowski metric ng read:

;5 = 0,

I'7, = I%,=0, I'ip=pxan

nA A A

r4 = rd =14 =o, PTB—FxB———é& I3c = Ve »
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where we have denoted the round metric on the sphere by x, and its corre-
sponding Christoffel symbols '7§C' These identities lead to the following (see

identity (4.1.42)):
g1, = 0 (4.1.47a)

o n —

g = pgt XAB_T+,)Q HW%V xap  (4.1.47b)
. 2

o = @) + 0" e (4.1.47¢)

— p_oAHz HW(W‘ Lyl 7BC>; (4.1.47d)

where CA = XBC'yAC s minus the harmonicity function on the unit sphere.
Finally, we obtain that the harmonicity functions of the metric g in the

(7, 2,v4)-coordinates read:
@yr = O (4.1.48a)
@y 4 @y = () — o (4.1.48b)
ot 1.
@y = i - =0
ayz p2
—0'7 HW(W‘ LB 7BC> . (4.1.48c)

We revert now to the notation Y for what was denoted by AY above.

4.1.5 The source term F
Recall that the source term in y*-coordinates reads:

ou _n43 ~ n18u

0
+{( Tt — o0 HA“{2 (n + Dyuyny® + (n+ 1)Q05yx + nx, 2y }} Y

—2(n — 1)97%5]/1\7)‘“{(71—1— Dyuys + Qyutu . (4.1.49)
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From (4.1.46) we have

W — 20" B {2(n + 1)yyay® + (0 + 1)Q5yx + mauQy* )
1 ne i H
_ 5QTS {(n . 1)yat’l”77H — nowﬂa,jt’f’nH}
T (UM 4 (n— Do F (05 + 20,0} )

+Q2Q(Q"T H,Q" H) + 02QY(Q"7 H,Q"7 0:H) .

This shows that the source term takes the following form.:
;(u, @) _ o (Q—UQ— 3u>
8yy 8yu

—2(n — 1)QHT_5fAI>‘“ {(n 4+ Dyuyr + O} u
o
oy~

+"2 {uk 0, B + (n = Dya ™ {905 + 29,5} }%

1 n- ~ ~
-1—5973 {(n — D)y“tr,H — n“”ﬂa,,trnH}

+{QQQQ(Q"T"”1§,Q"T"”1§) + Q2Qaﬁ(ﬂ’fﬁ,n’faﬂﬁ}% :
(4.1.50)

4.2 The Einstein-Maxwell case

4.2.1 Existence of a solution

The FEinstein-Mazwell equations, in harmonic and Lorenz gauge, take the
form (4.1.13) (see [9, 37, 39]) with the following replacements there:

f= 9w —uw,Ay) and H =g — P (4.2.1)
——

= huw

Recall that, if v is an arbitrary function, then

Therefore, we have

94



For consistency of notation with Section 3.2.3 we set

f

u.

In this notation X
Voo < Tl

and, since
HB — _naunﬁuhwj + Q—(n—l)/2Qa6 (Q(n—l)/Qhwj> ’

where QP has a uniform zero of order two, from Proposition B.2.2 Ap-
pendiz B.2 we obtain that

o > _n—-1 n—-1x»
VA e < 0™ byl + 19077 Q2 (77 By ) [

< O (Il ) Il yo-mrre

k

< C (Il ) - (4.23)

We define the energy ER \[u(7)] as in Equation (3.2.28) of Section (3.2.3),
the metric being defined by (4.1.23). Recall (see Equation (3.2.50) of Section
(3.2.8)) that this quantity controls the F6,"-norms of Of. Now,

e & vy —n=l oo n— 7
[0 20 < 100 By ) P + 10 (277 Q2@ 20) ) P
Since

o (277 QU Q0 ,,)) = QTR+ Q7T QU@ h Q"7 oh)

n—

Q"2 h) + Q"2 HeQU(Q" (hya ),

we have the estimate:

_n-1 fe% n— 7 _ntl o n—1x
10 (27" QP 2h) ) 120 < 107 QVQE ) g
HQ™ T H0Q QT (h, a7 0R)) | o
< C(R|le) Al o—n-
< CUhlz=)lIA oo
+C(||h, z=“Oh)|| L= |(]|R, :c‘“é?h)H%ﬂe_a_(n_l)/z
k
< C(lh, a0 s (Il e + 1]l oo + 19k )
<

C(llh, w=0R) [z (Wl -0 + 1Rl )



Thus,
1081300 < € (Il 2=200)|1 ) (Iull oo + 100l 0 ) -

To continue, we suppose that at x = x1 > 0 the mazximal globally hyper-
bolic development of the data exists for T € |19, 1], with

My = H.ﬂ{:v:;rl}HLoo <.
We define (compare (3.2.32))

M) = 1F 1 any + 18 @ — 0006 2 ery + 108 65 D20 s

{=z=0},1

(@ — 80 . 0, 0aF) 2g0 a1y + IF Oyl (4.2.4)

with the functions gt, b, TH = AT and F defined by equations (4.1.23),
(4.1.35)-(4.1.38), (4.1.48) and (4.1.50).

For any positive function N(7) we set

N(1):= sup N(s). (4.2.5)

$€[70,7]

We then have the following:

Proposition 4.2.1 Let k € N, o € (—1,—1/2] . Consider the Einstein-

Mazwell equations (4.1.13) in space-time dimension 1 +mn > 7 if a = —%,

and 1 +n > 8 otherwise. Let f be defined in (4.2.1), suppose that ty > 0
and assume that the initial data, given on the hyperboloid

S = {(:U“) a0 —tg = /8 + |72 } (4.2.6)

i Minkowski space-time, are such that:

Floeo € (A5, N LZ) (6(H)),  and ((37 —0)f,0:f, 3Af> o) € 65 (D(H)) -
(4.2.7)

There exists functions C’g(n, k,eo, Co, a, M) and C’4(n, k,eo, Co, a, M), monotonously

increasing in M, which we write as C3(M) and C4(M), such that the energy

of the system as defined in (3.2.28), Section 3.2.83 satisfies the inequality

13 + BRLF) < 2{ME+ BRIf(ro)]

+ / " Gy (NI (s)) B2 f(s)]ds} , (4.2.8)
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where 19 = —%. Furthermore, forn+1>7 and a« = —1/2 one has
If (D7 + ERIf ()] < Q{Mf + BR L (ro)] + a2 H g, (10) 50

+ / ' Ca(M (s)) B f(s)]ds} . (4.2.9)

Remark 4.2.2 For n > 7, a prefactor Q"2" in the fourth line (the fall-off
of the component of this term with the lowest power of {2 can be improved
using the gauge condition) of the nonlinear term in (4.1.50) still leads to
the estimates here. This remark is important for the estimation of the time
derivatives in Section 4.2.2 below.

Proof: For all 0 < x < x1 the trivial identity

f(rz) = flr,) - / " 0. (r.5)ds

leads to the estimate (recall that o > —1)

FOle < Mt [ 1050y, s
< M+ 0. (7)o -
From this one easily concludes
1f ()llge < C(My+ (92, 04F) ()l ,) - (4.2.10)

Now we apply Proposition 3.2.8 of Section 3.2.53. To obtain (4.2.8) we will
show first that, in the Finstein-Mazwell case, the " -norm of the source
term, the %,?—norms of g, b® and Y* are controlled by the energy. Let us
start with the 90-norm of g*. From the expression of g given by (4.1.23)
and the estimate (4.2.10), if n > 5 then

I (DI < C (M + 071 )
C (My + Eg \[u(7)]) - (4.2.11)

A

The same holds for b® but with the constraint that the space dimension n
1s larger than or equal to 7. We will return later to the question how to
improve on the dimension on this term when o = —1/2.

To estimate the harmonicity functions DY given by (4.1.48), we start
by estimating the functions C*. We decompose C* = C' + C§ + C¥', each
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corresponding to a line in (4.1.46). The first and second terms are estimated
as we did for gt and bt:

—3

n=3 -5 n=1 -
ICT5 < Clla™= Hlgo + 2™ 0H|50)
< C(Mi+ Eg,\Ju(r)]) for n>3, (4.2.12)

and

—5

n=5 -5 n=5 73
IC¥IG0 < Clllo= Hligo +ll= = 0H |l50)
< CO(My+ E,\[u(r)]) for n>5—2a. (4.213)

To estimate CL we recall that its components have a uniform zero of order
two in H and (ﬁ,:}:*a@ﬁ) respectively, with the second term linear in 8ﬁ,
thus we can apply Inequality B.2.8 of Appendix B.2 on the &-norm with
=2 pg= ”T_E’ We obtain:

n=5 73 viOREE T —an 17
ICHIZe < QM@ H)IZ 2 + Q™ (@ (H,2=0, H))% o
< CUE N A0 + CUH, ) || (H, 2 0|30
< o (12 0m) =) (1150 + 108G ) for n=3-a.

Thus we have:

14120 < © (1, 2= 0M) = ) (lul}~ + Bgalu(r)])  for nz4.
(4.2.14)
Note that the function C (||I;T,:U*°‘8ﬁ)||,;oo) will give a contribution to the

function Cy(M(s)) of (4.2.8). The remaining terms of AT as given by
(4.1.47) are estimated in a similar way. They are controlled by

C (1+ Eg \Ju(r)]) for n>5. (4.2.15)

We continue by writing the source term F (see (4.1.50)) as a sum of
terms, each of the following form

P F; ( 2% (f, :U‘“@f)) . (4.2.16)
Note that all terms are polynomial in Of, at most quadratic in Of. For

instance, the first term F arises from products of the Christoffels in the Ricci
tensor, and from the products of the derivatives QA of the vector potential
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N
S
&
<
S
oS

H constraint H n > H

Fi —nt3 -l q 2 n>5-—2«a| 7[6]
Fa —nd n> 2 n>5 6
F3 22 +a 0 2 n>3 4
Fi L5 4 20 0 2 n>5—2a || 7[6]
Fs —"Tff’—ka "775 3 n>3 4

2-22 42| 22 3 n>3—a || 4

Table 4.1: Restrictions on the dimension from the source terms.

A in the energy-momentum tensor. We then write, for example, in the x*
coordinates,

I? ~ (6°09)* ~ F(g*)090g = 2> F(¢*)(z~“0g)(z~*dyg) ;

we then express this in term of hy,, transform the whole expression to the
y*—coordinates, and finally reexpress hy, in term of ﬁ;w- This formula
shows that the I'? in the Einstein equations have a uniform zero of order two
mn (f,:z:_o‘f). A similar analysis applies to the contribution of the Mazwell
fields to the Einstein-Maxwell equations.

We use the following estimate to show that the J™-norm of F is con-
trolled by the energy of the system: Suppose that F; has a uniform zero of
order {; in (u, x~“0u), then applying to this function the second part of
Lemma B.2.2 Appendixz B.2, for

pi + Eiqi > . (4217)

We choose € > 0 so that p; + £;q; > o + €, and write
a7 7 (2% (. ™ 0u) [
= |5 (., 2% u, 2 *0u)) Hiﬁa,pi
C(”(u, x_aau)HLoo)”(u, x_aau)”;aﬂ’r%qz‘
k

C(Iu, a=0u)|ze<) (Jlull— + 2~ 0ul%, )
< C(lu, z=%0u)llz<) (lullfe + ERzlu(r)]) -

IN

IN

The analysis of the nonlinear terms (4.1.50) along those lines gives the fol-
lowing table: Here the F;’s, i = 1,...,4, correspond to the i-th line of
(4.1.50), while the two rows for Fs correspond to the two respective terms
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in the last line of (4.1.50). In the last column the number in square bracket
1s obtained by estimating below the mon-linearity in a more efficient way.

It turns out that the threshold on the space dimension n can be low-
ered to n = 6 for the components Fi and Fy of the source term F. The
quadratic terms in those expressions with the lowest powers of ) are of the
form QRT_BG(QnT_lfA)c?fc?fA for F1 and Q" T Hou and Q"5 0Hu for Fy.
One can estimate the J6"-norm of Q"z" Hou using instead (B.2.9):

n—5 ~ ~
17 Houll3pe < |HOu® | s
7,
77112 2 n=5 732 2

< < (uﬂu%guauu%anz_s + 12" H||gkouauuggg>

< Oullde +10ullsy) (Iulid + 10ulZgs) i n>5
< Cllule + 10ulZ) (1+ 10ul3e )

see (4.2.10)
< Ol + 10ul3ee) (1+ 10ul3g0 ) (4.2.18)

for k> mn/2. Neat,

19272 0Hgul %

IN

[z —
2

k

¢ <|!3H|1%3|!3UI!2 _nzs + [|0H |20 |10u]? n—s>
7, 2 €, 2

k 0

IN

-5
Cloulde0ulZe i~ ”T <0 de n>5-2a

IN

< CloH % B ylu(r)] .
and so the last inequality will be true provided that

{ n>6 if a:—%

n>7 if —l<a<-%

A similar calculation applies to Fi.
These estimates and the table show that

IF (w,0u) |20 < Cllulzo. [Oullp) (1 + BE\lu()])  (4.2.19)

for
n>6 if a:—%
n>7 if —1<a<-—3

100



Inserting inequalities (4.2.11)-(4.2.13) and (4.2.14)-(4.2.19) in (3.2.33) of
Section 3.2.3 gives (4.2.8).
Now, at several places of the calculations above the term

Y= yayﬁﬁaﬁ

1s the one that occurs with the lowest power of ). It follows from the wave-
coordinates conditions that this term solves equation (4.1.12), which can be

written in the form
n—

5 5¢ =G, (4.2.20)

_ya 0677/} +

where

=: Cl —+ CQ —+ Cg + C4 R (4221)

where (; corresponds to the i-the line. The point is that all terms in ¢ contain
effectively multiplicative powers of €.
Solutions of (4.2.20) take the form, for 1o <1 <7 <0,

(@) = (—7) "2 ( / (Dl (5. %) ds+ (=) "2 (o, x—)) .

(4.2.22)
This gives immediately, for any -,

[9(T)llgy < [[¢(70)lley +C(To,ﬁ)/ 1€(s)ll gy ds (4.2.23)

similarly for 77~ or €7 -norms. In the notation of (4.2.5) one thus finds

A

W)l < ol + o) | 16lgyds

[(m0)llgy + C (0, 71) (71 = 10)[IC(7) o5 -

IN

Using this to estimate h° we obtain
10)lgy < C™ D () o + 22 () g0
C (Il "(r0)llgo + ™ D12¢(P)llgo + ke ™D/ (1) o) -

IN
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We have, for example,

Je™ 20 (7) g < C (I A () |gp + 2208 (7)lgp)

which, forn—>5 > —2a, can be controlled by || H(7)| L~ and EZ[u(r)] in view
of (4.2.10). This requires n > 6 if « = —1/2, orn > 7 if o € (—1,—1/2).
An estimation of the remaining (;’s along the lines of those already done
above presents no difficulties.

The functions b' and b have the same structure and so the same estimate
applies; the function b2 has a higher multiplicative power of Q so that the
original straightforward estimate applies.

The final inequality (4.2.9) follows immediately from this and from an
obvious version of the estimate (4.2.8) for the remaining terms in the equa-
tion.

We finish this proof by noting that the above treatment of yaygf]aﬂ can
be used to improve the threshold on dimension for some of the entries of
Table 4.1; this will, however, not improve the threshold on n of the theorem.

O

We are now ready to prove existence of solutions in weighted Sobolev
spaces. For s > 0 consider the family of hyperboloids:

S = {(g;ﬂ) 20— s= /52 + |72 } . (4.2.24)
Let ¢ be defined in (1.2.2). We have the following

Theorem 4.2.3 (Propagation of weighted Sobolev regularity) Suppose that
k> [%] + 1, withn =6 and o = —1/2, orn > 7 with a € (—1,—1/2], and
let to > 0. Suppose that

Floe € (50 L2) (6()) (@f,@mf,@Af) o) € 247 (0(H))

(4.2.25)
where f and f are defined by (4.2.1)-(4.2.2). In the case a = —1/2 and
n = 6 assume moreover that

—-1/2 T 0
=Y YaypH B|¢(y0) €9, . (4.2.26)
Then there exists t, > to and a solution of (4.1.13) defined on [U |
se t(), t*
such that, V1 € [—ﬁ, —i] =: [10, 7] we have:
fe LOO<[T0,T*], H(H,) N LOO(HT)) , (4.2.27)
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(aT F, 0.f, 0a f) c LOO([TO,T*], %Q(HT)> : (4.2.28)

Moreover, any solution for which M(T), as defined in (4.2.4), is bounded on
[10, 71] satisfies (4.2.27)-(4.2.28) with T, = 1.

Remark 4.2.4 Using the weighted Sobolev embedding theorem we conclude

fr) € (6 N L) (B, (4.2.29)

(0: (7). 0:1 (1), 04f (7)) €67 1y (HL) . (4.2.30)

%
when the prescribed data are as in Theorem 4.2.3.

Proof: In order to apply the Gronwall-type Lemma 5.2 of [20], we need to
prove that all the norms in M (see (4.2.4) and (4.2.8)) are controlled by the
energy or the L°-norm of u. Since k > [%] +1, from the weighted Sobolev’s
equality, we have:

107 = 01, 02, 00) F s < 10y = 02,000 00) f % < Egsu(r)] . (42.31)

Let us look at the L>®-norm of (0; — 0,)g". Recall that the expression of g
is given by (4.1.23). We estimate here only its worse term which is of the

form Q"2" H. We have:

n=5 -~ n—>5 ~ n—7 -~
10 = 0) Q" B3 < C (1072 (0 — 0) |3 + 272 H3)
< C(lullfe + Bau(n)])  for n>7.
Thus,
100; = 0)e| < C (lullfe + BEAlu(r)])  for m>7.  (42.32)
Il < lg°
< C(My+Eg\[u(n))), for n>5  (4.233)
Similarly,
15120 < 6¥[1%0 < C (M + Ef\[u(r)])  for n>7. (4.2.34)

If « = —1/2 the threshold n =T in (4.2.32) and (4.2.34) can be lowered
to n =6 by using the estimate (4.2.23) on the slowest decaying term 1.
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To estimate the € -norms of the harmonicity functions, we use again as
in the previous estimate the Sobolev inequality and obtain a control of these
norms by the energy with the same constrains as in (4.2.12)-(4.2.15). Let
us estimate now the L°-norm of u. Integrating backward along the integral
curve of the vector field YV0, = 0, — 0, we can write the identity (here we
omit the variable v4)

u(r,x) —u(ry, 7 — 710 + ) = /T (0r — 0zp)u(s, 7 —s+x)ds. (4.2.35)

70

Thus we have
lu(t,z)] < |u(ro,7 — 10 + )| +/T|(T— s+x) (0, —O)u(s, T —s+z)|(t—s+x)%ds
70
< lulro,m — 70+ 2)| + / 1 — B1) u(s)llp (v — s+ ) ds
70
< Nl + [ 10 =00 ulslly (=51

Since k > § we can now write (=1 < a < —1/2):

IN

[[u(70) | 2o + /T 1 (0r = 8z) u(s)l| e (7 — )% ds

(7o) || oo + / B [Ee \luls)] (r—s)*ds . (4.2.36)

Inequalities (4.2.31)-(4.2.36) show that from (4.2.8) we have the following:

[ (7)o

IN

lu(r)l[7ee + ERA[u(r)] < C (fu(mo)llze + B \[u(m)])

[ @ (BRI, o)) 1+ (=9 dse (4237

0

where ® is bounded on bounded sets. Setting
x(s) = Eg\[u(s)] + [lu(s)| L~

(4.2.37) reads

X <Cldm) + [ "B (x(s)) (1 + (7 — 5)%) ds. (4.2.38)

70

We have the following:
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Lemma 4.2.5 There exists a time 19 < T« < 0, depending only upon C,
F(m), and the function ®, such that any positive continuous function F :
[10,7«) — R satisfying the inequality (4.2.38) with o > —1 is bounded from
above by CF(Tp) + 1 on [19,Tx).

Proof: Let

M= sup [®();
0<E<Cx(m0)+1

if M = 0 the result is obviously true, so assume that M # 0. From Equa-
tion (4.2.38) we obtain that on any interval [19,7) on which x < Cx(70)+1
we have

T T 1
X<T>§Cx(fo)+/0 M1+ (r— o)) da:CX(TO)+M<7—+ ’ > |

a—+1

(Equation (4.2.38) with T = 19 shows that Cx(19) > x(70), and continuity
of x implies that the set of such intervals is mon-empty.) The result is
established by choosing

1 o+ 1Y@
Te=min | ——, | ——— .
2M [ 2M ]
([

By this Lemma, there exists a time 1o < 7. < 0 depending on ||u(mo)|| Lo+
B \[u(mo)] and on the function @ such that V7 € [19, 7] ,

[u(m)l[zee + B \[u(r)] < 1+ C (lu(ro)l[ L + E \[u(m0)]) . (4.2.39)

which provides the desired bounds.

If one knows a priori that M(T) is bounded, (4.2.37) becomes effectively
a linear inequality, and the claimed global bound immediately follows.

Actually, the solution constructed here is defined on %,, (see Figure 4.1).
In order to obtain a solution in a whole neighborhood of the hyperboloid .,
we proceed as follows: Let R > 0 be a real positive number such that the
level set ¥ = R lies in the region where the energy estimates above apply.
We consider the Cauchy problem for (4.1.13) with initial data obtained by
restriction on

S(R) = AN {(x"):0<|Z| < R}.

We thus obtain a Cauchy problem on a compact region. We can now apply
to this problem the conclusion of Proposition 3.2, p. 378 of [50]: there exists
a time T4 €]19,0[ and a smooth solution on (see Figure 4.1)

V= U ¢(FAR)NTZT((F(R)),

telto,— 52—

274
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,

*

><Z N

Figure 4.1: The sets ¥, and %,.

where 9T denotes the domain of dependence, and where
Fi(R) = F 0 {(a") : 0 < [T < R}

From uniqueness in Proposition 3.2, p. 378 of [50], we conclude that the
solutions constructed on V4 and ., coincide on VoMU, which is not empty
for R large enough. We thus obtain a solution of (4.1.13) with (4.2.1) in a
whole neighborhood of #. O

Space-regularity of the solution

For smooth initial data the solution constructed in the previous section is in

C®(VL U%,,). In this section we want to show that, for data given in the

space kﬂN%”ko‘, we can control the growth, near x = 0, of all space derivatives
€

of the corresponding solution. We have the following:

Theorem 4.2.6 Under the hypotheses of Theorem 4.2.3, suppose moreover
that the initial data given on the hyperboloid .Sy satisfy

f () € (%og N Loo) (HTO) and aflqb(yo) € %ocox(HTg) . (4240)

If a« = —=1/2 and n = 6 we also suppose that (4.2.26) holds for all k. Let
Ty be as in that theorem with k = ko, where kg is the smallest integer larger
than [n/2] + 1. Then

~ N

Vr € [ro, 7] f(1) € (ENL®)(H,), Of(r) € AL(H,). (4.2.41)

Furthermore, any solution with smooth initial data as above for which M (1),
as defined in (4.2.4), is bounded on |1, T1] satisfies (4.2.41) with T, = 1.
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Proof: We provide the details for n > 6; the treatment of the case n = 6
is similar. From Theorem 4.2.3 there exists a time T, and a constant C*
depending on ko such that V1 € [19, Tx[,

()30 + B Au(r)] <™. (4.2.42)

Now let k € N, k > ko , since f|¢(y0) € (62 N L>®) (Hy,) inequality
(4.2.8) holds. Now the function Cg(M(s)) appearing in this inequality is
controlled by Ef, \[u(7)] and thus by C*, therefore, from (4.2.42) we have:

Bgalu(r) < 0 (14 [ Bafu(oas)
Applying Gronwall’s inequality we obtain:
B \Ju(r)] < CeC™
This inequality shows that, for all k,
ou € 747, (4.2.43)
as desired. ]

4.2.2 Estimates on time derivatives of the solution

In order to estimate the time derivatives of the solution, we introduce a new
set of variables (y, ) (compare Figure 4.2):

— Y=z =
{ T="9 TT which implies that { Oy =

r==x

Note that in these new coordinates, the hyperboloid .4y is represented by
the set {y = T}. Since we are interested in the behavior of solution in a
neighborhood of the set {x = 0}, as in [19] we restrict our attention on the
subset U of U, defined by:

%:{(y,a?,vA):O<m<y, Ueﬁ,0<y<2(7'*—7'0)} )
Recall that the definitions of the spaces

Cgfg@:o},k(%)’ %@:0}7k(%)7 Cg{%gxgy},k(%)? and %{Cé’;xgy},k(g%

can be found in Appendix A.2 page 191 with O, there corresponding to Oz
here.
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Figure 4.2: The variables (x,7) and (Z,y), with 7" := 7, — 79. The function
o has been introduced in (3.1.16). We hope that the reader will not get
confused by the fact that the boundary z = 0, at the left-hand sides of the
figures here, is depicted at the right-hand side of Figure 3.1.

Remark 4.2.7 In the coordinates (y,Z) the components of the inverse of
the metric read (compare 4.1.39):

g% =4(g"" +¢"") + g™ = O(an%) (4.2.44)
g¥% = 2¢°7 + g** (4.2.45)

g¥4 =297 4 ¢g*4 (4.2.46)

g% = ¢g" = O(z"7") (4.2.47)
A (4.2.48)

Recall that the hypersurfaces s have been defined in (4.2.24). As a first
step towards proving propagation of polyhomogeneity, we obtain some infor-
mation about the 0y-derivatives of the fields:
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Theorem 4.2.8 Suppose that k > [%] + 1. Under the hypotheses of Propo-
sition 4.2.1, there exists t, > to and a solution of (4.1.13) defined on

U ¥ such that:
SE[to, t*]

fe (., <opi 3]t " L) () . (4.2.49)

(01 0:£,048) € €y a1 () (4.2.50)
where f and f are defined by (4.2.1)-(4.2.2).

Proof: Thg proof of existence is given by Theorem 4.2.3 and we have f €
L>(%), of € U ). We note that from (4.1.4) and (4.1.5)

we have:

Cg{i:o},k— [2] —1(

Q=2z(—y — 27), Y0, = —xy, 200 = Q and 040 =0.
(4.2.51)
Identities (4.2.51) show that if we apply to (4.1.21) the operator (04, Z0z,y0y),
then we obtain a wave equation with (u,0au,yOyu, TOzu ) as the new un-
known functions in which the coefficients have the same powers of x as in the
original equation, and the source term the same structure. More precisely,
set

u
dau
U T0zu
U= ;g;; , we thus obtain <a[{]> = ygzu , (4.2.52)
yOyu 0(0au)
0(z0zu)
0 (yoyu)

and let us derive a wave equation on U. Straightforward calculations lead
to the following identity (here we write the source term as a function of
variables py and p§, that is F = F(-, p1,p3) ):

Og(ydyu) = —(wdy0™)025u + 20 0uDyu — (40, X"t + TVD,u
oOF
+(y8y"r)(‘7 u, au) + (yayu)g(‘, u, au)
1
oF
+ (9y(yOou) — 650yu) 8—])"(7 u, Ou) . (4.2.53)
2
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We write
(yDyg")02u = 9,g" (3, (ydyu) — Dyu) ~ QT (AU + U)dU

(y0,g™)0,05u = 0,g"" 0, (i0zu) ~ Q"2 QU |,
n—3

(Y0, g™)02u = O(F"T ) (0x(205u) — Dzu) ~ QT UV see (4.1.39),

n—="7 .i'

g o2u = O"T ) (By(ydyu) — Oyu) ~ QT U ,
and
290, 0yu = ¥ O u—{g" 0%u + 29" 0z0u + g P 040pu + Y7 0pu — F(u,0u)} .

All the terms arising above have a structure similar to (4.1.50). A similar
comparison of the remaining terms shows that we have

Oy (ydyu) = F1(U,0U) , (4.2.54)

where the source term Fi is of the general form as in (4.1.50) with the dif-

ference that it has a term Q" UAU with a multiplicative QnTJ; this term
can be estimated as in (4.2.18) as long as n > 7. Moreover, it is easily
checked that this remains compatible with the estimate of Proposition 4.2.1
(see Remark 4.2.2). Note that the procedure above introduces into the coef-

cients of the source terms the function (y, %) — £, which is bounded on
Yy Y

U ; furthermore, 5685;% = —yayi = %, which implies that we will not loose
the reqularity of the source terms, as needed for the problem at hand, when
iterating the process.

From the identities,

Oo(05u) = —(20:9°7)025u + 2970 0zu — (£0:Y*)0au + YT O0zu
+(20zF) (-, u, Ou) + 85;(:%3@@2%(-, u, Ou)
1
+ (03(205u) — 5§85Cu) %(‘,u, ou) , (4.2.55)
2

Og(0au) = —(8Agaﬁ)835u—(8ATQ)8au+8Aua—f(u,8u)+88,4u8—}-(u,8u) ,
op1 Op2

(4.2.56)

we deduce that the same analysis holds for Og(0au) and Og(z0zu). There-

fore we have derived for the new unknown function U a wave equation of

the form (4.1.21), i.e.:
0,U =3(U, oU) . (4.2.57)
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In order to apply to this equation Theorem 4.2.3, we have to check that the
initial data for U are in the right spaces. Note that the initial data are
prescribed on the subset {x =y} of %. We denote this hypersurface by X,
thus X9 = ¢(F) V% , and we set

Y = ¢(Fs)NU CH_y ) - (4.2.58)
We want to prove the following.
Lemma 4.2.9 Under the hypotheses of Proposition 4.2.1 we have:
(u, Oau, 20zu, yOyu)ly, € (47 N L>) (Xo) , (4.2.59)
(Ou, 00au, 0(Z05u), O(ydyu))s,, € H421(X0) - (4.2.60)
Proof: By assumption, we have

uls, € (4 NL®) (2o), and (9au,0zu,Oyu)ls, € 4 (Xo) -

(4.2.61)
Now, using Sobolev’s embedding theorem, we have
77 (Dau, dzu , Oyu)|y, € L () . (4.2.62)
This leads to the following estimates:
Z0zuly,| = & |:i_"853u|20| < 00,
ydyuls,| = [E0yuls,| = &7 [E7Oyulx,| < oo

To see that dau(Ty) is in L°°(F), we proceed as follows: integrating 0au(To)
m x until xg gives the inequality

o
8Au(7'0,330,vA) — 8Au(7'0,5:,vA) = / 858,414(7‘0,8,1)‘4)&9 ,

which leads to the estimate

xo

aum oY) < foaulro, o, o) + [Osulm)liy_,,, [ ds
xT
xo

< [9au(ro,x0,v™)| + 9zu(0) | e / stds

(recall k —1> % ). Since

10au(T0, 20, v™)|| 120 (0) < 00, [0zu(T0)l| e < ER[u(70)] < 00,
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and

) 1
f s%ds = P (xg'H — :Z"O‘H) < 00,
x

we conclude that ||0au(To)||ree < 00. Thus (Dau) |5, € L>®(X0) and we then
obtain (4.2.59). On the other hand we have

IN

100 @050l e ) < 102005l 52 + 1505l50 e (s

N

> ||8VU|20”%0(20)
< o0 see (4.2.61) .

Similarly, we have O(yOyu)|s,, 00auls, € & ,(X0). We thus obtain
(4.2.59) and the proof of the lemma is complete. O

Now, we apply Theorem 4.2.3 to (4.2.57) and obtain that
(4, D41, 505, ydyu) € L™ ([0, 2ty — 10)], (62N L) (ze)) . (4.2.63)

(Ou, D04, (E03u), D(yd,u)) € L‘X’([O, 2re —70)], %“(Ee)) . (4.2.64)

Using once more the Sobolev embedding theorem, we obtain that Ve € [0, 2(T,—
70)]

(u, 8Au,5:856u,y8yu)|ze € ‘5%:0}7,6_[%]_1(26) )
| (w, Oaw, TOzu, yOyu)|| Loo (27 = S[up ] | (u, Oau, £0zu, yoyu)| o ||Lo ()
TE|TO, T
< Sup ]H (u, Oau, 203w, yoyu)| & |l e(7,)
TE|TO, T
< o0 .
——
see (4.2.63)

Using now (4.2.64) instead of (4.2.63) we have
(| (w, 0a0u, 050, Y0y 0u)|| oo (2/) < 00 .

This allows us to conclude that (u, Ou) is in ‘ng)gjgy},l(%). Now, if we

repeat this process j times with j = k — [%] — 1 then we obtain that u is in

Cgﬁ)gfgy},k—g—l(%)' This completes the proof of Theorem 4.2.8. O

Corollary 4.2.10 Under the hypotheses of Theorem 4.2.6 we have the fol-
lowing:

fe (%ﬁ)ggy}m(%) N LOO) @) and  Of € Clhopeyy W) .
Proof: The result is a combination of Theorems 4.2.6 and 4.2.8. ([l
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Chapter 5

Polyhomogeneous solutions
of the Einstein-Maxwell
equations

Let § be a positive real number. We recall that the spaces of polyhomo-
geneous functions H{,—oy, ngf{‘;:o}, Ho<a<y) and %%ngy} are defined in
Appendiz A.3 Equations A.3.1-A.3.2 (see also [19, Equations (A.1)-(A.2)]).
We consider the Cauchy problem for the Finstein-Mazwell equations (4.1.13)
with (4.2.1) in wave coordinates (xz*) and Lorenz gauge with prescribed data
on the hyperboloid %y (see (4.2.6)) at the interior of the future light-cone
with vertex the origin of coordinates. The coordinate x in which the poly-
1

homogeneous expansion is taken is ¥ = 7 where t = 20 and r = |7| =

i(aﬂﬁ) Indeed we have (see (4.1.4)):
i=1

" )2 1/2
R =
t T
242 2 g2
1
t+r’

We want to prove that, polyhomogeneous initial data for the above Cauchy
problem lead to polyhomogeneous solution. We have the following:

Theorem 5.0.11 Consider the Einstein-Mazwell equations on R™™, n > 8.
Let 6 € R be such that 1/(26) € N when n is even and 1/6 € N when n
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is odd. Suppose that the initial data for (4.1.13) in wave coordinates and
Lorenz gauge are polyhomogeneous on the hyperboloid 7 :

fl, €x" T A _5NL>® o-f|, €T (5.0.1)
S & {z=0} ’ T ©F {z=0} > o

with f = (Guw — N> Ap). There exists a time t > to and a solution defined

on U % such that ¥t € [tg,t4] we have:
telto,t+]

n—1 n—1_
f&)="fly €a™ T gy and O f(t) =0:f|, €xT )
(5.0.2)
Moreover, the solution is polyhomogeneous at ., in the above polyhomo-
geneity class, as long as it remains in 6> (H;), for some oo € (—1,—-1/2].

Proof: Choose any o < 0; we then have the inclusion QZ{‘;:O}(QZ)(YO)) C

L (P(H)). 1t follows from (5.0.1) that we have:

Flow) € (H2NL®) (6(A)  and Of |y € H2($(S0)) - (5.0.3)

For definiteness set « = —1/2. From Theorem 4.2.6, there exists a time T
and a smooth solution f of (4.1.18)-(4.2.1)-(5.0.3) defined on %, such that

VT € [10, 7], f(T) € CKJ»O‘(HT). Next, applying Corollary 4.2.10 one obtains
that

fe (%{%ggy}m N L"O) (@) and  Of € Chhepeyy o) .
From Theorem 1.2.8 of Section 1.2, with

¢1=fa 1/}2:(8yf>8Af)> @Zal‘f)

we obtain (5.0.2), and the proof is completed. O

It is natural to find conditions which guarantee that solutions remain in
weighted Sobolev spaces on hyperboloids, and hence remain polyhomogeneous
if the initial data are. One such criterion is provided by the following:

Theorem 5.0.12 Suppose that k > [%] + 1, withn =6 and o = —1/2,
orn > 7 with a € (—1,1/2]. Solutions of the Einstein-Mazwell equations
remain in ¢, o € (—1,—1/2] as long as f remains in %{Zzo} 1, with

K> _L;U : (5.0.4)
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The same is true for

(n—5)
2

K> — provided that H:):nTJyuy,,I:IW(TO)HLoo <00 (5.0.5)

In particular, in dimensions n + 1 > 9 the small data solutions of [39, 40]
evolving out from data stationary outside of a compact set are polyhomoge-
neous.

Proof: We want to use Proposition 3.2.9 to show that solutions as above
remain in 0, o € (—1,—1/2]. For this, consider first the right-hand side
of (3.2.85). For k > (n —5)/2 one immediately finds that ||(5gﬁ|]<go oy

is finite, similarly for (0, — 0.)0g" when k > —(n — 7)/2. szteness of
H(ShﬁHng . is straightforward for k > —(n —7)/2 from (4.1.35)-(4.1.38).
The estzmate on 6 follows from (4.1.46) and (4.1.48) provided again that
5> (n—T)/2.

For k > —(n—5)/2 the slowest decaying terms in by, Y, and in (9 — 0 )g*

are handled by the CK{ _oy,1-Spaces equivalent of (4.2.23),

(n=1)
[z =2 (7)o

{z=0},1
(n=7)
< " wm)ley_,  +Clrm / =7 ), ds . (5.06)
(n=7) . .
under the supplementary condition that Hx 2 (To)Hcgo 0 o1 finite.
For any o such that 7
o<k (5.0.7)

we have
om0y C A7 -
Hence the right-hand side of (3.2.86) is finite for all such o’s, and so (3.2.87)

applies. It remains to show that the integrand in the second line of (3.2.87)
can be bounded by a multiple of the energy:

1066, 66, 6) 1 0o gy < CER[uls)] -
w - (Hr)

This is easily checked to hold under (5.0.4) or (5.0.5) if we choose o so that
n—7
5
This, together with (5.0.7), explains (5.0.4).
The property that the solutions of the Einstein-Maxwell equations con-
structed by Loizelet are in ‘5{ —o}1 0N all hyperboloidal slices has been verified

in (2.3.15). There —k =9 € (0,1/4) O

o> —
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Conclusion of the first part

The results which are established in this first part of the thesis join within the
framework of a mathematical program the ultimate stage of which would be
to prove that hyperboloidal polyhomogeneous initial data lead to polyhomoge-
neous solutions of the coupled vacuum FEinstein-Mazwell equations in space-
time dimension n+1 > 4. This program was initiated by Piotr T. Chrusciel
and his collaborators. As a first step towards the solutions of this problem,
they proved existence of polyhomogeneous solutions for hyperboloidal Cauchy
problem for semi-linear wave equations and waves maps. See [19, 20]. In-
spired by these works, we have proved propagation of weighted Sobolev reg-
ularity with uniform time of existence near the conformal null infinity for
solutions of the hyperboloidal Cauchy problem for a class of quasi-linear sym-
metric hyperbolic systems, under structure conditions compatible with the
Einstein-Mazxwell equations in space-time dimensions n+ 1 > 7. Similarly,
for these equations, we have proved propagation of polyhomogeneity at null
infinity of solutions in space-time dimensions n+1 > 9. In those dimensions
we obtained that the global solutions of the FEinstein-Mazwell equations for
small data which are stationary outside of a compact set obtained in [39,40]
are polyhomogeneous. In the process we also proved a theorem of existence
of a solution within the class of polyhomogeneous solutions for the Einstein-
Mazwell equations in even or odd dimension of space n > 8, complementing
the result known so far (see [9]) only when the space dimension n is odd and
greater or equal to 5.

The fact that our results are valid only in high space dimension is, in our
opinion, due to the choice of the conformal transformation we used and/or
to the choice of the gauges. We thus think that, if one wants to improve
the threshold on the space dimension n, one could for erxample think to a
different conformal transformation and/or to keep this transformation, but
use different gauges so as to get rid of the dangerous terms which impose to
the space dimension to be so large. For example, in [34], H. Friedrich gave a
conformal representation of the Finstein equations in a conformally invari-
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ant gauge as a system of first order partial differential equations with smooth
coefficients. We expect that in the case n = 3, using this representation of
Einstein equations and the energy estimates obtained by O. Lengard in the
second part of his thesis, one should be able to establish propagation near
T of polyhomogenity of solution of Einstein equations in this dimension.

It would be interesting in view of its physical applications, (see [27,29,47]
and the references therein) to obtain a characteristic version of the results
obtained so far. In other words, one can enquire wether polyhomogeneous
wiatial data prescribed on one or several intersecting characteristic hyper-
surfaces can be evolved to obtain polyhomogeneous solutions of the vacuum
Einstein-Maxwell equations. We think that this can be overcome with a good
combination of the techniques developed by A. Cabet in her thesis, the corre-
sponding techniques of conformal compactification which is used here and the
results of M. Dossa [25-28]. The second part of the thesis is our contribution
towards the construction of solutions of this problem.
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Part 11

Solutions with a uniform
time of existence of a class of
Characteristic semi-linear
wave equations near .# "

118



Introduction of the second
part

Let (R n,) be the usual Minkowski space time with the global canonical

coordinates system (x*). We denote by CII the translated half cone of equa-
n .

tion 2° = r 4+ a where a > 0, r? = Y (2%, r > 0 and by y;x the interior
i=1

of Ct ., that is the set of points (x*) such that 2% > r +a (see Figure 5.1).

In this work, we are interested with the following characteristic semi-linear

Cauchy problem

e, f = F(, f,0f) in Vi,
{ 7 _ ” on CL, (5.0.8)
where 0, = (n°P) is the Minkowski metric on R2TY 9 = diag(—1,+1,...,+1),
Uz, the flat wave operator,

oft

f:(fl)a af=<—a a>, FZ(FI), a=0,1...,n, I=1,...,N,
5
and

© = (1), the initial data prescribed on Cia -

There exists in the literature a complete study (even in the quasi-linear case)
of problem (5.0.8) near the tip of the cone CIx, see the series of papers
[8,25,27,28] and the references therein; compare [35,44,45] for a very general
treatment of Lipschitz initial data hypersurfaces for the linear wave equation.
Under suitable conditions on the source term and/or on the initial data, in
these papers, it is shown that, in the semi-linear or quasi-linear case, there
exists a meighborhood of the tip of the initial cone in y;x on which one can
find a unique solution. As far as the global solution of (5.0.8) is concerned,
a lot remains to be done. It is well known that for an arbitrary nonlinear
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function F', in general it is not possible to solve globally or semi-globally this
problem, that is, without restriction on F' and/or the space dimension n, it
is not possible to find a neighborhood of the whole half cone CIx on which
we can get existence and uniqueness of solution of such problem. In [5], A.
Cabet gave some example of nonlinearities for which the solution develops
singularities in finite time regardless the smallness and/or the smoothness of
the initial data in the case n = 1. To the best of our knowledge, three types
of nonlinearities have been considered so far, leading to global or semi-global
solution of (5.0.8):

o In [32], M. Dossa and F. Touadera assume that the space dimension n
is odd and greater than or equal to 3, that the source term F = F(f,0f)
is such that F(0,0) = F'(0,0) = 0 and F® satisfies the null condition
of S. Klainerman when n = 3. With these conditions on the nonlinear
term and the space dimension n, it is shown that if the initial data
prescribed on the light cone are small in some appropriate norms, then
(5.0.8) has a global solution in the whole interior of the initial cone.

e In [30], the authors suppose that, the restriction to the initial cone of
the functions F(z*, f(x*),0f (z")) is a linear function with respect to
the restriction to same cone of the derivatives of the unknown function
f(xH) with respect to x°. With this hypothesis, they proved that there
exists a neighborhood of the entire initial cone on which problem (5.0.8)
has a unique solution. We notice that this result does not guarantee
that the thickness of the obtained neighborhood does not shrink to zero
as one approaches infinity.

e In [5, 31, 36], analogous characteristic Cauchy problem are considered
with initial data specify on two intersecting smooth null hypersurfaces
under some suitable null condition on F'. The results of these last refer-
ences combined with local existence results on a neighborhood of the tip
of the cone C;f . of [26,27] can also permit to study problem (5.0.8) un-
der the condition that F' is linear with respect to the derivatives of the
unknown function in the normal direction of the initial cone Cix. In-
deed, assuming this, one succeed in concluding as in the previous case.
We should point here that in the reference [5], it remains to fix a prob-
lem of reqularity of initial data and of dependance of some constants
used in the iterative scheme on A. In that reference, the definition of
the surface element dS' = e *Y+dS on the slices N |y = [0,V] x Y
in the unnumbered equation after equation 4.2 page 2115, implies that
the Sobolev constant ¢ of equation 4.4 page 2116, depends on \. In
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fact as it is said there, ¢ = cse™V where ¢y is an universal Sobolev

constant coming from the embedding H™(U) — CY(U), U subset of
R™ and m > % + 1. The consequence is that the constant ¢3(p) might
depends exponentially on A and it will not be possible to choose \ such
that é3(p) — Aé < 0 as stated there.

The difficulty here is due to the fact that, in the processus of solving such
problem, one needs to estimate the outgoing derivatives of the unknown func-
tion on the initial cone. The null property of this cone does not allow to
choose arbitrarily the first of these derivatives as it is the case in the classical
Cauchy problem. In order to obtain global solution, we need to solve glob-
ally a nonlinear ordinary differential equation with a nonlinear part which
1s exactly F. In the third case we mentioned above, this equation is linear
and thus can be globally solved on Cafm. We intend in this paper to show that
there exists a future neighborhood not only of the entire null cone CI . but
also by guaranteeing that the thickness of this neighborhood does not nullify
when one reaches infinity, on which there exists a unique solution of (5.0.8)

To do this, we shall impose on the function F' a hypothesis of nullity of
the kind of [20], see hypothesis 4.21 of this reference. More precisely, we
shall suppose that the function F has a uniform zero in (f,0f) = 0 of order
r which is related to the space dimension (regarless the fact that n is odd or
not) by the condition

n>1+

-2
r—1 &

and that the initial data @ are in some weighted Sobolev spaces near the
conformal infinity. The strateqy here will be based on the techniques of con-
formal method used in [11,12] by P.T. Chrusciel and R. T. Wafo in the
case of classical Cauchy problem, the method of iterative scheme introduced
in [42] by A. Majda and repeated by A. Cabet in [5] and R. Racke in [{6]
and finally the method of local solution developed by M. Dossa in [25-28].
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Figure 5.1: Characteristic cone C,, and its interior.
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Chapter 6

Transformation of the system

6.1 Conformal transformation

Let Co ;. be the light cone of Minkowski space R of equation (2°)? = r2.

We will denote by Cofx and Gy, the future and past light cone of the origin

of coordinate respectively, by J/g:x the interior of C(J)tw by Yy, the interior of

Co. and by V[, the set {(z") € RY, (r+a,2") € CF,}, which is the projection
of the cone C;'@ on the space variables. As in the first part of the thesis, we
consider the map ¢ defined as:

./L'a

¢: RV Co, — RZJrl by z%— y* = =0,1,...,n. (6.1.1)

_— Y, O
)
77)41,37)\1'

Note that ¢(RE\ Co ) C Ry Any of the sets defined above in R} has
its counterpart in RZH, we keep the same notations. The indices x or y
will be used to indicate if the set under consideration is a subset of RMT! or

RZH. As an example, the set Cyy is the light cone with vertex the origin of
n .

coordinates in RZ“, its equation is given by (y°)% = p? where p* = >_ (y')?.
i=1

We have the following

Proposition 6.1.1 The map ¢ is a bijection from y({m onto gzﬁ(y{)fz) = Yoy

with inverse N
_ Yy
¢ 1 : ya — .Ta by .Ta = m . (612)

¢ s also a bijection from yj@, onto the relatively compact domain ¢(y(;fl,) =
vt 0 Vo.y (see Figure 6.1) with the same inverse as in (6.1.2).
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Proof: Let (z%) € y{fm, if (y*) = ¢(x®) then we have

(naﬁxaxﬁ)(mwyuyy) =1

and thus y* implies that z = y® (77/\”3:/\3:“) m Therefore,

¢ 1s a bijection from y&x onto ¢(y({x) with inverse given by (6.1.2). On the
other hand, let (z*) € Y|, and suppose (y*) = ¢(x*), then

xa
T ompatah

a.f
(z*) € Y, if and only if { 77%6;3 Ox <0

— A>0
77)4/’!/

oA\Y
0<0

if and only if (y*) = ¢(z%) € Vg, -

%B% <0
if and only if g” YY)
if and only if {

thus, ¢(y({x) = Ny Stmilar calculations establish the second part of the
Proposition. U

6.2 Transformed wave equation

In this section, we want to show how the wave equation (5.0.8) transform
under the change of coordinates (6.1.1). For this purpose, we set

Q= —nagyayﬁ and f= Q_nT_lf ot (6.2.1)
We have the following
Proposition 6.2.1 The identity
n+3 A
O f = Q2 Oyy, f (6.2.2)
holds.

Proof: We have:
A adfos

oo = AT (6.2.3)
’f P(fod™) ays O(fogh) Py”
ox ozt OyeOyP A A+ oy OxHdxA (6.2.4)
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Y

(Vi)

¢(Caz)

2=

Figure 6.1: Images of the unbounded domain Y, and the cone C;, with
respect to the conformal map ¢ .

with
AY = aﬁ:—éaQ—QQ and
[ad Ot Yy yu
AGAS = 026255 + dyayuy®y” + 2050 yay” + 05y®)
aan
Spiggh = 2S00uun+ 2005y + 20m)y" + 8yayuy” -
From these identities, we have:
2,
)\ aAB _ 02,a8 8 _ e
HALAY = Q% and M EyE Y =2(n—1)y*.
It then follows that:
. QO(foopt
Oanf = Q20 p(fod™") +2(n — 1y Uay(cz,f) : (6.2.5)

Now, f 0 T f ¢~ implies that f oo™ = =07 f and using identity
o0

e — —2Ya, one 1s led to
Afoop™) ns [ Of ;
T/“ -0 { 8 - —(n— 1)yaf} (6.2.6)
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and thus,

OFod™) _ ua [ of A
Y T—Q {y a—ya—k(n—l)f} . (6.2.7)

On the other hand, we have:

0*(fooh) w1 Pf ns | Of of
gIR? ) _ g 1 95 95
Oy oyP ’ Oy oyP RS oyP L oy~

+(1=n)Q7 {3 = n)yays + s} £ -

From this last identity and from identities (6.2.6) and (6.2.7) we deduce
that:

Oyy(fod™h) =QF O,,f — 2(n — 1°Q°F [ +2(1 - n)Q”T*yH% .

Replacing now this expression of Oy ,(f o =) in (6.2.5) and simplifying
using identity (6.2.7), one obtains:

n+3

Opnf =072 0,,f.

This complete the proof. O
If we use expression (6.2.6) in (6.2.3) we obtain:

OF _ gt i 0 g w0 |
Okt = {(1 n)ypuf Q@y“ 2y,y 8;;@} ; (6.2.8)

thus the right-hand side of equation (5.0.8) reads:

F (2", f(2"),0uf(2")) = F (¢ (") fod™ (y"), duf(a"))

oy

n—1 » _n-—1 A 0
= F <¢_1(yy)792f792 {(1 - n)y,uf -Q_ = — 2y Yy

~ n-1, n-1 0 f
Fly", Q2 fQ2 —|.
(y ; f, 8y#>
We obtain that under the coordination transformation (6.1.1) and the rescal-
ing (6.2.1), the wave equation (5.0.8) read:

(6.2.9)

) Oynf = Q"5 F (% 0" f ot ng) in o(Vi,)
f=¢ on o(Cq,)
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where

¢ = (Q*”T’lf ° ¢*1) ’¢

(Cde)

REMARK 6.2.2 1. On the behavior of ¢: Since
_ 1
Q=(y")" - p* and $(CL,) C{YM) €V, ' =p— 1,

we haje Q|¢(C$x) = é (é —2p), 0 g p < % . It then follows that, for
any (y') € Ry™ such that (p — 7,9") € o(C,),

1

o= (L(22)) " e

(2%) being such that (p—1,y%) = ¢(r+a,2?) . These calculations show
that it will be possible to choose the initial data ¢ such that the initial
data ¢ of the transformed equations (6.2.9) are smooth on the whole

P(Ct,) as long as {p < %} In general these data will be singular at

1
{P—%‘

2. To the system 6.2.9 we can apply the results of [28] to obtain that there
exists a neighborhood which will be denoted by V;, (see Figure 6.2)
of the tip of the cone ¢(C;,) on which (6.2.9) has a unique smooth

solution. We denote this local solution by fo.

6.3 (Goursat problem associated to the transformed
system

As in [7], we consider the Cauchy problem associated to the wave equation
(6.2.9) with prescribed data on two truncated (such as to get rid of the tips)
intersecting cones CT C le y N y&y and C~ C C;y N yjl Y where X\ is a

: S 1 1
fized parameter belonging to the interval | — =, 0[ sufficently close to — such
that Cy, N yir%w intercepts Vo, (see Figures 6.2 and 6.3 ):

A~ n ~ n—1 n— 8 f
Dy,nf:Q_%SF (yan;ﬂQ;a—yJ;) ; (6.3.1)

in the future neighborhood of CT™ U C™ with initial data

f=¢ on C™ and f=fo sur C; (6.3.2)
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Y

C/\7y

C+

2=

Figure 6.2: Neighborhood Vj 4 of the tip of the cone Cfl and the cone C/\_’y.

a’

where fo is the smooth function given by the second item of Remark 6.2.2
in the neighborhood Vg, of the tip (—%,0). We will be concerned now in

deriving a global process which solves (6.3.1)-(6.3.2). The next chapter is
devoted to this goal.
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C+

Figure 6.3: Truncated cones C™ et C~ .
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Chapter 7

Existence and uniqueness
theorem

7.1 Second transformation

In the space RZH we consider now the spherical coordinates (T, p,0) defined
as:

(w! = cos !

=", w? = sin 0 cos 02

n 3 3 1 2 3

B iv2\ 1/2 _ w” = sin 0" sin 6 cos 0

p=(>W)?"", with

Z:]. e ...
Yyt =pw'(@), i=1,...,n W'l =sinfsinf? ... sin "2 cos 971

W' =sinf'sinh?...sin#" 2 sin !

\

where 0 < 0" 1 <2r and 0 < ' <7, i=1,2,...,n—2. We set:

r=7+p<0 . {Tz%(y%—x—é)
1.€. . 7.1.1
{yZT—p+éZO p=3(s+z—y) (r-11)

We have the following

Proposition 7.1.1 In the new coordinate system (y,x,8), we have the iden-
tity
n — 1 ASnfl

Oy = —40,0, + T((‘?z —0y) + 5 (7.1.2)

where Agn-1 is the Laplace-Beltrami operator on the sphere S~ endowed
with its canonical metric.
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Proof: From equation (7.1.1) we have

1 1. .
dy°® = §(d:): +dy) and dy' = §w2(dy —dz) + pdw’

thus,
1
(dy®)? = Z((dy)2 + (dz)? + dz ® dy + dy ® dz)
and
. 1 .
(dy')? = Z(wl)Q((dy)2 + (dz)* — de @ dy — dy @ dx)

+pRd(wi)? 4+ %wip {(dz — dy) ® (do') + (do') ® (dz — dy)} .

We then obtain (recall that Y w'dw'= 0),
i=1

L 1 o
—(dy°) + Y _(dy') =~ (dr @ dy +dy @ dv) +p* Y d(W)’. (7.1.3)
i=1 i=1

If we denote by h the round metric on the sphere, that is the metric induced
on S"~1 by the Buclidean metric of R™ then, identity (7.1.3) takes the form:

1
Ny = —§(dx ® dy + dy @ dz) + p*h .
The matriz of the metric 1, thus has the form:

0 Lo ... 0
1
-1 0 0 ... 0
0

().a=] °

0 0

(7.1.4)

p*hap

where the hag’s are the components of the metric h of S~ in the coordi-
nates 64, A =1,2,...,n— 1. It then follows that:

V|detn| = %pn_1\/|deth| :
1

We then obtain the matriz form of the inverse metric ny

0 20 ... 0
R B R
(ny) =10 0 . (7.1.5)
: : 1 4,AB
. p2
0 0
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Now we have:

1 ~ ~uv
Uny = = au(\/ M| 7" au)

|77a5|

- (VT 7,
— ;8 (p”_l IhAB|7)Wau)

pn=1/Thas] "

-1 Agn-
= 40,0, + "= (0, - 9,) + =5 (7.1.6)
P P
where Agn-1 is the canonical Laplace-Beltrami operator on S~ 1. O

From this proposition, we deduce the new form of the transformed equa-
tion (6.2.9) with respect to the new coordinates system z := (y, z,0) :

{ 40,0, f + 221 (8, - 0, f + B2t — 0" F (2,05 075 2L in o)
f = 32) on QZ)(C;—,x)
(7.1.7)

REMARK 7.1.2 We emphasise the fact that Q@ = —z(1/a — y) and y“% =

0y + (y — 1/a)0,. Thus by identity (6.2.8), we will suppose without further

restriction on F' that when replacing the first order derivatives % in F by

their value in terms of 9y, 0, 94, any derivative 0, f comes with a pre-factor
T.

REMARK 7.1.3 In the coordinates system (7,p,6) the Minkowski metric

reads:
n

n=—(dr)* + ) (dy")* = —(dr)* + (dp)* + p’ds”

i=1
where
ds® = (df')? + sin? 0 (dh?)? + sin? 6! sin? 0%(d6>)? + . ..
+  sin?0'sin?0%. . sin? 0" 2 (d" )2 (7.1.8)
thus

n=—(dr)* + (dp)® + p*h% d6 " do”,
with hap =0if A # B and haa, A =1,...,n—1 being defined by equation
(7.1.8). The inverse metric is then given by

. 0 if A#B
0t = —(0:)% + (9,)% + h*B9yadys  with hAB:{ L A_p

p?haa
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REMARK 7.1.4
e SV =V NVo, = {2,0): —F <z <0 0<y < )

a’

$(Caz) =CT1 NV, ={(y2,0):y=0; -

° % + a —y = 0 is equivalent to p = 0, thus the function z — l,i,y

is well defined as far as one does not reach {p = 0} (which will be the
case in the domain of interest).

e Setting zo = v2/2)\, yo = v2/2(\ + 1/a) we have:
C=Cy, NV ={yx,0):x=m, 0<y <y} .

and
Ct={(y,z,0):y =0, 20 <2 <0} .

7.2 Functional spaces

We intend in this section to describe the slices (see Figure 7.1) on which
we will get our energy estimates. Let z := (y,x,0), be a generic point and
denote by D the set defined by D = [0,yo] X [x0,0[xX O , where O is a subset
of the unit sphere S*~1 of R™ . For any (u,v) € [0,90] X [x0,0], we set

Dy = [0,u] X [xg,0] X O,

Cty ={u} x [z0,v] x O ={(y,2,0) : y=wu; xo <a < v}

and
Cov=10,u]l x{v} x O ={(y,2,0): 0<y<wu; z=v}.
Thus,
Dyp= U Cf,= U Cp..
0<y<u 7’ zo<z<v
n 18]
For = (Br,---,Pn) € N7, we set 0F = (am)ﬁl(601)8@2...(39"*1)% i for B =
n 18]
(Bo, B1s---+58n) € N we set D = (By)Po (8z)P1 (3(?91)ﬁ2m(3,9n—1)ﬁn and 0y, =

SO We recall that from (7.1.1), we have:

Oyt
n .
9 _1( 09 v o\ _1(09 4, 0
Bx_2<87+2p8yi>_2<87+8p)

(7.2.1)
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Figure 7.1: Future neighborhood D of the union of truncated cones C* and
c™.

Letm €N, a € R and U a subset of R" 1. We will denote H™(U) the usual
Sobolev space on U. Further for U =C" or C;

ww We denote by

o 65 (U) the set of continuous functions f on U for which the quantity
I gy == sup [ ~*| f(p)] is finite,
peU

o G (U) the set of k—times continuously differentiable functions f on
U such that the quantity || f||zo@) = > (||| 8ﬂf\|<561(U) is finite,
0<|BI<k

o J#2(U) the space of those functions f in Hf

loc

d
1 Beoy = 3 / (e =+8198 2

o< A<k Eis

(U) for which the norm

18 finite. Here dv is a measure on O arising from a smooth Riemannian
metric on SP1.
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7.3 Existence and uniqueness for a Goursat prob-
lem

Let m € N, a € R. Let wy, be a defined function on C~ and wg', be defined
on C* such that

wyg € H™2(CT); wi € 24 (CT) and Ouwi € A2, (CY), (7.3.1)
and satisfying the compatibility condition
wy =wg sur CTNC =0. (7.3.2)

Actually, wj € %1 (CT) implies that Oywy € e (C1), which will not
be sufficient to obtain the control of some of our constants, we thus assume
that ngg € WOL‘+1(C+). The purpose of this section is to state and prove
an existence and uniqueness theorem for the following characteristic Cauchy
problem (z = (y,x,0)):
_n+3 n-1 n-1 .
{ Oypw=2" 2 G (z,ac 2 W, T 2 (%w,x@mw,aAw)) in D (7.3.3)

w:war on Ct and w=w; on C~

7.3.1 Hypothesis on the non linear term

In analogy with the procedure used in [20], we make the following assumption
on the non linear source term G:

(H) We suppose that the function G = G(y*,p,q), is of C™ class in all its
variables and that the restriction G(y,x) on every slice {y = const} N
{z = const} has a uniform zero of order r > 1 at p=q =0 in the
sense that, for all B > 0 there exists a constant C’(B) such that for
0<j+{¢+i1+i2 <min(r,m) and |(p,q)| < B one has:

‘$|z‘13j+€+z‘1+izg(y7 x, .,p, q)
(9x)(9y)*20pi Oq*

<CB) )l
(7.3.4)

om—(G+L+i+io) {y}yx{z}x0)

We point out for later use that this hypothesis implies that for all o > 0,
there exists a constant C(C,r,m,o, B) such that for all f € H™(O), with
| fllzoe(e) < B, we have

16,2, 121” Dllgm(ey < Clal[1f lzm (o) - (7.3.5)
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7.3.2 First inequality

As a first step towards an existence theorem of the characteristic Cauchy
problem (7.3.3), we prove now the equivalent of Lemma 7.1.2. of [51]. Let
£, A € R, A > 0 and w a sufficiently differentiable function defined on

yjl Y set

L'w] = H(y,2) (0w + 8yw)Oyyw  with H(w,y) = (—z)'e 20T,
and
Vw = (0w, dyw, Ogw), Vaw = (dyw, Ggw), Vy = (yw, Gpw)

where gw = (Jgiw, ..., 0pn—1w) . Assume that ¢y and ¢y are two positive
constants such that:

hMABX 4 Xp

27 < G| X*. (7.3.6)

ol XP< X2+
A,B

we have the following proposition:

Proposition 7.3.1 There exists a positive constant c1 depending upon h, ¢y, cy
and n such that for all £ > 0, u € [0,yp], v € [x0,0[, and for any function
w defined and at least of class C? on o(Vi) = vt y N Y, we have:

v u
[ Ha) . Vo)l ndn + [ B0, V)0 0) gy <
zo
| O, V)0.0) Eaggpd+ [ H0) | Vi) 20) oy
x0

Herleoscormh) = 28) [ [ H@ ), V) (0,0) s dody
0 o

1
= ‘Lf[w]‘ dyda dv . (7.3.7)
€0 JDu,y

Proof: Recall that

n—1 Agn-1w

Upyw = —40;0,w + (0 — Oy)w + 2

1 —1 1
= 400w + ?hABaAan + ”T(az — 0w — ?rAaAw ,
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where T4 = thfgc, the Fgc ’s being the Christoffel symbols on the unit
sphere S*™1 of R™. We point out the following trivial identities

—4H 0wy Oyw = —20,(HOyw)? + (20, H)(0yw)? ,
—4HOywd,Oyw = —20, (HOyw)* + (20, H)(Oyw)? ,

1 1 1
?HhABc?ch?iBw = 04 <?Hh‘438xw63w> — ?HaA(hAB)(‘)xwan

1
—— Hh*P0,0400pw .
p
The last term of the last identity can be written as
1 1
?HhABaIaAwan = ﬁth“B(ac,;aAwan + 04w, 0pw)
L . aB
1 1
= 0y | 5 5 HW*POswdpw | — 8, [ -5 H ) h*Poawdpw .
202 22

It then follows that

1

1 1
ﬁHhABﬁxwoﬁBw = 9, (?HhABaxwan> — ?HaA(hAB)axwan

—0, iHhABaAwan + 0, LH hAB9awdpw .
2p? 2p?

Similar calculations lead to

1 1 1
FHhABaywaiBw = Oa (FHhABayw83w> —?HaA(hAB)aywan

1 . aB 1 AB
—8y <ﬁﬂh 8Awan> + 3y <ﬁH> h 8Awan .
We then obtain the following expression of L'[w] :
1 1
L'w] = -9, <2H(8xw)2 + 2—p2HhABaAw83w> — 0y (QH(ayw)Q + Q—/QHhABaAw(?Bw>

iy <p12HhAB(an)(azw + ayw)> + ”;11{ (0s0)* — (8,0)%)
120, H(9,0)%) + 20, H (9,0)?) ;H@AhAB(OBw)(amw + o)

1 1
+§hABaAw83w(8x +9,)(H/p?)) — FHFA(axw + Oyw)daw .
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Since x =T+ p andy:T—p—i—% we have

OuH = —tx'H-AH, 0,H=—AH and (0,+0,)(H/p*) = %(—zle—zAH) .
P
(7.3.8)
Thus we have
Hw = o, (2H(8xw)2 + #HhAB(‘)Awan> _o, (2H(ayw)2 + #HhAB(‘)Awan>
+0u S5 HIAP(000) 0+ 0,0) ) + "L (0.0~ (0,))
1
——H (04h*? +TP) (0pw)(0sw + Oyw)

hAB
—2AH ((wa)g + (Oyw)? + 2—/)28Aw83w)
L ) hAB
—lx  H <(8yw) + 2—{)28Aw33w> .

Integrating this identity on Dy, = [0,u] X [xo,v] X O and using Stokes
theorem, one s led to

/ Lw)dydz dv { 24 —ach‘)Bw} nyHdo
u,v BDU v
{ 24 —3,4&)33&)} nyHdo
8Du v
+ / (an)(amw + Oyw)naHdo
D p?

AB

0 z! {(ayw)2 L h

207 8Aw83w} Hdydx dv

AB
—2A {(axw)Q + (8yw)2 + 278,4&)83(,0} dedq; dv
+(n — 1)/ % {(9pw)? — (8yw)*} Hdyda dv
- / [,12 (04hAE + TP) (9pw) (O + Oyw) Hlyda dv. (7.3.9)

In equation (7.5.9),
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e dv is the surface element on S"~! defined by the induced metric on
S"1 by the Euclidean metric on R,

n
o 1 =ny0y+n,0,+ Y nydy is the unit outward normal of the boundary
A=1
aDu,va

e and do is the surface element on 0D, , induced by the volume element
dydz dv.

The right-hand side of equation (7.3.9) is made of seven terms which will
be labeled A, B, C, D, E, F and G where A is the terms of the first line, B
those of the second line and so on.

REMARK 7.3.2 On the Riemannian manifold R"*! endowed with the Eu-
clidean metric, the family of vectors {9;,0,,0s} is an orthogonal frame and
then we deduce that (note that 0D, is made of four pieces: 9D, , =
Cop UCho UG, UC,,):
e on C(‘)fv the unit outward normal is n = —%83,, thus n, = —%, Ng =
0, na=0,A=1,....,n—1;

e on C;j » the outward unit normal is given by n = %821, iLe. mny, =

%, ng=0,na=0 A=1,...,n— 1.

e on C,,, the unit outward normal n = —%836, ie. ny =0, ng =
—%, na=0 A=1,...,n—1.

e on C,, we have n = %&E, thus ny, = 0, n, = %, na =0, A=
1,...,n—1.

In (7.3.9) we replace 0D, , by Cafv UCpino UCh, UC,, and after using on
each piece of 0D, the corresponding value of the outward unit normal, we
find that:

1 AB

A+B+C = —/ (2((%&))2 + h 8Aw83w> Hdo
Co

2p?
hAB
2 -
5 /C;iv (2(81w) + 2 8Aw(93w)Hda
AB
|

. (z(ayw)2 + };78Aw83w) Hdo

1 5 hAB
N /Cw (2(8yw) + 2—/)2(9Aw(93w>Hda .
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Identity (7.5.9) then takes the form:

1 hA hAB
ﬁ -~ (2(8 w)? +—8Aw83w Hd(f—i——/w yw —28Aw83w>HdJ
1 hAB hAB
= — 2(0, —|——8w8de —|—— 24— 9,wdpw)Hd
\/§Co+,v<( < o ’ ;IO PAB) 7

— / L |w)dydx dv — ¢ z! ((3 w)? + h—aAwan) Hdydz dv

Du,v
AB

h
_2A/ ((8;130-))2 + (8yw)2 + W@;w@mu) Hdydz dv

+(n — 1)/ %((@Cw)Q - (8yw)2) Hdydx dv
— / % (040 +TP) (0pw)(0pw + dyw) Hdydz dv . (7.3.10)
We then obtain the following estimate:
| BVt g+ [ H Il 0)
< [ HODIVa0.2) e oy + [ H 20V, 20)] oy

u v
+(eendomp)=20) [ [ @IVl dedy
xo
1
+— ‘Lf[w]‘ dydz dv . (7.3.11)
Du,v

On the other hand, we have:
1 14
5(&5 +0,)(Hw?) = Hw(dpv + 9y)w — ix_lHu) 2 _AHW

which implies that
(0 + 0,)(Hw?) 2Hw(dy + 0y)w — 2A Huw?

((1 ~2A)w? + 29w]? + 2|8yw|2)H

IN

IA

If we integrate once more on D, , then we obtain via Stokes formula the
following inequality:

/ w?ng Hdo+ / w?n, Hdo < / ((1—2A)w2+2]8xw|2+2]8yw|2>deda:dy,
0Dy, 0Dy,

U,V
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which is equivalent to

/ wQHdJ—F/ WP Hdo < /
Cho Cuw ¢

+v2 ((1 —2M)w? + 2|0,w|? + 2|3yw]2>dedz dv .
Duw

W2 Hdo +/ W2 Hdo

+ —
0,v Cu,xo

The estimate thus follows
| Ao+ [ H 0wt 0l s <
o
v Yo
/ H(0,2)|w(0,) |22 g dz / H (x0,y) ][« (y, 20|22 () dy
xo

+/ ((1 —2M)w? + 2|0,w|? + 2|8yw|2>ded:v dv . (7.3.12)
Deyu

Finally, adding side by side inequalities (7.3.11) and (7.3.12) leads to the
stated inequality:

v u
/ H (u, )| (0, V) (1, 0)| 32 + /O H(y. 0)ll(w, Vo) (9, 0) 2 o) dy <
xo
/ H(0,2)]|(@, Vo) (0, 2) 22y da + / H(y, 20)(w, V) (5, 20) 226y
x0

u v
(oo =28) [* [ H(w ). V) 0.0) gy
zo

1
+— ‘Le[w]‘ dydz dv .
€0 J Dy,

7.3.3 Iterative scheme

Our aim now, is to show that there exists a real number u, €]0,yo] and a
sequence of smooth functions (w*)ren which converges towards a solution w
of (7.3.3) on the set D, := [0, us] X [z0,0[x 0. In order to use the C* results
of [47], first, we need to approximate the data war and w, with sequences
of smooth functions (wa“k)keN and (wo_’k)keN for which the compatibility
condition
.k —k
wy (0, 0) = wy (0, 6) (7.3.13)

141



holds at every step of the iteration. These sequences are constructed as fol-
lows: Denote by (@ar’k)keN an arbitrary sequence of smooth functions which
converges towards Oywy in A2, (CT) and by (Wa’k)keN an arbitrary se-

quence of smooth functions on C~ which converges to wy in the Sobolev
spaces H™T2(C™). Then, for all (z,0) € [x9,0[x 0 and k € N, set

war’k($79):w0’k(0,9)+/ o F(s,0)ds . (7.3.14)
o

For later use we point out in the following Lemma some properties of the

sequences (wa“ Jren and (wa’k)keN-

Lemma 7.3.3 Suppose that —1 < aw < —1/2. Then, the sequences (wo_’k)keN
and (wi Wy )keN given respectively by (7.3.14) satisfy the following:

1.V 0e0, w(xo,0) =wy™0,0) ;
2. waL’k — wg in A2, (CT) and aww()*”“ — ywy in L (CT)

3. sup  (—2) 0w (@) gmo1(e) < 00 -
keN, x€[zo,0]

Proof: The first statement is obvious. As far as the second statement is
concerned, we write

||W8— — W H%a (et = Hwo’ — W ||3fa(c+) + [|20x ( — W )”2ﬁ7g(c+)
Kk
+H0a(wg ™ — vy )H%ﬁg‘(c-&-) :

We have

+.k —+.k
|20z (wg _Wo)Hifﬁ(cﬂ = [0y " — Oawy || 0 =1/2(04

IN

cllod ™ — By ||%a ) 7 0(7.3.15)

On the other hand,

war’k(:v,e) — war(a:,ﬁ) = wo_’k(0,0) — war(:r,ﬁ) +/ @J’k(s,ﬁ)ds
zo

= wo‘”“(o,e)—wg(xo,e)wwxo,e)—w+(x,e)+/ ot

€T

0

’k(s,e)ds

= w()_7k(0, ) —w, (0,0) +/ ((I)Sr’k(s,ﬂ) - Ozwg(sﬂ)) ds ;
zo
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thus (recall —1 < o < —3 implies (—x) 72271 < (—s)72271)
(=) 720 oy (2,0) — wig (2, 0)

< cla) <|wo”“<o,e> — w00+ |

(=) 22 * — Bt P, e>ds)
0
0

< cfzp) (ngvk(o,e)—wg(o,e)\u / (—s)20‘1\@8"k—8xw8“]2(s,0)ds> .

0

Now integrating this inequality on CT gives (the second inequality is obtained
by trace theorem):

& —k - .k
g = wf IBgeery < el@o) (Ilg ™ (0) = w5 (0)1320) + 557 = atsf 1240 c))
—k —2 .k +112 )
< — _ — 0, o — 3.1
< clwo) (Jlwg™* = i s oy + 1657 = Bl IBgery ) — 0 (7.3.16)

Now let p € N" such that |B| < m. Similarly to the previous calculations,
we have

0705 (w " (@,0) - wi (2,0))
= 0%0, <w5’k(0,«9) — w5 (0,60) + / ' w3 *(s,0) — By (s, 9)d3> :
%0
If B1 =0 then,
999, (wa“k(a;, 0) — wi (z, 9))

= 9%, (wg”“(o,e) — wg(o,e)) +/

zo

x

070, (w7 (5,0) — auif (5,6)) ds
thus (recall —1 < oo < —3 implies (—x) 271 < (—s)72271)
(—33)—20[_1|a,3314 (wa"k(x’ 0) — wa_(.r7 9)) |2

< e(xo) <|863A (wo_’k(o’e) — WO_(O,Q)) ]2 4 /:c

Zo

0
< elxo) <|aﬁa,4 (wo_’k(O,O)—wO_(O,O)) |2+/ (—5) 20119804 (g * — xwa“)|2(s,0)ds) .

o

(—s) 200w — xw3>|2<s,e>ds)

Integrating on C*, we have:

1070 (M~ ) o) < o) (1lig™(0) = g O pmas () + 19704 (@ — a2 cr)) -
(7.3.17)
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Suppose now B, > 1 and set = (81 — 1, Ba, . .. ,Bn). We have
9594 (war’k(x,ﬁ) - wg(x,e)) N ((Dar’k(s,t?) By (s, e))

thus,

I(=2)" %0 (w5 = ) 1B = I(=2)" 71070 (05" — Bass] ) B
(7.3.18)
By (7.3.17) and (7.3.18), we have

&
104 (g *,0) — it ) 2

< (o) (Il *(0) — g O) sy + 55" — Dutoif [%en ) — 0 (7.3.19)
(@) k—00

From (7.3.15), (7.3.16) and (7.5.19) it follows that war’ — wy in S,
This proves that the sequence (wg"k)keN is such that

° wark — w{f in A5 (Ch),

o Oyl — A in A2, (CT).
Let now prove that the quantity sup (—:U)*a|]8$wa“k(x)HHm—1(ﬁ) is
keN, z€[zo,0]
finite.  We know that [29,0[= U [53%, 58] and s = 2z ¢ [1,2] if and
neN* 0
only if v = 5 € [x9,0[. For any function f defined on [x0,0[x 0, set
fn(s,0) = f(x = 32,0). The H3(CT)— norm of f can be rewritten as
(see Equation (B.1.7) of Appendiz B.1):
£l gty = (=20) 2% D 22| fullBim (2 0) - (7.3.20)

n>1

Here we write A ~ B if there exist constant C1,Cy > 0 such that C1A <
B < CyA. We have the following

sup () 2 @) sy = s sup (=) 2@ o
x€[xz0,0[ n>1 %SIS%
ST ST
= Sup Ssu — m—
nsi’se[ﬁ;](zn) 1£ (GO rm-1(0)

n>1

= (~a) ™ sup{z%a sup ()72 £ () %10

s€[1,2]

IN

n>1 s€ll
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Now writing

0y fn(s,0) = 9] fn(1,0) + /13 050 fn(T,0)dT |

implies that

0] Fu(5,0)% < |0] Ful1,6)[2 +—cu/“\6gagfa<7,en2df.
1

Integrating this estimate on O gives,

L fn () Fm-1(e)

Therefore,

IN

IN

IN

Hhﬂwﬂwum+C[H&ﬁMﬂ@quW

W zim—1(ey + | fallFm 1o x 0)

C||fn\|12qm([172]xﬁ) by trace theorem .

sup (=) 2| f(@) | Fm1ey < e(=20) 7 Y27 fallFm 2% o)

z€[xo,0[

n>1

~ Hf””%,g‘(cﬂ (see (7.5.20)) .

Now choosing f = astr,k in the previous estimate leads to

sup (_x)_ganaxm,k(w)H%{m,l(ﬁ) < 182w a4 -

z€[x0,0[

Since convergent sequences are bounded, we conclude that

sup
keN, zelzo,0]

(=2) 72 Baw M (@) 1 () < 00 -

This completes the proof of the Lemma.

O

We denote by wlg the continuous functions defined on C™ U C~ which

coincide with wa“k on CT and with wa’k on C~ . The sequence (w*)pen is
then constructed by induction.

o Set w¥ = wy where wy is a smooth function defined on D and which
coincides with w) on CT UC™ .

o Then, let w*t! be defined by iteration as the solution of the linear
characteristic Cauchy problem

k+1
Uy, pw
R —

n+3 n—1

::E_TG(,Z,(—:E) 2 (wk,Vwk)) in D

E+1
Wo

on CtuUuC~
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In order to prove existence of the sequence (wk)keN’ first we have to prove
existence of the function wg used in the above iterative scheme. We define
wo for any (y,x,0) € R by setting

wo(y, z,0) = wa“o(x, 0) + wo_’o(y, 0) — wO_’O(O, 0). (7.3.22)

Next we have to justify existence of a smooth solution of (7.3.21). We quote
Theorem 1 of [47]. Actually that reference gives a local solution on a neigh-
borhood of the intersecting hypersurfaces, but in the case of the linear prob-
lem (7.3.21), we will obtain a global solution on D.

7.3.4 Boundedness properties of (wk)
Set

keN

—« k kK
Co = s ol {lwd ", Vawd )@ llwre() + 19550, 2) lwr (o) }
keN, zeCt

+ sup {(=e0) 0y W)l o)
keN, yeC—

We will show later that Cy < oco. We have the following lemma:

Lemma 7.3.4 Assume (7.5.1) and (7.8.2) with —1 < a < —1/2 and m >
”T”. If the source term G satisfies hypothesis (H) page 135 with a zero order
r such that

1, (7.3.23)
2, 3.

n>1+
then there exists a real number u, €]0,yo] for which we have

sup |a:|*°‘||(wk,Vwk)(y,x)HWl,oo(@») < 2C). (7.3.24)
keN, (y,z)€[0,ux] X [z0,0[

Proof: The proof will be made by induction on the integer k. Let us show
that the statement holds when k =0 i.e

sup 2|~ [(w°, V) (y, @) [lwre (o) < 2C -
(y:2)E (0, x [20,0]

From definition (7.5.22) of wy, we have

Veo(y,2,0) = (8,5 (9,0), Oas™ (2, 0), g™ (2, 0) + 09 wig (4, 0) = w™°(0,0)) )
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thus,

(=)’ V') (y, 2) Wi o)

IN

(—2) " (wg™°, Vawg ) (@) lwie(o)
+H=2) " l(wg () — wy (0) I ()
+(=2) "0y ) oo %

+(=2) "B (wy () — wy () lwree (o
Co + (—20) *||(wp *(y) — wy 0(0)HW100
+(~20) ™10 (wy " (y) — wg ’°<o>>||W1,oo(ﬁ>

IN

Now recall that wo_’o € C>([0,y0] x O), thus

(=20) ™l (wy () =wg (O llw1.00 (0 +(=20) =100 (wq ()~ (O llwroe () — 0 -

y—0

It then follows that there exists a real number uy € [0,y0] such that, Yy €
[O,UO],

(=20)~*[l(wo " ()= (0) wr.oe gy +(=20) |80 (wp ()= (0) lwre(ey < Co -
Therefore,

sup | =)/, Vo) (y, 2) |wre o) < 2C0
(y,2)€[0,u0] x [20,0[
and the property holds for k = 0. Note that the real u, will be determined
later from the induction scheme and will be less than or equal to ug. Let j be

an integer greater than or equal to 1, and suppose that for any integer k < j
the following holds:

sup 2|7 (W, VW) (y, ) || < 2Ch . (7.3.25)
(y,m)E[O,u*}X[Io,O[

We want to prove that (7.3.25) holds with k = j + 1. Let v € N"~! be such
that |y| < m. If in Proposition 7.3.1 page 136 we choose w = 83&1’“‘“ and
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= =2« then we obtain the following inequality:
/ H(u, 2)||(0)w, Vo0 ™) (u, @) 22 da
xo
+ / H(y. o))k, V7,056 ) (5, 0) 22y dy <
/x HO )|, Vo0t (0, 2) |22 d
+ [ H a0 01, V4006, 30) [

Fet(co, G, s h) — 2A) /0 /x (e )05, DT )l gy

1
+— ‘Lf[agw’f“]‘ dydz dv .
Du,v

Co
Summing up the above identities for all multi-indices v such that |y| < m,

one is led to:

v U
[ G T ) i+ [0 T 0,0 oy <
) 0

/H(O,w)\l(wk“,wak“)(oaw)\ﬁ{m(mdw+/0 H(y, zo) |, V") (y, 20) 13m0y dy
zo

u v
(o, sy p) — 24) /O / H(w, ) | @+, Vo) (3, 2) 2 iy
o

1
s 3 [ |uepety
‘ U,V

yI<m

dydz dv . (7.3.26)

Let us control the terms with Lf[agwk“]. In all the remaining of this section

we will use the symbol G¥(...) to denote quantity G (z,x_Tl(wk,Vwk)> .

We have:

LYojwt™ ) = H(z,y)(8,0)w™™ + 9,00, 05w

H(x, y)(@zagwkH + @ﬁgwkﬂ) (OgDnﬁywkH + [Oy.ys 83]wk+1>
H(w, ) (0,070 + 0,05") (275 0JGH(...) + Oy, 01 )

= A+B+C+D.
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We will use at many places the inequality ab < a?/(4¢€) + eb®. The term A is
controlled as follows:
_ n+43

A = a2 H(z,y)0)0,w 0] GH(...)
< cle)H|9) 0w + eHa 3|90 GR(. )2,
which implies

Z/ Advdxdy < c(e)/ / H(:):,y)H&BwkH(y,x)]ﬁr{m(ﬁ)d:vdy
w,v 0 B

Iv|<m

ve [0 [ e I H ) |G By gy
0 T

Now, recall that from the induction hypothesis (7.3.25) we know that

sup |z~ (W, VaF) (y, 2) || 1 (o) < 2C0,
Y, T

thus, one can use (7.3.5) to control the H™(O)—norme of G¥(...):
n=lyy —a
IGCManiey = NG (52,0, 22+ (@, To") ) llm(o)
n=1,, .
< O@o)lal U)o (WH, Vb))l am o) -
Now, —(n+3)+2r (”T_l +a)—2a >0 if and only if n > 1—1—7%‘1—204. The

constraint n > 14+ -2 —2a ensures that —(n+3)+2r (%5 + @) —2a > 0, and

(—3:)_("+3)+27(HT_1+°‘)_2Q is a bounded quantity in the range of coordinates

we are concerned with. We then obtain

u v
S [ advizdy < o0 [ [ H)0m08 00 oy dody
w,v 0 Qo

[y]<m

+eC(Co) /0 / H (2, 9) | (", Vo) (5 2) |y )y
)

4
for n>1+ 1 2. (7.3.27)
r_
Similarly,
S [ Bavdsdy < cle) [ [ HG@g)|0t .0) o odndy
lyl<m Du v 0 te)

+e0(C) [ [ B T ) oy o
z0

4
for n>1+ 1 2. (7.3.28)
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As far as the terms C' and D are concerned, we recall that the commutators
read
E-+1 hAP E-+1 B E-+1
Oy Ole™ = 73,4833;/(# H_TPop0)w"t

oy (M2 pp0pet ) + 0 (TPopogut
9 p2 AOBW + 0 B GUJ

= - Z c(v, p) 0y WP 0?9 40w
1170, y1+y2=y
+ Z (v, p)3 TE 20w
1170, y1+v2=y

whence, using inequality ab < a® + b> one has:

> Cdvdxdy < C(h,p)/ / H (2, y)|| Voo™ (g, @) ||y ) dacdy
0 xo

ly|<m ¥ Puw

(7.3.29)
and

> [ Davisdy < Clhp) [ [ H@pIV 0t ) gydady
0 xo

ly|<m ¥ Puw

(7.3.30)
Summing inequalities (7.3.27)-(7.53.30) gives:

> [ |ege ey < oo [ | HGI9 ) o dndy
|y|<m = Zr 0 o

+eC(Co) [ [ Bl V) 0,0) i o dady
0 T

4
for n>14+———2a.
r—1
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We can then rewrite (7.3.26) as:
| @ V) ) g+ [ 06T ) e <
xo

/ CHO DI, T )0, 2) gy + | 0l ) 0 0) B

Heleoscimp) + cleo,d) = 20) [ [ H)| @ Tk )0, 2) By oy

0 T
+e(C) [ [ a6t V) )y dody
xo
4
for n>14+ ———2«.
r—1

All the derivatives appearing in the first term of the second line of the above
equation are interior derivatives to the hypersurface {y = 0} and those of
the second term are interior to {x = o}, therefore we can rewrite this last
estimate using the initial data of the Cauchy problem (7.5.21):

v
/w H () V) )
T / H(y, o) [+, 1) (5, 0) gm0y
< / = 2)||(wg 7, Vawg FY(0,2) |3 () da
u

T /0 H(y, 20) | w5, Vg ™) w1, 20) gy
u v

(clcos 20, p) + (o €) — 2A) / / H(z,9) | @+, Vo) (1, 2) 2y iy
0 x0

+eC(Co) /0 / H (o, )", V) (g, ) [2m oy ddy

o
4
Jor n>1+4+———2a.
r—1

We choose now in the above estimate the parameter A = Ay large enough so
that c(co, o, m, p) + c(co, €) — 2Ag < 0 and we have prove the following

Lemma 7.3.5 Suppose n > 1 + ﬁ — 2a. Ve €]0,1], there exists Ay =
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Ao(c, o, Co,€,h) > 0 such that ¥(u,v) € [0,y0] X [x0,0] and k < j, we have:
| AT ) ) B s+ [ 0 00 oy <
o
v K K “ —k —k
[ O it 40 gy + / H(y, zo) (w5, Vo) )2 Iy
zo

+e0(C) [ [ B ) V) 0,) oy (7331)
Zo

One would like to get rid of the dependence of k in the right-hand side of
the above estimate. We proceed as follows. Set

~

u
— — — —.k —k
Cluyo) = oo 2200 sup / e (wg ¥, Yy ) W) )y
keN JoO
v

— — k k
+sup [ [z 720 (wg ", Vawg ) (@) Frm (g d
keN Jxq

1 /u /U 0 0y/|12
+— H(y,z)||(w”, Vw m . 7.3.32
2(yo + |zo0]) Jo 0 (v, 2)]I( )HH (0) ( )

We notice that ¥(u,v) € [0,y0] X [z0,0], the quantity C(u,v) is finite. Indeed
we have

—k K k
Clu,v) < (@0, 90, Mo) (iuguwo [ =) 80P 1w, Voo >H§f,g(c+))
(S €

(0, 50, Ao) / / 2722, Vi) 2 g -
o

The two terms in the first line of this estimate are bounded because conver-
gent sequences (see Lemma 7.3.3), are bounded. From (7.3.22) we have

/0 22 (0, V) 2 ) <
o
C(ullwd™, Vawd Mg cr) + @ = 20) | g™ Ty 3y

(o = z0)llwg O)Fmer (o)) < 00

This proves that (7.3.32) defines a finite quantity. Now by the definition of
this constant, (7.3.31) implies:

[ @), 0,0) i gy < Coa0)
xo
+EC(C(),00)/O / H(a:,y)H(wk,Vwk)(y,x)\ﬁ{m(ﬁ)dxdy (7.3.33)
z0
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Suppose that for all u,v € [0, 0] X [zg, 0]

/0 / H(z, )", Vo) (4, ) |2 o ddy < 2C (o, 0) (g + o) -
xo

(7.3.34)
After integration with respect to y on [0,u], inequality (7.5.33) gives

/ / H(u, 2)]| @, Vo) (10, 2) 2 oy dady < Gy, 0}y + 26C(Co, co)Cyo + )30
0 x0o

~

S 2C(y0) 0)y0 5
if € small enough. Using now this inequality in (7.3.31) leads to:
[ 169 00y < 026 (Co)C 0, 0 )

Again by integration, we have

| ] Hwol6t 9 ) o) B oyds < (C0.0) +26C(CIC 0 +leal)) o
zo

~

2C (Yo, 0)|xo| if € is small enough .

IN

Therefore, assuming that (7.8.34) is true, we have proved that

/0 / H(z, )|, V) (4, 2)| 2y dady < 2C (g0, 0) (g0 + o))
zo

Considering the definition of the constant C(u,v) ( see (7.5.32)), we then
obtain that (7.3.34) holds for k = 0, and one can conclude that for any k € N
inequality (7.3.34) is satisfied. We have proved

Lemma 7.3.6 Suppose that the constant C' is defined by (7.3.32). One can
choose € = ey(co, €0, To, Yo, Co, h) such that

swp [ H I T 2oy < 26 a0, 0) s+ o))
keN, (u,v)€[0,y0] % [x0,0[ /O Jzo
(7.3.35)

and for any A > A,
/ H (u, )@+, Voo (4, 2) |3 0 da
o

+ [ H 1) 00 oy < 20000 (7:336)
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REMARK 7.3.7 Note that as we assume that the induction hypothesis holds
for any k < j, inequality (7.3.36) hold for any k < j.

Recall v € N" 1 such that |y| < m—1. To proceed further we apply ag to
the differential equation satisfies by w* ' and then multiply the differentiated
equation by H@gaywk+1. As in the proof of the Proposition 7.5.1, we obtain:

n—1

0, (H(ayagwkﬂ)Q) = (M -1

—1
)(9,0]wk 1) + Hn2—p8y8gwk+18$8gwk+l

831 hAB
22

agl FB
2p?

20 0pwt T

+0,00™ >~ H
T +y2=y
—0,00™ " H

Y1+v2=Y

832 ank+1

n+3

1
—5 ™ HO,0)wr 1) GR(...) .
(7.3.37)

We integrate this identity on the set {y} x [xg,x] X O. From Stokes’ theorem
we haveforn21+7f—l—2a :

H(y, 2) 10,05 (0, ) 310y < Hy20) 10,6 (5, 20) g (0

X
(calhy co ) + e(€) — A) / H(y, 5) |0y (9, 5) Bm1 gy s
)
tes(h, o, @) / H(y, )V (5, 8)]2m )
o
X
+<C(Co) / H I T, s s

As we did before, we choose in the above inequality A = Ay (h, cg, ¢y, €) large
enough so as to get rid of the terms containing ||0,w**(y, S)H%m,l(ﬁ,). We
then obtain

H(y, 2)[10y0" ™ (0, 2)3m 10y < H@,20)10yw5 @)1 Fm16

+03(h700,50)/ H(yaS)HwakH(%5)||%{m(ﬁ)d5
Zo

+eC(Co) / H(y, 5)]| (@, 9*) (4, 9) 21
)
(7.3.38)
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k+1(

Then according to Lemma 7.3.6, we estimates the terms containing ||V w" "+ (y, s)H%m(ﬁ)

and ||(w", Vw*) (y, S)Hszl(@) by using inequality (7.3.36) twice: first as it

is written and secondly by replacing in that inequality k with k — 1 (which
remains true according to Remark 7.3.7):

H(y, 2)10,9" " (4 0) |10y < H(y:20) [0y " () | Fm-1(6) + 26C(Co)Cy, @)

+2€3(h,€0,60)c(y,$)
+eC/(Cy) / H(y, 5)100" (0, ) 2o gy ds - (7.3.39)
xo

We then integrate (7.3.39) with respect to x on [xg,v] for any v € [xg, 0]

| @104 w2 gos gy <

o
2] (A o) 05 )l3m-1 ) + 26MeC(Co)C (9, 0))
+2c2(h, co, Eo)é(% 0)|zo ’eky
+ec(cy) [ [ H0 0 s s

where H(z) = |z| 2. Let

C(yo,0) = sup {|x0|(H(x0)||8yw0_’k+1(y)|ﬁ1m1(@)
keN, y€[0,y0]

+2eMeC(Co)C(y, 0)) + 2¢3(h, co, ) C (o, 0)|$0|€Ay}
1 0 0 9

+, sup H(2)||0yw” (y, @) || gm-1(gyde - (7.3.40)
y€[07y0] o

Again we need to prove that 6(@/0,0) is a finite quantity. For all v € N1
such that |y] < m — 1, we have the following trivial identity

—k+1)2 2 —k+1 —,k+1 2 — k412 — k412
0y |05 9y |* = 20,05 9w, 0 Oy < |05 9wy %195 Oywq "
Integrating with respect to y on the interval [0,yo] gives

—k+1 2 —k+1 2
|05 0ywo ™ (y,0)]F = 195 0ywy " (0,0)]

Yo
+/ ( 0302wy " (s, 0) 2 + yagang”““(s,e)|2) ds.
0

Y
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We integrate this new identity now with respect to the angular variables on
O and obtain that

— k1 k41 k1
19ywg ™ (I Frm-1(6) < 18y (O =10y + 2l ™ s -y -
By the trace theorem (recall 0C~ = ({0} x O)U ({yo} x 0)):
kel k1 ket
19ywg ™ (0) 116y < cllOywy ™ IFpm ey < ellwg™ ™ Epmsr e -
It then follows that
—.k —k
[|Oyewq +1(y)‘|12ﬂlm—l(ﬁ) < dflwg HH%{mH(c—) <00 (7.3.41)

On the other hand, by the Equation 7.3.22 page 146 which defined wy, we
have

0
/ H(@)]10,6° (4, @) 21y
xo

IN

0
-0 —2a_—Azx
10,65 )1y [ Il e
0
< C independently of y . (7.3.42)

The estimates (7.5.41) and (7.3.42) prove that (7.3.40) defines a finite quan-
tity. By the definition of C(yo,0) we have the following form of inequality
(7.3.59)

| H@I004 @) oyda < a0
zo

v x
+€C’(Co)/ H(y,S)H@ywk(y?s)”%lm_l(@)dsdx .
zo J o
(7.3.43)

Suppose that Yv € [z, 0],
U ~
/ H(2)[|0yw" (5, 2) [ Fpm-1(gydz < 2C(yo, 0). (7.3.44)
o

Then inequality (7.3.43) gives:

/ H(@))|0,0" (g, 2)|[Fpm-1(g7dz < C(yo,0) + 26C(Co)C(ug, 0)|o|
o

< 25(y0,0), for e small enough.

Note that from the definition of the constant 5’(y0,0), inequality (7.3.44)
remains true when k = 0 and then one can conclude that it holds for any
integer k € N. Inequality (7.3.89) then implies:

| 720yt (g, 2) [ Fm 1 () < Cilco, €0, h, Co, Ao, A€, 6,C) . (7.3.45)
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In order to obtain the analog of (7.3.45) with instead O,wk L we repeat the
previous argument. Once more we differentiate with ag the equation satisfies
by Wkt and multiply the resulting equation by H@g@xwkﬂ and obtain

n—1

2p

n—1

0y (H(@.001?) = (9, +H 5

)(0x0) w2 — 0y 0y w19, 0] wh
AB
9 h
2p?
831FB
2p?

+0,00™ Y H

Y1i+y2=Y

O 0jw Tt > H

Yit+y2=Yy

8;’2 8Aank+1

agz ank+1

n+

1
—5ll” 2 Ho,0)w )G (..) .

Then, we integrate on [0,y] x {z} x €, and obtain for n > 1+ - — 2« via
Stokes theorem

H(y, )00 (5, 0) 21 () < HO, 2|00 ™ (@) 1)
Yy
+(ca(h, co, C0) + c(€) —A)/ H(SaJJ)HaachH(SvJJ)H%{m—l(ﬁ)ds
0
Yy
tes(h co, 3) / H(5,2) V"1 (5, 2) [2ym ()5

Yy
+C(Co) / H (s, 2) 1", Veok) (5, 2) [Bym1 (s
0

As we did previously, we choose in this inequality A = Ao(h, co, o, €) large
enough so as to get rid of the terms with ||8mwk+1(y,s)||%lm,l(ﬁ) and we
obtain:

&
H(y, 2)||0p" (. 0) 10y < HO,2)|100005™" " (@) 7m0
Yy
tes(hy co, @) /0 H(5,2) V"1 (5, 2) g )5

Yy
+eC(Co) /0 H(s, @) (", 9e*) (5,2)Zm-1 0y
(7.3.46)
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By Lemma 7.3.6, we estimate the quantities |V, w* 1 (y, 8)||%m and ||(w*, V,w")(y, S)H%{m—l(ﬁ)
using inequality (7.3.36):

5 .
H(p, )00 0, D) om0 < H(O,2) |00 @) s ) + 26C(Co) g, 2)

+205(h7 €0, EO)C(y7 I’)
Yy
+eC(Cy) / H (s, 2)]|00" (5, 2) 21 gy ds - (7.3.47)
0

We integrate in y, and obtain that for any u € [0, yol,
Y =~ k
/0 H(y, )]0 (0, ) [Fm- 107y < 90 (0,)]|0p0g" ™ (@) | Frm1(5)
+2y0e™"eC(Co)C (yo, ) + 2¢5(h, co, %) C (Yo, 2)yoe™
u Yy ~
+eC(C’o)/O /0 H(s,:v)H(?zwk(y,s)][%m,l(@)dsdy ,

(7.3.48)
where H(y,z) = |z| 2%, Now, we define a new constant C(yo,0) as
Clyo,0) =  sup {yo (B0, )00 @) 21 () + 2627C(Co)C (o, )
keN, z€(z0,0(

+2¢5(h, co, ) C(yo, 0)|$0|€AI}

1 Yo _
—I—§ sup / H(y,z)||0zw (s, z)|| grm-1(0)- (7.3.49)
x€[z0,0[ /0

As before let us prove that (7.3.49) is finite. By the Lemma 7.3.3 page 142

sup  H(0,2)]|0aty " (@) [}m 1) < 00 - (7.3.50)
keN, z€[xo,0[

Next, by the definition of wy given by (7.3.22) page 146, we have

Yyo __ Yo
O e ) Pl
< C independently of x . (7.3.51)

From the estimates (7.3.50) and (7.3.51) we obtain that (7.3.49) define a
finite quantity. We thus obtain the following form of (7.5.48):

IN

u B u Py
/0 H(y,a:)||8xwk+1(y,w)||§{m_1(ﬁ)dy§C+eC(Co)/O /0 H(S,:U)||(9zwk(8,:L‘)||fqm_1(ﬁ)dsdy.
(7.3.52)
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Suppose again that Vu € [0, yo],

| )00 0.2) s 0 < 2C00.0). (7.3.53)

Then inequality (7.3.52) gives:

C(yo, 0) + 2€C(00)0(y0’ 0)y0

IN

/0 (g, )00 (5, 2) 1 oy

2C(yo,0), if € small enough.

A

By the definition of the constant C(yo,0), (7.3.53) is satisfied for k =0 and
so it is for any integer k € N. Inequality (7.3.47) implies:

22200 (4, 2) g1 ) < Caleos 0,y Co, Mo, gy e, €, C) . (73.54)

It remains to control the H™(0) norms of w*+1, that is to control its angular
derivatives. Let (y,x) € [0,v0] X [0,0[, v € N*~1 such that |y| <m

Y
ol e300t ) < el 10 ) [ ol e 00,00 (5, ) s
0
It then follows that:
Y
‘$|72a‘671\yagwk+l(y’$)|2 <2 (|$|2aa"9¥wo+,k+l(x)’2 +y0/ |J,"2a|6ASagaywk+l(S,l‘)|2dS> )
0

By integration we then obtain:

20 A
|72 M| WF (g, 2) [Ty () <

Yy
2(@F%WW$M4@N%mawa+quIwrmé“ﬂWwﬁ+%&wW%w4%ﬂ%>
< C3(0) .

We have proved the following Lemma:

Lemma 7.3.8 Let m € N*. If n > 1+ ﬁ — 2a, then there exists a positive
constant Cy = Cy(co, €y, hy Ao, A1, Ao, €0) such that:

sup o (w

ML VW) g1y < Ca (7.3.55)
(y,Z)G [O,yo] X [xo )O[
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Now to prove that (7.3.25) holds for k = j + 1 we are going to show that
it suffices to replace in (7.3.55) yo with a certain u, sufficiently small. Let

jo € N*. if
n—1 )
m_1>T+]07

then from (7.8.55) and the Sobolev embedding theorem, for all (y,z) €
[0, 0] x [z0, 0], we have:

2|~ (@, VP ) (y, 2) | so () < C - (7.3.56)
It then follows from the differential equation satisfies by w**! that

18y (||~ 8™ ) (y, 2) | cio1(0y < € (7.3.57)
lz0s (|20, ) (y, @)l cio-1(0y) < C- (7.3.58)

VAN VAN

Integrating (7.3.57) in y from (0,x) to (y,x) we find that for jo > 2,

_ . 1
2|~ |0:" (g, ) lere) < 27 10awg 0, 2) | () + Cy

< Co+Cy

< 20y if y<wuy. (7.3.59)

Note that inequality (7.53.59) shall be read as a first condition in the determi-

nation of u.. Further, to control |z|=®|9,w 1 (y, z)||c1(e), we y—differentiate

k+1

the differential equation satisfied by w* . We write here

n—1

G(z,x N ( koowk VyW) G(z,2 2 (p1,p2,p3))

so that 0,G*¥(...) reads

k _ k nlg k 9G ‘
8,GF(..) = (0,G)*(..)+|z|"7 dyw <8p1> (...)

] 0,00 <§pi) () + |23 0,V b (gg) ().

The differentiated equation reads
0 (0, V") = €0,V W+ 9*9,V WP + o7 (7.3.60)

where we have set

ag= (-1 0), agh=jaf? (ﬁ)km,

Ops3
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and where the components of ©* are given by

k n—1 k+1 hAB k+1 hAB k+1
4@:1/ (y’ ‘T) = P 8x8yw (ya .%‘) + FaAan (y’ ‘T) + FayaAan (y) 1:)
n—1 rs rs .
+2—p2(8ac — 9wt — ?33133001”1 - FaBWkH — (~2) 2 (9,)(...)
oG \" G \*
2729wk [ =) (L)+0,0.0F [ =—=) (...
&z ( yw apl ( )+ Yy w ap2 ( ) )
Wiy, x) = 0,004 .

By hypothesis (7.3.4)) and the induction assumption (7.3.25), we have the
following estimate on ¥ (y,x) for all (y,z) € [0,y0] % [xo,O]:

o iyt
1Fy,2)ll oo < O] (W, Vak) (g, @) Lo (o)) ~2HE—DC 2" +e)

IN

4
< C if nZl—l——l—Qa. (7.3.61)
r—

By using simultaneously (7.3.56) and (7.3.57), for all (y,x) € [0, yo] X [xo,0[
we have:

) 4
2" W, 2l cio-2(0y) < C i m 214 -—7 = 2. (7.3.62)
On the other hand we have:

Oz (H(@"”ayvywkHF) = (2alz[™' - A)F($)|8yvywk+l|2 + 2F(x)azayvywk+l'8yvywk+l
< —AH(2)|0, V" + 2H (2)0,0, Vw10,V W

Considering now inequalities (7.3.61) and (7.53.62), we deduce that for jo >
2,

0, (ﬁ(x)myvywkﬂ\?)

IN

—AH ()0, VW' ?
F2H (1), Ve (€0, + R0, 70 + o)
— C
< H(x) ((c +o - A)|8, Vw2 4 60|ayvyw’f|2> + Clz|~%e "
Choosing A large enough, we have thus proved the following inequality

By (ﬁ(x)\ayvywkﬂy?) < €l (2)C|0,VywF 2 + Cla| "%~ | (7.3.63)
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which is then integrated in x to obtain:
()10, 9,4 Py, 2) < Fan) 0, ¥, g 0)+C [ e (cls] 210, 9,4 + 5] ) d.
o
FEquivalently this reads
FuMQvWﬁ“P@J»sfﬂmN@va*“F@ww+c/“aM(4ﬂ*ﬂ%vWﬁP+wrﬂds
o

As we did many times before, for a convenient choice of €, we obtain the
estimate:

0
[0, V" Py, ) < 2 C/ |s["%eA%ds +  sup  H(0)|0yVywy " (y)
zo keN, y€[0,y0]

— ket
< cfena) (1 509 5™ By
keN

SdWMG*?y%Mw%W&O<w
(S

1.€.
|| =0, V| (y,2) < C . (7.3.64)

The same procedure can exactly be repeated by using instead the angular
derivatives of w*t1 leading to

2| =)0, Vo (g, @)l i < C (7.3.65)

REMARK 7.3.9 The bound (7.3.65) follows from a control on the coefficients
¢, ¢F and ¢* in (7.3.60) after have y-differentiated the equation satisfied
by w**1. We notice that, if instead we have x0,— differentiated the same
equation we should have been led to the bound:

2|~ |(202) Vo) (y, ) | i < C . (7.3.66)
Now we integrate once more in y Equation 7.53.65 and obtain that for jo > 3:

2|~V g, 2)lore) < Ll IVywt (0, 2) ]| or + Cy
2C) pour y < ug . (7.3.67)

VAN

In order to finish the proof of Lemma 7.3.4, we write:

y
2|~ | (g, @)l o1y < |$|_a||wa“k+1(93)||01(ﬁ)+/0 2| |0y (s, )| o1 () ds
< Co+2Chy
< 20y pour Yy < ug . (7.3.68)
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We define uy as

Uy = min{ug, u1, uz, uz}
and inequalities (7.3.59), (7.3.67), (7.3.68) allow us to write:
sup |~ [, Vet (y, ) [wiee < 2C -
(y@)e[ovu*]x[xmo[
This completes the proof of Lemma 7.3.4. O

The previous lemma will be useful only if we prove that the constant Cy is

finite. We thus have to prove that the quantity — sup  |x]~*(|0,w*(0,2)|ly1.0(¢)
keN, xzeCt

is finite. This will be a consequence of the next Lemma. Set (recall that
H(z) = e x| 72 )
. 1 .
Co= sup  H*(@)](wy ™", Vawg ™) (@)l rm(e) < Cly0,0) < 00
keN, z€[xo,0[

~ 1 _ 1
Co = sup H?(xq)||0yw, ’k(O)HHm_1(ﬁ)+ sup H? (m)|]8yw0(0,x)HHm_1(ﬁ) < 00.
keN z€[wo,0

Here and elsewhere we write A < B if and only if there exists a constant
¢ > 0 such that A < ¢B. We have the following:

Lemma 7.3.10 Under the hypotheses of Lemma 7.5.4, we have:
1 A ~
sup  H2(z)|d,w" (0, )| gm-1(6y < 2(Co + Co)- (7.3.69)
keN, z€z0,0]

Proof: The proof will be carried out by induction on the integer k. By def-
wiation of the constants Cy and Cy the assumption is fulfilled when k = 0.
Suppose that

1 ~
sup H? ($)|’8ywk)(0,x)”Hm—1(ﬁ) < 2(Cy + () .

z€[x0,0[

We shall prove that this inequality remains true if we replace k with k + 1.
If in Inequality 7.3.38 page 154 we choose {y = 0} we have (note that in
(7.3.38) there is no € in the second line but things can be arranged from
(7.3.37) so as to get an € there):

H(0, 2|0, (0,2) | Fm-1(gy < H(0,20) [0, (0, 20) [[3m-1 45

tees(h, co, o) / H(0,5) [V 1(0,8)[[2m 0y
o

+eC(Co) / H(O, )| (@, 9) (0, ) 21 (s
o
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This can be rewritten as
TI7 I7 k41
H(2) [0, 0, 2) | Fm-1(5y < H(@o)[0ywo ™ (0)|3m-1()

tees(h, co, G / H(S)IVatd ™ () 2y

+eC(C)) / T Vawd M) (s 8)|[Frm-1(0yds

+eC(Ch) (8)10,w" (0, 8)||%m-— 1(6)ds

which implies that:
H ()]|0,0" (0, 2)3m-1 () C2 + ecs(h, co, &) xo|C2 + €C(Co)|wo|C2

+4¢C(Co)|z0|(Co + Co)”
A(Co+ Co)?  since € is sufficiently small .

IN

IN

We then obtain

1 ~ ~
sup H? (2)]|0,w" (0, 2) | Fm-1 (g < 2(Co + Co) ,

z€[xo,0[

and the proof is complete. ([l

Lemma 7.3.11 Under the hypotheses of Lemma 7.3.4, there exists a con-
stant My > 0 such that:

sup Hwk(y,x)le,oo(ﬁ) < My . (7.3.70)
keN, (y,x)€[0,ux] X [x0,0]

Proof: let v € N" 1 such that |y| € {0,1}. By Lemma 7.3.4, for all (y, ) €
[0, uy] X [z0,0], we have:

Ol < 1055 W)l + [ 10:07 . )lds
zo

IN

1wy )] + / 151751100 (5, )| 1 () s
0

A

0
sup 0] wqy " ()] +2CO/ |s|ds .
"7‘6{071}7 keN, y€[07u*] zo

=My

We also have the following:
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Lemma 7.3.12 Under the hypotheses of the previous lemma, there exists
two constants My > 0 and My > 0 such that:

sup ||wk(y,$)||Hm—1(ﬁ) < M, (7.3.71)
keN, (y,z)€[0,ux] X [z0,0[

and

sup ]:J:\*O‘H(&Bwk,8ywk)(y,:r)HHmf1(ﬁ) < My . (7.3.72)
keN, (y,z)€[0,ux] X [z0,0[

Proof: First we will prove (7.8.72) and secondly, we will show that (7.3.71)
is actually a consequence of (7.3.72). We proceed by induction on k. Set

C’O = sup ‘x’_au(&vwoy8yw0)(yv$)”Hm—1(6’) < oo,
(y,z)€[0,ux] X [x0,0]
¢ = sup {H@.20)10,00 " W) Fn-1(0)

keN, (y,z)€[0,ux] X [z0,0[
+H(0,2) e @) 10}
+2e¢C(Cy)C (0, 0) + 2¢3(h, co, c)C (1o, 0) + 2¢C(Co)C (yo,0)

~

+2C5(h‘7 €o, EO)C(y()? 0) < oo, (7373)
and suppose that

sup  HE ()| (a®, 0,%) (1, 0) s ) < 2Co + Ca)
(y,2)€[0,ux] X [x0,0]

Let us show that this remains true when we replace k with k + 1. Adding
inequalities (7.3.89) and (7.8.47) leads to:

H(y, )| (0,65, 00 ) (3, 2) 2m 1) <
Gy +cC(Ch) / H(y, )10y (4, 5)][ 21 ()5
)

Y
+eC(Co) / H (5, 2)]1005" (5,2) 2m-1 45
0

C1 +2¢C(Co)(Co + C1)(yo + |ol)
2(Co + C1), even if it means redefining e . (7.3.74)

IA N

Since V(y,x) € [073{0] X [20,0[, e M0 < e AWD) it then suffices to set
My = (26Ay0(00 + Cl))l/Q.
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In order to obtain the uniform control (7.3.71), we repeat the argument
leading to the proof of Lemma 7.3.11. For all (y,x) € [0,uy] X [x0,0], we
have:

|l (y, @) m-1(0) < ||wo’k(y)HHm—1(@)+/ 102" (y, $)|| =1 () ds
o

IA
€
o

W)+ [ 15100 5.2 sy
Zo

0
< sup Hwa’k(y)|]Hm_1(@) —I—Mz/ |s|“ds . (7.3.75)
kEN, ye[0,ux] 0

=M

0

7.3.5 Convergence of the sequence (w"),cy and existence

Set 6wk = Wt — Wk and 6VWF = VwFtl — Vwk. We have the following
(recall that Dy = [0, us] X [x0,0[x0O):

Lemma 7.3.13 Under the hypotheses of Lemma 7.3.11, even if it means
to replace (wW*)ren by one of its subsequences, there exist two real numbers
o €]0,1] and ¢ > 0 such that:

o S o _ _
(=) (0", 8 (V)2 < o + oll(=2) (0w, 8(V 2. -
(7.3.76)

Proof: We apply Proposition 7.8.1 with w = 6w¥, u € [0,u.], and v € [z0,0].
We have:

N

—Au I7 —Av e
e M(8w”, 8(V o)V H 2 |72 (g 0x ) + €N (0w, 6(V ™) H2 720 ) w ) <

N

Az 71
”%%[mo,o[x 0) +eh 0||(5Wk75(vywk))H2 ||%2([0,u]><ﬁ)

+(cl(co,60,n,h)—2A)/ / H(y, )| (8", 6V) |22 ) ddly
0 ote)

[ (6w®, 6(V w®)) H

1
4= ‘Lf [&uk]‘ dsdydy . (7.3.77)
€0 JDy,v

Recall that:

LY0wk] = 2| 5" H(60,0" + 60,0") (Gk(. L) = GEIC. .)) .
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We have:

|~ H (Gk(. L) =GR .)) = H/O1 || 2R (¢, y, @) dt

with
&t y,x) = mk—l%—G(z,ﬂxW—?(w, Vok) + (1= t)|z] T (wF 1, Vi)
p
k109G ol k k ool k=1 k-1
+oVw 8—q(z,t|:1c| T (W, VW) + (1 —t)|z] 2 (W, V™)) .

Using once more hypothesis (7.3.4), one is led to the following estimate
e O [ e Y e (X B i)
4
< s (y(swkfly + y(swkfly) L if mxl+——-2a.
r—
We should point out that the constant C5 depends on the quantity

sup 2| (W, Vo) [ L ()
keN, (y,z)€[0,ux] X [z0,0[

which does neither depend upon A nor on k. We then obtain that if n >
1+ -4 — 20,

[ o] <o [0 (namaw’f(y,m)n%%w||ay5w’f||%z(ﬁ)
u,v o
+||((5wk1,V5wk1)||%2(ﬁ)>H(y7x)d$dy ; (7.3.78)

and inequality (7.5.77) implies

—Au 73 —Av i
e M| (6", 6(Vaw) 2|2 (4 00y + € N0WF, (V) H2 |2 (0 )k 0 <
1 Az ~1
186", 6(Vaw® ) H 2 (|7 2140 015 ) + €000, 6(Vy*)) H2 |12 0. )

+(cl(co,60,n,h)—|—05—2A)/ / H(y, )| (8", V) |2 o dady
0 x0

+Cs / / H(y, 2)[|(0"", Vbt )72y dwdy - (7.3.79)
0 te)
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From this inequality and by a convenient choice of A we obtain:
—Au 73 —Av s 1
™M (0w®, 8(Vaw )V HE |2 (g 01x 0) + € IO, 8(Vyw ) H2 220,00 0) <
1 Az - — kol
I Gwig™ 8T N [ 01 0) + €1 G0 6T 0 N2 2 0,010)
+Cj / / H(y,z)||(6w* ", Vo 1)|[[2(g)dzdy . (7.3.80)
0 T
We have:
1 Az -, -, ~1
0™, 8(Vatog ™ NH 2 01 0 + €~ N B9 0(V g D H 212 (0,01 7y =
_ Az —a k k
lle™% ||~ (wg ™, 8(Vawy "N Z2 (o 01x 0)
—a ,—Azx -1 — —
+Hao| e [le™ 2 (Swy *, 6(Vywy k))”%?([o,u]xﬁ)

< e(h o) (el 6™ 8T aty D) an ) + 105 ™ 65 D20 o109 -

Since the sequences (a: @ wJ“k,V Wk ) and (wf’k,v w*Jf) are
q | | ( 0 Aed) ) keN 0 yWo N
convergent respectively in the spaces L*([xg,0[x ) and L*([0,yo] x O), we

know that

Jim (1]~ 6w, SVt DI 010y + 1005 ™ 6755 ) 2 100y =0

Therefore, Vi € N, dk; € N, such that

(8 o) (Il (0™, (Tt M DI o + 1095 ™, 87 y5 D2 001 ) < 21
(7.3.81)

We then write inequality (7.3.80) with instead the subsequence (w*)ien

which will be denoted again (w*)ren and one obtains:

N0 (Vo NI a0y + € N0, 8Ty N 0,0y <
gt s [ [ @t Vo oy
This leads to the following inequalities:
Vu € [0,u.], e N |2] 7 (60", 6(V2w™)) ()72 (o opx o)
< zik +Cs /Ou /x:H(y,:r)ll(5wk_17V5w’“_1)||%2(ﬁ)d$dy ;

(7.3.82)
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v € [0, 0L, o]~ *e™*[|(0w", 6(Vyw*)) (V)12 (0,01 0)

1 u v B 3
< g+ G [ [ B a6 T8 g dndy
Zo

(7.3.83)
u v 1 u v . .
/0 / H(y, z)||(6w*, Vowr)[|72(g) < m+02/o /x H(y, )| (0", V6w ) 724 -
(7.3.84)
where
a(A) =2A — C5 — c1(co, ¢o,n, h)  and O<U2<&<1
- 5 1{€0, €0, 1 CL(A) 27
provided that A is large enough. O

Now we have all we need to show that the sequence (wW*)ren converges
towards a function w of class C? on Dy = [0,us] X [x0,0[x O which is a
solution of the characteristic initial value problem (7.3.3). We have the
following consequence of the previous Lemma.

Corollary 7.3.14 There exists a continuous and bounded function w on D,
such that (WF)gen converges to w uniformly on any compact subset of Ds.

Proof: We point out the elementary implication: If (Up)nen is a sequence
of positive real numbers satisfying Up+1 < aU, + 2% , then

Up < a"Uy+ 2 (W) |

Therefore, the series Y U, will converge if 0 < o < 1. This remark and in-
equality (7.3.84) show that the function series Y e~ MU+2)/2|z| = (5wk Viwk)
converges in the space L*(Dy). Since the sequence of partial sums of this
series write Sy = e Myte)/2|g|— ((w*, V) — (w0, VW), the sequence
(WF, Vw*))ren converges to a function (we, @) in the space L*(D,.), with
Dye = [0,us] X [0, —€] X O, for any 0 < ¢ < —x. Note that the continuous
embedding L*(Dy:) — 2'(D..) implies that &. = Vw.. We define w by
setting for any (y,x,0) € Dy, w(y,x,0) = w(y,,0) if (y,z,0) € Dy .. First
of all we need to prove that w is a well defined function. Let e1,e9 € [0, —x¢]
such that €1 > e9. Since Dyg, C Dy, L2(D*7€2) embeds continuously in
L%(D..,) and then, the convergence of the sequence (w*, Vw*)ien towards
the function (wey, Vwe,) in L*(Dy.,), also holds in L*(D. .,). By uniqueness
of limits of sequences in this space one is led to

(Wer, Vwe, ) = (Wey, Vwe,) almost everywhere on D, ., . (7.3.85)
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Let ¢ € [0,—xo[. By Lemma 7.3.11, the sequence (wF)pen is uniformly
bounded on D, and therefore is uniformly bounded on D, ., by Lemma 7.5.4
page 146 there exists a contant C = C(Cy, xg,€) such that

sup vakHL‘x’('D*,g) < 0(0071'076) )
keN

thus the sequence (WF)pen is uniformly equicontinuous on Dy . Then, By
Arzela-Ascoli theorem, there exists a subsequence (w*i )jen of the sequence
(W) pen which converges uniformly on the compact set Dy to a continuous
function .. The embedding C°(Dy.) — L?(D..) proves that this conver-
gence also holds in L*(D..) and by uniqueness of limits in L*(D..) we
conclude that the equality in (7.3.85) holds everywhere and that:

e w is a continuous function on D, ,

e the sequence (Wi )jeN uniformly converges to w on any compact subset
of Dy = [0, us] X [x0,0[xO .

It remains to prove that w is bounded on Dy. From the Sobolev embedding
theorem (recall m —1 > "2 +2), by (7.5.71) we have:

sup Hwk(y,:U)HCz(ﬁ) <M, VkeN.
(y,2)€[0,ux] X [z0,0]
By taking the limits in this estimate we obtain that w is a bounded function
as well as its angular derivatives up to order two on D,. ([l

Lemma 7.3.15 Vs € [0,m — 2] NN, (w¥ (y,x))jen converges towards w(y, x)
in H*(O) uniformly in (y,z) on [0,u] X [zo,0[ and

0 . s
w e OSSQm—ZC ([0,uy] x [x0,0[; H*(O)) .
Proof: By the previous corollary, for all (y,z) € [0,us] X [z0,0[, the se-
quence (whi (y,z))jen converges to w(y,z) in C°(O) and since C°(0) —
L%(0), this convergence also holds in the space L*(0). On the other hand,
by Lemma 7.5.12 the sequence (w"i (y,x))jen is bounded in the Hilbert space
H™ Y0, uniformly in (y,z) € [0,us] x [x0,0]. By weak compactness there
exists a subsequence of (wi(y,x))jen denoted again by the same symbol
which converges weakly to a function @ € H™ Y(0). This weak convergence
also holds in L*(0), and by uniqueness of the weak limits, we obtain that
wly,z) = w(y,z) € H™1(0). Now, we use the interpolation Theorem C.0.9
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withp=r=2, s =m—1, u=wkn —wh, j, jo € N. We then obtain:

q =2 and that for alli € {0,1,...,m — 1},

D183 (ki —whiz) |13

Iv|=i

3
L

: : : 2055
< o 3 10t -l | Il — W T
Iy|=m—1

_ 2(1-
< o) whn —whi |

This estimate implies that, if s < m — 1, then the sequence (w"i (y,2))jen is
a Cauchy sequence in the Hilbert space H*(O) uniformly in (y,x). O

Corollary 7.3.16 The following holds:
° wc 02([07u*] X [‘TOvO{Xﬁ) )

e w solves the characteristic initial value problem (7.5.3).

Proof: Let € €]0, —z¢[. Recall D, . = [0, u,] X [xg, —¢] X 0. In order to show
that w € CY(D.) we will show that w € CY(Dy.) for any epsilon. We repeat
what we did before to obtain that w is continuous. Since

sup [|[Vw"|| e (p, ) < C(Co,20,¢)
keN

we only need to show that the sequence of second order derivatives (V2w*)ren
is bounded on D, .. This follows from (7.3.65), (7.3.66), (7.3.71) and (7.5.72)
n—1

(recall m — 2 > "5= 4 2). Thus again by Arzela-Ascoli theorem, the weak
compactness and the interpolation theorem, one obtains that:

o the sequence (or a subsequence of it) (VwF)ren converges uniformly
towards Vw on Dy,

e Vw is a continuous function on D, . and then on Dk,

e Vs € [0,m—2 NN, VwF(y,z) — Vw(y,z) in H*(O) uniformly in
(y,x) on the compact [0, us] X [zo, —€] and that

Y(y,z) € [0,us] x [z0,0], Vw(u,v) € C*(0) .
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Let us show that w € C?*(D,). Again, we repeat the previous argument.
Let ¢ €]0,—xg] be fixzed. We already know that the sequence of second or-
der derivatives (V2wF)ren is uniformly bounded on Dy . Thus, it remains
to show that the sequence of third order derivatives (V3wF)pen is also uni-
formly bounded on Dy .. From this property, it will follow that the sequence
of second order derivatives is uniformly equicontinuous and then the theorem
of Arzela-Ascoli applies. From some inequalities obtained so far, we see that
the sequences (8fwﬁwk)k€N are uniformly bounded on Dy, for pvf # xxx
and pvB # yyy:

e By choosing jo > 3 (which is the case since m—1 > 3+ %), inequality
(7.3.57) shows that the sequence (afwﬁwk)keN is uniformly bounded on
D, for pvp = xyA.

e From inequalities (7.8.65) and (7.5.66) with jo = 3, we obtain that this
sequence is uniformly bounded on Dy . for pvf € {yyA,yAB,zxA, xAB}.

e The case pvf = ABC will follows from inequality (7.3.71).

e The analysis of the right hand side of identity (7.3.60) gives the desired
control in the case pvf = xyy whereas x0,— differentiating the partial
differential equation satisfied by w*+1 gives the result in the case pvf =
YT,

It thus remains to show that the sequences (3gyywk)k;eN and (03, ,w*)pen are

uniformly bounded on D, .. We start with (ag’yywk)keN. If we 8§—diﬁerentiate

the differential equation satisfied by w**' we obtain:

oG

-1
49, 3, k+1 n 3, k+1 293, k
02 (0yw" ™) + Oyw" ™ + (—z) 0w ;

k
> (...)=®" (7.3.86)
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where

n—1

o= = 7(8:6 - 8y)8ywk+1(y,x) +

n—1 n—1
W(&r — 8y)wk+1 + Tﬁxﬁgwkﬂ

hAB o g1, 3h4P E+1 2n4B E+1
+78A838yw oy WaAan y,z) + TayaAan Ty, z)

2r’ 3rks rs
—?8?!83&),64_1 — FankJrl — F&g@;wkﬂ
k k
302k 202 i[OG —245  k oG
2o (26 - no (29
—x 0y (20, w") O (...) — 2720y (x0w"™) 0y O (...)

—2 205w, ((g;)k (.. .))

oG\ " oG\ "
—202 k -2 k

From what has been said so far, we deduce that the coefficients of Equation
(7.3.86) are uniformly bounded on D, .. Namely, we have HnTTlHLOO(D*,E) <
C and

[ OG\*
sup [|(~2) ( ) i@y < Clone): 5up [0 uepp, . < Clan.e).

kel Ips
(7.3.87)
As we did before, we have:
dy (ﬁ(a;)|a§wk+1\2) = (afa| ™t — AH ()03 )? + 2H (2)0, 0801 93wk

< —AH(2)|00w" T ? 4+ 2H ()0, 00w 1 050wk T

From (7.3.87), we deduce that

0 (H@)|05" 1) < —AH(@)[0, 7,0t
k
77 3, k+1 n—1.3 ;4 —9o03 k[ OG k
< H(z) ((c+ % — A)| 032 +5C|a§wk|2> + Clz| e A



By choosing A large enough, we have:
By (H(g:)ya;wk“\?) < §H(x)C|03w | + Cla| e | (7.3.88)
which is then integrated in x to obtain:
H () 03" 2y, 2) < H(w0)| 03 P (y, 20)+C / Tt (Sls172 155 + [s]7) ds.
o
Equivalently this reads
H(@) |03 2 (y, 2) < H(wo)|03wy 2 (y, 20)+C / T (Bls/72 05" + |57 ds
o

As we did many times before, for a convenient choice of §, we obtain the
estimate:

2|20 P (y, )

IN

0
2 C/ |s| e Mds 4+ sup F(xo)|8§’wg’k 2(y)
o keN, ye[0,y0]

— 12
< c(z0, ) (1 + ilég [lwg HO?’([O,yo]X@)
< c(zo, ) (1 + sup Hwo_’kHH%{m“(C)) =%
keN
1.€.
2|03y, ) < C. (7.3.89)

The same holds for |z|=%|03w*+1 if instead we 02— differentiate the differen-
tial equation satisfied by WFt1: |z|=®|03wWF Y| (y,x) < C. Therefore we have
proved that
sup ||v2wk||Loo(D*’E) <C. (7.3.90)
keN

It then follows that the family of functions {V?w*i, j € N} is uniformly
equicontinuous and from the Arzela-Ascoli theorem there exists a subse-
quence of (V2wkf)jeN denoted again by the same symbol which converges
uniformly to a continuous function & on D, .. Since the sequence (Vwki )jeN
converges uniformly to Vw on D, . we conclude that Vw is differentiable on
D,. and V*w = @ which proves that w € C?(D,.) for all & €]0, —w0] i.e.
w € C%(Dy). To end the proof, it remains to show that w solves the charac-
teristic Cauchy problem (7.3.3). Recall that the partial differential equation
satisfied by w*t! reads

0 Oyt = WP (7.3.91)
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where

v (U g )rny P0A0T
4p R 42
1 1 n n—
—ZrBank+1-»Zm:—%?(XZJxral@ﬁ,vwk»

being a continuous function on Dy. To conclude we consider the limits point-
wise in (7.3.91) and we are led to

Oy = |27 Gz, 2] "7 (w, Vw))

thus w is a classical solution of the characteristic initial value problem (7.3.3).

O

7.3.6 Uniqueness and statement of the results

We are now going to show that the solution of (7.8.3) constructed in the

previous section is the unique C? solution. Let wy, wy be two functions of

differentiability class C? on D, both solution of (7.5.3). Set dw = wy—w1 and
n—1 n—

0G(z) = G(z, |z|” 2 (w2, Vwa)) —G(z, |m|7Tl(w1, Vwi)). It follows that éw
solves the characteristic initial value problem with vanishing data

{ Oy, pow = x_nT%(SG dans D, (7.3.92)

dw=0 sur CtUuC~

We repeat the proof of Lemma 7.8.13 with instead dw and obtain the follow-
ing inequality which is the equivalent of (7.3.84) there:

1 1
1H 2 (y, ) (6w, Véw) |2 (p,) < 0*|1H(y, 2) (0w, Vow) |2 p,) -

This proves that w1 = we almost everywhere and since these functions are
continuous functions they are equal everywhere. We have thus proved

Theorem 7.3.17 Consider the characteristic initial value problem (7.3.3)
on the subset D = [0,yp] X [zg,0[x O of RZH. Suppose that the initial data
wg and wy satisfy (7.3.1) and (7.3.2) with m > "7 and —1 < a < —1/2.
Moreover suppose that the nonlinear source term G satisfies the nullity prop-
erty (H) page 135 with a uniform zero of order r being such that

1, (7.3.93)
'['—1 (67N .O.

n>1+
Then there exists a positive real number u, €]0,y0] and a unique function w

of differentiability class C? on D, = [0,u,] x [xg,0[x &, solution of (7.3.3)
with the following properties:
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e sup |w(z)| < oo,
2€D,

e sup |z|”%¥Vw(z)| < o0,
2€D,

o Vs € [0,m—2]NN, we C%0,u] x [0,0]; H¥(O)) .

A direct consequence of Theorem 7.3.17 is an existence and uniqueness
result for the Cauchy problem (5.0.8) on the light cone. We want to solve
this problem on a neighborhood of the entire cone. For this purpose, we need
to make sure the data are such that, the problem at hand can be solved locally
on a neighborhood Vy .. of the tip of the initial cone and that the restriction of
this local solution on any incoming cone intersecting this neighborhood is of
H™2—regularity class (as in (7.3.1)). In order to obtain this local solution,
we will use the result of [27] (see Théoréme 2, page 47 of this reference).
For any 7 > 0 set

YT ={(y") € o(Vin), 0<y’ <7}, (7.3.94a)
CT={(y") € d(Ci,), 0<y’ <7}, (7.3.94b)
Ve >0, CT(e) =¢(CS,)\C". (7.3.94c)

we have the following

Theorem 7.3.18 Let m € N. Consider the characteristic initial value prob-
lem (5.0.8) on the light cone in the unbounded domain Y, of R Assume
that the source term F' is a smooth function of all its variables and that the
initial data @ are such that:

e there exists a real number 0 < g < i such that ¢ = (Q_nT_lgp o ¢>*1>

Ceo
satisfies the last hypothesis Huvo of [27, Théoréme 2, p. 47],
e and Ve €]0,e0],
_n—1 _1 . _n—1 -1 o +
0T pog| | 5 00T T pod ™| | € A (CTO),
(7.3.95)

where m > ”T” and —1 < o < —1/2. Further assume that the function F
of equation(7.1.7) has a uniform zero of order ¢ satisfying

4
n>1l4,— 2. (7.3.96)
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Then, there exist three real numbers ag, C, R such that ag > a, C;R >
0 and a unique function f of class C? on the future neighborhood ¥V of
Ciy defined by v = U C,jx solution of (5.0.8) with the following decay

a<b<ag
property

n—1

Y(t,a") eV, |fta)|<Ct+r)T, r=

V(2 e ¥, |0f(tat) < Ct+r) " r>R
W2y e ¥, [0, f(ta)| < Ct+r)T Y r>R.

Proof: Since m+2 > § + 1, the last statement of hypotheses Hy, 12 of [27,
Théoréme 2, page 47], assumes that ¢ can be decompose as ¢ = ¢}¢(cgfz)+¢1
where ¢ is a polynomial function of degree 2(m+1) on Y™, 7 > 0, and where
p1 belongs to a weighted Sobolev space of differentiability class 2m + 3 on
C7, the weight being choose so as to control the singularities at the tip of
the cone. The results of this reference yield a neighborhood Vy ., of the tip
of the cone ¢(C,) in ¢(V,,) and a local solution fo which restriction on
any incoming cone intersecting Vo, 1s in the usual Sobolev space Hm+2,
We then apply Theorem 7.3.17 to the Goursat problem (6.3.1)-(6.3.2) with

wy = fo ~and war = @le+ and obtain a bounded solution f of this problem

on the future neighborhood

_ _ +

D, = [0,uy] X [x0,0[xO = ng%u*cu’o
of Ct UCT. Note that by uniqueness f and fo coincide on the intersection
of D with Vg the future neighborhood of the tip of the initial cone C;{a on
which we obtain from Dossa’s results [27] the local solution fo. Therefore,
there exists a constant ¢ > 0 such that for all (y*) € Dy, |f(y*)| < c. This

estimate can be rewritten as |f o p(x")| < ¢, for all (z) € ¢~1(D,), i.e (see
n—1
(6.2.1)) |f(x")| < c|Qo | 2 . By the definition 2, (see (6.2.1)) we have

¢
< .
t+r)t—r) —t+r

Q] = | — 1apy™y’| = | — (¥°)? + p?| = (

This proves that for all (t,x) € ¢~ 1(D.), |f(t,z")| < e(t + r)_nT_l. Now
according to some of our previous calculations, we have:

0 0 L0
P L I LA
1 0 1
= ol v — 2 (200 + (v —)3,) -
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This identity implies that (recall t = x° and T = 3° = —yg)

0 1 1
= =l =)o, + 2T(xax F(y— E)ay) .
Using identities (7.1.1) and (7.2.1) leads to:
o 1\?
= a0, + (y - E> 9, . (7.3.98)
On the other hand, we have % = %1% and %1 = —% thus,
0 yt 0 Y 1
— = QF=— 4 2y;~ (20, — =)0,
or p8y1+yp($ + a)y>
1 0 1
= —a(s - y)(‘)_p + 20<1‘3x +(y — a)‘%) :
Again from identities (7.1.1) and (7.2.1) we obtain
o 1\?
o =% Oy — <y — a) Oy . (7.3.99)

For all (t,x") and (7,9") such that (1,y") = ¢(t,x"), we have (recall 0, =
(y—3)002=9)

2
as) = 2000 )+ (v- 1) oo )

n—1

%0, (QTf(T, yl)) + <y — 2)2 Oy (Q%f(Tv ?f))

1 n—1 . n— A . ]_ 2 n— -~ -
= (w +y— E> Q" f(r,y) +22Q"7 9, f(r,y) + (y - 5) Q"3 9,f(r.y) .
From Theorem 7.3.17 we know that for r > R,

/ST, (=2) 0. fIS1 and (—2) |9, f| S 1.

Thus for all (t,x") such that r > R, we have (recall |Q < ;1)

t+r
00 (. 2")] (t+r) " + ()" 2 ()

S
< (t4r)T e

The same holds for |0, f(t,z)|. This proves that in general, the decay at
infinity of the derivatives of the solution is not as fast as the decay of the
solution itself and complete the proof. ([l
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7.4 Application to wave maps

The aim of this section is to show that Theorem 7.3.18 applies to wave maps
with source manifold the Minkowski space-time. Let (A ,g) be a smooth
Riemannian manifold with finite dimension N, we wish to find a map f :
(R ) — (A, g) solving the Cauchy problem for the wave map equation.
As in [20], we will be interested in maps f which have the property that f
approaches a constant map fo as r tends to infinity along lightlike directions,
fo(a") =po € A for x* € R¥FL. Introducing normal coordinate around po,
we can write f = f* a = 1,..., N, with the functions f® satisfying the
following system of semi-linear partial differential equations

O, f* = F(f,0f) ; (7.4.1)

with T
[rofe
F° = T (f) 7
(f7 8f) n bc(f)axa OB
and where the 1"}, ’s are the Christoffel symbols of the metric g. Using as
before the conformal transformation

J;a

¢:R2+1\Co7$—>RZ+1 by z%— y* = =0,1,...,n.

— .«
9
77)\Nx>‘$“

and setting again Q = —naﬁyo‘yﬂ; f= Q_nT_lf o~ (7.4.1) reads ( see
(6.2.8), page 126):

A

D’?yfa = Q_%%ﬁa(f) ay“f)v (742)
with
F(f.opf) = —arg@"s H{an (@ 0, (@7 0,0 )
—(1 = QT QT ) + 21— m)(Q7F QT 0 f)

This expression shows that when transforming (7.4.2) with data on a null
cone into a Goursat problem as in (6.3.1) we will instead have a pre-factor
Q=" On the other hand, from the assumption on f, we know that F here
has a uniform zero of order r = 3, thus in the case of wave maps condition
(7.3.28) reads:

n>2—2x.

We have proved the following:
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Theorem 7.4.1 Let a > 0, n,m € N, n > 3. Consider Equation (7.4.1)
on the Minkowski space-time R with initial data given on the translated

cone Cf, and are such that:

o there exists a real number 0 < gy < % such that ¢ = (Q’%If o gf)_l)

satisfies the last hypothesis Huvo of [27, Théoréme 2, p. 47],
e andV e €]0,¢e0],
_n=1 _ _n=1 _ —1/2
Q 2 fo¢ 1‘6-&-(5) 5 ax (Q 2 f0¢ 1|C+(8)> S %m+{ (C+(€)),
(7.4.3)

with m > ”T‘” Then, there exists three real numbers ag, C, R such that ag >
a, C,R >0 and a unique function f of class C* on the future neighborhood
YV of Cf, defined by ¥ = U C;;C solution of (7.4.2) with the following

a<b<ag
decay property
Vit e ¥, |ft,a)|<Clt+r)"z, r>R
Ytz e ¥, |0f(t,2) < C(t+7r)"" ", r>R
Vt,2') eV, |0 flt,a)| <Ct+r)""T ", r>R.

7.5 High regularity of the solution

In order to prove higher regularity theorem for a solution of (5.0.8), we

restrict our attention to the case where the function F' does not depend on

the normal (with respect to the initial cone) derivative of the solution. This

implies that the function F in (6.2.9) does not depend on Oyw. We thus

suppose that the characteristic Cauchy problem (7.3.3) takes the form:

_n+3 n—1 .

Oypw=2"2 G (z,x 2 (w,x@xw,&gw)) D (7.5.1)
w=wg on C' and w=w; on C-

We need first to show that for any solution of (7.5.1), we control its outgoing

derivatives on the surface {x = xo}. We have the following

Lemma 7.5.1 Suppose that w is the solution of the Cauchy problem (7.5.1)
with data satisfying

wy €C(CT); wl e x2(Ch).
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Then, there exists a real number w.. €]0,yo] such that Vj,m € N, one can
find a positive constant C* = C(yo,j,m) satisfying

sup Hai(w,ayw)(y,xo)HHm(ﬁ) <C*. (7.5.2)
Proof: The proof will be carried out by induction on j. The case j =0 is
given by hypotheses. Let us handle the case j = 1. Again we differentiate the
partial differential equation satisfied by w with 8, and multiply the resulting
equation by 8] 0yw and obtain
n—1

—1
0005 = (8$83w)2—%8y83w8$8gw

8')’1hAB
+0: 00w Y o503 0a0pw
Y1t+v2=Y P
8’YIFB
+0. 00w Y o0 Opw
p

Y1+v2="

—%yxr%*‘”’ayjagwagc(. ).

Then, we integrate on [0,y] X {zo} x O, and obtain via Stokes theorem
10260 (y, 20) Frm(gy < N0awq (0)l[7m (e + clhy co, @)llwg | me2(c-)

Y
+C(h,Co,Co)/ 182 (5, 20)[[7m () ds
0

+c(z0) /Oy IG(.. .)(s,a:o)H%Im(ﬁ)ds .
Now,
IG(...)(s,z0)|| =G (s,xo,ﬁ,w_(s),ﬁzw(s,xo)) ,

thus from the usual Moser inequality (see [50], Proposition 3.9, page 11 )
we have

IG(..)(s,20)[lamey < C(l|0xw(s,70)|Lo(6)) (1 + [|02w(s, 20) || 5m (6))
< @(||0pw(s, zo) | mmie))

where ® in an increasing real-valued function bounded on bounded set (to
obtain the last inequality, we have used the Sobolev’s imbedding theorem).
We thus obtain the following:

)
s ) By < € (1+ [ B(l0ss(s.0)lmien)ds) . (753
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We can now apply Lemma 5.2 of [20] and obtain that there exists a time
0 < use < yo such that

Yy € [0, tal, 1026(y, 20) | Fm(ey < C

which provides the desired bounds. Suppose now that (7.5.2) holds for a
certain j € N and let us show that it remains true when we replace j there
by j+1. We x—differentiate j times the partial differential equation satisfied
by w and obtain an equation linear in AW of the form:

00w = (01Tw) Gi(z,w,0,0)w, ..., 020jw) + Ga(2z,w, 0, 0)w, ..., 09 w)

where |y| < 2. To this equation we apply what we did earlier in the case
j = 1 and using the induction hypothesis, instead of (7.5.3), we are led to
an linear inequality:

. Y .
108 (. 20) By sc<1+ / ua;“w(s,zo)uzm(m)ds) .

This proves that the higher derivatives are controlled on the same time in-
terval as in the case j = 1. It remains to have similar estimates on Oyw.
This will follow easily from the equation:

n—1
4p

AB B 1 —n+3

h r

O0pOyw =

= £(y7x79)

From the first part of this proof, £(y, zo,0) € L™ ([0, uw]; H™(C)), Ym € N.
It then follows by induction that

Vi,m €N, Yy € [0, u.], [|030,(y, 70)[|3m gy < C -

We have the following:

Theorem 7.5.2 Consider the characteristic initial value problem (7.5.1) in
the neighborhood D = [0,yo] X [x0,0[x O of the truncated cones CT UC™.
Suppose that the initial data war and wy are such that the compatibility
condition (7.3.2) holds and satisfy

wyg €EC®(CT); wy, Owg € 22(CY); (7.5.4)
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with —1 < o < —1/2. Further assume that the function G satisfies the nullity
hypothesis (H) page 135, with a uniform zero of order r > 1 such that

n>1+ — 2« .

r —

Then there exists a real number u, €]0,y0] and a unique smooth (i.e. C*)
function w on Dy = [0,us] X [x0,0[XO solution of the Goursat problem
(7.5.1) satisfying:

we L™ ([O,u*], (2N L) (cgo)) , (7.5.52)
dw € L® ([o,u*],jfog(czo)) . (7.5.5b)

Moreover, we have:
VieN, dwe L™ ([o,u*],;fog(cgo)) . (7.5.6)

Proof: Let mg be the smallest positive integer lager than "T‘” Since the
hypersurface C~ is a bounded subset of R™1, for all k € N, we have

wy € C®(CT) — H¥2(C™) and wi € A#2(CT) — H#4%,(CT) . (1.5.7)

For k = my, the data of (7.5.1) satisfy the hypotheses of Theorem 7.3.17. By
this theorem, there exists a real number u, €]0,yo], a unique function w of
regularity class C* on D, such that ||(w, |z|~*0w)||pe(p,) < 00. In (7.5.5)
it thus remains to prove that Yu, (w,0w)(u) € H2(Ct,). Let m € N and
B € N" such that m > mg and |5| < m. We apply aga%n Proposition 7.5.1
page 136 with { = =20 — 1 + 2B, > 0 and w there replaced by d%w. For all
u € [0, us], we have:

/+ H (u, z)|0° (w, Vow)(u, z)[>dz dv <
Cu,O

H(0,2)]0° (w, V,w)(0,2)[*dz dV+/ H(y,20)[0" (w, Vyw)(y, 20) [P dydy
c+ C g

u 0
+eendon ) =20) [ [ H@)10" . V) )l gy dody
z0

1
_1_7
€0 JDuyo

Le[aﬁw]‘ dydz dv . (7.5.8)
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The quantity in the last integral reads:
Lo%w] = H(z,y)(8%0w + 0°9,w)0,,0°w
= H(w,y)(0°0w + 970,w) (000 + [y, 0l
= H(z,y)(00,w + 8°0,w) (x—"T”’aBG(. )+ Oy aﬁ]w)
= A+B+C+D.

We estimate these quantities as we did in the proof of the Lemma 7.3.5. We
repeat these estimates here as we need to consider the Y —norms on C;,
we have to make sure that none of the constants in front of the norm of Oyw
depends on A.

A = 27" H(z,y)9%0,00°G(...)
< H|0°0,w|> + He="|0PG(. . )|?

which tmplies

u 0
/ Advdxdy < / / H(z,y)|0°0,w(y, x)|>dzdydy
Du,o 0 Jao

u
b [ e e G d
0

To estimate the second term of the right-hand side of this inequality, we want
to use the second part of Proposition A.2 page 53 of [20]. For this purpose,
we recall that hypothesis (7.3.4) page 135 implies that for all (p,q) such that
|(p,@)| < B, and for all u € [0, yol,

8j+€+iG( 5 oaPs g —j—L
|y H <) Il ™"
—(j+L+1) (Cu 0)
thus the conclusion of this Proposition applies. By Theorem 7.3.17 page 175
we have the a priori estimate M := |||z|~*(w, V,w)||feo(p,) < 00. Thus,
-3 o148 —1Az 5B —A 2

o= BB ey < NG g
g C(M) Azo ||(w vfw)H 2o¢+ n+3 77”( +o¢)(
< c(M)e_A“”OH(w,wa)H%ﬂ%(cio)

4
forn>14+ —— —2a.
r—1
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We then obtain

/D Adudady < () /0 M) 0, Vo) () Pyl (59

4
for n>14+ —— —2a«a.
r—1

Similarly,
u 0
/ Bdvdzdy < //H(w,y)H@ﬁayw(y,x)\\%g(ﬁ)dxdy
Du,v 0 o

+C(M)€—A$0/O e_AyH(’LU,wa)(y)’@ﬁg(c;o)dy

4
for mn>1+ 1 2 . (7.5.10)
T J—

As far as the terms C and D are concerned, we recall that the commutators
read

Vel n—1 3 hAB 3 B 3
Oy, 07 lw = p (0r — 0y)0"w + 73,4338 w—T"050"w
_ AB
~0” (n P 1(890 - 8y)w> - 9° <h’7aAaBW> + o° (FBagawa)
= — 3 (,0)0” (0 — 9w
[BL<|B

- 3 (8, p)0% B 940w
1810, B1+52=0

+ Z (B, p)0” TE0 Opw ;
1810, B1482=5

whence, using inequality ab < a® 4+ b> one has:

—Azxg “ —Ay 2
DuoCdl/da:dy < c¢(h,p)e /Oe Hvxw(y)Hjﬁ%(cio)dy

u 0
wellnn) [ [ H@)00,m0.0) s g dody(75.11)
zo

lul<|Bl

and

—Axg " —Ay 2
/D | Ddvidady < c(hp)e /0 e HVawWpg et )W

u 0
welng) ¥ [ [ B 00,00 g dady(75.12)
z0

|l<18]
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Summing inequalities (7.5.10)-(7.5.12) gives:

/Du,O

Lo dvdyds < el p)e 0 [Tl
0 m(cu,o)

u 0
Tefeonéohp) 3 / / H(w, )]10°0y0(y, @) |22, dady
o

[B|<m

4
for n>14+———2a.
r—1

We can then rewrite (7.5.8) as (note that 1 < e < e=Aw0 )

M|, Vow) (u) <

2
Hﬁ”ﬁ(CIo) -

e—/\f”0||(wavxw)||23f,g(c+) +/C_ H(y, x0)]|0" (w, Vyw)(y, z0)|*dydv
u,T(
+(c(co, €osm, p) + (R, p) —2/\)/D H(y, z)]|0° 0yw (y, 2)|72 (g dwdy
u,0

u
Ml hup) [N IVal) P s
0 m \My,
4
for n>14+———2«.
r—1

As we did before, we choose A sufficiently large so that the term in the second
line of the previous estimate is negative and for n > 1+ 7&—1 —2a, we obtain

(note that e A < =AY < 1):

e M(w, Vow)(u) <

2
Hﬁfﬁ(cff,o) =
€7Ax0||(w(—)i_7v33w(—)‘r)||2ﬁf7%(c+) —|—c(h,p,A)/0 V2w ()] n‘%(cj{o)dy
+(—g) 20 TemA B /0 101 (w0, Byeo) s () -

18|<m

Note that in the last line of this estimate, it appears the outgoing derivatives
of w on the initial null surface C~. By Lemma 7.5.1, there exists a constant
Co = C(co, o, hyn, ) such that for all u € u, we have:

2 “ 2
@, Vo) @)y s, < Co (1 + ||vmw<y>||%rg(%dy> .
Gronwall’s Lemma then gives the following estimate:

Ym > mg, Yu € [0,uy], ||(w, Vow)(u) < Cpeft < oo .

2
”%T%(C;o)
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Therefore,
(w, Vaw) € L ([o wsl; %a(cgo)) .

In (7.5.5b), it remains to prove that Vu € [0, u,], Oyw(u) € %Og(cio). Recall
that the partial differential equation satisfied by w reads

n—1 n—1 hAB({)f‘Bw e 1 _ng3
ayaxw — ?a yw = T — FaBUJ — Z.’L‘ 2 ( ) s
which can be rewritten as
n— —1 n-

Oz (p?lf)yw . 1 p23w> =¢, (7.5.13)

where
w1 (WABO%pw TP 1 _nts (n—1)(n—3)
§=p < 402 _@an_ZE 2 G(..) 162 )

Integrating (7.5.13) leads to

n—1
ayw(y7$70) = 4—pW(y,$,9)

+p~ " <pg;<9ywa(y70)—n;1p *w (y,0 / £(y,s,0)d > ;
(7.5.14)
where pg = % —y+ xg . The above identity implies that
Vu € [0, uy], Oyw(u) € %”;‘(CIO) .

The last statement (7.5.6) of Theorem 7.5.2 will be proved by induction. The
cases j =0 and j = 1 follow from (7.5.5). Assuming now that (7.5.6) holds
for a certain j > 1, we y—differentiate (7.5.14) j times and obtain:

Ot w(y, x,0) =
3 <al<y, 2)0ya(y..6) + 92(3, )95 i (0.0) + [

0<i<j 0

T

where the o;’s are bounded smooth functions on the set [0, us] X [zg,0]. From
this identity it follows that (7.5.6) holds with j replaced by j + 1 and the
proof is complete. O

187

03(y7 5)8335(3/7 S, 6)d8>



Conclusion of the second
part

In this part of the thesis, we obtained existence and uniqueness of solutions
of a class of semi-linear characteristic Cauchy problem with data on the light
cone. By assuming that the data satisfy the property of those of [27] near the
tip of the cone, and that near {r = oo} they are in some appropriate weighted
Sobolev space, we proved that these solutions exist on a neighborhood of
the entire initial cone which contains a subset of the future null infinity
ST, We showed that this result applies to wave map on Minkowski space
time with target manifold an arbitrary smooth Riemannian manifold of finite
dimension. Next by assuming that the source term does mot depends on
the normal derivative of the unknown function, we state and prove a high
reqularity result which might leads to polyhomogeneity of solutions of such
null Cauchy problem. To obtain polyhomogeneity of solution in the case of
null initial Cauchy data, it remains to check that in this case, one can prove
the characteristic version of Theorem 1.1.1 of the first part of the thesis.
This will be done later.
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General Conclusion

At the end of this work, we have stated and proved existence and unique-
ness theorems of semi-global solutions of ordinary and characteristic Cauchy
problems for symmetric hyperbolic systems of second order in high space di-
mension. The originality of these results is the fact that on one hand, in
our approach there is no need to impose:

e the null condition of S. Klainerman to the source terms of our equa-
tions (this condition is too restrictive for Einstein equations in space
dimension n = 3)

e smallness of the Cauchy data
e further restrictions on the oddness of the space dimension,

and on the second hand, in both cases, the constructed solutions are defined
on a neighborhood of the whole initial data hypersurface which thickness does
not shrink to zero as one approaches future null infinity. Nevertheless, these
results need to be improved: one can consider a polyhomogeneous existence
of solutions result for the Einstein equations in lower space dimension for
ordinary or characteristic Cauchy problem. The idea would be to use a
conformal compactification which preserve the smoothness of equations at
hand as the conformal transformation introduced by H. Friedrich in [34] and
to prove the characteristic analog of Theorem 1.1.1 on the polyhomogeneity
of solutions. We intend to focus on these questions in a forthcoming future.
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Appendix A

Spaces of
polyhomogeneous functions
and their properties

A.1 Introduction

The aim of this Appendiz is to give a detail presentation of the spaces of
smooth and polyhomogeneous functions with their properties. In both cases,
these are weighted spaces, the weight being choose in order to control the
singular behavior near infinity of the functions involved. We notice that this
1s essentially the presentation made by P. Chrusciel and S. Leski in their
paper [19]. As the need arises from the problem at hand, some times we
have made some slight generalizations of some definitions there and sated
and proved some new properties.

The spaces of polyhomogeneous functions (i.e functions which are ex-
pandable in terms r~7 log? r ) were first introduced by L. Anderson and P.Chrusciel
in [1]. In their analysis of the constraints equations of the vacuum FEin-
stein equations for asymptotically hyperboloidal initial data, they find that
log terms arise in asymptotic expansion of the solutions of the constraints.
Here, we also use the formalism stated on the space of polyhomogeneous
functions in this last reference. (See Appendiz E of [1]).

In what follows, M will be a smooth compact manifold of dimension
n 4 1. The boundary of M will be denoted by OM and M the interior of
M as a topological space so that OM is also the boundary of M. The letter
x will denote a defining function of OM in the sense that x > 0, Vp €
M, z(p) =0 <= p€ OM, and |dm||8M > 0. It turns out that, there exists
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a neighborhood K of OM in M on which the positive function x can be used
as coordinate in any local coordinate system on K. We assume that there
exists a global coordinate system on K denoted by (y, x, vA), A=1...,n—1
which gives a product decomposition of K. We are going to introduce now
some spaces of functions with controlled singular behavior at {x = 0}, {y =

0} or {y =2 =0}.

A.2 Spaces of differential functions with weight

For k € N and any open subset Q of M, we denote by C(2) the set of all
functions which are k times continuously differentiable on Q. We denote by

Cr(82) the set of Ci(Q2)-functions which can be extended by continuity to C
functions defined in an open neighborhood of Q2. Consider the set denoted
% and defined by

%:{(x,vA,y): O<z<y,v=@"eao, 0<y<yo<oo}, (A2.1)

where O is a compact manifold without boundary. We will write z for the
joint set of variables (x,y,v4). We use the multi-index notation of Schwartz,

thus if 8= (Bo, B1,---,0n), then
97 =00 =0P0ho% .. 90 =oRolay

where v = (B2, ..., Bn)-

Definition A.2.1 Let k € N, a, 0 € R and 2 an open subset of % . We
define the spaces

1. ‘Kﬁfc:o}’k(Q) as the space of all function f € Cy(2) such that Vi, j €
N,y € N Li+j+|y| < k, the quantity sup|a=20][0,] [x0.)7 f| is
finite. ¢

2. ‘5{'}/:0}7k(§2) as the space of all function f € Ci(2) such that Vi, j €
N,y € N" L+ j+ |y <k the quantity suply 28] [y0y,]'[0.)7 f| is
finite. N

3. ‘Kﬁ‘)grgy}’k(ﬂ) as the space of all function f € Ck(Q) such that Vi, j €

N,v € N""Li+j+ |y <k, the quantity sup|lz=*d] [yd,]* [z}’ f] is
Q
finite.
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4. CK{%’%@} +(Q) as the space of all function f € Cy(2) such that Vi, j €

N,y € N" L i+ j+|y] <k, the quantity sup|z=y=?0)[yd,]'[x0,) f|
Q
1s finite.

We shall write

G0y = [ €lmqu()
keN

and similarly for Coo(€2), %{‘;:0} +(§2), etc. Not that the estimates

(@8:) (0, 02 (a°f) = Y Cralads) (yd,) L f
=0
< COzy? = Ca* 020yP < Cpo 0y Ho

shows that
VkeN, a, B €R and § > 0, we have

(Q) Cc €220 ().

3
S {0<z<y}.k

{y=0}.k
Example A.2.2 Any finite linear combination of functions of the form f, , =
2P In’ z where p and ¢ are nonnegative integers, belongs to the space ‘5{;620} W),
for all € > 0. Indeed since the operator 9, obeys the Leibnitz rule, we have:

\(xaz)i(xp m%)‘ — |3 O (20,)™ (27) (28, In 2| < e .
m=0
Similarly,
M !
Z CrnaPmyFm Infm 2 Intm y € ‘5{6€<$<y} )
m=0

Remark A.2.3 The estimates

B (’3) 27 |2ty 0] f |
Yy
< Ca ' |(20,) (yd,) 0] f|
shows that (gﬁ]gzgy},k(%) CCy(%) for k < o .

Notation: Let W< be a family of spaces, where a is a decay index, e.g.
we = ‘5{09‘620}7]{:(%), or We = Cg{%ﬁxéy}m(%)’ etc. We define

W<a — mo‘<o¢WU
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This notation is very useful to accommodate In" x factors that arise in the
problem at hand: for example, in this notation we have

z*In™ z e ‘5{?;0}700(52/) .

We point out the following:

Lemma A.2.4 For 0 <z <y <y consider the system

Y +bp=c,
and suppose that there exists € < 1 such that the linear map b has co-
efficients in ‘5{;6:0}70. For a € R\ {—1} there exists a constant C =

bl|c—e v h that
Claye, || ||<g{mzo}’o,y) suc a
1. For o > —1 we have

[Pl < C (H¢Ix=yHL°o + llellee

{z=0},0

) : (A.2.2)

2. while for o < —1 it holds that
[lagss,, <€ (Wlamllggy, +leleg_,,,) - (423
The proof of this Lemma can be found in [19] Lemma 3.12.

A.3 Spaces of polyhomogeneous functions

Definition A.3.1 We define the space of polyhomogeneous functions at
{z =y = 0} denoted by [o<y<y) as the collection of functions f € Coo(% )
such that there exists integers N;, real numbers n;, n; and functions fi; €
Coo (%) with the property that

N(m) N;
¥meN, IN(m)eN, f- > Y fyyla"wiyn's e Cu(?).
i=0 §,1=0
(A.3.1)

To avoid repetitions of terms with identical powers in (A.3.1) it is convenient

to impose (ni,n;) # (nj,ng) for i # j, and we will always assume that this
condition is satisfied.
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Definition A.3.2 Let § € R such that 1/6 € N*. We define the space
"Q{{éogxgy} as the space of functions f € Ao<y<y) such that the corresponding
real numbers n; and n; in (A.3.1) satisfy {n;, i € N} C 0N, {n;, i € N} C

07 and n; > —n;.
We have the following

Proposition A.3.3 For all function f € 527{%<$<y}, there exists and integer
N and a positive conctant C such that, Nz € %, |f(z)| < C(1+|nz|Y).

Proof: We write (A.3.1) with m = 0 and we obtain that there exists N(0) €

N and a function ro € Co(%) such that

N(0) N;

f= Z Z fiﬂyﬁi:r”i In/ ylneac + 7 .

i=0 4,1=0

Since % is a compact subset of M, there exists a positive constant Cy such

that
N(©O) N;

Vee, |f(2)| <Cy |1+ Z Z ly"ia™ Ind y In® x|

i=0 j,1=0

Now, since the function y — y¢ In y, € > 0 s bounded on any neighborhood
of 0, we have

ng
|y iz I yIn’ x| = | (”7) y it I yInf 2| < Cy|In‘z] .
y

This last inequality completes the proof. O

We see that the spaces of functions ‘Q{{%gxgy}
eventually a singular behavior at x = 0 and/or aty = 0. The last proposition
shows that this singularity can be controlled by the multiplication with any
positive power of x. We introduce now the space of functions with singular

behavior only at x = 0 or only at y = 0. We have the following

are made of function f with

Definition A.3.4 We define the space f,—q) as the space of all functions
in H(o<p<yy With g = 0 for alli and no non-trivial powers of Iny in (A.3.1).
Thus f € Wj,—gy if and only if f € Co(%) and there exists integers N,

real numbers n;, and functions fij € Coo(%) such that

N(m) N;
VmeN, INm)eN, f-> Y foa"Iaze ). (A32)
i=0 j=0

. ) 0
Similarly, we define the spaces “Z{{mzo}v Hy—oy and ‘Q{{y:O} .
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The following proposition will be use repeatedly.

Proposition A.3.5 1. We have the inclusion
o 0
Fo<acyy VL™ C Clocacy) oo
It follows that for any € > 0 we have 427{0<$<y} C CK{()O<6$<y} o -

2. Similarly
o 0 0
Fa=0y N L™ C Cla) o0

and for any € > 0 we have sz{ —oy C CK{Ox 60} U

The proof can be found in [19] Proposition A.2. We have the following
characterization of the space of polyhomogeneous functions of,—oy

Proposition A.3.6 f € ,_o if and only if for every m € N there exist
N(m), Ni(m) € N ,n;(m) € R and functions f;j € Con(%) such that

m) Ni(m)

f- Z St Mz e Co(%) (A.3.3)

=0 7=0
with a similar property for <, {x 0} D(o<a<y), €lC.

The proof can be found in [19] Proposition A.3.

We will need the following characterisation of functions which are polyho-
mogeneous up to lower order terms. To avoid annoying special cases involv-
ing logarithms we assume o € N, though the proof gives also a corresponding
statement in this case:

Proposition A.3.7 Suppose that o ¢ N, let . = {(y,z,vY) € % : 2 =y} ,
fle e xﬁv‘y{ongy} , fe€ fﬁﬁf‘zf{%gxgy} + yﬁ’Q/{%SxSy} + Clo<o<yb ki
and assume that for all i,j satisfying i + j < k + 1 there exists
915 € A ycpayy + Y A pcucy
such that for every multi-index ~ for which i+ j + |y| = k + 1 we have
|(@8:)" (y8, ) 0} (f = gi,j)] < Ca”
Then
o 4 o
f el ey + Y Hcrapy + Clocacyy i - (A.3.4)
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The proof of this Proposition can be found in [20], Propostion A.5. We
will use a slight generalization of a definition of [20]:
Definition A.3.8 We shall say that a function H(z,w) is Jzi{%gacgy}—polyhomogeneous
in z with a uniform zero of order [ in w if the following hold: First, H is
smooth in w € RN at fivred 2 € % . Neat, it is required that for all B € R
and k € N there exists a constant C(B) such that, for all lw| < B and
0 <4 < min(k,l),

< C(B)|w|t. (A.3.5)

(%)

O H(-,w)
ow't

Clocasy) b
Further, ‘
VieN OLH(,w) € Fyope (A.3.6)

at fized constant w. Finally we demand the uniform estimate for constant
w’s: Ye > 0,M > 0,i,k € N 3C(e, M,i,k) Y|w| < M such that

H(?LH(-,w)Hcg{_O;zSy}yk(%) < C(e, M, i, k) . (A.3.7)
The qualification “in w” in “uniform zero of order | in w” will often be
omitted. Similarly to [20], the small parameter € has been introduced above
to take into account the possible logarithmic blow-up of functions in 42/?0 <w<y)
at x = 0; for the applications to the nonlinear scalar wave equation or to
the wave map equation on Minkowski space-time, the alternative simpler
requirement would actually suffice: ¥ M > 0,i,k € N 3 C(M,i,k) V|w| <
M

0%, (-, 0) e

{0<z<y}.k

again for constant w’s. Functions which are smooth in (w,z), and have a
zero of order | in w at w = 0, satisfy the above conditions. We have the
following

Lemma A.3.9 If H(z' w) is %%<m<y}—polyhomogeneous in z with a uni-

form zero of order m in w and g € <7 N L>® then,

{0<z<y}

H(.,2%9) e xqmaﬁf{%gzgy} .
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Proof: If we Taylor expand H up to order r > m, we obtain:

T
7! _ ; - O'H(zH,0
H(.a%"g) = xqm‘s{ > Yo ——a g gin VH,0)

21+... 1IN
{=maz(0,m) i1+...+in=~ ! N

7! 7! iy!

i1t iy=rtl

1 1 —¢)" 1) . . T-‘rlH
+ / ( ) Z .(T + ) x(r+17m)qég§1 o gzN aw (‘Tu’ tmq(ig) dt
0

= I+1I

Since the term I is polyhomogeneous (product of such functions), it suffices

to show that for all k € N, the term Il is in Cyp(% ), provided that r = r(k)
is chosen large enough. Recall that Cfﬁ)<x<y} w CC%) fork < a. See
Remark A.2.3. For fived k, we choose r large enough such that we can write

q(r+1—m)d =ny +ng withny ,ny >k, we will then obtain

xmgil . gj\lfv S Cg{%lgxgy},oo C Ck(Q)
and as g € L>, (1.1.10) gives
8r+1H B )
m o @ taty) € G L o Cr(@),

i.e.
IT € CL(Q) and thus H(.,z%g) € xqmé%‘%gwgy} .

A.4 Auxiliary spaces: The .%— and .7 —spaces

For o € R and k € N we set

5?{%<I<y},k={f|V0§i+j+|~y|§k AN eN:

I f . .

We will also need a version of the F -spaces where the functions involved
are “almost independent of x when « is large”, in the following sense:

j?OSxSy},k:{f|v0§Z+j+"}/’Sk AN :

- Cy* (1 +[Imy)Nif a —j >0, i=0
LI | < S
10:0 95 F1 < { Cx®~=I(1 + |Inz|)N otherwise - (A42)
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Let o, B € R, k € N. To be able to estimate in terms of powers of |Inz|
rather than 1 + |Inx| it is convenient to assume 0 < yg < 1. We have the
following

Definition A.4.1 We say that f € 9{3<(§2/} w U for all i,j,~ there exist

constants C' > 0 and N € N such that, for 0 < z <y < yo we have

0L0i0) f| < c(xa%—i—j + iy +xa+/3—i—kyk—j)yln%\. (A.4.3)

We will write f € %aofxﬁ!} o Jor [ € ‘7{32521} . and we note that for
k=0, or for B =k, the last term in (A.4.3) is not needed, e.g.:
FET iy = VBB < O(a7 i) .
(A.4.4)

Finally, for 5 <0 the last term in (A.4.4) can be dropped altogether.

Strictly speaking, the only space out of the o Bik)

(0<2<y},00 ’s which is ab-
solutely necessary in our proofs is the one with k = § = 0. However, we
have decided to include a short discussion of the other ones as well, as those
spaces appear naturally in the problem at hand.

Let {F;}ien be any countable family of function spaces, we shall write

N
&nFy={f:INEN f€F, 0<n< N, f=> fu}.

n=0

The dot over the symbol & is meant to emphasise the fact that only finite
linear combinations are considered.
For further use we note the following elementary properties:

Proposition A.42 1. If f € FB5k) then O, f € Fo LBR g

{0<z<y},00 {0<z<y} 00
a,(B—1;max(k—1,0
Oyf € ‘q{Oﬁ(rSy},oo( )

2. For o/ > « and 3 > 3 we have 9{%‘;(5;5; w C 9{%2(52} ~

a+oa,(8;k) o, (B+0osk)
3. For o > 0 we have 'y{ogxgy},oo C j[ogxgy},oo'

4. IfN9€<aand(ﬁk‘gﬂwehaveﬂa’(ﬁ;k) c ¢’

(0<a<y}00 © Cly=o}.
(0% (0% a,(O;k) ﬂ 07(:87k)

2 f{m%,]zo C Cloce<ytoo © Toesytoor W Clygy o0 © T(o<asy) oo
or a .
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6. If f € FoB5k) and g € C*°, then fg € FBik)

{0<z<y},00 {0<a<y}o0”

7. 0f g €€l _gy e and h € C then gh € T2 for all k.

{y:()}?oo {0§$§y}voo
8. We have xaﬂgéi’gi} o= ‘7{%2;73(5}120 for allk € N and o € R.

9. For [ € %a’(ﬁ;k) and ¢ € N we have 2'f € %a’(ﬁ—i—g;k—%) for all k.

0<z<y},00 0<z<y},00

The proof can be found in [19] Proposition A.6.
We have the following

Proposition A.4.3 For all o, o/ € R, ¢, >0, ke N,
(a) if o/ > o then y{%éxéy},k C ﬁﬁ)éxéy},k

(0) Y Tt 0 C Tl o for all RS A >0 and A—e—¢’ > 0.

Proof: (a). Let f be in é‘{%’<$<y} wi (iyd,7) € Nt such that i+ j+|y| < k,
we want to show that, -

ey (1 + |lny)N if a —j>0,i=0
cx® I (1 + [Inz|)N  otherwise

ooy < |

. : I (14 |Iny|)Nif o/ —§ >0
_[ — th ;;Y < Cy/ (
o Ifi =0 then 83]/8]0_{036"‘3(1—i—|lnac|)NZ'fO/—j<O
-Ifa—j>0thena —j5>0 and
j a'—j N a—j N
BIONT < ey (1 + i)™ < ey (1 + [Ing])™ .
-Ifa—j <0 then for o —j <0 we have
j a'—j N a—j N
2,0) f < ecx® (1 + |lnz|)™ < cx® (1 + |lnz|)™
and for o/ —j > 0 we have
j o' —j N a—j N
200 f < ey (1 4+ |lny])™ < cx® (14 [lnz])™ .
Thus for i =0 we have:

cy* I (1 + |y )N ifa—35>0

J oY ,
00 1 S{ cx I (1 + |inz))N ifa—j<0 °
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e/fi>0 then,

i 0 o/ —i—j N a—i—j N
0,00 f < cx T(1+ |inz])”™ <cx® (14 [Inz])™ .

g o /
Thus ‘/{%S:vgy},k = J{%ngy},k fora'za .

(b). Let f be in yelﬁﬁ)gegé;}’m i.e. f=1y‘g with g € ﬁ&gﬂg;}}m. We
want to show that f € F {)b;e;é;} o + For this purpose, we choose an arbitrary

k€N, (i,5,7) € Nt such that i + j + |y| < k and we will show that

I%%@ﬂs{

Cyr (14 |y )Nif A —e — € — 5 >0, i=0
Ca?==¢=1=1(1 + | Inz|)N otherwise

e/fi=7j=0 then (recall \—e—¢€ >0),

07 f| = 107y gl =y 1029 <y v (1 + |Iny])",

and we obtain that

ei=0andj#0

1031 < g™ (L4 fimy )Y

QOYf =Ry g =D el jo, € )y T 0P0)g .

Jit+i2=J

SIf A—e—€ —5>0 then A—e—€ —jp >0 and we have:

0503 F1 < v (1 + [y )Y .

- Suppose that A —e — ¢ —j <0

OJOLf = Y Hg+ > clju gy 0Py

J1+j2=j, 170

< )Y + Y g )y 0RO

J1+je=j, j1#0

For j; # 0 we have |y~ 3?8 g| < 2> I (14 |lnz|)N, if \—me—€ —ja < 0

and

|y 105203 g]

<
<
<

ye A (1 4 |y )N, if A—e—€ — o >0
cyA_E_j(l + |lny|)N
™ I (1 + [ina|)N .
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Thus
0007 f] < eI (1 + |Inz ).
e/fi#0andj=0 then
0,001 = y10,0]
ey N 4 |ina))Y
e T + [Ina )N

IN A

e/fi#0andj #0 then,

Losarfl < Y eyt 0L070] gl
Jitj2=j

< yloo0gl + Y ey 00|
Jitj2=j, 170
< oy T A |ina])Y

+ Z cxt TN I (1 o |ina] )Y
Ji+je=j, j17£0
< eI+ [lna)N
Finally , we have shown that, ¥(i, j, ) € N*t1,

ey T I (L iy )V, if A—e— = j20,i=0
e ¢TI (1 + |Inz| )N, otherwise

)

eiojors < {
which proves that )
J € Flideiyon
O
We point out the following
Lemma A.4.4 Assume that O is convex, compact, with interior points. Let

g € N*, R> X\ >0, and let H(z",w) be d{%<m<y}-polyh0mogeneous with

respect to x* with a zero of order m in w. If for all € > 0 we have

A—¢,(0;0
g S (%%ngy} + 5276 iéﬂA—ié + zogx(gy}?oo) 9 (A45)

{z=0},&;x {0<z<y},

then it also holds, for all € > 0,

5 maqs (758 5 A—¢,(0;0)
H(,2%g) € 2™ <°Q{{0Srﬁy} + %IZO},@M&@O;{SMW T ‘ZOSzSy},oo> :
(A.4.6)

If A >0 and (A.4.5) holds with e =0, then (A.4.6) also holds with € = 0.
The proof of this Lemma can be found in [19] Lemma 3.13
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A.5 Extensions of a class of functions

Let 0 < ¢ € C(R), suppy C [—1/2,1/2], [ze(x)de =1. For0 <z <y <
Yo we set

Elf)(z,y,v) = /OO 9O(T_)f(w,v)dw (A5.1a)
3y/2
_ / Fw, v)dw (A.5.1b)
y/2
:/ f(w,v)dw (A.5.1c)
= /oo fly + xz,v)dz (A.5.1d)
1/2
= / o(2)f(y +zz,v)dz (A.5.1e)
~1/2

(there is no need to know the values of f for negative w when using (A.5.1c)
as @ = 0 there; a similar comment applies to (A.5.1d)).

The results here are an adaptation to the problem at hand of [1, Sec-
tion 3.3]. In the lemma that follows one can think of p as belonging to
[0,1), but this restriction is not necessary for the result:

Lemma A.5.1 For k € N and p € R suppose that
0004 f1 < CyF =51+ [Iny )Y for 0< <k, (A.5.2)

then
If moreover there exists A > 0 such that
1070y f(y,0)=0305 f(y/,0)] < Cy* A1+ |y )V |y—y'|* for |y'—y| <y/2,

(A.5.4)
then we also have

Blf](z,y,0) € " FGA o - (A.5.5)

The proof can be found in [19] Proposition A.7.
We continue with
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Lemma A.5.2 Let p > 0 and for 0 < i < m let f; satisfy (A.5.2) with k
there replaced by m — i. There exists h € yuﬂﬁ)lgxgy},oo such that

0<i<m O hlp—o=fi. (A.5.6)
If the f;’s satisfy (A.5.4) with k =m — i then h € yt= > FmtA

{0<z<y},00°

The proof can be found in [19] Proposition A.8.

A.6 Two important integral operators

For 0 <x <y <y <oo set
Bty = [ St s, (A.6.1)
L(f) @ty = / Y o, s)ds . (A6.2)

In our arguments we will need to understand the action of 11 and Is on
various spaces defined above. We start with polyhomogeneous functions:

A.6.1 Integral operators on .o/—spaces

Lemma A.6.1 Let f € Coo(%), p € R,j € N. For every m € N there exist
an integer N, sequences of numbers k; € N, ¢; € N, a sequence of smooth
functions f; and a function r, € Cy, () such that

/ f ’y SP an sds = Z f ( p+ki+1 ani y — xp-‘rki-i-l lnei x) + 7

(A.6.3)

The proof can be found in [19] Proposition A.12.

Proposition A.6.2 1. Let g € xPy” 427{0<m<y} Then
L(g) € ¢ oy + 2" Ay

Ir(g) € mBHHﬂ{LO} T xﬂywlﬂ{%gxgy} :

It follows in particular that @jy<,<,) is stable under both integrations
above.
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2. Let g € xﬁyvsf{‘lzo}. Then
Ii(g) € y6+7+1%i/:0} + x6+1y7%i:0} 7
I2(g) c xﬁ'ﬁ"‘/“rlgf{(;:o} + Iﬁy"/"rl%(;:o} .

Proof: Applying Proposition A.3.6 repeatedly gives the result . O

A.6.2 Integral operators on ¥—spaces

We continue with a study of the action of Iy and Is on the Cg{o(é)’gxgy},k spaces.
Note that the action on the CK{O(‘)<£<y} i Spaces is obtained as a special case
from -

0
Cg{%éxéy},k - Cg{oééréy},k )
Lemma A.6.3 Let o,0 € R, k € NU {o0},

o0 a+1,0
LAIf [ €Cocpeyyp @ < —L then I(f) € Cloc /2y

2 If f € G2,y > —1, then L(f) € GLITH +CL007

The proof can be found in [19] Proposition A.10.
Lemma A.6.4 Let a,0 € R, k € NU{o0},

LIf f€CRT s 0> =1 then I(f) € €uZ 2 1
2. If f € €F)y o then I(f) € ggozlxgy},oo'

The proof can be found in [19] Proposition A.11.

A.6.3 Integral operators on .7— and .#—spaces

Proposition A.6.5 Let a > —1, > k. For any € > 0 we have

o,(B;k) >a+1—e+3 a+1—e,(B;k)
(T ey o0) Y Flocasytioo T Tjo<asylioo -

The proof can be found in [19] Proposition A.12.

REMARK A.6.6 We expect the result to remain valid with € = 0, but the
proof below fails for this value of €. In any case the current result is sufficient
for our purposes.
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Proposition A.6.7 Let o+ pd > —1. For any € > 0 we have

PS5 1L . ra € Grat+pétl—e ) i
1. Li(z”In QCJ{OSxSy},oO) <y ‘%{Oﬁxéy},oo - {e=0} 2T 8 ey oo
) e Gra+pé+l—e 5
- II(JZ{{IZO}‘@M‘??O@@} oo) ¥V P fo<asyhoo T %90:0}@1’5“?"

The proof can be found in [19] Proposition A.14.

Proposition A.6.8 1. I2(§-£J?E)§x§y},oo) C ﬁ%gxgy},m .

2. I(o/? e C o) ° '
( {IZO}@”‘@{QOS:CSZJ},OO) {xzo}’xng{aoﬁwﬁy}ﬂoo

a,(Bik o,(B+1;k+1
5. B(TRUE, ) TRl

The proof can be found in [19] Proposition A.15.
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Appendix B

Function spaces,
Embeddings, Inequalities

B.1 Definitions of some weighted spaces.

We recall that

H) ., = {(T,a:,vA); T =10, oNT) < <0} = |2, T0[XO

and
H; = {(vava); T=1, 0<z< $0} = ]0,$o[><ﬁ,

with xg = o(79) and xo = ox(70). In what follows the symbol Q will generally
denote one of the sets Hy ,,, or Hy. Any subset of H,, can be locally
coordinatized by coordinates y' = (x,UA), where the vA’s can be thought of
as local coordinates on €. We cover O by a finite number of coordinate
charts O; so that the sets Q;, where

Qi = (0,.750) X Oz :

cover Hy,. We use the usual multi-index notation for partial derivatives:
for B = (B1,...,Bn) € N* we set 9% = 8?1 O We will write 95 for
derivatives of the form 05> ... 85”, which do not involve the ' = x variable.

If 0 is an open set, for k € N U oo we let Cip(€) denote the usual
space of k-times differentiable functions on O'; the symbol Cy(0) is used to
denote the set of those functions in Cy(O) the derivatives of which, up to
order k, extend by continuity to €. We emphasise that no uniformity is

assumed in Ci(0), so that functions there could grow without bound when
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approaching the boundary . Nevertheless, the symbol || - ||c, will denote the
usual supremum norm of f and its derivatives up to order k. For a € R and
k € N, we define €5 (§2;) (respectively € (€2) as the spaces of appropriately
differentiable functions such that the respective norms

[flgo@) = suplz”“f(p)],
PEQ;

Iflecy = D, 1270 Fles (B.1.1)
0<|8|<k

are finite. We define the spaces 75%(§;) as the spaces of those functions in
H°%($Y;) for which the norms || - |0y are finite, where

o d:v
Ty / +1g0 L (B.12)
0<|B|<k

Here dv is a measure on O arising from some smooth Riemannian metric
on O. This is equivalent to

3 / (20, 5185f)2dx (B.1.3)
0<p1+|8I<k

and it will sometimes be convenient to use (B.1.3) as the definition of
Hf”ifjf‘(ﬂi)' We note the equivalence of norms,

1 leto(ey = 1112 »

and that 6%(H)y ) = Hp(Hy ) for all o and k whenever xo > 0, the
norms being equivalent, with the constants involved depending upon xs and
xg, and degenerating in general when xo tends to zero. In order to have
global system of coordinate on Hy -, we use the global vectors field (X;),<;<,
defined in [20] (see Appendiz A) related to coordinates (v*) of € by

oy = Z TGP (B.1.4a)
X; = ZXA )04 (B.1.4b)

or some locally defined smooth functions f ,XA and where
[ Y A

X1=0,.

207



Clearly things can be arranged so that those functions are bounded, together
with all their partial derivatives. For any multi-index = (p1, B2, ..., Br) €
N" we set, on Hy,

Pf =X XP X p=0h X XxPrf (B.1.5)
It follows that we have

HfH?f,g‘(Mmo) ~ Z HxﬁlgﬁfH%g(Mxo),
0<|8|<k

L dx
1120~ D /M g 2

0<|8|<k

(where =~ denotes the fact that the norms are equivalent), etc. Here, || =
81+ ...+ Br. From the identity

10, 0] = U ]

U [—
neNx [2n7 gn—=1

and the equivalence

i) I
S [1,2] <~ $027 S |:27n’ 2n—1]

we see that there is a useful way of rewriting || - Hﬁfka(Hfo) which proceeds as

follows: for f € 7%(Hy), s € (1,2), and n € N* we set

Fals,0) = fz = 2os,0) ; (B.L.6)

on’

letting ~ denote again equivalence of norms one then has, after a change of
variables,

—« dx
HfH%CQ(HTO) - Z Z / 1— |$ +ﬂ195f($71))|2?d1/
n>10<|8|<k nx0,21 "] x O
~ 52y Y 22na/ D8 £, (5, 0)|2ds dv
n>10<|8|<k [L.2]xo
- 3362&Z22na||fn||%{k([172]><ﬁ)- (B.1.7)
n>1

More precisely, we write A = B if there exist constants C1,Cy > 0 such that
C1A < B < (CsA. In (B.1.7) the relevant constants depend only upon o and
k.
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It turns out to be useful to have a formula similar to (B.1.7) for functions
in 6" (Hy r)); this can be done for any xo and x2, but in order to obtain
uniform control of certain constants it is convenient to require 2xo < xg.
For such values of x¢ and xo we let no(xg,x2) € N be such that % <
v < gup. Form € N, n > 1, and for any f : Hy ,, — RN we then define
fn:(1,2) x 0 = RN by

s
nS”Ov fn(S,U):f($02—n,’l)),
n=mng+1, fn(S,U):f(I'QS,’U),

n>ng+1, fa=0. (B.1.8)

(This coincides with the definition already given for Hy)), when this set
is thought of as being an “Hj ,, with x5 = 07, if we set ng = +00.) A
calculation as in (B.1.7) shows that for any 2xe < xq, there exist constants
C1 and ci, independent of xo, and xa, such that for all f € 62 (Hy 5,),

125 {2 fall i r2x o Y

< F 1260 1, .y < 10 L2 fallmnix o)} - (BL9)

Equation (B.1.7) leads one to introduce (the symbol % might suggest to
the reader that we specifically have Besov spaces in mind; this is not the
case, and we hope that the notation will not lead to confusion) spaces Ay,
that arise naturally from weighted Sobolev embeddings, cf. Equation (B.2.2)
below: we define

ey = 202 2" aldy oy - (B110)
n>1

fn as in (B.1.6), and we set
Bj;(Hr) = {f € Ce(Hr) | | fll 8 m1,,) < 00} -

Clearly
Py (Hr,) C 6 (Hy,) -

We have the trivial inclusion,
o >a = ¥ (H,)C H(H,). (B.1.11)

The fact that the inequality o/ > « in (B.1.11) is strict has various annoying
consequences, which are best avoided by introducing yet another space — the

209



space G2 of functions in HY (Hr,)) for which the norm squared

dx
fl2 .« = sup / e TR GP f(z v)P—dv
| Hgk (Hro ) n>1 Z [2*“$0,21*”$0]X6’| ( ) €

0<B<k
(B.1.12)
is finite. We note that || f|gem.,,) is equivalent to
Jfaasglf {QnaanHHk([l,2]xﬁ)} ) (B.1.13)
n>

with fn(s,v) = f(5%,v), as in (B.1.6). To define the 4 (H) 7)) ’s, assuming
again that xo < xo/2, we let I, (xo,x2) be defined as

n<ng, I, = (27 "z, 2 "ag) |
n=ng+1, In0+1 = (x2,2:r2) R
n>no+1, IL,=0, (B.1.14)
where ng is as in (B.1.8). For all f € H°°(H, ,,) we set
dz
15 =5l Y [ @g ) B
o (HLx, o) n i 0<|Bl<k QiN{Ip,x O} xr

Similarly to (B.1.9), there exist constants ca and Cs, which do not depend
upon xg and xo, such that for all 2xo < xg,

2o sup || fullm(1,21x0) < flgpmy L) < Coag® sup [ fall my(1,2x o) -
n n

(B.1.16)
We have the obvious inequality
[ fllge @) < 1 llge @) (B.1.17)
together with the modified version of (B.1.11),
o >a = CFCY; (B.1.18)

in particular the function (x,v) — % is in 4 (Hy).

B.2 Embeddings and inequalities

If Sy denotes a space of functions, where k € N s a differentiability index,
we set
Soo = NkenSk
e.g., 9% = Npen9y, etc.
We note the following:
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Proposition B.2.1 Let Q=H,, or Q=H), 5, 22 < x0, and let ;> =
JE(Q), ete. Fork' e N,0O<kK <k—-n/2¢Nor0<k <k—-n/2eN we
have the continuous embeddings

0" C By C 6, IG5 C G C 6 (B.2.1)
and there exists an xo-independent constant C' such that we have

vieAr  fllay e < Cliflee@ (B.2.2)
Ve ”f”%;,(g) < Clfllgg ) - (B.2.3)

Proof: (B.2.2)-(B.2.3) follow immediately from (B.1.7) and (B.1.9), to-
gether with the standard Sobolev embedding; the remaining inclusions in
(B.2.1) are trivial. O

All other inequalities involving Sobolev spaces have their counterpart in
the weighted setting; we shall in particular need various weighted versions of
the Moser inequalities. The reader should note the different weights for the
members of Equation (B.2.8) below — this shift of weights in this inequality
1s the key to our handling of nonlinear equations.

Proposition B.2.2 Let 0 = H,, or Q = H) ;,, 22 < 19, and let 7" =
67 (Q), ete.

1. There exists a constant C = C(«a, o, B, k,xg) such that, for all [ €
%a/ Nes and g € ;%’jf m%(?-&-ﬁ—a , we have
16l s < © (I gy Nl + 151 gl v o) - (B2

Further, ¥V |v| < k,

[2727(fg) = (@ 27 f)gll yporo < C (Hfl!%gl!g\ljﬁﬁ +

10 (Hxaxguw_a/ 3 HXZ-QH%(?W_Q/)) (B.25)

=2
where the vector fields X are defined in Equation (B.1.4).

2. Let F € Cy(H,, x RY) be a function such that for all B € Rt there
exists a constant C1 = C1(B) so that, for all p € RY, |p| < B, we
have

||F('7p)||<g,g(Hm) <Cj.
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Then for all « < 0, B € R, and B € R* there exists a constant
Co(B, k,a, B,x0) such that for all R -valued functions f € %O‘*'B(Q)
with H:):BfHLoo(Q) < B we have

629, < o011 gea). (B.2.6)

Further, if F' has a uniform zero of order I > 0 at p = 0, in the sense that
for all B € R there exists a constant C(B) such that for all |p| < B and
0 <4 < min(k,),

then for all o € R, 8 > 0, there exists a constant Cg(é,l,k,a,ﬂ,B) such
that, for all f € t%’jca_w(ﬂ) with || f || ) < B, we have

<C(B)lp, (B.2.7)
€0, (Mag)

opt

|72, < CollflLgora (B.2:8)

Remark: The hypothesis (B.2.7) will hold if F is e.g. a polynomial in p
with coefficients of p’ vanishing for j < 1, and being functions belonging to
‘5,9 for 5 >1.

The proof can be found in [20] Proposition A.2.
We have the following sharper version of (B.2.4)-(B.2.5):

Proposition B.2.3 Let Q = H;,, or Q = H, 202 < x0, and let 7" =
J6%(Y), etc. There exists a constant Cs = Cs(o, 5, k) such that, for all

fentP—' n%s and g € %kﬁ N ‘5{0‘1/:0} o we have
179l ygore < Cs(lf g 19llge + ||f||(;fa+ﬁfa’||g||<gfg:0} RE (B.2.9)

Moreover it also holds that

Vvl <k, Nl 27(fg) = @M 27 F)gll ypots

.
<cC <\|f\|%’g\|g|’gkﬁ 171 e (uxaxgucgow + Ier-gwgf)) :
B =2
(B.2.10)

where the vector fields X are defined in Equation (B.1.4).

212



REMARK B.2.4 A useful, though less elegant, inequality related to (B.2.9)
is

Vivtol <k ™ (27 )27 (D79) spere < Cs(lI fll g 9llgs + I Flloe 9l ) -

(B.2.11)
The proof can be found in [20] Proposition A.3.
Similar results can be proved in weighted Holder spaces:

Lemma B.2.5 Let Q@ =H,, 0 <21 <, or Q=H, 5, 229 < 20, and let
G =G0, Let f € NG, and g € 6 NEY witha+5=~+ 8 =o0.
Then we have fg € € and

Ifolley < Cilll fllgpllallzy +llgllgs lfllze) (B.2.12)

The proof can be found in [20] Lemma A.4.
We have the following ‘5,? equivalent of the second part of Proposi-
tion B.2.2, with a similar proof, based on Lemma B.2.5:

Lemma B.2.6 Let F be a function satisfying the hypotheses of point 2 of
Proposition B.2.2, with a uniform zero of order | in p in the sense of Equa-
tion (B.2.7). Then, for any e > 0, f € R and f € %,f N L we have
F(.,zf) € ‘5,?“6, and there exists a constant C' depending upon || f|| e
such that

1€ 2 Fllgprte < CULFlloo) 1 Fllggp - (B.2.13)
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Appendix C

Some classical results

Theorem C.0.7 (Gronwall’s Lemma) Let f, g, @, 1 be four positive and
continuous functions on [a,b] C R, a < b, such that

t
0 <90+ e(0) [ F6)0s)ds (C.0.1)
Then
t) + ot / D(u)g(u)els PO gy (C.0.2)
Proof: Set F(t f f(s)1¥(s)ds and multiply (C.0.1) by 1. We have:
F@)(t) < g(t)(t) + p(t)b(t) / f(s)(s)ds

F'(t) — o) (1) F(t) < (t)g(t) -

Multiply this last inequality with the positive function e~ Jawls
obtain

G'(t) < (t)g(t)e™ Ja POVEs with G(t) = F(t)e™ Ja Pe)i()ds

JP(s)ds and

Since G(a) = F(a) = 0, by integration, we have

Ft)e Ji e@wie)ds /w o i e@U(s)ds g

/atf(s) ds</ () g(u)ela POV gy
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which is multiply with ¢(t) afterwards adding g(¢) to each member of the
resulting inequality to:

t t
o) + ¢0) [ F(s)0lds < g6) +o0) [ wlalgu)eHO
By hypothesis, the result follows. ]

Theorem C.0.8 (Arzela-Ascoli Theorem) Suppose that (fi)ken is a sequence
of real-valued functions defined on R™ such that there exists a positive con-
stant M satisfying

sup | fr(x)] < M .
kEN, zcRn

Assume further that the functions {fx, k € N} are uniformly equicontinu-
ous. Then there exists a subsequence (f,)jen € (fi)ren and a continuous
function f such that (fy,)jen converges to f uniformly on compact subsets

of R™.
For the proof of this theorem, we refer the reader to [| page ...
Theorem C.0.9 (Interpolation Theorem for LP—norms) For any {1;7101%071
P
f € W and any i € [1,s] NN, set [|[Vif|, = (ZHD‘”fH%,) . Let
1<rp<oo, seN. There exists a constant ¢ > 0 5!3'0:}; that

IV ullg < ellVoully/*|luly=97°,  forall f € WP,

1 i\ 1
Lia-9)L,

where j € {0,1,...,s} and % =1
The proof of the interpolation theorem can be found in [46], page 38.

Theorem C.0.10 (Trace Theorem) Let U be an open subset of R™. Assume
that U is bounded and OU is C'. Then there exists a bounded linear operator
T :WYP(U) — LP(OU) such that:

1. Tf = floy if f € WPU)NC(T),

2. Vf € W(Q), ITfllro0) < Cllflwreq), with the constant C' de-
pending only on p and U.

The proof of this theorem can be found in [33] page 258.
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Theorem C.0.11 (Weak compactness). Let X be a reflexive Banach space
and (Tn)nen a sequence of elements of X. If (xy)nen C X is bounded, then
there exists a subsequence (Ty;)jen C (Tn)nen and x € X such that

Tp;, =T .

j—ro0

For the proof of this theorem, we refer the reader to [33] page 639
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