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1 Reminders

1.1 Definitions

Definition 3.11 The ezterior derivative of a function f € X*°(M) is the one-form d f defined
by
(df, X) = Xf=Lxf

for all vector felds X on M. In local coordinates:

(df)p = Em: (%)p f(dat),,.

p=1

Definition 3.15 If w is an n-form on M with 1 < n < dimM then the exterior derivative of
w is the (n + 1)-form dw defined by

n+1
dw(Xb s JX'IZ"rl) = Z(_l)“_lXZ(w(Xla R %Zﬁ s 7Xn+1))

=1

+Z<—1)Z+JW([X“X]],X1, ey /Ki, ooy Avj, Ce >Xn+1)

1<J

fr all vector fields Xy, Xo, ..., X;11.
If w is a one-form, the 2-form dw acting on any pair of vector felds X, Y is

dw(Xv Y) = X((UJ, Y>) - Y((W, X)) - <wa [Xa Y]>
Note that the notation X ((w,Y)) means the effect of acting with the vector field X on the
function (w,Y’) in C*°(M).

Definition 4.10 Let G be a Lie group that has a right action ¢ — ¢, on a differentiable
manifold M. Then the vector field X4 on M induced by the action of the one-parameter
subgroup exp tA, A € T,G, is defined as

d
XA = S exp t4)

t=0

where f € C*°(M), and J,(p) has been abbreviated to pg.



1.2 The pull back of a one form

Let M, N be manifolds with local coordinates {z', 2, ... 2"}, {y*,v% ...,y"} and h : M —
N. The local coordinate representation of the one-form w in the manifold A is given by

wip) = Y _wi(h(p)) (dy*),,)  forallp € M.
v=1

The components of the pull-back of w (then in M) are given by

(hw),(p) = <hwai> = <w,h* (a%)> .
P P h(p)

The push-forward of (9/0z*), at the point p can be expressed in terms of the Jacobian matrix
of the map h:

. = "\ Oh¥ .
(hw), = leu(h(p)) o L) (d2"),,.

p=1

1.3 The Lie algebra of GL(n,R)

Consider the connected component GL™(n, R) of the general linear group GL(n,R) (open subset
of the linear space M (n,R)).

The tangent space at any point g € G can be identified with M (n,R) which can therefore
in turn be associated with the Lie algebra of GLT(n, R).

Coordinates on G = GL*(n,R) can be the matrix elements:

zY(g) = g".
Let A € T.G = M(n,R). Consider the with A associated left invariant vector field L' = l,,(A):

Ly = Z(LAx])g <axij>g

4,j=1

where q
A g
(L a:”)g =% (x”(g exp tA))t:o
(just the definition 4.10, but z* is the coordinate function). Since we are dealing with a matrix
group, exp tA = e where e is the normal matrix exponential function. Thus we can caluclate

the components Lz of the left invariant vector field L*:

d ij = g d kj
e AGT N D ST A COK

. d ..
A gy _ g L tA
LiaY = —u (g e ) .

dt

Thus, the vector field has the form

This representation gives



where [A’, A] is the usual matrix commutator: hence the Lie algebra structure induced on
T.GL*(n,R) = M(n,R) is just the commutator of the matrices.
A natural basis for M (n,R) is the set of matrices £;; defined as

(Eij)kl = 5ik5jl
and the associated left-invariant vector fields are

. L o
i ki
ng_zg (5$kj)g

k=1

1.4 The Cartan-Maurer form

Definition 4.6 The Cartan-Maurer form = is the L(G) (= left invariant vector fields on G)
valued one-form on G that associates with any v € T,G the left-invariant vector field on G
whose value at g € GG is precisely the given tangent vector v.

Specifically, if (=, v) denotes this left-invariant vector field then

(E,0)(9) = lgu(lg-1.0)
for all v € T,G.
e On the left-invariant vector fields L4, the expression becomes

(Z, L)) = Ly.

e Since L(G) = T.G, we may write
(Z, L)) = A.

e Consider G = GL(n,R) with T.G = M (n,R). The Cartan-Maurer form has to fulfill
(EY, L)) = AV,

Hence =% is given by

2 =) (g7")*(daM),
k=1
which can be shown easily:
g L . 0 )
—1 A _ —1\ik Im k
E) = 3 " (5 ) (@),
klm=1 o 9 _
=6F 6,

_ Z (gfl)zkgkn A — A
~——

e Consider now a map €2 : M — G where M is some differentiable manifold and G is a

group of matrices. €2 could be thought of as a gauge function. Then Q*= is a L(g)-valued



one-form on M. We calculate the components of (2*=:

e(2) -

Hence we get

3
~—.
w
Q’J

Q*H Z] _ Ok H
=3 (07 0)" 5 ) e

which is often written rather symbolically as

Q= =0 1.

2 Connections in a Principal Bundle

2.1 Introduction

Consider a principal bundle G - P - M (M = P/G). We want to compare points in
neighbouring fibres and need therefore vectors that point from one fibre to another.

We know already that to each A € L(G) (left invariant vector fields on G) there corresponds
an induced vector field X on P (in an isomorphic way) which represents the Lie algebra of ¢
homomorphically, i.e. [X4, X5] = X458 for all A, B € L(G). The vector X;' € T, P is tangent
to the fibre at p € P. This gives raise to the following definition.

Definition Let G — P — M be a principal bundle and p € P. The vertical subspace V,P of
a tangent space T, P at p is defined to be

V, :={r € T,P|m.T =0}

where 7 : P — M is the projection in the bundle.

Definition 6.1 A connection in a principal bundle G — P — M is a smooth assignment to
each point p € P of a subspace H,P of T, P such that

(a) T,Pp~V,P® H,P forallpe P
(b) dgu(H,P) = H,yP forallge G,pe P

where d,(p) := pg denotes the right action of G on P.

e Any tangent vector 7 € T,P can be decomposed uniquely into a sum of wertical and
horizontal components lying in V,P and H,P, 7 = ver(7) + hor(7). These components
will be denoted by ver(7) and hor(7) respectively.
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e Consider the isomorphic map ¢ : L(G) — VFIds(P), A — X%, A connection can be
associated with a certain L(G)-valued one-form w on P in the following way:

wy(7) =1 (ver(1)).
Note that

1. wy(X4)=Aforallpe P, A€ L(G)

2. 0w = Adg-1(w), ie., (6, w)p(T) = Adg-1(wy(7)), for all 7 € T, P
where Ad,(¢') = g¢'g" (adjoint map)
(Remember theorem 4.10: X4do+(A) =§ 1 (X4)).

3. 7€ H,P & w,(1) =0.

2.2 Local representatives of a connection

Theorem 6.1 Let 0 : U C M — P be a local section of a principal bundle G — P — M
which is equipped with a connection one-form w. Define the local o-representative of w to be
the L(G) valued one-form wY on the open set U C M given by w¥ = o*w. Let h: U x G —
7~ 1(U) C P be the local trivialisation of P induced by o according to h(x, g) := o(z)g.

Then if (o, 8) € Tip,q)(U x G) ~ T,U ® T,G, the local representative h*w of w on U x G
can be written in terms of the local "Yang-Mills’ field wV as

(h*w)(m,g)(a, B) = Ady- (wa(a)) +Z4(8)

where Z is the Cartan-Maurer L(G)-valued one-form on G.

Proof Factor the map h: U x G — P as
UxG 28 pxa % P
(x.9) — (o(z),9) — olx)g
Then,
(P*'wW)(zg) (v, B) = ((o x id)"0"w) (z,g) (v, B)
= (0"W)(0(2).9)(040t, B) = Wo(a)g((6 0 dg)s02x + (00 Jo(a)):)
where i, : P - P x G, p— (p,g),and j: G = P x G, g — (g,p), so that
doig(p) = d(p,g) =pg, ie,do0iy=0,: P — P
dojy(g) = 6(p,g)=pg, ie,d0j,=F,:G—P
Therefore (using the definition of the pull-back of a one-form in the first summand)
(MW @y (@, 8) = Wo@)g((00g)e04at) + Wo(a)g((0 0 Jo(@))+5)
= (05 Wo(@)g) (9+0) + Wo(a)g(Po(a)«f)-
e We have already discussed: 0, Wy(z)g = Ady-1(Wo(z))
e For some A € L(G) it is 8 = L;. Therefore Z4(3) = (Z,,5) = A
e This A is the second summand: We have P,().(Ly) = X7, and w(X*) = A.
Thus we have

(h*w)(x,g)(a7 B) = Adgfl(wa(z)(a*a)) * Eg(ﬂ) = Adgfl(wg(a)) +Eg(ﬂ)
—_————
Yang—Mills field on M

for all (o, p) € T,U & T,G, as desired. O



2.3 Local gauge transformations
Definition In general, a gauge transformation in the principal bundle G — P — M is defined

to be any principal automorphism of the bundle.

Theorem 6.2 Let w be a connection on the principal bundle G — P — M and let 0q : U; —
P and o, : Uy — P be two local trivialisations on open sets Uy, Uy C M such that U; N U, # (.
Let AE}) = ojw and ALQ) = ojw denote the local representatives of w with respect to o, and o
respectively. Let €2 : Uy N Uy — G be the unique local gauge function defined by

oa(x) = o1(2)Q(x) = dg(g)(01()).
Then the local representatives are related on U; N Us by

AP (z) = Adgy-1 (AP (7)) + (QE) ().

3 ©

Proof Consider ALQ) (x) := (05w)4(0,). Now we factorise o9 : Uy N Uy — P as

unu, 2 Pxa 5 P
T = (01(2), Q) = o(2)Qz).

Thus we write

AP () = (o1 x 0)*6"w)4(9)

(6" w)(al(x) @) (014(01) 2, 2(01)2) = Wo, (@)2(2) (04 (014 (Op) 25 24 (O1) )
Wo (2)9(2) (00(2)x0 14 () z + Pory (240 (O ) )

= Woy( (69 (z)xT 1% (au)x + Woy (2)0(x )(Pﬂl(x)*Q*(au)z)

= 69(:13) wUl(ﬂﬂ)(Ul*( i) >+wa1(x)9( )(Pvl(w)*ﬂ*(au)x)

1(z)Q

Now, we use the same arguments as in the previous proof. E.g. there is an A € T.G such that
Q*(G o = LA . We obtain

AEAQ)<x) = AdQ(x)*1 (wm(m)(al*(au)m)) + <Eﬂ(x)a Q*(au)x>
= AdQ(z)—l(AE})(I)) + (Q*E)N(IE) O

Matrix groups Now, we assume G to be a matrix group. The group action will be the
matrix multiplication. Thus we can calculate the adjoint map:

AdQ(z)fl(AEl‘l)(l')) = Q(z) AW (2)Q(x).

We also discussed already the pull-back of the Cartan-Maurer form on a matrix group with a
map () : —»G:
*r= . — ik 0
(Q :)u(x) = Z (Q 1(]9)) Ot

k=1

522 () = Q7 (p)9,0(2)

Altogether, one obtains

Al(f)(x) = Q(:E)_lAl(})(x)Q(x) + Q_l(p)auﬁ(x).



2.4 Example: Connections in the frame bundle

The base space is an m-dimensional manifold M. The total space B(M) is the space of all

frames b (= ordered set (by,bs,...,b,) of basis vectors of T, M, x € M) at all points in M.

The projection map 7 : B(M) — M takes a frame into the point to which it is attached.
There is a natural free right-action of GL(m,R) on B(M) given by

(bl,bg,...,bm>g = (Z bjlgj117zbj2gj227"‘7 Z bjmgjmm> = (Sg(b) :bg
Jm=1

Jj1=1 Jo=1

for all g € GL(m,R).
Let U C M be a coordinate neighbourhood with coordinate functions (z1,zs,...,Zn).
Then any base b = (by,bs, ..., by) for the vector space T, M, x € U can be expanded uniquely

as
bi: E b‘g(%)x, 221,2,...,777,

J=1

for some non singular matrix b{ € GL(m,R). Any local coordinate chart (U, ¢) on M provides

a local section 5 5

Let w be a (L(GL(m,R)) valued) connection one-form on B(M) and let
I''=c'w, Tu(z)=(0"w),(0,)

be the local o-representative of w. We now want to calculate the local o’-representative I of
w associated with another coordinate chart (U’, ¢') such that U N U’ # () where

’ory 0 0
o U — B(M), T — ((axll)x,..., (8:5””))'

The coordinate transformation for all x € U N U’ is given by

Q) =D T@) (D), Ji(x) = %(x) (Jacobian)

v=1 SL’/
Then
/ 1% d _ - el 1% 0
D= el = D@ g

et ;Jﬁ(@ <AdJ<x>—1 ((U*w)x%) + (J*E)a($)>
= D JH@) (T @)Ta(@) I (x) + T (2)0a (1)) -

The Lie algebra of GL(m,R) is M(m,R). We can take a basis of this space {G}|x,\ =
1,2,...,m} and express the entries of the matrix-valued one-form I';, in virtue of this basis:

(T5= > TG

Ax=1
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If one chooses the basis (G})§ := 0,03 one obtains

D) = (D)5 =Y J(@) (J (@) Tal@)J(x) + T (2)0a] (1))
a=1
= > JH@IT @)X (@) T (@) + Y @) (T (@) 0a 3 (@)
a,p,x=1 a,A=1
_ e axaai'eaxpr N " 9x'¢ x> 9%
B < Q' QX Oz’ P oz Ozt Qx> Do
a,p,x=1 a, =1
L aaw o o o
n Ox'm Ox'd Oxx = P Oz Oz'hox'’
a,p,x=1 A=1

the transformation law for the Christoffel symbols.

3 The curvature two-form
Definition 6.8

1. If w is any k-form on a principal bundle space P(§), the exterior covariant derivative of
w is the horizontal (k41)-form Dw defined by

Dw := dw o hor

ie.,
DCU(XI, To, ... ,Xk+1 = d(,U(hOI'Xl, hOI‘Xg, Ce 7hOI'Xk+1)

for any set { X1, Xo,..., X1} of vector fields on P(§).

2. If w is a connection one-form on P (), the curvature two-form of w is defined as G := Dw.

Theorem 6.4 If G = Dw is the curvature 2-form of the connection w, then on an arbitrary
pair of vector fields X and Y on P(§) we have, for all p € P(),

Gp(X,Y) = dwp(X,Y) + [wp(X), wp (V)]

where [w,(X),w,(Y)] denotes the Lie bracket in L(G) between the Lie algebra elements w,(X)
and w,(Y).

Proof Since both sides of the assertion are linear in X and Y, it suffices to prove the relation
for the three choices: (i) X,Y are horizontal; (ii) X,Y are vertical; (iii) X is horizontal, Y is
vertical.

(i) Remember: w,(7) yields the vector in L(G) that induces via A — X the vertical part
of T,P. Thus w,(7) = wy(ver(r) + hor(7)) = w(ver(7)).
In this case: [w,(X),w,(Y)] = [0,0) = 0 and per definition Dw,(X,Y) =
dwy(hor(X), hor(Y)) = dw,(X,Y).



(ii) If X and Y are vertical vector fields then there exist A, B € L(G) which induce X, Y, i.e.

X, = X;‘, Y, = X’. We calculate the right hand side of the assertion:

dwp(X,Y) + [wp(X), wp(Y)]
= dw, (X4, X7) + [wp(X4), wp (X 7))
= X (wp(X7)) = X7 (wp(X)) = wp (X X)) + [wp (X ) (XF)]

=XI[A,B]
= X(B)— XJ(A)—[A,B]+ [A,B] =0
=0 =0

Now, we calculate the left hand side:
Gp(X,Y) = dw(hor(X),hor(Y)) = dw(0,0) =0
(iii) X is horizontal, Y is vertical. The left hand side is easy:
Gp(X,Y) = dw(hor(X),hor(Y)) = dw(X,0) =0

Next, we calculate
[wp(X), wp(Y)] = [0, wp(Y)] = 0.

It remains duw,(X,Y’). Again, we use that there is an A € L(G) such that Y, = X'. This

yields
duwp(X,Y) = X(wp(X;) — X (wp(X)) = wp((X, X4)  =0. D
———— —— —_——
=X(A)=0 =0 =0 since [X,X 4] is horizontal

3.1 Gauge field tensor

Let {Ey, Es, ..., E,} be abasis of L(G), let {01, s, . .., 0,y } be a basis of T,M and let {d", d?, ...

be the dual basis, thus a basis of T, M*. We consider
c'w(X) = A(X)=A%X)E, = Ajd’(X)E,
= AJX"d°(0,) B, = AXPE, = A%(X) = A3X°.
——

i

Note that A%(9,) = Af.

The next aim is to calculate F' := ¢*G = 0*Dw. First, we calculate as helping identity

(AN A9X)Y) = i(Ab/\Ac)(ﬁu,&,)

V=

= Y XMYVARAS (AP Ad)(0,,0,) = > (XPARYV AL — XV ATYPAY)

7,/7 b N b
Vs By 26353—5255 Byy

= AY(X)AYY) — AY(X)AP(Y).

,d™}



Now, we calculate

F(X,Y) =m0 qAX,Y) + [AX), A(Y)]

= dAXY)E,+ Y AYX)ANY) [Eg B |CF = —C%
By :Za CEY'YEO‘
1

= dA(X,Y)*Ea + 5 > (AX)A(Y) - AX)AP(Y)) C8, B

By —(ABAAY)(X,Y)
(0% 1 «
_ (dA(X, )+ g > (A A A (X, Y)%) E,
NS ﬁ”\/ >y

:Ff;(rX,Y)

We also can calculate the ccoridnate representation of F":

Fo = F(0,,0,) =dA(0,,0,) + [A., A)]
= 0,(A(D,)) ~ 0,(A9,)) — A([0,.9,)) + [A, A,]
N——

=0

= F. = 0,A, —0A,+[A,A).

If o1 : Uy — P and o3 : Uy — P are a pair of local sections with U; N U, # (), there exists some
local gauge function Q : Uy NUy — G such that o9(x) = 01(x)$2(z). Correspondingly, there are
two local representatives for the curvature 2-form G - namely F(V) := ¢7G and F® := 03G.
Using an analysis very similar to that employed in the proof of theorem 6.1, it can be shown
that these curvature representatives are related by

Ei) (x) = Q2) " E) (2)Q)

for all z € Uy N Us.
Another useful identity is the Bianchi Identity DG = 0:

GX)Y) = w(X,Y)+ [w(X),w()
=~ DGX.Y,Z) = X(G(Y,Z2))-Y(G(X,2)) + Z(G(X,Y))
“G(X.Y], 2) + (X, 2,Y)) — (Y, Z], X)

4 Parallel Transport

4.1 Parallel transport in a principal bundle

Definition 6.2 Since m, : H,P — Ty )M is an isomorphism, to each vector field X on M
there exists a unique vector field, denoted X', on P such that, for all p € P,

(a) m (X)) = Xagp)
(b) ver(X]) = 0.

This vector field is known as the horizontal lift of X.
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Definition 6.3 Let a be a smooth curve that maps a closed interval [a,b] C R into M (i.e.,
« is the restriction to [a, b] of a smooth curve defined on some open interval containing [a, b, ]).
A horizontal lift of a is a curve o' : [a,b] — P which is horizontal (i.e., ver[a'] = 0) and such
that w(al(t)) = a(t) for all ¢ € [a, b].

Theorem 6.3 For each point p € 77'{a(a)}, there exists a unique horizontal lift of o such
that a(a) = p.

Definition 6.4 Let « : [a,b] — M be a curve in M. The parallel translation along « is the
map 7 : 7 *({a(a)}) = 7 ({a(b)}) obtained by associating with each point p € 7~ '({a(a)})
the point af(b) € 771 ({«(b)}) where a' is the unique horizontal lift of o that passes through p
at t = a.

4.2 parallel transport in an associated bundle

Definition

(1) Let w be a connection in the principal G-bundle £ = (P, 7, M), and let {[F| = Pp, mp, M)
be the bundle associated to £ via the left action of G on F. The vertical subspace of the
tangent space T, (Pr), y € Pp is defined as

Vy(PF) = {7' € Ty(PF)|7TF*7' = 0}

(2) Let k, : P(§) — Pp, v € F, be defined by k,(p) := [p,v]. Then the horizontal subspace of
the tangent space T}, (Pr) is defined as

H[p,v}(PF) = k‘v* (HpP)

e Since ky-1, 09, = k,, the definition of Hp, v|(Pp) is independent ofthe choice of elements
(p,v) in the equivalence class y = [p,v] € Pp.

e Let a: [a,b] — M and let [p, v] be any point 7' ({a(a)}. Let a' be the unique horizontal
lift of a to P(€) such that af(a) = p. Then the curve

is the horizontal lift of « to Pp that passes through [p,v] at ¢ = a. This leads to the
concept of parallel translation (or transportation) in the associated bundle as the map
7r 7 ({a(a)}) — 7' ({a(b)}) obtained by taking each point y € 7' ({a(a)}) into the
point a},(b), where t — a,(t) is the horizontal lift of o to Pp that passes through y.

4.3 Covariant differentiation

Motivation: We seek for a derivative of a cross-section ¢ : M — Py of a vector bundle. The
problem is, that one cannot compare the values of ¢ for any pair of neighbouring points in M
without using a concrete bundle trivialisation because they lie in different fibres.

If the bundle is equipped with a connection one-form w, one can use w to ’'pull-back’ the
second fibre over the first in order to subtract points in different fibres.
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Definition 6.6 Let & = (P, 7, M) be a principal G-bundle and let V' be a vector space that
carries a linear representation of G. Let « : [0,¢] — M, € > 0, be a curve in M such that
a(0) = zg € M, and let ¢ : M — Py be a cross-section of the associated vector bundle. The
covariant deriwative of 1 in the direction a at xg, is

V1 = lim (T‘t/w(a(t)t) — dj(xO)) e m, ({zo})

t—0

where 7¢, is the (linear) parallel-transport map from the vector space ;' ({a(t)}) to the vector
space " ({mo}).

Definition 6.7

o If v € T, M, the covariant derivative of the section ¥ of Py along v is defined to be
V., := Va1, where «v is any curve in M that belongs to the equivalence class of v.

o If X is a vector field on M, the covariant derivative along X is the linear operator
Vx :T'(Py) = I'(Py) on the set I'(Py) of cross-sections of the vector bundle Py defined
by

(Vxv)(z) == Vx,¢.
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