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1 Reminders

1.1 Definitions

Definition 3.11 The exterior derivative of a function f ∈ X∞(M) is the one-form df defined
by

〈df,X〉 := Xf = LXf

for all vector felds X on M. In local coordinates:

(df)p =
m∑
µ=1

(
∂

∂xµ

)
p

f(dxµ)p.

Definition 3.15 If ω is an n-form onM with 1 ≤ n < dimM then the exterior derivative of
ω is the (n+ 1)-form dω defined by

dω(X1, . . . , Xn+1) :=
n+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , 6 Xi, . . . , Xn+1))

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, . . . , 6 Xi, . . . , 6 Xj, . . . , Xn+1)

fr all vector fields X1, X2, . . . , Xn+1.
If ω is a one-form, the 2-form dω acting on any pair of vector felds X, Y is

dω(X, Y ) = X(〈ω, Y 〉)− Y (〈ω,X〉)− 〈ω, [X, Y ]〉.

Note that the notation X(〈ω, Y 〉) means the effect of acting with the vector field X on the
function 〈ω, Y 〉 in C∞(M).

Definition 4.10 Let G be a Lie group that has a right action g → δg on a differentiable
manifold M. Then the vector field XA on M induced by the action of the one-parameter
subgroup exp tA, A ∈ TeG, is defined as

XA
p (f) :=

d

dt
f(p exp tA)

∣∣∣
t=0

where f ∈ C∞(M), and δg(p) has been abbreviated to pg.
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1.2 The pull back of a one form

Let M, N be manifolds with local coordinates {x1, x2, . . . , xn}, {y1, y2, . . . , ym} and h :M→
N . The local coordinate representation of the one-form ω in the manifold N is given by

ωh(p) =
n∑
ν=1

ων(h(p)) (dyν)h(p) for allp ∈M.

The components of the pull-back of ω (then in M) are given by

(h∗ω)µ(p) =

〈
h∗ω,

∂

∂xµ

〉
p

:=

〈
ω, h∗

(
∂

∂xµ

)
p

〉
h(p)

.

The push-forward of (∂/∂xµ)p at the point p can be expressed in terms of the Jacobian matrix
of the map h:

(h∗ω)p =
n∑
ν=1

ων(h(p))
m∑
µ=1

∂hν

∂xµ
(p) (dxµ)p .

1.3 The Lie algebra of GL(n,R)

Consider the connected componentGL+(n,R) of the general linear groupGL(n,R) (open subset
of the linear space M(n,R)).

The tangent space at any point g ∈ G can be identified with M(n,R) which can therefore
in turn be associated with the Lie algebra of GL+(n,R).

Coordinates on G = GL+(n,R) can be the matrix elements:

xij(g) := gij.

Let A ∈ TeG ∼= M(n,R). Consider the with A associated left invariant vector field LAg = lg∗(A):

LAg =
n∑

i,j=1

(LAxij)g

(
∂

∂xij

)
g

where (
LAxij

)
g

=
d

dt

(
xij(g exp tA)

)
t=0

(just the definition 4.10, but xij is the coordinate function). Since we are dealing with a matrix
group, exp tA = etA where eA is the normal matrix exponential function. Thus we can caluclate
the components LAg x

ij of the left invariant vector field LA:

LAg x
ij =

d

dt
xij
(
g · etA

) ∣∣∣
t=0

=
d

dt

(
g · etA

)ij ∣∣∣
t=0

=
n∑
k=1

gik · d

dt

(
etA
)kj ∣∣∣

t=0︸ ︷︷ ︸
=Akj

= (g · A)ij .

Thus, the vector field has the form

LAg =
n∑
i,j

(g · A)ij
(

∂

∂xij

)
g

.

This representation gives [
LA
′
, LA

]
= L[A′,A]
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where [A′, A] is the usual matrix commutator: hence the Lie algebra structure induced on
TeGL

+(n,R) ∼= M(n,R) is just the commutator of the matrices.
A natural basis for M(n,R) is the set of matrices Eij defined as

(Eij)kl := δikδjl

and the associated left-invariant vector fields are

Lijg =
n∑
k=1

gki
(

∂

∂xkj

)
g

.

1.4 The Cartan-Maurer form

Definition 4.6 The Cartan-Maurer form Ξ is the L(G) (= left invariant vector fields on G)
valued one-form on G that associates with any v ∈ TgG the left-invariant vector field on G
whose value at g ∈ G is precisely the given tangent vector v.

Specifically, if 〈Ξ, v〉 denotes this left-invariant vector field then

〈Ξ, v〉(g′) := lg′∗(lg−1∗v)

for all v ∈ TgG.

• On the left-invariant vector fields LA, the expression becomes

〈Ξ, LAg 〉(g′) = LAg′ .

• Since L(G) ∼= TeG, we may write
〈Ξ, LAg 〉 = A.

• Consider G = GL(n,R) with TeG ∼= M(n,R). The Cartan-Maurer form has to fulfill

〈Ξij, LAg 〉 = Aij.

Hence Ξij is given by

Ξij
g =

n∑
k=1

(g−1)ik(dxkj)g

which can be shown easily:

〈Ξij, LAg 〉 =
n∑

k,l,m=1

(g−1)ik(gA)lm
(

∂

∂xlm

)
g

(
dxkj

)
g︸ ︷︷ ︸

=δkl δ
j
m

=
n∑

k,n=1

(g−1)ikgkn︸ ︷︷ ︸
δin

Anj = Aij

• Consider now a map Ω : M → G where M is some differentiable manifold and G is a
group of matrices. Ω could be thought of as a gauge function. Then Ω∗Ξ is a L(g)-valued
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one-form on M. We calculate the components of Ω∗Ξ:〈
(Ω∗Ξ)ijp ,

(
∂

∂xµ

)
p

〉
=

〈
Ξij,Ω∗

(
∂

∂xµ

)〉
Ω(p)

=

〈
n∑
k=1

(
Ω−1(p)

)ik (
dxkj

)
Ω(p)

,Ω∗

(
∂

∂xµ

)〉
Ω(p)

=
n∑
k=1

(
Ω−1(p)

)ik
Ω∗

(
∂

∂xµ

)
p

(
xkj
)

=
n∑
k=1

(
Ω−1(p)

)ik ∂

∂xµ
xkj(Ω(p))︸ ︷︷ ︸

=Ωkj(p)

Hence we get

(Ω∗Ξ)ijp =
m∑
µ=1

n∑
k=1

(
Ω−1(p)

)ik ∂

∂xµ
Ωkj(p)(dxµ)p

which is often written rather symbolically as

Ω∗Ξ = Ω−1dΩ.

2 Connections in a Principal Bundle

2.1 Introduction

Consider a principal bundle G → P → M (M ∼= P/G). We want to compare points in
neighbouring fibres and need therefore vectors that point from one fibre to another.

We know already that to each A ∈ L(G) (left invariant vector fields on G) there corresponds
an induced vector field XA on P (in an isomorphic way) which represents the Lie algebra of G
homomorphically, i.e. [XA, XB] = X [A,B] for all A,B ∈ L(G). The vector XA

p ∈ TpP is tangent
to the fibre at p ∈ P . This gives raise to the following definition.

Definition Let G→ P →M be a principal bundle and p ∈ P . The vertical subspace VpP of
a tangent space TpP at p is defined to be

Vp := {τ ∈ TpP |π∗τ = 0}

where π : P →M is the projection in the bundle.

Definition 6.1 A connection in a principal bundle G→ P →M is a smooth assignment to
each point p ∈ P of a subspace HpP of TpP such that

(a) TpP ' VpP ⊕HpP for all p ∈ P
(b) δg∗(HpP ) = HpgP for all g ∈ G, p ∈ P

where δg(p) := pg denotes the right action of G on P .

• Any tangent vector τ ∈ TpP can be decomposed uniquely into a sum of vertical and
horizontal components lying in VpP and HpP , τ = ver(τ) + hor(τ). These components
will be denoted by ver(τ) and hor(τ) respectively.
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• Consider the isomorphic map ι : L(G) → VFlds(P ), A 7→ XA. A connection can be
associated with a certain L(G)-valued one-form ω on P in the following way:

ωp(τ) := ι−1(ver(τ)).

Note that

1. ωp(X
A) = A for all p ∈ P,A ∈ L(G)

2. δ ∗g ω = Adg−1(ω), i.e., (δ ∗g ω)p(τ) = Adg−1(ωp(τ)), for all τ ∈ TpP
where Adg(g

′) = gg′g−1 (adjoint map)
(Remember theorem 4.10: XAdg∗(A) = δg−1∗(X

A)).

3. τ ∈ HpP ⇔ ωp(τ) = 0.

2.2 Local representatives of a connection

Theorem 6.1 Let σ : U ⊂ M → P be a local section of a principal bundle G → P → M
which is equipped with a connection one-form ω. Define the local σ-representative of ω to be
the L(G) valued one-form ωU on the open set U ⊂ M given by ωU = σ∗ω. Let h : U × G →
π−1(U) ⊂ P be the local trivialisation of P induced by σ according to h(x, g) := σ(x)g.

Then if (α, β) ∈ T(x,g)(U × G) ' TxU ⊕ TgG, the local representative h∗ω of ω on U × G
can be written in terms of the local ’Yang-Mills’ field ωU as

(h∗ω)(x,g)(α, β) = Adg−1

(
ωUx (α)

)
+ Ξg(β)

where Ξ is the Cartan-Maurer L(G)-valued one-form on G.

Proof Factor the map h : U ×G→ P as

U ×G σ×id−→ P ×G δ−→ P
(x, g) 7→ (σ(x), g) 7→ σ(x)g

Then,

(h∗ω)(x,g)(α, β) = ((σ × id)∗δ∗ω)(x,g)(α, β)

= (δ∗ω)(σ(x),g)(σ∗α, β) = ωσ(x)g((δ ◦ ig)∗σ∗α + (δ ◦ jσ(x))∗β)

where ig : P → P ×G, p 7→ (p, g), and j : G→ P ×G, g 7→ (g, p), so that

δ ◦ ig(p) = δ(p, g) = pg, i.e., δ ◦ ig = δg : P → P

δ ◦ jp(g) = δ(p, g) = pg, i.e., δ ◦ jp = Pp : G→ P

Therefore (using the definition of the pull-back of a one-form in the first summand)

(h∗ω)(x,y)(α, β) = ωσ(x)g((δ ◦ ig)∗σ∗α) + ωσ(x)g((δ ◦ jσ(x))∗β)

= (δ ∗g ωσ(x)g)(σ∗α) + ωσ(x)g(Pσ(x)∗β).

• We have already discussed: δ ∗g ωσ(x)g = Adg−1(ωσ(x))

• For some A ∈ L(G) it is β = LAg . Therefore Ξg(β) = 〈Ξg, β〉 = A

• This A is the second summand: We have Pσ(x)∗(L
A
g ) = XA

σ(x)g and ω(XA) = A.

Thus we have

(h∗ω)(x,g)(α, β) = Adg−1(ωσ(z)(σ∗α)) ∗ Ξg(β) = Adg−1(ωUx (α))︸ ︷︷ ︸
Yang−Mills field onM

+Ξg(β)

for all (α, β) ∈ TxU ⊕ TgG, as desired. 2
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2.3 Local gauge transformations

Definition In general, a gauge transformation in the principal bundle G→ P →M is defined
to be any principal automorphism of the bundle.

Theorem 6.2 Let ω be a connection on the principal bundle G→ P →M and let σ1 : U1 →
P and σ2 : U2 → P be two local trivialisations on open sets U1, U2 ⊂M such that U1 ∩U2 6= ∅.
Let A

(1)
µ = σ∗1ω and A

(2)
µ = σ∗2ω denote the local representatives of ω with respect to σ1 and σ2

respectively. Let Ω : U1 ∩ U2 → G be the unique local gauge function defined by

σ2(x) = σ1(x)Ω(x) = δΩ(x)(σ1(x)).

Then the local representatives are related on U1 ∩ U2 by

A(2)
µ (x) = AdΩ(x)−1(A(1)

µ (x)) + (Ω∗Ξ)µ(x).

Proof Consider A
(2)
µ (x) := (σ∗2ω)x(∂µ). Now we factorise σ2 : U1 ∩ U2 → P as

U1 ∩ U2
σ1×Ω−→ P ×G δ−→ P

x 7→ (σ1(x),Ω(x)) 7→ σ1(x)Ω(x).

Thus we write

A(2)
µ (x) = ((σ1 × Ω)∗δ∗ω)x(∂µ)

= (δ∗ω)(σ1(x),Ω(x))(σ1∗(∂µ)x,Ω∗(∂µ)x) = ωσ1(x)Ω(x)(δ∗(σ1∗(∂µ)x,Ω∗(∂µ)x)

= ωσ1(x)Ω(x)(δΩ(x)∗σ1∗(∂µ)x + Pσ1(x)∗Ω∗(∂µ)x)

= ωσ1(x)Ω(x)(δΩ(x)∗σ1∗(∂µ)x) + ωσ1(x)Ω(x)(Pσ1(x)∗Ω∗(∂µ)x)

= δ ∗
Ω(x)ωσ1(x)(σ1∗(∂µ)x) + ωσ1(x)Ω(x)(Pσ1(x)∗Ω∗(∂µ)x)

Now, we use the same arguments as in the previous proof. E.g. there is an A ∈ TeG such that
Ω∗(∂µ)x = LAΩ(x). We obtain

A(2)
µ (x) = AdΩ(x)−1(ωσ1(x)(σ1∗(∂µ)x)) + 〈ΞΩ(x),Ω∗(∂µ)x〉

= AdΩ(x)−1(A(1)
µ (x)) + (Ω∗Ξ)µ(x). 2

Matrix groups Now, we assume G to be a matrix group. The group action will be the
matrix multiplication. Thus we can calculate the adjoint map:

AdΩ(x)−1(A(1)
µ (x)) = Ω(x)−1A(1)

µ (x)Ω(x).

We also discussed already the pull-back of the Cartan-Maurer form on a matrix group with a
map Ω :→G:

(Ω∗Ξ)µ(x) =
n∑
k=1

(
Ω−1(p)

)ik ∂

∂xµ
Ωkj(x) = Ω−1(p)∂µΩ(x)

Altogether, one obtains

A(2)
µ (x) = Ω(x)−1A(1)

µ (x)Ω(x) + Ω−1(p)∂µΩ(x).
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2.4 Example: Connections in the frame bundle

The base space is an m-dimensional manifold M. The total space B(M) is the space of all
frames b (= ordered set (b1, b2, . . . , bm) of basis vectors of TxM, x ∈ M) at all points in M.
The projection map π : B(M)→M takes a frame into the point to which it is attached.

There is a natural free right-action of GL(m,R) on B(M) given by

(b1, b2, . . . , bm)g :=

(
m∑
j1=1

bj1gj11,

m∑
j2=1

bj2gj22, . . . ,

m∑
jm=1

bjmgjmm

)
⇔ δg(b) = b · g

for all g ∈ GL(m,R).
Let U ⊂ M be a coordinate neighbourhood with coordinate functions (x1, x2, . . . , xm).

Then any base b = (b1, b2, . . . , bm) for the vector space TxM, x ∈ U can be expanded uniquely
as

bi =
m∑
j=1

bji

(
∂

∂xj

)
x

, i = 1, 2, . . . ,m

for some non singular matrix bji ∈ GL(m,R). Any local coordinate chart (U, φ) onM provides
a local section

σ : U → B(M), x 7→
((

∂

∂x1

)
x

, . . . ,

(
∂

∂xm

)
x

)
.

Let ω be a (L(GL(m,R)) valued) connection one-form on B(M) and let

Γ := σ∗ω, Γµ(x) = (σ∗ω)x(∂µ)

be the local σ-representative of ω. We now want to calculate the local σ′-representative Γ′ of
ω associated with another coordinate chart (U ′, φ′) such that U ∩ U ′ 6= ∅ where

σ′ : U ′ → B(M), x 7→
((

∂

∂x′1

)
x

, . . . ,

(
∂

∂x′m

)
x

)
.

The coordinate transformation for all x ∈ U ∩ U ′ is given by

(∂µ′)x =
m∑
ν=1

Jνµ(x)(∂ν)x, Jνµ(x) :=
∂xν

∂x′µ
(x) (Jacobian)

Then

Γ′µ(x) = (σ′∗ω)x
∂

∂x′µ
=

m∑
α=1

Jαµ (x)(σ′∗ω)x
∂

∂xα

Theorem 6.2
=

m∑
α=1

Jαµ (x)

(
AdJ(x)−1

(
(σ∗ω)x

∂

∂xα

)
+ (J∗Ξ)α(x)

)
=

m∑
α=1

Jαµ (x)
(
J−1(x)Γα(x)J(x) + J−1(x)∂αJ(x)

)
.

The Lie algebra of GL(m,R) is M(m,R). We can take a basis of this space {Gλ
χ|χ, λ =

1, 2, . . . ,m} and express the entries of the matrix-valued one-form Γµ in virtue of this basis:

(Γµ)εδ =
m∑

λ,χ=1

Γ χ
µλ (Gλ

χ)εδ

7



If one chooses the basis (Gλ
χ)εδ := δεχδ

λ
δ one obtains

Γ′ ε
µδ (x) = (Γ′µ(x))εδ =

m∑
α=1

Jαµ (x)
(
J−1(x)Γα(x)J(x) + J−1(x)∂αJ(x)

)ε
δ

=
m∑

α,ρ,χ=1

Jαµ (x)(J−1)εχ(x)Γ χ
αρ (x)Jρδ (x) +

m∑
α,λ=1

Jαµ (x)(J−1)ελ(x)∂αJ
λ
δ (x)

=
m∑

α,ρ,χ=1

∂xα

∂x′µ
∂x′ε

∂xχ
∂xρ

∂x′δ
Γ χ
αρ +

m∑
α,λ=1

∂x′ε

∂xλ
∂xα

∂x′µ
∂2xλ

∂xα∂x′δ

=
m∑

α,ρ,χ=1

∂xα

∂x′µ
∂xρ

∂x′δ
∂x′ε

∂xχ
Γ χ
αρ +

m∑
λ=1

∂x′ε

∂xλ
∂2xλ

∂x′µ∂x′δ
,

the transformation law for the Christoffel symbols.

3 The curvature two-form

Definition 6.8

1. If ω is any k-form on a principal bundle space P (ξ), the exterior covariant derivative of
ω is the horizontal (k+1)-form Dω defined by

Dω := dω ◦ hor

i.e.,
Dω(X1, x2, . . . , Xk+1 = dω(horX1, horX2, . . . , horXk+1)

for any set {X1, X2, . . . , Xk+1} of vector fields on P (ξ).

2. If ω is a connection one-form on P (ξ), the curvature two-form of ω is defined as G := Dω.

Theorem 6.4 If G = Dω is the curvature 2-form of the connection ω, then on an arbitrary
pair of vector fields X and Y on P (ξ) we have, for all p ∈ P (ξ),

Gp(X, Y ) = dωp(X, Y ) + [ωp(X), ωp(Y )]

where [ωp(X), ωp(Y )] denotes the Lie bracket in L(G) between the Lie algebra elements ωp(X)
and ωp(Y ).

Proof Since both sides of the assertion are linear in X and Y , it suffices to prove the relation
for the three choices: (i) X, Y are horizontal; (ii) X, Y are vertical; (iii) X is horizontal, Y is
vertical.

(i) Remember: ωp(τ) yields the vector in L(G) that induces via A 7→ XA the vertical part
of TpP . Thus ωp(τ) = ωp(ver(τ) + hor(τ)) = ω(ver(τ)).

In this case: [ωp(X), ωp(Y )] = [0, 0] = 0 and per definition Dωp(X, Y ) =
dωp(hor(X), hor(Y )) = dωp(X, Y ).
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(ii) If X and Y are vertical vector fields then there exist A,B ∈ L(G) which induce X, Y , i.e.
Xp = XA

p , Yp = XB
p . We calculate the right hand side of the assertion:

dωp(X, Y ) + [ωp(X), ωp(Y )]

= dωp(X
A, XB) + [ωp(X

A), ωp(X
B)]

= XA
p (ωp(X

B))−XB
p (ωp(X

A))− ωp([XA, XB]︸ ︷︷ ︸
=X[A,B]

) + [ωp(X
A)ωp(X

B)]

= XA
p (B)︸ ︷︷ ︸
=0

−XB
p (A)︸ ︷︷ ︸
=0

−[A,B] + [A,B] = 0

Now, we calculate the left hand side:

Gp(X, Y ) = dω(hor(X), hor(Y )) = dω(0, 0) = 0

(iii) X is horizontal, Y is vertical. The left hand side is easy:

Gp(X, Y ) = dω(hor(X), hor(Y )) = dω(X, 0) = 0

Next, we calculate
[ωp(X), ωp(Y )] = [0, ωp(Y )] = 0.

It remains dωp(X, Y ). Again, we use that there is an A ∈ L(G) such that Yp = XA
p . This

yields

dωp(X, Y ) = X(ωp(X
A
p ))︸ ︷︷ ︸

=X(A)=0

−XA
p (ωp(X)︸ ︷︷ ︸

=0

)− ωp([X,X
A])︸ ︷︷ ︸

=0 since [X,XA] is horizontal

= 0. 2

3.1 Gauge field tensor

Let {E1, E2, . . . , En} be a basis of L(G), let {∂1, ∂2, . . . , ∂m} be a basis of TpM and let {d1, d2, . . . , dm}
be the dual basis, thus a basis of TpM∗. We consider

σ∗ω(X) =: A(X) = Aα(X)Eα = Aαβd
β(X)Eα

= AαβX
γ dβ(∂γ)︸ ︷︷ ︸

δβγ

Eα = AαβX
βEα ⇒ Aα(X) = AαβX

β.

Note that Aα(∂µ) = Aαµ.
The next aim is to calculate F := σ∗G = σ∗Dω. First, we calculate as helping identity

(Ab ∧ Ac)(X, Y ) =
m∑

µ,ν=

(Ab ∧ Ac)(∂µ, ∂ν)

=
∑
µ,ν,β,γ

XµY νAbβA
c
γ (dβ ∧ dγ)(∂µ, ∂ν)︸ ︷︷ ︸

=δβµδ
γ
ν−δγµδβν

=
∑
β,γ

(XBAbβY
νAcν −XνAcνY

βAbβ)

= Ab(X)Ac(Y )− Ac(X)Ab(Y ).
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Now, we calculate

F (X, Y )
Theorem 6.4

= dA(X, Y ) + [A(X), A(Y )]

= dA(X, Y )αEα +
∑
β,γ

Aβ(X)Aγ(Y ) [Eβ, Eγ]︸ ︷︷ ︸
=
∑
α C

α
βγEα

|Cα
βγ = −Cα

γβ

= dA(X, Y )αEα +
1

2

∑
α,β,γ

(Aβ(X)Aγ(Y )− Aγ(X)Aβ(Y ))︸ ︷︷ ︸
=(Aβ∧Aγ)(X,Y )

Cα
βγEα

=

(
dA(X, Y )α +

1

2

∑
β,γ

(Aβ ∧ Aγ)(X, Y )Cα
βγ

)
︸ ︷︷ ︸

=Fα(X,Y )

Eα

We also can calculate the ccoridnate representation of F :

Fµν := F (∂µ, ∂ν) = dA(∂µ, ∂ν) + [Aµ, Aν ]

= ∂µ(A(∂ν))− ∂ν(A∂µ))− A([∂µ, ∂ν ]︸ ︷︷ ︸
=0

) + [Aµ, Aν ]

⇒ Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

If σ1 : U1 → P and σ2 : U2 → P are a pair of local sections with U1 ∩U2 6= ∅, there exists some
local gauge function Ω : U1 ∩U2 → G such that σ2(x) = σ1(x)Ω(x). Correspondingly, there are
two local representatives for the curvature 2-form G - namely F (1) := σ∗1G and F (2) := σ∗2G.
Using an analysis very similar to that employed in the proof of theorem 6.1, it can be shown
that these curvature representatives are related by

F (2)
µν (x) = Ω(x)−1F (1)

µν (x)Ω(x)

for all x ∈ U1 ∩ U2.
Another useful identity is the Bianchi Identity DG = 0:

G(X, Y ) = ω(X, Y ) + [ω(X), ω(Y )]

⇒ DG(X, Y, Z) = X(G(Y, Z))− Y (G(X,Z)) + Z(G(X, Y ))

−G([X, Y ], Z) +G([X,Z], Y ))−G([Y, Z], X)
...

= 0

4 Parallel Transport

4.1 Parallel transport in a principal bundle

Definition 6.2 Since π∗ : HpP → Tπ(p)M is an isomorphism, to each vector field X on M
there exists a unique vector field, denoted X↑, on P such that, for all p ∈ P ,

(a) π∗(X
↑
p ) = Xπ(p)

(b) ver(X↑p ) = 0.

This vector field is known as the horizontal lift of X.
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Definition 6.3 Let α be a smooth curve that maps a closed interval [a, b] ⊂ R into M (i.e.,
α is the restriction to [a, b] of a smooth curve defined on some open interval containing [a, b, ]).
A horizontal lift of α is a curve α↑ : [a, b] → P which is horizontal (i.e., ver[α↑] = 0) and such
that π(α↑(t)) = α(t) for all t ∈ [a, b].

Theorem 6.3 For each point p ∈ π−1{α(a)}, there exists a unique horizontal lift of α such
that α↑(a) = p.

Definition 6.4 Let α : [a, b] →M be a curve in M. The parallel translation along α is the
map τ : π−1({α(a)}) → π−1({α(b)}) obtained by associating with each point p ∈ π−1({α(a)})
the point α↑(b) ∈ π−1({α(b)}) where α↑ is the unique horizontal lift of α that passes through p
at t = a.

4.2 parallel transport in an associated bundle

Definition

(1) Let ω be a connection in the principal G-bundle ξ = (P, π,M), and let ξ[F ] = PF , πF ,M)
be the bundle associated to ξ via the left action of G on F . The vertical subspace of the
tangent space Ty(PF ), y ∈ PF is defined as

VY (PF ) := {τ ∈ Ty(PF )|πF∗τ = 0}.

(2) Let kv : P (ξ)→ PF , v ∈ F , be defined by kv(p) := [p, v]. Then the horizontal subspace of
the tangent space T[p,v](PF ) is defined as

H[p,v](PF ) := kv∗(HpP ).

• Since kg−1v ◦ δg = kv, the definition of H[p, v](PF ) is independent ofthe choice of elements
(p, v) in the equivalence class y = [p, v] ∈ PF .

• Let α : [a, b]→M and let [p, v] be any point π−1
F ({α(a)}. Let α↑ be the unique horizontal

lift of α to P (ξ) such that α↑(a) = p. Then the curve

α↑F (z) := kv(α
↑(t)) = [α↑(t), v]

is the horizontal lift of α to PF that passes through [p, v] at t = a. This leads to the
concept of parallel translation (or transportation) in the associated bundle as the map
τF : π−1

F ({α(a)})→ π−1
F ({α(b)}) obtained by taking each point y ∈ π−1

F ({α(a)}) into the
point α↑F (b), where t 7→ α↑F (t) is the horizontal lift of α to PF that passes through y.

4.3 Covariant differentiation

Motivation: We seek for a derivative of a cross-section ψ :M→ PV of a vector bundle. The
problem is, that one cannot compare the values of ψ for any pair of neighbouring points inM
without using a concrete bundle trivialisation because they lie in different fibres.

If the bundle is equipped with a connection one-form ω, one can use ω to ’pull-back’ the
second fibre over the first in order to subtract points in different fibres.
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Definition 6.6 Let ξ = (P, π,M) be a principal G-bundle and let V be a vector space that
carries a linear representation of G. Let α : [0, ε] → M, ε > 0, be a curve in M such that
α(0) = x0 ∈ M, and let ψ :M→ PV be a cross-section of the associated vector bundle. The
covariant derivative of ψ in the direction α at x0, is

∇aψ := lim
t→0

(
τ tV ψ(α(t))− ψ(x0)

t

)
∈ π−1

V ({x0})

where τ tV is the (linear) parallel-transport map from the vector space π−1
V ({α(t)}) to the vector

space π−1
V ({x0}).

Definition 6.7

• If ν ∈ TxM, the covariant derivative of the section ψ of PV along v is defined to be
∇vψ := ∇αψ, where α is any curve in M that belongs to the equivalence class of v.

• If X is a vector field on M, the covariant derivative along X is the linear operator
∇X : Γ(PV )→ Γ(PV ) on the set Γ(PV ) of cross-sections of the vector bundle PV defined
by

(∇Xψ)(x) := ∇Xxψ.
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