# Connections in a Bundle 

Maximilian Thaller

May 31, 2013

## 1 Reminders

### 1.1 Definitions

Definition 3.11 The exterior derivative of a function $f \in X^{\infty}(\mathcal{M})$ is the one-form $\mathrm{d} f$ defined by

$$
\langle\mathrm{d} f, X\rangle:=X f=L_{X} f
$$

for all vector felds $X$ on $\mathcal{M}$. In local coordinates:

$$
(\mathrm{d} f)_{p}=\sum_{\mu=1}^{m}\left(\frac{\partial}{\partial x^{\mu}}\right)_{p} f\left(\mathrm{~d} x^{\mu}\right)_{p} .
$$

Definition 3.15 If $\omega$ is an $n$-form on $\mathcal{M}$ with $1 \leq n<\operatorname{dim} \mathcal{M}$ then the exterior derivative of $\omega$ is the $(n+1)$-form $\mathrm{d} \omega$ defined by

$$
\begin{aligned}
& \mathrm{d} \omega\left(X_{1}, \ldots, X_{n+1}\right):=\sum_{i=1}^{n+1}(-1)^{i+1} X_{i}\left(\omega\left(X_{1}, \ldots, X_{i}, \ldots, X_{n+1}\right)\right) \\
& \quad+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, X_{i}, \ldots, A_{j}, \ldots, X_{n+1}\right)
\end{aligned}
$$

fr all vector fields $X_{1}, X_{2}, \ldots, X_{n+1}$.
If $\omega$ is a one-form, the 2 -form $\mathrm{d} \omega$ acting on any pair of vector felds $X, Y$ is

$$
\mathrm{d} \omega(X, Y)=X(\langle\omega, Y\rangle)-Y(\langle\omega, X\rangle)-\langle\omega,[X, Y]\rangle .
$$

Note that the notation $X(\langle\omega, Y\rangle)$ means the effect of acting with the vector field $X$ on the function $\langle\omega, Y\rangle$ in $C^{\infty}(\mathcal{M})$.

Definition 4.10 Let $G$ be a Lie group that has a right action $g \rightarrow \delta_{g}$ on a differentiable manifold $\mathcal{M}$. Then the vector field $X^{A}$ on $\mathcal{M}$ induced by the action of the one-parameter subgroup $\exp t A, A \in T_{e} G$, is defined as

$$
X_{p}^{A}(f):=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(p \exp t A)\right|_{t=0}
$$

where $f \in C^{\infty}(\mathcal{M})$, and $\delta_{g}(p)$ has been abbreviated to $p g$.

### 1.2 The pull back of a one form

Let $\mathcal{M}, \mathcal{N}$ be manifolds with local coordinates $\left\{x^{1}, x^{2}, \ldots, x^{n}\right\},\left\{y^{1}, y^{2}, \ldots, y^{m}\right\}$ and $h: \mathcal{M} \rightarrow$ $\mathcal{N}$. The local coordinate representation of the one-form $\omega$ in the manifold $\mathcal{N}$ is given by

$$
\omega_{h(p)}=\sum_{\nu=1}^{n} \omega_{\nu}(h(p))\left(\mathrm{d} y^{\nu}\right)_{h(p)} \quad \text { for all } p \in \mathcal{M}
$$

The components of the pull-back of $\omega$ (then in $\mathcal{M}$ ) are given by

$$
\left(h^{*} \omega\right)_{\mu}(p)=\left\langle h^{*} \omega, \frac{\partial}{\partial x^{\mu}}\right\rangle_{p}:=\left\langle\omega, h_{*}\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\right\rangle_{h(p)} .
$$

The push-forward of $\left(\partial / \partial x^{\mu}\right)_{p}$ at the point $p$ can be expressed in terms of the Jacobian matrix of the map $h$ :

$$
\left(h^{*} \omega\right)_{p}=\sum_{\nu=1}^{n} \omega_{\nu}(h(p)) \sum_{\mu=1}^{m} \frac{\partial h^{\nu}}{\partial x^{\mu}}(p)\left(\mathrm{d} x^{\mu}\right)_{p} .
$$

### 1.3 The Lie algebra of $G L(n, \mathbb{R})$

Consider the connected component $G L^{+}(n, \mathbb{R})$ of the general linear group $G L(n, \mathbb{R})$ (open subset of the linear space $M(n, \mathbb{R})$ ).

The tangent space at any point $g \in G$ can be identified with $M(n, \mathbb{R})$ which can therefore in turn be associated with the Lie algebra of $G L^{+}(n, \mathbb{R})$.

Coordinates on $G=G L^{+}(n, \mathbb{R})$ can be the matrix elements:

$$
x^{i j}(g):=g^{i j} .
$$

Let $A \in T_{e} G \cong M(n, \mathbb{R})$. Consider the with $A$ associated left invariant vector field $L_{g}^{A}=l_{g *}(A)$ :

$$
L_{g}^{A}=\sum_{i, j=1}^{n}\left(L^{A} x^{i j}\right)_{g}\left(\frac{\partial}{\partial x^{i j}}\right)_{g}
$$

where

$$
\left(L^{A} x^{i j}\right)_{g}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(x^{i j}(g \exp t A)\right)_{t=0}
$$

(just the definition 4.10, but $x^{i j}$ is the coordinate function). Since we are dealing with a matrix group, exp $\mathrm{tA}=e^{t A}$ where $e^{A}$ is the normal matrix exponential function. Thus we can caluclate the components $L_{g}^{A} x^{i j}$ of the left invariant vector field $L^{A}$ :

$$
L_{g}^{A} x^{i j}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} x^{i j}\left(g \cdot e^{t A}\right)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(g \cdot e^{t A}\right)^{i j}\right|_{t=0}=\sum_{k=1}^{n} g^{i k} \cdot \underbrace{\left.\frac{\mathrm{~d}}{\mathrm{~d} t}\left(e^{t A}\right)^{k j}\right|_{t=0}}_{=A^{k j}}=(g \cdot A)^{i j} .
$$

Thus, the vector field has the form

$$
L_{g}^{A}=\sum_{i, j}^{n}(g \cdot A)^{i j}\left(\frac{\partial}{\partial x^{i j}}\right)_{g} .
$$

This representation gives

$$
\left[L^{A^{\prime}}, L^{A}\right]=L^{\left[A^{\prime}, A\right]}
$$

where $\left[A^{\prime}, A\right]$ is the usual matrix commutator: hence the Lie algebra structure induced on $T_{e} G L^{+}(n, \mathbb{R}) \cong M(n, \mathbb{R})$ is just the commutator of the matrices.

A natural basis for $M(n, \mathbb{R})$ is the set of matrices $E_{i j}$ defined as

$$
\left(E_{i j}\right)_{k l}:=\delta_{i k} \delta_{j l}
$$

and the associated left-invariant vector fields are

$$
L_{g}^{i j}=\sum_{k=1}^{n} g^{k i}\left(\frac{\partial}{\partial x^{k j}}\right)_{g} .
$$

### 1.4 The Cartan-Maurer form

Definition 4.6 The Cartan-Maurer form $\Xi$ is the $L(G)$ (= left invariant vector fields on $G$ ) valued one-form on $G$ that associates with any $v \in T_{g} G$ the left-invariant vector field on $G$ whose value at $g \in G$ is precisely the given tangent vector $v$.

Specifically, if $\langle\Xi, v\rangle$ denotes this left-invariant vector field then

$$
\langle\Xi, v\rangle\left(g^{\prime}\right):=l_{g^{\prime} *}\left(l_{g^{-1} *} v\right)
$$

for all $v \in T_{g} G$.

- On the left-invariant vector fields $L^{A}$, the expression becomes

$$
\left\langle\Xi, L_{g}^{A}\right\rangle\left(g^{\prime}\right)=L_{g^{\prime}}^{A} .
$$

- Since $L(G) \cong T_{e} G$, we may write

$$
\left\langle\Xi, L_{g}^{A}\right\rangle=A
$$

- Consider $G=G L(n, \mathbb{R})$ with $T_{e} G \cong M(n, \mathbb{R})$. The Cartan-Maurer form has to fulfill

$$
\left\langle\Xi^{i j}, L_{g}^{A}\right\rangle=A^{i j}
$$

Hence $\Xi^{i j}$ is given by

$$
\Xi_{g}^{i j}=\sum_{k=1}^{n}\left(g^{-1}\right)^{i k}\left(\mathrm{~d} x^{k j}\right)_{g}
$$

which can be shown easily:

$$
\begin{aligned}
\left\langle\Xi^{i j}, L_{g}^{A}\right\rangle & =\sum_{k, l, m=1}^{n}\left(g^{-1}\right)^{i k}(g A)^{l m} \underbrace{\left(\frac{\partial}{\partial x^{l m}}\right)_{g}\left(\mathrm{~d} x^{k j}\right)_{g}}_{=\delta_{l}^{k} \delta_{m}^{j}} \\
& =\sum_{k, n=1}^{n} \underbrace{\left(g^{-1}\right)^{i k} g^{k n}}_{\delta^{i n}} A^{n j}=A^{i j}
\end{aligned}
$$

- Consider now a map $\Omega: \mathcal{M} \rightarrow G$ where $\mathcal{M}$ is some differentiable manifold and $G$ is a group of matrices. $\Omega$ could be thought of as a gauge function. Then $\Omega^{*} \Xi$ is a $L(g)$-valued
one-form on $\mathcal{M}$. We calculate the components of $\Omega^{*} \Xi$ :

$$
\begin{aligned}
\left\langle\left(\Omega^{*} \Xi\right)_{p}^{i j},\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\right\rangle & =\left\langle\Xi^{i j}, \Omega_{*}\left(\frac{\partial}{\partial x^{\mu}}\right)\right\rangle_{\Omega(p)} \\
& =\left\langle\sum_{k=1}^{n}\left(\Omega^{-1}(p)\right)^{i k}\left(\mathrm{~d} x^{k j}\right)_{\Omega(p)}, \Omega_{*}\left(\frac{\partial}{\partial x^{\mu}}\right)\right\rangle_{\Omega(p)} \\
& =\sum_{k=1}^{n}\left(\Omega^{-1}(p)\right)^{i k} \Omega_{*}\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}\left(x^{k j}\right) \\
& =\sum_{k=1}^{n}\left(\Omega^{-1}(p)\right)^{i k} \frac{\partial}{\partial x^{\mu}} \underbrace{x^{k j}(\Omega(p))}_{=\Omega^{k j}(p)}
\end{aligned}
$$

Hence we get

$$
\left(\Omega^{*} \Xi\right)_{p}^{i j}=\sum_{\mu=1}^{m} \sum_{k=1}^{n}\left(\Omega^{-1}(p)\right)^{i k} \frac{\partial}{\partial x^{\mu}} \Omega^{k j}(p)\left(\mathrm{d} x^{\mu}\right)_{p}
$$

which is often written rather symbolically as

$$
\Omega^{*} \Xi=\Omega^{-1} \mathrm{~d} \Omega .
$$

## 2 Connections in a Principal Bundle

### 2.1 Introduction

Consider a principal bundle $G \rightarrow P \rightarrow \mathcal{M}(\mathcal{M} \cong P / G)$. We want to compare points in neighbouring fibres and need therefore vectors that point from one fibre to another.

We know already that to each $A \in L(G)$ (left invariant vector fields on $G$ ) there corresponds an induced vector field $X^{A}$ on $P$ (in an isomorphic way) which represents the Lie algebra of $G$ homomorphically, i.e. $\left[X^{A}, X^{B}\right]=X^{[A, B]}$ for all $A, B \in L(G)$. The vector $X_{p}^{A} \in T_{p} P$ is tangent to the fibre at $p \in P$. This gives raise to the following definition.

Definition Let $G \rightarrow P \rightarrow \mathcal{M}$ be a principal bundle and $p \in P$. The vertical subspace $V_{p} P$ of a tangent space $T_{p} P$ at $p$ is defined to be

$$
V_{p}:=\left\{\tau \in T_{p} P \mid \pi_{*} \tau=0\right\}
$$

where $\pi: P \rightarrow \mathcal{M}$ is the projection in the bundle.

Definition 6.1 A connection in a principal bundle $G \rightarrow P \rightarrow \mathcal{M}$ is a smooth assignment to each point $p \in P$ of a subspace $H_{p} P$ of $T_{p} P$ such that

$$
\begin{equation*}
T_{p} P \simeq V_{p} P \oplus H_{p} P \quad \text { for all } p \in P \tag{a}
\end{equation*}
$$

(b) $\quad \delta_{g *}\left(H_{p} P\right)=H_{p g} P \quad$ for all $g \in G, p \in P$
where $\delta_{g}(p):=p g$ denotes the right action of $G$ on $P$.

- Any tangent vector $\tau \in T_{p} P$ can be decomposed uniquely into a sum of vertical and horizontal components lying in $V_{p} P$ and $H_{p} P, \tau=\operatorname{ver}(\tau)+\operatorname{hor}(\tau)$. These components will be denoted by $\operatorname{ver}(\tau)$ and $\operatorname{hor}(\tau)$ respectively.
- Consider the isomorphic map $\iota: L(G) \rightarrow \operatorname{VFlds}(P), A \mapsto X^{A}$. A connection can be associated with a certain $L(G)$-valued one-form $\omega$ on $P$ in the following way:

$$
\omega_{p}(\tau):=\iota^{-1}(\operatorname{ver}(\tau))
$$

Note that

1. $\omega_{p}\left(X^{A}\right)=A$ for all $p \in P, A \in L(G)$
2. $\delta_{g}{ }^{*} \omega=\operatorname{Ad}_{g^{-1}}(\omega)$, i.e., $\left(\delta_{g}^{*} \omega\right)_{p}(\tau)=\operatorname{Ad}_{g^{-1}}\left(\omega_{p}(\tau)\right)$, for all $\tau \in T_{p} P$ where $\operatorname{Ad}_{g}\left(g^{\prime}\right)=g g^{\prime} g^{-1}$ (adjoint map)
(Remember theorem 4.10: $X^{\operatorname{Ad}_{g_{*}}(A)}=\delta_{g^{-1} *}\left(X^{A}\right)$ ).
3. $\tau \in H_{p} P \Leftrightarrow \omega_{p}(\tau)=0$.

### 2.2 Local representatives of a connection

Theorem 6.1 Let $\sigma: U \subset \mathcal{M} \rightarrow P$ be a local section of a principal bundle $G \rightarrow P \rightarrow \mathcal{M}$ which is equipped with a connection one-form $\omega$. Define the local $\sigma$-representative of $\omega$ to be the $L(G)$ valued one-form $\omega^{U}$ on the open set $U \subset \mathcal{M}$ given by $\omega^{U}=\sigma^{*} \omega$. Let $h: U \times G \rightarrow$ $\pi^{-1}(U) \subset P$ be the local trivialisation of $P$ induced by $\sigma$ according to $h(x, g):=\sigma(x) g$.

Then if $(\alpha, \beta) \in T_{(x, g)}(U \times G) \simeq T_{x} U \oplus T_{g} G$, the local representative $h^{*} \omega$ of $\omega$ on $U \times G$ can be written in terms of the local 'Yang-Mills' field $\omega^{U}$ as

$$
\left(h^{*} \omega\right)_{(x, g)}(\alpha, \beta)=\operatorname{Ad}_{g^{-1}}\left(\omega_{x}^{U}(\alpha)\right)+\Xi_{g}(\beta)
$$

where $\Xi$ is the Cartan-Maurer $L(G)$-valued one-form on $G$.

Proof Factor the map $h: U \times G \rightarrow P$ as

$$
\begin{array}{ccccc}
U \times G & \xrightarrow{\sigma \times \text { id }} & P \times G & \xrightarrow{\delta} & P \\
(x, g) & \mapsto & (\sigma(x), g) & \mapsto & \sigma(x) g
\end{array}
$$

Then,

$$
\begin{aligned}
\left(h^{*} \omega\right)_{(x, g)}(\alpha, \beta) & =\left((\sigma \times \mathrm{id})^{*} \delta^{*} \omega\right)_{(x, g)}(\alpha, \beta) \\
& =\left(\delta^{*} \omega\right)_{(\sigma(x), g)}\left(\sigma_{*} \alpha, \beta\right)=\omega_{\sigma(x) g}\left(\left(\delta \circ i_{g}\right)_{*} \sigma_{*} \alpha+\left(\delta \circ j_{\sigma(x)}\right)_{*} \beta\right)
\end{aligned}
$$

where $i_{g}: P \rightarrow P \times G, p \mapsto(p, g)$, and $j: G \rightarrow P \times G, g \mapsto(g, p)$, so that

$$
\begin{aligned}
& \delta \circ i_{g}(p)=\delta(p, g)=p g, \text { i.e., } \delta \circ i_{g}=\delta_{g}: P \rightarrow P \\
& \delta \circ j_{p}(g)=\delta(p, g)=p g, \text { i.e., } \delta \circ j_{p}=P_{p}: G \rightarrow P
\end{aligned}
$$

Therefore (using the definition of the pull-back of a one-form in the first summand)

$$
\begin{aligned}
\left(h^{*} \omega\right)_{(x, y)}(\alpha, \beta) & =\omega_{\sigma(x) g}\left(\left(\delta \circ i_{g}\right)_{*} \sigma_{*} \alpha\right)+\omega_{\sigma(x) g}\left(\left(\delta \circ j_{\sigma(x)}\right)_{*} \beta\right) \\
& =\left(\delta_{g}^{*} \omega_{\sigma(x) g}\right)\left(\sigma_{*} \alpha\right)+\omega_{\sigma(x) g}\left(P_{\sigma(x) *} \beta\right) .
\end{aligned}
$$

- We have already discussed: $\delta_{g}^{*} \omega_{\sigma(x) g}=\operatorname{Ad}_{g^{-1}}\left(\omega_{\sigma(x)}\right)$
- For some $A \in L(G)$ it is $\beta=L_{g}^{A}$. Therefore $\Xi_{g}(\beta)=\left\langle\Xi_{g}, \beta\right\rangle=A$
- This $A$ is the second summand: We have $P_{\sigma(x) *}\left(L_{g}^{A}\right)=X_{\sigma(x) g}^{A}$ and $\omega\left(X^{A}\right)=A$.

Thus we have

$$
\left(h^{*} \omega\right)_{(x, g)}(\alpha, \beta)=\operatorname{Ad}_{g^{-1}}\left(\omega_{\sigma(z)}\left(\sigma_{*} \alpha\right)\right) * \Xi_{g}(\beta)=\underbrace{\operatorname{Ad}_{g^{-1}}\left(\omega_{x}^{U}(\alpha)\right)}_{\text {Yang-Mills field on } \mathcal{M}}+\Xi_{g}(\beta)
$$

for all $(\alpha, \beta) \in T_{x} U \oplus T_{g} G$, as desired.

### 2.3 Local gauge transformations

Definition In general, a gauge transformation in the principal bundle $G \rightarrow P \rightarrow \mathcal{M}$ is defined to be any principal automorphism of the bundle.

Theorem 6.2 Let $\omega$ be a connection on the principal bundle $G \rightarrow P \rightarrow \mathcal{M}$ and let $\sigma_{1}: U_{1} \rightarrow$ $P$ and $\sigma_{2}: U_{2} \rightarrow P$ be two local trivialisations on open sets $U_{1}, U_{2} \subset \mathcal{M}$ such that $U_{1} \cap U_{2} \neq \emptyset$. Let $A_{\mu}^{(1)}=\sigma_{1}^{*} \omega$ and $A_{\mu}^{(2)}=\sigma_{2}^{*} \omega$ denote the local representatives of $\omega$ with respect to $\sigma_{1}$ and $\sigma_{2}$ respectively. Let $\Omega: U_{1} \cap U_{2} \rightarrow G$ be the unique local gauge function defined by

$$
\sigma_{2}(x)=\sigma_{1}(x) \Omega(x)=\delta_{\Omega(x)}\left(\sigma_{1}(x)\right) .
$$

Then the local representatives are related on $U_{1} \cap U_{2}$ by

$$
A_{\mu}^{(2)}(x)=\operatorname{Ad}_{\Omega(x)^{-1}}\left(A_{\mu}^{(1)}(x)\right)+\left(\Omega^{*} \Xi\right)_{\mu}(x)
$$

Proof Consider $A_{\mu}^{(2)}(x):=\left(\sigma_{2}^{*} \omega\right)_{x}\left(\partial_{\mu}\right)$. Now we factorise $\sigma_{2}: U_{1} \cap U_{2} \rightarrow P$ as

$$
\begin{array}{ccccc}
U_{1} \cap U_{2} & \xrightarrow[\sigma_{1} \times \Omega]{\longrightarrow} & P \times G & \xrightarrow{\delta} & P \\
x & \mapsto & \left(\sigma_{1}(x), \Omega(x)\right) & \mapsto & \sigma_{1}(x) \Omega(x) .
\end{array}
$$

Thus we write

$$
\begin{aligned}
A_{\mu}^{(2)}(x) & =\left(\left(\sigma_{1} \times \Omega\right)^{*} \delta^{*} \omega\right)_{x}\left(\partial_{\mu}\right) \\
& =\left(\delta^{*} \omega\right)_{\left(\sigma_{1}(x), \Omega(x)\right)}\left(\sigma_{1 *}\left(\partial_{\mu}\right)_{x}, \Omega_{*}\left(\partial_{\mu}\right)_{x}\right)=\omega_{\sigma_{1}(x) \Omega(x)}\left(\delta_{*}\left(\sigma_{1 *}\left(\partial_{\mu}\right)_{x}, \Omega_{*}\left(\partial_{\mu}\right)_{x}\right)\right. \\
& =\omega_{\sigma_{1}(x) \Omega(x)}\left(\delta_{\Omega(x) *} \sigma_{1 *}\left(\partial_{\mu}\right)_{x}+P_{\sigma_{1}(x) *} \Omega_{*}\left(\partial_{\mu}\right)_{x}\right) \\
& =\omega_{\sigma_{1}(x) \Omega(x)}\left(\delta_{\Omega(x) *} \sigma_{1 *}\left(\partial_{\mu}\right)_{x}\right)+\omega_{\sigma_{1}(x) \Omega(x)}\left(P_{\sigma_{1}(x) *} \Omega_{*}\left(\partial_{\mu}\right)_{x}\right) \\
& =\delta_{\Omega(x)}^{*} \omega_{\sigma_{1}(x)}\left(\sigma_{1 *}\left(\partial_{\mu}\right)_{x}\right)+\omega_{\sigma_{1}(x) \Omega(x)}\left(P_{\sigma_{1}(x) *} \Omega_{*}\left(\partial_{\mu}\right)_{x}\right)
\end{aligned}
$$

Now, we use the same arguments as in the previous proof. E.g. there is an $A \in T_{e} G$ such that $\Omega_{*}\left(\partial_{\mu}\right)_{x}=L_{\Omega(x)}^{A}$. We obtain

$$
\begin{aligned}
A_{\mu}^{(2)}(x) & =\operatorname{Ad}_{\Omega(x)^{-1}}\left(\omega_{\sigma_{1}(x)}\left(\sigma_{1 *}\left(\partial_{\mu}\right)_{x}\right)\right)+\left\langle\Xi_{\Omega(x)}, \Omega_{*}\left(\partial_{\mu}\right)_{x}\right\rangle \\
& =\operatorname{Ad}_{\Omega(x)^{-1}}\left(A_{\mu}^{(1)}(x)\right)+\left(\Omega^{*} \Xi\right)_{\mu}(x) . \quad \square
\end{aligned}
$$

Matrix groups Now, we assume $G$ to be a matrix group. The group action will be the matrix multiplication. Thus we can calculate the adjoint map:

$$
\operatorname{Ad}_{\Omega(x)^{-1}}\left(A_{\mu}^{(1)}(x)\right)=\Omega(x)^{-1} A_{\mu}^{(1)}(x) \Omega(x)
$$

We also discussed already the pull-back of the Cartan-Maurer form on a matrix group with a $\operatorname{map} \Omega: \rightarrow G$ :

$$
\left(\Omega^{*} \Xi\right)_{\mu}(x)=\sum_{k=1}^{n}\left(\Omega^{-1}(p)\right)^{i k} \frac{\partial}{\partial x^{\mu}} \Omega^{k j}(x)=\Omega^{-1}(p) \partial_{\mu} \Omega(x)
$$

Altogether, one obtains

$$
A_{\mu}^{(2)}(x)=\Omega(x)^{-1} A_{\mu}^{(1)}(x) \Omega(x)+\Omega^{-1}(p) \partial_{\mu} \Omega(x)
$$

### 2.4 Example: Connections in the frame bundle

The base space is an m-dimensional manifold $\mathcal{M}$. The total space $\mathbf{B}(\mathcal{M})$ is the space of all frames $b$ ( $=$ ordered set $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ of basis vectors of $\left.T_{x} \mathcal{M}, x \in \mathcal{M}\right)$ at all points in $\mathcal{M}$. The projection map $\pi: \mathbf{B}(\mathcal{M}) \rightarrow \mathcal{M}$ takes a frame into the point to which it is attached.

There is a natural free right-action of $G L(m, \mathbb{R})$ on $\mathbf{B}(\mathcal{M})$ given by

$$
\left(b_{1}, b_{2}, \ldots, b_{m}\right) g:=\left(\sum_{j_{1}=1}^{m} b_{j_{1}} g_{j_{1} 1}, \sum_{j_{2}=1}^{m} b_{j_{2}} g_{j_{2}}, \ldots, \sum_{j_{m}=1}^{m} b_{j_{m}} g_{j_{m} m}\right) \Leftrightarrow \quad \delta_{g}(b)=b \cdot g
$$

for all $g \in G L(m, \mathbb{R})$.
Let $U \subset \mathcal{M}$ be a coordinate neighbourhood with coordinate functions $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Then any base $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ for the vector space $T_{x} \mathcal{M}, x \in U$ can be expanded uniquely as

$$
b_{i}=\sum_{j=1}^{m} b_{i}^{j}\left(\frac{\partial}{\partial x^{j}}\right)_{x}, \quad i=1,2, \ldots, m
$$

for some non singular matrix $b_{i}^{j} \in G L(m, \mathbb{R})$. Any local coordinate chart $(U, \phi)$ on $\mathcal{M}$ provides a local section

$$
\sigma: U \rightarrow \mathbf{B}(\mathcal{M}), \quad x \mapsto\left(\left(\frac{\partial}{\partial x^{1}}\right)_{x}, \ldots,\left(\frac{\partial}{\partial x^{m}}\right)_{x}\right) .
$$

Let $\omega$ be a $(L(G L(m, \mathbb{R}))$ valued) connection one-form on $\mathbf{B}(\mathcal{M})$ and let

$$
\Gamma:=\sigma^{*} \omega, \quad \Gamma_{\mu}(x)=\left(\sigma^{*} \omega\right)_{x}\left(\partial_{\mu}\right)
$$

be the local $\sigma$-representative of $\omega$. We now want to calculate the local $\sigma^{\prime}$-representative $\Gamma^{\prime}$ of $\omega$ associated with another coordinate chart $\left(U^{\prime}, \phi^{\prime}\right)$ such that $U \cap U^{\prime} \neq \emptyset$ where

$$
\sigma^{\prime}: U^{\prime} \rightarrow \mathbf{B}(\mathcal{M}), \quad x \mapsto\left(\left(\frac{\partial}{\partial x^{\prime 1}}\right)_{x}, \ldots,\left(\frac{\partial}{\partial x^{\prime m}}\right)_{x}\right) .
$$

The coordinate transformation for all $x \in U \cap U^{\prime}$ is given by

$$
\left(\partial_{\mu^{\prime}}\right)_{x}=\sum_{\nu=1}^{m} J_{\mu}^{\nu}(x)\left(\partial_{\nu}\right)_{x}, \quad J_{\mu}^{\nu}(x):=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}}(x) \quad \text { (Jacobian) }
$$

Then

$$
\begin{aligned}
\Gamma_{\mu}^{\prime}(x) & =\left(\sigma^{\prime *} \omega\right)_{x} \frac{\partial}{\partial x^{\prime \mu}}=\sum_{\alpha=1}^{m} J_{\mu}^{\alpha}(x)\left(\sigma^{\prime *} \omega\right)_{x} \frac{\partial}{\partial x^{\alpha}} \\
& \begin{array}{l}
\text { Theorem 6.2 } \\
=
\end{array} \sum_{\alpha=1}^{m} J_{\mu}^{\alpha}(x)\left(\operatorname{Ad}_{J(x)^{-1}}\left(\left(\sigma^{*} \omega\right)_{x} \frac{\partial}{\partial x^{\alpha}}\right)+\left(J^{*} \Xi\right)_{\alpha}(x)\right) \\
& =\quad \sum_{\alpha=1}^{m} J_{\mu}^{\alpha}(x)\left(J^{-1}(x) \Gamma_{\alpha}(x) J(x)+J^{-1}(x) \partial_{\alpha} J(x)\right) .
\end{aligned}
$$

The Lie algebra of $G L(m, \mathbb{R})$ is $M(m, \mathbb{R})$. We can take a basis of this space $\left\{G_{\chi}^{\lambda} \mid \chi, \lambda=\right.$ $1,2, \ldots, m\}$ and express the entries of the matrix-valued one-form $\Gamma_{\mu}$ in virtue of this basis:

$$
\left(\Gamma_{\mu}\right)_{\delta}^{\epsilon}=\sum_{\lambda, \chi=1}^{m} \Gamma_{\mu \lambda}^{\chi}\left(G_{\chi}^{\lambda}\right)_{\delta}^{\varepsilon}
$$

If one chooses the basis $\left(G_{\chi}^{\lambda}\right)_{\delta}^{\epsilon}:=\delta_{\chi}^{\epsilon} \delta_{\delta}^{\lambda}$ one obtains

$$
\begin{aligned}
\Gamma_{\mu \delta}^{\prime} \epsilon^{\epsilon}(x) & =\left(\Gamma_{\mu}^{\prime}(x)\right)_{\delta}^{\varepsilon}=\sum_{\alpha=1}^{m} J_{\mu}^{\alpha}(x)\left(J^{-1}(x) \Gamma_{\alpha}(x) J(x)+J^{-1}(x) \partial_{\alpha} J(x)\right)_{\delta}^{\epsilon} \\
& =\sum_{\alpha, \rho, \chi=1}^{m} J_{\mu}^{\alpha}(x)\left(J^{-1}\right)_{\chi}^{\epsilon}(x) \Gamma_{\alpha \rho}^{\chi}(x) J_{\delta}^{\rho}(x)+\sum_{\alpha, \lambda=1}^{m} J_{\mu}^{\alpha}(x)\left(J^{-1}\right)_{\lambda}^{\epsilon}(x) \partial_{\alpha} J_{\delta}^{\lambda}(x) \\
& =\sum_{\alpha, \rho, \chi=1}^{m} \frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\prime \epsilon}}{\partial x^{\chi}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}} \Gamma_{\alpha \rho}^{\chi}+\sum_{\alpha, \lambda=1}^{m} \frac{\partial x^{\prime \epsilon}}{\partial x^{\lambda}} \frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial^{2} x^{\lambda}}{\partial x^{\alpha} \partial x^{\prime \delta}} \\
& =\sum_{\alpha, \rho, \chi=1}^{m} \frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}} \frac{\partial x^{\prime \epsilon}}{\partial x^{\chi}} \Gamma_{\alpha \rho}^{\chi}+\sum_{\lambda=1}^{m} \frac{\partial x^{\prime \epsilon}}{\partial x^{\lambda}} \frac{\partial^{2} x^{\lambda}}{\partial x^{\prime \mu} \partial x^{\prime \delta}},
\end{aligned}
$$

the transformation law for the Christoffel symbols.

## 3 The curvature two-form

## Definition 6.8

1. If $\omega$ is any $k$-form on a principal bundle space $P(\xi)$, the exterior covariant derivative of $\omega$ is the horizontal ( $k+1$ )-form $\mathrm{D} \omega$ defined by

$$
D \omega:=\mathrm{d} \omega \circ \text { hor }
$$

i.e.,

$$
\mathrm{D} \omega\left(X_{1}, x_{2}, \ldots, X_{k+1}=\mathrm{d} \omega\left(\operatorname{hor} X_{1}, \operatorname{hor} X_{2}, \ldots, \text { hor } X_{k+1}\right)\right.
$$

for any set $\left\{X_{1}, X_{2}, \ldots, X_{k+1}\right\}$ of vector fields on $P(\xi)$.
2. If $\omega$ is a connection one-form on $P(\xi)$, the curvature two-form of $\omega$ is defined as $G:=\mathrm{D} \omega$.

Theorem 6.4 If $G=\mathrm{D} \omega$ is the curvature 2-form of the connection $\omega$, then on an arbitrary pair of vector fields $X$ and $Y$ on $P(\xi)$ we have, for all $p \in P(\xi)$,

$$
G_{p}(X, Y)=\mathrm{d} \omega_{p}(X, Y)+\left[\omega_{p}(X), \omega_{p}(Y)\right]
$$

where $\left[\omega_{p}(X), \omega_{p}(Y)\right]$ denotes the Lie bracket in $L(G)$ between the Lie algebra elements $\omega_{p}(X)$ and $\omega_{p}(Y)$.

Proof Since both sides of the assertion are linear in $X$ and $Y$, it suffices to prove the relation for the three choices: (i) $X, Y$ are horizontal; (ii) $X, Y$ are vertical; (iii) $X$ is horizontal, $Y$ is vertical.
(i) Remember: $\omega_{p}(\tau)$ yields the vector in $L(G)$ that induces via $A \mapsto X^{A}$ the vertical part of $T_{p} P$. Thus $\omega_{p}(\tau)=\omega_{p}(\operatorname{ver}(\tau)+\operatorname{hor}(\tau))=\omega(\operatorname{ver}(\tau))$.
In this case: $\left[\omega_{p}(X), \omega_{p}(Y)\right]=[0,0]=0$ and per definition $\mathrm{D} \omega_{p}(X, Y)=$ $\mathrm{d} \omega_{p}(\operatorname{hor}(X), \operatorname{hor}(Y))=\mathrm{d} \omega_{p}(X, Y)$.
(ii) If $X$ and $Y$ are vertical vector fields then there exist $A, B \in L(G)$ which induce $X, Y$, i.e. $X_{p}=X_{p}^{A}, Y_{p}=X_{p}^{B}$. We calculate the right hand side of the assertion:

$$
\begin{aligned}
\mathrm{d} \omega_{p} & (X, Y)+\left[\omega_{p}(X), \omega_{p}(Y)\right] \\
& =\mathrm{d} \omega_{p}\left(X^{A}, X^{B}\right)+\left[\omega_{p}\left(X^{A}\right), \omega_{p}\left(X^{B}\right)\right] \\
& =X_{p}^{A}\left(\omega_{p}\left(X^{B}\right)\right)-X_{p}^{B}\left(\omega_{p}\left(X^{A}\right)\right)-\omega_{p}(\underbrace{\left[X^{A}, X^{B}\right]}_{=X^{A, B]}})+\left[\omega_{p}\left(X^{A}\right) \omega_{p}\left(X^{B}\right)\right] \\
& =\underbrace{X_{p}^{A}(B)}_{=0}-\underbrace{X_{p}^{B}(A)}_{=0}-[A, B]+[A, B]=0
\end{aligned}
$$

Now, we calculate the left hand side:

$$
G_{p}(X, Y)=\mathrm{d} \omega(\operatorname{hor}(X), \operatorname{hor}(Y))=\mathrm{d} \omega(0,0)=0
$$

(iii) $X$ is horizontal, $Y$ is vertical. The left hand side is easy:

$$
G_{p}(X, Y)=\mathrm{d} \omega(\operatorname{hor}(X), \operatorname{hor}(Y))=\mathrm{d} \omega(X, 0)=0
$$

Next, we calculate

$$
\left[\omega_{p}(X), \omega_{p}(Y)\right]=\left[0, \omega_{p}(Y)\right]=0
$$

It remains $\mathrm{d} \omega_{p}(X, Y)$. Again, we use that there is an $A \in L(G)$ such that $Y_{p}=X_{p}^{A}$. This yields

$$
\mathrm{d} \omega_{p}(X, Y)=\underbrace{X\left(\omega_{p}\left(X_{p}^{A}\right)\right)}_{=X(A)=0}-X_{p}^{A}(\underbrace{\omega_{p}(X)}_{=0})-\underbrace{\omega_{p}\left(\left[X, X^{A}\right]\right)}_{=0 \text { since }\left[X, X^{A}\right] \text { is horizontal }}=0 .
$$

### 3.1 Gauge field tensor

Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ be a basis of $L(G)$, let $\left\{\partial_{1}, \partial_{2}, \ldots, \partial_{m}\right\}$ be a basis of $T_{p} \mathcal{M}$ and let $\left\{d^{1}, d^{2}, \ldots, d^{m}\right\}$ be the dual basis, thus a basis of $T_{p} \mathcal{M}^{*}$. We consider

$$
\begin{aligned}
\sigma^{*} \omega(X) & =: A(X)=A^{\alpha}(X) E_{\alpha}=A_{\beta}^{\alpha} d^{\beta}(X) E_{\alpha} \\
& =A_{\beta}^{\alpha} X^{\gamma} \underbrace{d^{\beta}\left(\partial_{\gamma}\right)}_{\delta_{\gamma}^{\beta}} E_{\alpha}=A_{\beta}^{\alpha} X^{\beta} E_{\alpha} \Rightarrow \quad A^{\alpha}(X)=A_{\beta}^{\alpha} X^{\beta} .
\end{aligned}
$$

Note that $A^{\alpha}\left(\partial_{\mu}\right)=A_{\mu}^{\alpha}$.
The next aim is to calculate $F:=\sigma^{*} G=\sigma^{*} \mathrm{D} \omega$. First, we calculate as helping identity

$$
\begin{aligned}
\left(A^{b} \wedge A^{c}\right)(X, Y) & =\sum_{\mu, \nu=}^{m}\left(A^{b} \wedge A^{c}\right)\left(\partial_{\mu}, \partial_{\nu}\right) \\
& =\sum_{\mu, \nu, \beta, \gamma} X^{\mu} Y^{\nu} A_{\beta}^{b} A_{\gamma}^{c} \underbrace{\left(d^{\beta} \wedge d^{\gamma}\right)\left(\partial_{\mu}, \partial_{\nu}\right)}_{=\delta_{\mu}^{\beta} \delta_{\nu}^{\gamma}-\delta_{\mu}^{\gamma} \delta_{\nu}^{\beta}}=\sum_{\beta, \gamma}\left(X^{B} A_{\beta}^{b} Y^{\nu} A_{\nu}^{c}-X^{\nu} A_{\nu}^{c} Y^{\beta} A_{\beta}^{b}\right) \\
& =A^{b}(X) A^{c}(Y)-A^{c}(X) A^{b}(Y) .
\end{aligned}
$$

Now, we calculate

$$
\begin{aligned}
F(X, Y) & \stackrel{\text { Theorem } 6.4}{=} \mathrm{d} A(X, Y)+[A(X), A(Y)] \\
& =\mathrm{d} A(X, Y)^{\alpha} E_{\alpha}+\sum_{\beta, \gamma} A^{\beta}(X) A^{\gamma}(Y) \underbrace{\left[E_{\beta}, E_{\gamma}\right]}_{=\sum_{\alpha} C_{\beta \gamma}^{\alpha} E_{\alpha}} \mid C_{\beta \gamma}^{\alpha}=-C_{\gamma \beta}^{\alpha} \\
& =\mathrm{d} A(X, Y)^{\alpha} E_{\alpha}+\frac{1}{2} \sum_{\alpha, \beta, \gamma} \underbrace{\left(A^{\beta}(X) A^{\gamma}(Y)-A^{\gamma}(X) A^{\beta}(Y)\right)}_{=\left(A^{\beta} \wedge A^{\gamma}\right)(X, Y)} C_{\beta \gamma}^{\alpha} E_{\alpha} \\
& =\underbrace{\left(\mathrm{d} A(X, Y)^{\alpha}+\frac{1}{2} \sum_{\beta, \gamma}\left(A^{\beta} \wedge A^{\gamma}\right)(X, Y) C_{\beta \gamma}^{\alpha}\right)}_{=F^{\alpha}(X, Y)} E_{\alpha}
\end{aligned}
$$

We also can calculate the ccoridnate representation of $F$ :

$$
\begin{aligned}
F_{\mu \nu} & :=F\left(\partial_{\mu}, \partial_{\nu}\right)=\mathrm{d} A\left(\partial_{\mu}, \partial_{\nu}\right)+\left[A_{\mu}, A_{\nu}\right] \\
& \left.=\partial_{\mu}\left(A\left(\partial_{\nu}\right)\right)-\partial_{\nu}\left(A \partial_{\mu}\right)\right)-A(\underbrace{\left.\partial_{\mu}, \partial_{\nu}\right]}_{=0})+\left[A_{\mu}, A_{\nu}\right] \\
\Rightarrow \quad F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] .
\end{aligned}
$$

If $\sigma_{1}: U_{1} \rightarrow P$ and $\sigma_{2}: U_{2} \rightarrow P$ are a pair of local sections with $U_{1} \cap U_{2} \neq \emptyset$, there exists some local gauge function $\Omega: U_{1} \cap U_{2} \rightarrow G$ such that $\sigma_{2}(x)=\sigma_{1}(x) \Omega(x)$. Correspondingly, there are two local representatives for the curvature 2-form $G$ - namely $F^{(1)}:=\sigma_{1}^{*} G$ and $F^{(2)}:=\sigma_{2}^{*} G$. Using an analysis very similar to that employed in the proof of theorem 6.1, it can be shown that these curvature representatives are related by

$$
F_{\mu \nu}^{(2)}(x)=\Omega(x)^{-1} F_{\mu \nu}^{(1)}(x) \Omega(x)
$$

for all $x \in U_{1} \cap U_{2}$.
Another useful identity is the Bianchi Identity $D G=0$ :

$$
\begin{aligned}
G(X, Y)= & \omega(X, Y)+[\omega(X), \omega(Y)] \\
\Rightarrow \quad \mathrm{D} G(X, Y, Z)= & X(G(Y, Z))-Y(G(X, Z))+Z(G(X, Y)) \\
& -G([X, Y], Z)+G([X, Z], Y))-G([Y, Z], X) \\
\vdots & \\
= & 0
\end{aligned}
$$

## 4 Parallel Transport

### 4.1 Parallel transport in a principal bundle

Definition 6.2 Since $\pi_{*}: H_{p} P \rightarrow T_{\pi(p)} \mathcal{M}$ is an isomorphism, to each vector field $X$ on $\mathcal{M}$ there exists a unique vector field, denoted $X^{\uparrow}$, on $P$ such that, for all $p \in P$,
(a) $\pi_{*}\left(X_{p}^{\uparrow}\right)=X_{\pi(p)}$
(b) $\operatorname{ver}\left(X_{p}^{\uparrow}\right)=0$.

This vector field is known as the horizontal lift of $X$.

Definition 6.3 Let $\alpha$ be a smooth curve that maps a closed interval $[a, b] \subset \mathbb{R}$ into $\mathcal{M}$ (i.e., $\alpha$ is the restriction to $[a, b]$ of a smooth curve defined on some open interval containing $[a, b]$,$) .$ A horizontal lift of $\alpha$ is a curve $\alpha^{\uparrow}:[a, b] \rightarrow P$ which is horizontal (i.e., ver $\left[\alpha^{\uparrow}\right]=0$ ) and such that $\pi\left(\alpha^{\uparrow}(t)\right)=\alpha(t)$ for all $t \in[a, b]$.

Theorem 6.3 For each point $p \in \pi^{-1}\{\alpha(a)\}$, there exists a unique horizontal lift of $\alpha$ such that $\alpha^{\uparrow}(a)=p$.

Definition 6.4 Let $\alpha:[a, b] \rightarrow \mathcal{M}$ be a curve in $\mathcal{M}$. The parallel translation along $\alpha$ is the $\operatorname{map} \tau: \pi^{-1}(\{\alpha(a)\}) \rightarrow \pi^{-1}(\{\alpha(b)\})$ obtained by associating with each point $p \in \pi^{-1}(\{\alpha(a)\})$ the point $\alpha^{\uparrow}(b) \in \pi^{-1}(\{\alpha(b)\})$ where $\alpha^{\uparrow}$ is the unique horizontal lift of $\alpha$ that passes through $p$ at $t=a$.

## 4.2 parallel transport in an associated bundle

## Definition

(1) Let $\omega$ be a connection in the principal $G$-bundle $\xi=(P, \pi, \mathcal{M})$, and let $\left.\xi[F]=P_{F}, \pi_{F}, \mathcal{M}\right)$ be the bundle associated to $\xi$ via the left action of $G$ on $F$. The vertical subspace of the tangent space $T_{y}\left(P_{F}\right), y \in P_{F}$ is defined as

$$
V_{Y}\left(P_{F}\right):=\left\{\tau \in T_{y}\left(P_{F}\right) \mid \pi_{F *} \tau=0\right\} .
$$

(2) Let $k_{v}: P(\xi) \rightarrow P_{F}, v \in F$, be defined by $k_{v}(p):=[p, v]$. Then the horizontal subspace of the tangent space $T_{[p, v]}\left(P_{F}\right)$ is defined as

$$
H_{[p, v]}\left(P_{F}\right):=k_{v *}\left(H_{p} P\right) .
$$

- Since $k_{g^{-1} v} \circ \delta_{g}=k_{v}$, the definition of $\left.H_{[ } p, v\right]\left(P_{F}\right)$ is independent ofthe choice of elements $(p, v)$ in the equivalence class $y=[p, v] \in P_{F}$.
- Let $\alpha:[a, b] \rightarrow \mathcal{M}$ and let $[p, v]$ be any point $\pi_{F}^{-1}\left(\{\alpha(a)\}\right.$. Let $\alpha^{\uparrow}$ be the unique horizontal lift of $\alpha$ to $P(\xi)$ such that $\alpha^{\uparrow}(a)=p$. Then the curve

$$
\alpha_{F}^{\uparrow}(z):=k_{v}\left(\alpha^{\uparrow}(t)\right)=\left[\alpha^{\uparrow}(t), v\right]
$$

is the horizontal lift of $\alpha$ to $P_{F}$ that passes through $[p, v]$ at $t=a$. This leads to the concept of parallel translation (or transportation) in the associated bundle as the map $\tau_{F}: \pi_{F}^{-1}(\{\alpha(a)\}) \rightarrow \pi_{F}^{-1}(\{\alpha(b)\})$ obtained by taking each point $y \in \pi_{F}^{-1}(\{\alpha(a)\})$ into the point $\alpha_{F}^{\uparrow}(b)$, where $t \mapsto \alpha_{F}^{\uparrow}(t)$ is the horizontal lift of $\alpha$ to $P_{F}$ that passes through $y$.

### 4.3 Covariant differentiation

Motivation: We seek for a derivative of a cross-section $\psi: \mathcal{M} \rightarrow P_{V}$ of a vector bundle. The problem is, that one cannot compare the values of $\psi$ for any pair of neighbouring points in $\mathcal{M}$ without using a concrete bundle trivialisation because they lie in different fibres.

If the bundle is equipped with a connection one-form $\omega$, one can use $\omega$ to 'pull-back' the second fibre over the first in order to subtract points in different fibres.

Definition 6.6 Let $\xi=(P, \pi, \mathcal{M})$ be a principal $G$-bundle and let $V$ be a vector space that carries a linear representation of $G$. Let $\alpha:[0, \epsilon] \rightarrow \mathcal{M}, \epsilon>0$, be a curve in $\mathcal{M}$ such that $\alpha(0)=x_{0} \in \mathcal{M}$, and let $\psi: \mathcal{M} \rightarrow P_{V}$ be a cross-section of the associated vector bundle. The covariant derivative of $\psi$ in the direction $\alpha$ at $x_{0}$, is

$$
\nabla_{a} \psi:=\lim _{t \rightarrow 0}\left(\frac{\tau_{V}^{t} \psi(\alpha(t))-\psi\left(x_{0}\right)}{t}\right) \in \pi_{V}^{-1}\left(\left\{x_{0}\right\}\right)
$$

where $\tau_{V}^{t}$ is the (linear) parallel-transport map from the vector space $\pi_{V}^{-1}(\{\alpha(t)\})$ to the vector space $\pi_{V}^{-1}\left(\left\{x_{0}\right\}\right)$.

## Definition 6.7

- If $\nu \in T_{x} \mathcal{M}$, the covariant derivative of the section $\psi$ of $P_{V}$ along $v$ is defined to be $\nabla_{v} \psi:=\nabla_{\alpha} \psi$, where $\alpha$ is any curve in $\mathcal{M}$ that belongs to the equivalence class of $v$.
- If $X$ is a vector field on $\mathcal{M}$, the covariant derivative along $X$ is the linear operator $\nabla_{X}: \Gamma\left(P_{V}\right) \rightarrow \Gamma\left(P_{V}\right)$ on the set $\Gamma\left(P_{V}\right)$ of cross-sections of the vector bundle $P_{V}$ defined by

$$
\left(\nabla_{X} \psi\right)(x):=\nabla_{X_{x}} \psi
$$

