1 Lie Groups

Definition (4.1 1) A Lie Group G is a set that is

- a group
- a differential manifold with the property that

$$
\begin{aligned}
\mu: G \times G & \rightarrow G \\
\left(g_{1}, g_{2}\right) & \mapsto g_{1} g_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
i: G & \rightarrow G \\
g & \mapsto g^{-1}
\end{aligned}
$$

are smooth.
Definition (4.1 2) A Lie Subgroup of G is a subset H of G such that (i) H is a subgroup of G and (ii) H is a submanifold of G and (iii) topological group with respect to subspace topology.
Definition (4.1 3) The left and right translations are diffeomorphisms of G defined by

$$
\begin{aligned}
r_{g}: G & \rightarrow G, & l_{g}: G & \rightarrow G \\
g^{\prime} & \mapsto g^{\prime} g & g^{\prime} & \mapsto g g^{\prime}
\end{aligned}
$$

l_{g} and r_{g} satisfy

$$
l_{g_{1}} \circ l_{g_{2}}=l_{g_{1} g_{2}} \quad \text { and } \quad r_{g_{1}} \circ r_{g_{2}}=r_{g_{2} g_{1}} .
$$

$g \mapsto l_{g}$ and $g \mapsto r_{g}$ are an isomorphism and an anti-isomorphism (bijection, $\phi(a b)=\phi(b) \phi(a)$ and same for inverse), respectively.

A homomorphism of Lie groups is a smooth group homomorphism.

1.1 Examples

1. \mathbb{R}^{n} with +
2. $S^{1}:=\{x \in \mathbb{C}| | x \mid=1\}$: Circle in complex plane is group under multiplication but also manifold (circle).
3. real general linear group $G L(n, \mathbb{R}):=\{A \in M(n, \mathbb{R}) \mid \operatorname{det} A \neq 0\}$. Differential structure given by bijection with $\mathbb{R}^{n^{2}}$. Because det is continuous and $\{0\}$ is closed $\operatorname{det}^{-1}(0)$ is closed and the complement, $G L(n, \mathbb{R})$ is open. Every open subset of an n-dimensional manifold is an n-dimensional submanifold.
Decomposes into two disjoint components with det $>/<0$
Dimension is n^{2}.
4. Similarly $G L(n, \mathbb{C}):=\{A \in M(n, \mathbb{C}) \mid \operatorname{det} A \neq 0\}$, dimension $2 n^{2}$. But $G L(n, \mathbb{C})$ is connected while $G L(n, \mathbb{R})$ is not.
5. connected component of $G L(n, \mathbb{R}): G L^{+}(n, \mathbb{R}):=\{A \in M(n, \mathbb{R}) \mid \operatorname{det} A>0\}$ this is subgroup of $G L(n, \mathbb{R})$ because

- $\mathbb{1} \in G L^{+}(n, \mathbb{R})$
- $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B \Rightarrow\left(A, B \in G L^{+}(n, \mathbb{R}) \Rightarrow A B \in G L^{+}(n, \mathbb{R})\right)$
- $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1} \Rightarrow\left(A \in G L^{+}(n, \mathbb{R}) \Rightarrow A^{-1} \in G L^{+}(n, \mathbb{R})\right)$
$\mathbb{1} \in G L^{+}(n, \mathbb{R})$

6. $S L(n, \mathbb{R}):=\{A \in M(n, \mathbb{R}) \mid \operatorname{det} A=1\}$
7. $O(n, \mathbb{R}):=\left\{A \in G L(n, \mathbb{R}) \mid A A^{T}=\mathbb{1}\right\} \Rightarrow \operatorname{det} A= \pm 1$ is a compact Lie Group of $\left(n^{2}-n\right) / 2$ dimensions.
8. $S O(n, \mathbb{R}):=\left\{A \in G L(n, \mathbb{R}) \mid A A^{T}=\mathbb{1}\right.$, $\left.\operatorname{det} A=1\right\}$ also has dimension $\left(n^{2}-n\right) / 2$.
9. Generalization: $O(p, q, \mathbb{R})$ orthogonal with respect to metric with signature p, q. e.g. $O(3,1)$ Lorentz group. $(S O(p, q, \mathbb{R}))$

2 Lie Algebra of a Lie Group

Definition A Lie Algebra A is a vector space with an additional map

$$
\begin{aligned}
& A \times A \rightarrow A \\
& X_{1}, X_{2} \mapsto\left[X_{1}, X_{2}\right]
\end{aligned}
$$

such that

$$
\begin{aligned}
{[a X+b Y, Z] } & =a[X, Z]+b[Y, Z] \\
{[X, Y] } & =-[Y, X] \\
{[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]] } & =0 \quad \text { (Jacobi Identity) }
\end{aligned}
$$

Example: VFs on a Manifold.
Each Lie Group has an associated Lie Algebra which encodes many properties of the group (e.g. dimension, compactness, if G is simply connected every rep. of Lie alg. gives rep. of Lie group).
Definition (4.3.1) A VF X on a Lie Group G is left-invariant if it is l_{g}-related to itself for all $g \in G$, i.e.

$$
\begin{aligned}
l_{g *} X & =X \quad \forall g \in G \\
\Leftrightarrow l_{g *} X_{g^{\prime}} & =X_{g g^{\prime}} \quad \forall g, g^{\prime} \in G
\end{aligned}
$$

Definition (4.3.2) A VF X on a Lie Group G is right-invariant if it is r_{g}-related to itself for all $g \in G$, i.e.

$$
\begin{aligned}
r_{g *} X & =X \quad \forall g \in G \\
\Leftrightarrow r_{g *} X_{g^{\prime}} & =X_{g^{\prime} g} \quad \forall g, g^{\prime} \in G
\end{aligned}
$$

The set of all left-invariant VFs is called $L(G)$ and is a VS.
Fact (eq 3.1.31) If VFs X_{1} and X_{2} on manifold \mathcal{M} are h-related to VFs Y_{1} and Y_{2} on \mathcal{N} (i.e. $h_{*} X_{1}=Y_{1}$) then $\left[X_{1}, X_{2}\right]$ is h-related to $\left[Y_{1}, Y_{2}\right]$.
\Rightarrow if X_{1} and X_{2} are left-invariant then $l_{g *}\left[X_{1}, X_{2}\right]=\left[l_{g *} X_{1}, l_{g *} X_{2}\right]=\left[X_{1}, X_{2}\right]$ is also left-invariant.

Therefore $L(G)$ is sub Lie algebra of the lie algebra of all VFs on G.
Question: Are there any left-invariant VFs?
Theorem (4.1) There exists an isomorphism $i: T_{e} G \rightarrow L(G), A \mapsto L^{A}$.
i given by

$$
L_{g}^{A}=l_{g *} A \quad \forall g \in G .
$$

This is left invariant because

$$
l_{g^{\prime} *} L_{g}^{a}=l_{g^{\prime} *} \circ l_{g *} A=l_{g^{\prime} g *} A=L_{g^{\prime} g}^{A} .
$$

It is an isomorphism because:

- If $L^{A}=L^{B}$ then $L_{e}^{A}=L_{e}^{B} \Rightarrow A=B$ and i is therefore injective.
- If L is left-invariant then $L_{g}=l_{g *} L_{e}$ which is equal to $L_{g}^{L_{e}}$. Therefore i is surjective.

This means that $\operatorname{dim} L(G)=\operatorname{dim} T_{e} G=\operatorname{dim} G$.
Theorem (4.2) $f: G \rightarrow H$ smooth homomorphism between Lie-Groups then $\Rightarrow f_{*}: L(G) \rightarrow L(H)$ is homomorphism between Lie Algebras.

Proof omitted.

$$
\begin{aligned}
& G \xrightarrow{f} H \\
& \text { ? } \hat{?} \\
& L(G) \xrightarrow{f_{*}} L(H)
\end{aligned}
$$

If $\left\{E_{1}, E_{2}, \ldots E_{n}\right\}$ is basis of $L(G)$ then commutator must be linear combination of these:

$$
\left[E_{\alpha}, E_{\beta}\right]=\sum_{\gamma=1}^{n} C_{\alpha \beta}^{\gamma} E_{\gamma}
$$

$C_{\alpha \beta}^{\gamma}$ are called the structure constants of the Lie algebra.

2.1 Exponential Map

Definition An integral curve of a VF X is a map $\sigma: \mathbb{R} \rightarrow G$ such that

$$
\sigma_{*}\left(\frac{d}{d t}\right)_{t}=X_{\sigma(t)} .
$$

This means when applied to a coordinate function $x^{i}: G \rightarrow \mathbb{R}$

$$
\sigma_{*}\left(\frac{d}{d t}\right)_{t}\left(x^{i}\right)=\left(\frac{d}{d t}\right)_{t}\left(x^{i} \circ \sigma\right)=\left.\frac{d}{d t} x^{i}(\sigma(t))\right|_{t}=X_{\sigma(t)}\left(x^{i}\right)=X_{\sigma(t)}^{i}
$$

Definition (4.4 1) We call $\exp _{A}: t \mapsto \exp t A$ the unique integral curve of the left invariant VF L^{A} satisfying $A=\left.\exp _{A *}\left(\frac{d}{d t}\right)\right|_{0}(\Leftrightarrow \exp 0 A=e) .\left(A \in T_{e} G\right)$
This is defined for all t because every left-invariant VF is complete. (Not enough time for proof, idea is to extend curve by using group multiplication.)
Definition (4.42) The exponential map $\exp : T_{e} G \rightarrow G$ is defined by

$$
\exp A:=\left.\exp t A\right|_{t=1}
$$

It is a local diffeomorphism around e (in a neighbourhood around e it is bijective and it and its inverse are smooth).
$\exp t A$ is a one parameter subgroup of G , i.e. it fulfils

$$
\exp \left(\left(t_{1}+t_{2}\right) A\right)=\left(\exp t_{1} A\right)\left(\exp t_{2} A\right) .
$$

In fact every one-parameter subgroup is of this form.
Theorem (4.4) If $\chi: \mathbb{R} \rightarrow G$ is one parameter subgroup then $\chi(t)=\exp t A$ with $A:=\chi_{*}\left(\frac{d}{d t}\right)_{0}$.

Proof If $\chi: \mathbb{R} \rightarrow G$ is a one-parameter subgroup then $\chi\left(t_{1}+t_{2}\right)=\chi\left(t_{1}\right) \chi\left(t_{2}\right)$ $(\Rightarrow \chi(0)=e)$. This means $\chi \circ l_{s}=l_{\chi(s)} \circ \chi \quad \forall s \in \mathbb{R}\left(l_{s}\right.$ is add. with s in $\left.\mathbb{R}\right)$. Therefore

$$
\chi_{*}\left(\frac{d}{d t}\right)_{s}=\chi_{*} l_{s *}\left(\frac{d}{d t}\right)_{0}=l_{\chi(s) *} \chi_{*}\left(\frac{d}{d t}\right)_{0}=l_{\chi(s) *}(A)=L_{\chi(s)}^{A}
$$

meaning $t \mapsto \chi(t)$ is integral curve for L^{A}. But these are unique and therefore $\chi(t)=\exp t A$. (unique because VF (tangent vector) and one starting point given).
Theorem (corollary) If $f: G \rightarrow H$ homomorphism between Lie groups G and H then

$$
\begin{equation*}
\underset{\substack{\exp _{G} \uparrow}}{G} \underset{\substack{\text { exp } \\ \hline \\ L(G)}}{\substack{f_{*}}} L(H) \tag{4.2.39}
\end{equation*}
$$

commutes, i.e. $\exp _{H}\left(f_{*} A\right)=f\left(\exp _{G} A\right) \quad \forall A \in T_{e} G$.
Proof Def. $\chi: \mathbb{R} \rightarrow H$ by $\chi(t):=f\left(\exp _{G} t A\right)$. Then

$$
\begin{array}{r}
\chi\left(t_{1}+t_{2}\right)=f\left(\exp _{G}\left(t_{1}+t_{2}\right) A\right)=f\left(\exp _{G} t_{1} A \exp _{G} t_{2} A\right) \\
=f\left(\exp _{G} t_{1} A\right) f\left(\exp _{G} t_{2} A\right)=\chi\left(t_{1}\right) \chi\left(t_{2}\right)
\end{array}
$$

meaning χ is a one-parameter subgroup of H . This implies (by theorem 4.4) that it is given by

$$
\begin{equation*}
\chi(t)=\exp _{H} t B \quad \text { with } \quad B:=\chi_{*}\left(\frac{d}{d t}\right)_{0} \in T_{e} H \tag{4.2.41}
\end{equation*}
$$

Applying B to a function $k \in C^{\infty}(H)$ gives

$$
B(k)=\left(\frac{d}{d t}\right)_{0}(k \circ \chi)=\left.\frac{d}{d t} k \circ f \circ \exp _{G} t A\right|_{t=0}=L_{e}^{A}(k \circ f)
$$

Last step because $\exp _{G} t A$ is integral curve of L^{A} (see def. of integral curve). $L_{e}^{A}=A$ so $B(k)=A(k \circ f)=\left(f_{*} A\right)(k)$ or $B=f_{*}(A)$.

Inserting this into equation 4.2.41 gives

$$
f\left(\exp _{G} t A\right)=\chi(t)=\exp _{H} t f_{*}(A)
$$

which proves the theorem for $t=1$.

Theorem (corollary) If $\operatorname{Ad}_{g}\left(g^{\prime}\right):=g g^{\prime} g^{-1} \quad \forall g \in G$ then

$$
\begin{equation*}
\exp \left(\operatorname{Ad}_{g *} B\right)=g \exp (B) g^{-1} \tag{4.2.44}
\end{equation*}
$$

Proof $\operatorname{Ad}_{g}(e)=e$ so $\operatorname{Ad}_{g *}$ maps $T_{e} G$ to $T_{e} G$.For each $g \in G, \operatorname{Ad}_{g}$ is a homomorphism of G, therefore applying the above theorem gives

$$
\exp \operatorname{Ad}_{g *} B=\operatorname{Ad}_{g}(\exp B)=g \exp (B) g^{-1}
$$

The map $g \mapsto A d_{g *}$ gives a representation of the Lie-group onto the Lie algebra called the adjoint representation.

2.2 The Lie Algebra of $G L(n, \mathbb{R})$

Consider $G L(n, \mathbb{R})^{+}$. It is a subset of $M(n, \mathbb{R})$ and a natural system of coordinates are the matrix elements given by $x^{i}{ }_{j}: G L(n, \mathbb{R})^{+} \rightarrow \mathbb{R} ; \quad x^{i}{ }_{j}(g):=g_{j}{ }_{j}$. Therefore the tangent space at every point is $M(n, \mathbb{R})$.

We want to find the explicit form of the lie algebra. The coordinate representation of the left invariant vector fields (i.e. the lie algebra) is

$$
L_{g}^{A}=L_{g}^{A}\left(x_{j}^{i}\right)\left(\frac{\partial}{\partial x^{i}{ }_{j}}\right)_{g} .
$$

The components of the vector field can be written as

$$
\begin{aligned}
& L_{g}^{A}\left(x^{i}{ }_{j}\right)=\left(l_{g *} A\right)\left(x^{i}{ }_{j}\right)=\left(l_{g *}(\exp t A)_{*}\left(\frac{d}{d t}\right)_{0}\right)\left(x^{i}{ }_{j}\right) \\
= & \left((g \exp t A)_{*}\left(\frac{d}{d t}\right)_{0}\right)\left(x^{i}{ }_{j}\right)=\left.\frac{d}{d t}\left(x^{i}{ }_{j}(g \exp t A)\right)\right|_{t=0} .
\end{aligned}
$$

For matrices we can consider the curve $t \mapsto e^{t A}$, which is a one-parameter subgroup of $G L(n, \mathbb{R})^{+}\left(e^{t_{1} A} e^{t_{2} A}=e^{\left(t_{1}+t_{2}\right) A}\right)$ and whose derivative at $t=0$ is A. This means

$$
e^{t A}=\exp t A \quad \forall t \in \mathbb{R} \quad \forall A \in T_{e} G \cong M(n, \mathbb{R})
$$

Inserting this into the expression for the components of the vector field L^{A} gives

$$
\begin{aligned}
L_{g}^{A}\left(x^{i}{ }_{j}\right) & =\left.\frac{d}{d t} x^{i}{ }_{j}\left(g e^{t A}\right)\right|_{t=0}=\left.\frac{d}{d t} g_{k}{ }_{k}\left(e^{t A}\right)^{k}{ }_{j}\right|_{t=0} \\
& =\left.g^{i}{ }_{k} \frac{d}{d t}\left(e^{t A}\right)^{k}{ }_{j}\right|_{t=0}=g^{i}{ }_{k} A^{k}{ }_{j}=(g A)^{i}{ }_{j}
\end{aligned}
$$

So the left-invariant VF L_{g}^{A} has the local coordinate representation

$$
L_{g}^{A}=(g A)_{j}^{i}\left(\frac{\partial}{\partial x^{i}}{ }_{j}\right)_{g} .
$$

To understand the Lie algebra we also need the coordinate representation of the Lie bracket. Calculating the Lie bracket of the VFs L^{A} and L^{B} gives

$$
\begin{aligned}
& {\left[L^{A}, L^{B}\right]_{g}=(g A)^{i}{ }_{j}\left(\partial_{i}{ }^{j}{ }_{g}(g B)^{i^{\prime}}{ }_{j^{\prime}} \partial_{i^{\prime}}^{j^{\prime}}-(g B)^{i}{ }_{j}\left(\partial_{i}{ }^{j}\right)_{g}(g A)^{i^{\prime}}{ }_{j} \partial_{i^{\prime}}{j^{\prime}}^{\prime}\right.} \\
& =g^{i}{ }_{k} A^{k}{ }_{j}\left(\left.\partial_{i}{ }^{j} g^{i^{\prime}}{ }_{l}\right|_{g}\right) B_{j^{\prime}}^{l}\left(\partial_{i^{\prime} j^{\prime}}\right)_{g}+g^{i}{ }_{k} A^{k}{ }_{j} g^{i^{\prime}}{ }_{l} B_{j^{\prime}}{ }^{\prime}\left(\partial_{i}{ }^{j} \partial_{i^{\prime}}{ }^{j^{\prime}}\right)_{g} \\
& -g_{k}^{i} B^{k}{ }_{j} \underbrace{\left(\partial_{i}{ }^{j} g^{i^{\prime}}{ }_{l}{ }_{g}\right)}_{\delta_{i} i^{i^{\prime}} \delta^{j}{ }_{l}} A_{j^{\prime}}^{l}\left(\partial_{i^{\prime}}{ }^{j^{\prime}}\right)_{g}-g_{k}{ }_{k} B^{k}{ }_{j} g^{i^{\prime}}{ }_{l} A_{j^{\prime}}^{l}{ }_{j^{\prime}}\left(\partial_{i}{ }^{j} \partial_{i^{\prime}}{ }^{j^{\prime}}\right)_{g} \\
& =g^{i}{ }_{k} A^{k}{ }_{j} B^{j}{ }_{j^{\prime}} \partial_{i}{ }^{j^{\prime}}-g^{i}{ }_{k} B^{k}{ }_{j} A^{j}{ }_{j^{\prime}} \partial_{i}^{j^{\prime}}=g^{i}{ }_{k}[A, B]^{k}{ }_{j^{\prime}} \partial_{i}{ }^{j^{\prime}} \\
& =(g[A, B])^{i}{ }_{j}{ }^{\prime} \partial_{i}^{j^{\prime}} .
\end{aligned}
$$

This means that

$$
\left[L^{A}, L^{B}\right]=L^{[A, B]}
$$

i.e. the matrix commutator gives the Lie bracket.

2.3 Left-Invariant Forms

Analogous to left/right-invariant VFs, define left/right-invariant n-forms.
Definition (4.5) An n-form ω is left-invariant if

$$
l_{g}^{*} \omega=\omega \quad \forall g \in G \quad \Leftrightarrow \quad l_{g}^{*}\left(\omega_{g^{\prime}}\right)=\omega_{g^{-1} g^{\prime}} \quad \forall g, g^{\prime} \in G .
$$

Because pullbacks commute with the exterior derivative d this means

$$
l_{g}^{*}(d \omega)=d\left(l_{g}^{*} \omega\right)=d \omega,
$$

i.e. if ω is left-invariant then $d \omega$ is too.

The set of all left-invariant one-forms is denoted by $L^{*}(G)$.
We know the structure constants for left-invariant VFs:

$$
\begin{equation*}
\left[E_{\alpha}, E_{\beta}\right]=C_{\alpha \beta}^{\gamma} E_{\gamma} . \tag{4.3.5}
\end{equation*}
$$

Define a dual basis $\omega^{1}, \omega^{2}, \ldots, \omega^{n}$ for $L^{*}(G)$ by

$$
\left\langle w^{\alpha}, E_{\beta}\right\rangle:=\delta_{\beta}^{\alpha} .
$$

The analogue of 4.3.5 for one-forms is the Cartan-Maurer equation

$$
d \omega^{\alpha}+\frac{1}{2} C_{\beta \gamma}^{\alpha} \omega^{\beta} \wedge \omega^{\gamma}=0 .
$$

This contains the exterior derivative because while the lie bracket of two VFs gives another VF, the wedge product of two one-forms gives a two-form.
Definition (4.6) The Cartan-Maurer form Ξ is the $L(G)$ valued one-form (Ξ : $T G \rightarrow L(G))$ on G such that

$$
\langle\Xi, v\rangle_{g}=v \quad \forall v \in T_{g} G \quad \forall g \in G .
$$

Or equivalently

$$
\langle\Xi, v\rangle_{g^{\prime}}:=l_{g^{\prime} *}\left(l_{g^{-1} *} v\right) \quad \forall v \in T_{g} G \quad \forall g, g^{\prime} \in G .
$$

The Cartan-Maurer form is left-invariant.
Applying it to a left-invariant VF L^{A} gives $\left\langle\Xi, L_{g}^{A}\right\rangle_{g^{\prime}}=L_{g^{\prime}}^{A}$.

3 Infinitesimal Transformations

Definition (4.8) A right-action of a Lie-group G on a manifold M is a homomor$\operatorname{phism} \delta: G \rightarrow \operatorname{Diff}(M) ; g \mapsto \delta_{g}$ i.e.

$$
\delta_{e}(p)=p \quad \delta_{g}\left(\delta_{g^{\prime}}(p)\right)=\delta_{g^{\prime} g}(p) .
$$

such that the map $G \times M \ni(g, p) \mapsto \delta_{g}(p) \in M$ is smooth.
Often $\delta_{g}(p)$ is written as $p g$. The Homomorphism condition is then $\left(p g_{1}\right) g_{2}=$ $p\left(g_{1} g_{2}\right)$.

Given such an action, every one-parameter subgroup of G gives a manifold-filling family of curves on M. These do not cross because

$$
m \sigma(t)=m^{\prime} \sigma\left(t^{\prime}\right) \Rightarrow m \sigma(t) \sigma\left(-t^{\prime}\right)=m^{\prime} \underbrace{\sigma\left(t^{\prime}\right) \sigma\left(-t^{\prime}\right)}_{e} \Rightarrow m \sigma\left(t-t^{\prime}\right)=m^{\prime} .
$$

No self intersection because $m \sigma(t)=m \sigma\left(t^{\prime}\right) \Rightarrow m \sigma(t+\Delta t)=m \sigma\left(t^{\prime}+\Delta t\right)$.
By taking the tangent vector to these curves this defines the induced vector field.
Definition (4.10) If a Lie-group G has a right action on a manifold M then the VF X^{A} on M induced by $t \mapsto \exp t A$ is defined as

$$
X_{p}^{A}(f):=\left.\frac{d}{d t} f(p \exp t A)\right|_{t=0}
$$

with $f \in C^{\infty}(M)$.

This means $\phi_{t}^{A}(p):=p \exp t A$ is a flow of X^{A}.
Define

$$
M_{p}: G \rightarrow M \quad \forall p \in M \quad M_{p}(g):=p g
$$

Using this

$$
\begin{aligned}
\left(M_{p *} L_{g}^{A}\right)(f) & =L_{g}^{A}\left(f \circ M_{p}\right)=\left(l_{g *} A\right)\left(f \circ M_{p}\right)=A\left(f \circ M_{p} \circ l_{g}\right)=A\left(f \circ M_{p g}\right) \\
& =\left.\frac{d}{d t} f\left(M_{p g}(\exp t A)\right)\right|_{t=0}=\left.\frac{d}{d t} f(p g \exp t A)\right|_{t=0}=X_{p g}^{A}(f)
\end{aligned}
$$

Therefore $M_{p *} L_{g}^{A}=X_{p g}^{A}$ and $M_{p *} A=X_{p}^{A}$ (alternate definition of induced VF).
Theorem (4.8) Lie-group G has right action on manifolds M, M^{\prime} with induced VFs
$X^{A}, X^{\prime A}$ and $f: M \rightarrow M^{\prime}$ is equivariant $(\Leftrightarrow f(p g)=f(p) g \quad \forall p \in M, g \in G)$ then

$$
f_{*} X_{p}^{A}=X_{f(p)}^{\prime A}
$$

Proof

$$
\begin{aligned}
\left(f \circ M_{p}\right)(g) & =f(p g)=f(p) g=M_{f(p)}^{\prime}(g) \\
f_{*} X_{p}^{A}=f_{*} M_{p *} A & =\left(f \circ M_{p}\right)_{*} A=M_{f(p) *}^{\prime} A=X_{f(p)}^{\prime A}
\end{aligned}
$$

Special case: $M=G$ with action $\delta_{g}=r_{g}$ Then $M_{g}\left(g^{\prime}\right)=g g^{\prime}=l_{g}\left(g^{\prime}\right)$

$$
X_{g}^{A}=M_{g *} A=l_{g *} A=L_{g}^{A} .
$$

So the left-invariant VFs are induced by right translation.
From definition of induced VF:

$$
L_{g}^{A}(f)=\left.\frac{d}{d t} f(g \exp t A)\right|_{t=0}
$$

This way of looking at the VFs L^{A} leads to
Theorem (4.9) For $A, B \in T_{e} G$

$$
\left[L^{A}, L^{B}\right]_{e}=\left.\frac{d}{d t} A d_{\exp t A *} B\right|_{t=0}
$$

Proof In general (eq. 3.2.20) if ϕ_{t}^{X} is a flow of X on M and Y some other VF then

$$
[X, Y]=-\left.\frac{d}{d t} \phi_{t *}^{X} Y\right|_{t=0}=\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-\phi_{t *}^{X} Y\right)
$$

Here $\phi_{t}^{A}=r_{\exp t A}$ and therefore

$$
\begin{aligned}
{\left[L^{A}, L^{B}\right]_{e} } & =\lim _{t \rightarrow 0} \frac{1}{t}\left(L_{e}^{B}-r_{\exp t A *} L_{\exp -t A}^{B}\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(B-r_{\exp t A *} l_{\exp -t A *} B\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(B-A d_{\exp -t A *} B\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(A d_{\exp t A *} B-B\right) \\
& =\left.\frac{d}{d t} A d_{\exp t A *} B\right|_{t=0}
\end{aligned}
$$

Theorem (4.11) If a Lie-group G has a right action on a manifold M then $A \mapsto X^{A}$ is a Lie-algebra homomorphism from $L(G)$ into $\operatorname{Vfld}(\mathrm{M})$ i.e.

$$
\left[X^{A}, X^{B}\right]=X^{[A B]}:=X^{\left[L^{A}, L^{B}\right]_{e}} \quad \forall A, B \in T_{e} G .
$$

This means a representation of the Lie-group gives a representation of the Lie-algebra. (This also requires that $A \mapsto X^{A}$ is linear which is clear because $X_{p}^{A}=M_{p *} A$)
Proof First show $X^{A d_{g *} A}=\delta_{g^{-1} *} X^{A}$:

$$
\begin{gathered}
X_{p}^{A d_{g *} A}=M_{p *} A d_{g *} A=\left(M_{p} \circ A d_{g}\right)_{*} A \\
\left(M_{p} \circ A d_{g}\right)\left(g^{\prime}\right)=p\left(g g^{\prime} g^{-1}\right)=\left(\delta_{g^{-1}} \circ M_{p g}\right)\left(g^{\prime}\right) \\
X_{p}^{A d_{g *} A}=\left(\delta_{g^{-1}} \circ M_{p g}\right)_{*} A=\delta_{g^{-1} *} X_{p g}^{A}
\end{gathered}
$$

Now use eq 3.2.20 again with the flow $\delta_{\exp t A}$ for X^{A}

$$
\begin{aligned}
{\left[X^{A}, X^{B}\right] } & =\lim _{t \rightarrow 0} \frac{1}{t}\left(X^{B}-\delta_{\exp t A *} X^{B}\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(X^{B}-X^{A d_{\exp -t A *} B}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t} X^{B-A d_{\exp }-t A * B}=\lim _{t \rightarrow 0} \frac{1}{t} X^{A d_{\exp t A *} B-B} \\
& =X^{\lim _{t \rightarrow 0}\left(A d_{\exp } t A * B-B\right) / t}=X^{\left[L^{A}, L^{B}\right]_{e}}
\end{aligned}
$$

The opposite direction (representation of algebra \rightarrow representation of group) is possible if G is simply connected and M is compact ("Palais' theorem").

