1 Lie Groups
Definition (4.1 1) A Lie Group G is a set that is
e a group

e a differential manifold with the property that

w:GxG—G
(91, 92) = 9192
and
1:G—>G
g9
are smooth.

Definition (4.1 2) A Lie Subgroup of G is a subset H of G such that (i) H is a
subgroup of G and (ii) H is a submanifold of G and (iii) topological group
with respect to subspace topology.

Definition (4.1 3) The left and right translations are diffeomorphisms of G defined
by

rg: G — G, ly: G—=G
g =9y g =99
ly and ry satisty

lgy 0lgy =lgg, and Tg 0Ty =Ty .

g — l, and g — r, are an isomorphism and an anti-isomorphism (bijection,
¢(ab) = ¢(b)p(a) and same for inverse), respectively.
A homomorphism of Lie groups is a smooth group homomorphism.

1.1 Examples
1. R™ with +

2. S':={z € C||z| = 1}: Circle in complex plane is group under multiplication
but also manifold (circle).



3. real general linear group GL(n,R) := {A € M(n,R)|det A # 0}. Differential
structure given by bijection with R™". Because det is continuous and {0} is
closed det™*(0) is closed and the complement, G'L(n, R) is open. Every open
subset of an n-dimensional manifold is an n-dimensional submanifold.

Decomposes into two disjoint components with det > / < 0

Dimension is n?.

4. Similarly GL(n,C) := {A € M(n,C)|det A # 0}, dimension 2n?. But
GL(n,C) is connected while GL(n,R) is not.

5. connected component of GL(n,R): GL*(n,R) :=={A € M(n,R)|det A > 0}
this is subgroup of GL(n,R) because

e 1 € GL"(n,R)
o det AB=det Adet B= (A,B € GL*(n,R) = AB € GL*(n,R))
o det A7t = (det A)™' = (A€ GLT(n,R) = A~!' € GL™(n,R))

1€ GL (n,R)
6. SL(n,R) :=={A € M(n,R)|det A =1}

7. O(n,R) :={A € GL(n,R)|AAT = 1} = det A = +1 is a compact Lie Group
of (n? —n)/2 dimensions.

8. SO(n,R) := {A € GL(n,R)|AAT = 1,det A = 1} also has dimension
(n? —n)/2.

9. Generalization: O(p, q,R) orthogonal with respect to metric with signature
p, q. e.g. O(3,1) Lorentz group. (SO(p,q,R))

2 Lie Algebra of a Lie Group

Definition A Lie Algebra A is a vector space with an additional map

AxXxA— A
X1, Xo = [X17X2]

such that

[aX +bY, Z] = a[X, Z] + bY, Z]
[X7Y] = _[Y7X]
(X, [V, Z]|+ [V, [Z, X]] + [Z,[X,Y]| =0 (Jacobi Identity)



Example: VFs on a Manifold.

Each Lie Group has an associated Lie Algebra which encodes many properties
of the group (e.g. dimension, compactness, if G is simply connected every rep. of
Lie alg. gives rep. of Lie group).

Definition (4.3.1) A VF X on a Lie Group G is left-invariant if it is ;-related to
itself for all g € G, i.e.

. X=X Vged
= lg*Xg/ = ng/ Vg,g’ ed
Definition (4.3.2) A VF X on a Lie Group G is right-invariant if it is r,-related
to itself for all g € G, i.e.

rgeX =X Vge G
= ’I“g*Xg/ = Xg/g Vg,g' e

The set of all left-invariant VFs is called L(G) and is a VS.

Fact (eq 3.1.31) If VFs X; and X5 on manifold M are h-related to VFs Y; and Y,
on N (i.e. h,X; =Y)) then [X;, X5] is h-related to [Y7, Ya).

= if X; and X are left-invariant then [ . [ X1, Xo| = [[;. X1, [: Xo] = [X1, Xo] is
also left-invariant.

Therefore L(G) is sub Lie algebra of the lie algebra of all VFs on G.

Question: Are there any left-invariant VFs?

Theorem (4.1) There exists an isomorphism i : T,G — L(G), A — L.

1 given by
L‘;:lg*A VgeG.

This is left invariant because
a A
lg/*Lg = lg/* o} lg*A = lg/g*A == Lg/g .
It is an isomorphism because:
o If LA = LB then L! = LP = A = B and i is therefore injective.

o If L is left-invariant then L, = [, L. which is equal to Lge. Therefore i is
surjective.

This means that dim L(G) = dimT.G = dim G.

Theorem (4.2) f : G — H smooth homomorphism between Lie-Groups then
= f.: L(G) — L(H) is homomorphism between Lie Algebras.
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Proof omitted.
G % H
? 7

L) s L(m)

If {Ey, Es, ... E,} is basis of L(G) then commutator must be linear combination

of these:
[Ea, Ep] = Z

C’Zﬁ are called the structure constants of the Lie algebra.

2.1 Exponential Map

Definition An integral curve of a VF X is a map o : R — G such that

d
A5 = Xog
(i), 0

This means when applied to a coordinate function z° : G — R

-, (%) (o) = (%) (00) = T ai(o(0)

Definition (4.4 1) We call exp, : t — exptA the unique integral curve of the left
invariant VF L satisfying A = eXpA*(%)|O((:) exp0A =e). (A€ T.G)

= Xo(1) (fi) = é(t)

t

This is defined for all t because every left-invariant VF' is complete. (Not enough
time for proof, idea is to extend curve by using group multiplication.)

Definition (4.4 2) The exponential map exp : T.G — G is defined by
exp A := exp tA‘tzl

It is a local diffeomorphism around e (in a neighbourhood around e it is bijective
and it and its inverse are smooth).
exptA is a one parameter subgroup of G, i.e. it fulfils

exp((ty +t2)A) = (expt1A)(exptaA) .

In fact every one-parameter subgroup is of this form.

Theorem (4.4) If y : R — G is one parameter subgroup then x(¢) = exptA with
A= X (%)0'



Proof If x : R — G is a one-parameter subgroup then x(t; + t2) = x(t1)x(t2)
(= x(0) = e). This means y ol, = lysox Vse€R (I;is add. with s in R).
Therefore

d d d
x| 3, = *ls* - =1 )X+ | 7, =1 s)* A :LA

meaning t — x(#) is integral curve for L#. But these are unique and therefore
X(t) = exptA. (unique because VF (tangent vector) and one starting point
given).

Theorem (corollary) If f: G — H homomorphism between Lie groups G and H

then

G%H

expGT epoT (4.2.39)
L(G) —L— r(H)

commutes, i.e. expy(fiA) = f(expg A) VA e T.G.
Proof Def. x : R — H by x(t) := f(expstA). Then

X(t1 +1t2) = flexpg(ti +t2)A) = f(expg t1A expg taA)
= f(expg t1A) f(expg taA) = x(t1)x(t2)

meaning x is a one-parameter subgroup of H. This implies (by theorem 4.4)
that it is given by

X(t) = expytB with B := x, (%) eT.H. (4.2.41)
0
Applying B to a function k € C*°(H) gives
=Li(ko f)

t=0

d d
B(k) = (%) (kox):%kofoeXthA
0

Last step because exp tA is integral curve of L4 (see def. of integral curve).
LA = Aso B(k)=A(ko f) = (f.A)(k) or B = f.(A).
Inserting this into equation 4.2.41 gives

flexpgtA) = x(t) = expy tf(A)

which proves the theorem for ¢ = 1.



Theorem (corollary) If Ad,(¢') :=gg'9g™" Vg € G then
exp(Ad,.B) = gexp(B)g™! (4.2.44)

Proof Ad,(e) = e so Ad,, maps T.G to T.G.For each g € GG, Ad, is a homomor-
phism of G, therefore applying the above theorem gives

exp Ad,. B = Ad,(exp B) = gexp(B)g "

The map g — Ad,. gives a representation of the Lie-group onto the Lie algebra
called the adjoint representation.

2.2 The Lie Algebra of GL(n,R)

Consider GL(n,R)*. It is a subset of M (n,R) and a natural system of coordinates
are the matrix elements given by «*; : GL(n,R)* = R; %;(g) := ¢';. Therefore
the tangent space at every point is M (n,R).

We want to find the explicit form of the lie algebra. The coordinate representa-
tion of the left invariant vector fields (i.e. the lie algebra) is

L; - L?(xj) <3l’z>
J

The components of the vector field can be written as

g

L) = (e A)e) = (e (exptd). () 1)

d d

- (wetd). () ') = (@ aespt)

t=0

For matrices we can consider the curve t — e, which is a one-parameter

subgroup of GL(n,R)T (eht4ef24 = elti+t2)4) and whose derivative at t = 0 is A.
This means
et =exptA VtER VAeT,G=Mn,R).

Inserting this into the expression for the components of the vector field L4 gives

. d . d .
LA(ZEZ-)Z—SL’Z»(getA) :_gz (etA)k‘
g\ At —o Atk J —o
i d i i
=49 k%(em)kj =4 k:Akj = (g4) j
t=0




So the left-invariant VF L; has the local coordinate representation

, 0
A i
Lg - (gA)j (axij)g )

To understand the Lie algebra we also need the coordinate representation of
the Lie bracket. Calculating the Lie bracket of the VFs L and L? gives

(L4, L), = (9A)',(0)4(9B)" ;0,7 — (9B)';(9,)4(gA)" 0,
= ngAkj(@i]gZ/l |9>Blj’ (@‘/j/)g + gzkAkaZ/lBlj' (aijai/] )g
—ngBkj (8¢]91/z’g) Alj’(ai’J )g - ngBkngllAlj’(ai]ai’] )g

——
8,187,
= (94, B))';,0, .

This means that
[LA,LB] — L[A,B]

i.e. the matrix commutator gives the Lie bracket.

2.3 Left-Invariant Forms

Analogous to left /right-invariant VFs, define left /right-invariant n-forms.
Definition (4.5) An n-form w is left-invariant if

fw=w VgelG & I(wy)=w1y V9,9 €G.
Because pullbacks commute with the exterior derivative d this means

l5(dw) = d(ljw) = dw,

i.e. if w is left-invariant then dw is too.
The set of all left-invariant one-forms is denoted by L*(G).
We know the structure constants for left-invariant VF's:

(Ea, Eg) = C1,E, (4.3.5)
Define a dual basis w!, w?, ... w" for L*(G) by

(wo‘, Eﬁ> = 5% .



The analogue of 4.3.5 for one-forms is the Cartan-Maurer equation
dw® + %C’ngﬁ Aw’=0.

This contains the exterior derivative because while the lie bracket of two VF's gives
another VF', the wedge product of two one-forms gives a two-form.
Definition (4.6) The Cartan-Maurer form = is the L(G) valued one-form (= :

TG — L(G)) on G such that

(Ev),=v YWweT,G Vgei.
Or equivalently
(E,0)y = lgu(lg1v) YveT,G Vg, €G.

The Cartan-Maurer form is left-invariant.

Applying it to a left-invariant VF L4 gives (Z, Lg‘> =L

g 9

3 Infinitesimal Transformations

Definition (4.8) A right-action of a Lie-group G on a manifold M is a homomor-
phism 6 : G — Diff(M); g — 4, i.e.

dc(p) =p dg(0g(p)) = 0gg(p) -
such that the map G x M 3> (g,p) — 6,(p) € M is smooth.

Often d,(p) is written as pg. The Homomorphism condition is then (pg;)gs =

p(9192)-
Given such an action, every one-parameter subgroup of GG gives a manifold-filling

family of curves on M. These do not cross because

mo(t) =m'o(t') = mo(t)o(—t') =m' ot )o(—t') = mo(t —t') =m’.

e

No self intersection because mo(t) = mo(t') = mo(t + At) = mo(t' + At).
By taking the tangent vector to these curves this defines the induced vector

field.

Definition (4.10) If a Lie-group G has a right action on a manifold M then the
VF X4 on M induced by t — exptA is defined as

d
x4 = — tA
» (f) = 2 fpexptd) .

with f € C%(M).



This means ¢:(p) := pexptA is a flow of X*.

Define
M,:G—M VpeM M,(g) == pg.
Using this
(Mp*L?)(f) :L;(f o M,) = (lg*A)(f oM,) = A(foM,o lg) = A(fo Mpy)
= FOy(expta)| = S ipgexptA) = XA,

t=0 t=0

Therefore M, L7 = X/ and My, A = X (alternate definition of induced VF).

Theorem (4.8) Lie-group G has right action on manifolds M, M’ with induced VFs
XA XY and f: M — M'is equivariant (< f(pg) = f(p)g Vp € M,g € G)
then

A _ yiA
f Xy = X}(p)

Proof
(f o My)(g) = f(pg) = f(p)g = My, (9)

f*XzI;‘ = [Mp A = (f o My). A= MJ/”(p)*A - X}I?p)
Special case: M = G with action d, = r, Then M,(¢") = g9’ = 1,(¢)
X} = MuA=1,A=L}.

So the left-invariant VF's are induced by right translation.
From definition of induced VF:

Ly (f) = %f(g exptA)

t=0

This way of looking at the VFs L leads to
Theorem (4.9) For A, B € T.G

d
[LA’ LB]E - %AdexptA*B

t=0

Proof In general (eq. 3.2.20) if ¢;* is a flow of X on M and Y some other VF then

[X,Y] = —acbt*y = 15% n (Y —¢,Y)

t=0



Here qbf‘ = T'expta and therefore
A 1B 1 op B .1
[L 7L ]e = 11_1)% ; (Le - TexptA*LeXp 7tA) - %1_13(% ; (B - TexptA*lexp ftA*B>
1 1
=lim — (B — Adexp—t4+B) = lim — (Adexpras B — B)

t—0 ¢t t—0 ¢

d
= Adex tAx B
dt” " t=0

Theorem (4.11) If a Lie-group G has a right action on a manifold M then A — X4
is a Lie-algebra homomorphism from L(G) into VAid(M) i.e.

(X4 XP) = xWBl .= X7l wA B eT,G.

This means a representation of the Lie-group gives a representation of the
Lie-algebra. (This also requires that A — X4 is linear which is clear because
X134 = M,.A)

Proof First show XAds4 = § 1, X4
XMt = My, Adg, A = (M, o Ad,). A
(M, 0 Ady)(g') = p(9g'g™") = (341 0 Myg) ()
XA = (651 0 M)A = 041, Xy
Now use eq 3.2.20 again with the low expia for X4

t—0 t

X 1 1

A B . B B . B Adexpft .B

(X4 X ]z)lfl_l}rOl;(X — boxprax X ) =lim = (X7 — X a-B)
= hml X B—Adexp —ta«B = lim 1 )(AdexptA*B_B

t—0 ¢ t—0 t
— xlimio(Adexpra«B—B)/t _ X[LA,LB]e.

The opposite direction (representation of algebra — representation of group) is
possible if G is simply connected and M is compact (“Palais’ theorem”).
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