
1 Lie Groups

Definition (4.1 1) A Lie Group G is a set that is

• a group

• a differential manifold with the property that

µ : G×G→ G

(g1, g2) 7→ g1g2

and

i : G→ G

g 7→ g−1

are smooth.

Definition (4.1 2) A Lie Subgroup of G is a subset H of G such that (i) H is a
subgroup of G and (ii) H is a submanifold of G and (iii) topological group
with respect to subspace topology.

Definition (4.1 3) The left and right translations are diffeomorphisms of G defined
by

rg : G→ G, lg : G→ G

g′ 7→ g′g g′ 7→ gg′ .

lg and rg satisfy

lg1 ◦ lg2 = lg1g2 and rg1 ◦ rg2 = rg2g1 .

g 7→ lg and g 7→ rg are an isomorphism and an anti-isomorphism (bijection,
φ(ab) = φ(b)φ(a) and same for inverse), respectively.

A homomorphism of Lie groups is a smooth group homomorphism.

1.1 Examples

1. Rn with +

2. S1 := {x ∈ C | |x| = 1}: Circle in complex plane is group under multiplication
but also manifold (circle).
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3. real general linear group GL(n,R) := {A ∈M(n,R)| detA 6= 0}. Differential
structure given by bijection with Rn2

. Because det is continuous and {0} is
closed det−1(0) is closed and the complement, GL(n,R) is open. Every open
subset of an n-dimensional manifold is an n-dimensional submanifold.

Decomposes into two disjoint components with det > / < 0

Dimension is n2.

4. Similarly GL(n,C) := {A ∈ M(n,C)| detA 6= 0}, dimension 2n2. But
GL(n,C) is connected while GL(n,R) is not.

5. connected component of GL(n,R): GL+(n,R) := {A ∈M(n,R)| detA > 0}
this is subgroup of GL(n,R) because

• 1 ∈ GL+(n,R)

• detAB = detA detB ⇒ (A,B ∈ GL+(n,R)⇒ AB ∈ GL+(n,R))

• detA−1 = (detA)−1 ⇒ (A ∈ GL+(n,R)⇒ A−1 ∈ GL+(n,R))

1 ∈ GL+(n,R)

6. SL(n,R) := {A ∈M(n,R)| detA = 1}

7. O(n,R) := {A ∈ GL(n,R)|AAT = 1} ⇒ detA = ±1 is a compact Lie Group
of (n2 − n)/2 dimensions.

8. SO(n,R) := {A ∈ GL(n,R)|AAT = 1, detA = 1} also has dimension
(n2 − n)/2.

9. Generalization: O(p, q,R) orthogonal with respect to metric with signature
p, q. e.g. O(3, 1) Lorentz group. (SO(p, q,R))

2 Lie Algebra of a Lie Group

Definition A Lie Algebra A is a vector space with an additional map

A× A→ A

X1, X2 7→ [X1, X2]

such that

[aX + bY, Z] = a[X,Z] + b[Y, Z]

[X, Y ] = −[Y,X]

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi Identity)
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Example: VFs on a Manifold.
Each Lie Group has an associated Lie Algebra which encodes many properties

of the group (e.g. dimension, compactness, if G is simply connected every rep. of
Lie alg. gives rep. of Lie group).

Definition (4.3.1) A VF X on a Lie Group G is left-invariant if it is lg-related to
itself for all g ∈ G, i.e.

lg∗X = X ∀g ∈ G
⇔ lg∗Xg′ = Xgg′ ∀g, g′ ∈ G

Definition (4.3.2) A VF X on a Lie Group G is right-invariant if it is rg-related
to itself for all g ∈ G, i.e.

rg∗X = X ∀g ∈ G
⇔ rg∗Xg′ = Xg′g ∀g, g′ ∈ G

The set of all left-invariant VFs is called L(G) and is a VS.

Fact (eq 3.1.31) If VFs X1 and X2 on manifold M are h-related to VFs Y1 and Y2
on N (i.e. h∗X1 = Y1) then [X1, X2] is h-related to [Y1, Y2].

⇒ if X1 and X2 are left-invariant then lg∗[X1, X2] = [lg∗X1, lg∗X2] = [X1, X2] is
also left-invariant.

Therefore L(G) is sub Lie algebra of the lie algebra of all VFs on G.
Question: Are there any left-invariant VFs?

Theorem (4.1) There exists an isomorphism i : TeG→ L(G), A 7→ LA.

i given by
LAg = lg∗A ∀g ∈ G .

This is left invariant because

lg′∗L
a
g = lg′∗ ◦ lg∗A = lg′g∗A = LAg′g .

It is an isomorphism because:

• If LA = LB then LAe = LBe ⇒ A = B and i is therefore injective.

• If L is left-invariant then Lg = lg∗Le which is equal to LLe
g . Therefore i is

surjective.

This means that dimL(G) = dimTeG = dimG.

Theorem (4.2) f : G → H smooth homomorphism between Lie-Groups then
⇒ f∗ : L(G)→ L(H) is homomorphism between Lie Algebras.
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Proof omitted.

G H

L(G) L(H)

f

f∗

? ?

If {E1, E2, . . . En} is basis of L(G) then commutator must be linear combination
of these:

[Eα, Eβ] =
n∑
γ=1

Cγ
αβEγ

Cγ
αβ are called the structure constants of the Lie algebra.

2.1 Exponential Map

Definition An integral curve of a VF X is a map σ : R→ G such that

σ∗

(
d

dt

)
t

= Xσ(t) .

This means when applied to a coordinate function xi : G→ R

σ∗

(
d

dt

)
t

(xi) =

(
d

dt

)
t

(xi ◦ σ) =
d

dt
xi(σ(t))

∣∣∣∣
t

= Xσ(t)(x
i) = X i

σ(t)

Definition (4.4 1) We call expA : t 7→ exp tA the unique integral curve of the left
invariant VF LA satisfying A = expA∗(

d
dt

)
∣∣
0
(⇔ exp 0A = e). (A ∈ TeG)

This is defined for all t because every left-invariant VF is complete. (Not enough
time for proof, idea is to extend curve by using group multiplication.)

Definition (4.4 2) The exponential map exp : TeG→ G is defined by

expA := exp tA
∣∣
t=1

.

It is a local diffeomorphism around e (in a neighbourhood around e it is bijective
and it and its inverse are smooth).

exp tA is a one parameter subgroup of G, i.e. it fulfils

exp((t1 + t2)A) = (exp t1A)(exp t2A) .

In fact every one-parameter subgroup is of this form.

Theorem (4.4) If χ : R→ G is one parameter subgroup then χ(t) = exp tA with
A := χ∗

(
d
dt

)
0
.
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Proof If χ : R → G is a one-parameter subgroup then χ(t1 + t2) = χ(t1)χ(t2)
(⇒ χ(0) = e). This means χ ◦ ls = lχ(s) ◦ χ ∀s ∈ R (ls is add. with s in R).
Therefore

χ∗

(
d

dt

)
s

= χ∗ls∗

(
d

dt

)
0

= lχ(s)∗χ∗

(
d

dt

)
0

= lχ(s)∗(A) = LAχ(s)

meaning t 7→ χ(t) is integral curve for LA. But these are unique and therefore
χ(t) = exp tA. (unique because VF (tangent vector) and one starting point
given).

Theorem (corollary) If f : G→ H homomorphism between Lie groups G and H
then

G H

L(G) L(H)

f

f∗

expG expH (4.2.39)

commutes, i.e. expH(f∗A) = f(expGA) ∀A ∈ TeG.

Proof Def. χ : R→ H by χ(t) := f(expG tA). Then

χ(t1 + t2) = f(expG(t1 + t2)A) = f(expG t1A expG t2A)

= f(expG t1A)f(expG t2A) = χ(t1)χ(t2)

meaning χ is a one-parameter subgroup of H. This implies (by theorem 4.4)
that it is given by

χ(t) = expH tB with B := χ∗

(
d

dt

)
0

∈ TeH . (4.2.41)

Applying B to a function k ∈ C∞(H) gives

B(k) =

(
d

dt

)
0

(k ◦ χ) =
d

dt
k ◦ f ◦ expG tA

∣∣∣∣
t=0

= LAe (k ◦ f)

Last step because expG tA is integral curve of LA (see def. of integral curve).
LAe = A so B(k) = A(k ◦ f) = (f∗A)(k) or B = f∗(A).

Inserting this into equation 4.2.41 gives

f(expG tA) = χ(t) = expH tf∗(A)

which proves the theorem for t = 1.
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Theorem (corollary) If Adg(g
′) := gg′g−1 ∀g ∈ G then

exp(Adg∗B) = g exp(B)g−1 (4.2.44)

Proof Adg(e) = e so Adg∗ maps TeG to TeG.For each g ∈ G, Adg is a homomor-
phism of G, therefore applying the above theorem gives

exp Adg∗B = Adg(expB) = g exp(B)g−1

The map g 7→ Adg∗ gives a representation of the Lie-group onto the Lie algebra
called the adjoint representation.

2.2 The Lie Algebra of GL(n,R)

Consider GL(n,R)+. It is a subset of M(n,R) and a natural system of coordinates
are the matrix elements given by xij : GL(n,R)+ → R; xij(g) := gij . Therefore
the tangent space at every point is M(n,R).

We want to find the explicit form of the lie algebra. The coordinate representa-
tion of the left invariant vector fields (i.e. the lie algebra) is

LAg = LAg (xij)

(
∂

∂xij

)
g

.

The components of the vector field can be written as

LAg (xij) = (lg∗A)(xij) = (lg∗(exp tA)∗

(
d

dt

)
0

)(xij)

= ((g exp tA)∗

(
d

dt

)
0

)(xij) =
d

dt

(
xij(g exp tA)

) ∣∣∣∣
t=0

.

For matrices we can consider the curve t 7→ etA, which is a one-parameter
subgroup of GL(n,R)+ (et1Aet2A = e(t1+t2)A) and whose derivative at t = 0 is A.
This means

etA = exp tA ∀t ∈ R ∀A ∈ TeG ∼= M(n,R) .

Inserting this into the expression for the components of the vector field LA gives

LAg (xij) =
d

dt
xij(ge

tA)

∣∣∣∣
t=0

=
d

dt
gik(etA)kj

∣∣∣∣
t=0

= gik
d

dt
(etA)kj

∣∣∣∣
t=0

= gikA
k
j = (gA)ij
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So the left-invariant VF LAg has the local coordinate representation

LAg = (gA)ij

(
∂

∂xij

)
g

.

To understand the Lie algebra we also need the coordinate representation of
the Lie bracket. Calculating the Lie bracket of the VFs LA and LB gives

[LA, LB]g = (gA)ij(∂
j
i )g(gB)i

′

j′∂
j′

i′ − (gB)ij(∂
j
i )g(gA)i

′

j′∂
j′

i′

= gikA
k
j(∂

j
i g

i′

l |g)Bl
j′ (∂i′j′ )g + gikA

k
jg
i′

lB
l
j′ (∂

j
i ∂

j′

i′ )g

−gikBk
j (∂ j

i g
i′

l |g)︸ ︷︷ ︸
δ i′
i δjl

Alj′(∂
j′

i′ )g − gikBk
jg
i′

lA
l
j′(∂

j
i ∂

j′

i′ )g

= gikA
k
jB

j
j′∂

j′

i − gikBk
jA

j
j′∂

j′

i = gik [A,B]kj′∂
j′

i

= (g[A,B])ij′∂
j′

i .

This means that
[LA, LB] = L[A,B]

i.e. the matrix commutator gives the Lie bracket.

2.3 Left-Invariant Forms

Analogous to left/right-invariant VFs, define left/right-invariant n-forms.

Definition (4.5) An n-form ω is left-invariant if

l∗gω = ω ∀g ∈ G ⇔ l∗g(ωg′) = ωg−1g′ ∀g, g′ ∈ G .

Because pullbacks commute with the exterior derivative d this means

l∗g(dω) = d(l∗gω) = dω ,

i.e. if ω is left-invariant then dω is too.
The set of all left-invariant one-forms is denoted by L∗(G).
We know the structure constants for left-invariant VFs:

[Eα, Eβ] = Cγ
αβEγ . (4.3.5)

Define a dual basis ω1, ω2, . . . , ωn for L∗(G) by

〈wα, Eβ〉 := δαβ .
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The analogue of 4.3.5 for one-forms is the Cartan-Maurer equation

dωα +
1

2
Cα
βγ ω

β ∧ ωγ = 0 .

This contains the exterior derivative because while the lie bracket of two VFs gives
another VF, the wedge product of two one-forms gives a two-form.

Definition (4.6) The Cartan-Maurer form Ξ is the L(G) valued one-form (Ξ :
TG→ L(G)) on G such that

〈Ξ, v〉g = v ∀v ∈ TgG ∀g ∈ G .

Or equivalently

〈Ξ, v〉g′ := lg′∗(lg−1∗v) ∀v ∈ TgG ∀g, g′ ∈ G .

The Cartan-Maurer form is left-invariant.
Applying it to a left-invariant VF LA gives 〈Ξ, LAg 〉g′ = LAg′ .

3 Infinitesimal Transformations

Definition (4.8) A right-action of a Lie-group G on a manifold M is a homomor-
phism δ : G→ Diff(M); g 7→ δg i.e.

δe(p) = p δg(δg′(p)) = δg′g(p) .

such that the map G×M 3 (g, p) 7→ δg(p) ∈M is smooth.

Often δg(p) is written as pg. The Homomorphism condition is then (pg1)g2 =
p(g1g2).

Given such an action, every one-parameter subgroup of G gives a manifold-filling
family of curves on M . These do not cross because

mσ(t) = m′σ(t′)⇒ mσ(t)σ(−t′) = m′ σ(t′)σ(−t′)︸ ︷︷ ︸
e

⇒ mσ(t− t′) = m′ .

No self intersection because mσ(t) = mσ(t′)⇒ mσ(t+ ∆t) = mσ(t′ + ∆t).
By taking the tangent vector to these curves this defines the induced vector

field.

Definition (4.10) If a Lie-group G has a right action on a manifold M then the
VF XA on M induced by t 7→ exp tA is defined as

XA
p (f) :=

d

dt
f(p exp tA)

∣∣∣∣
t=0

with f ∈ C∞(M).
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This means φAt (p) := p exp tA is a flow of XA.
Define

Mp : G→M ∀p ∈M Mp(g) := pg .

Using this

(Mp∗L
A
g )(f) =LAg (f ◦Mp) = (lg∗A)(f ◦Mp) = A(f ◦Mp ◦ lg) = A(f ◦Mpg)

=
d

dt
f(Mpg(exp tA))

∣∣∣∣
t=0

=
d

dt
f(pg exp tA)

∣∣∣∣
t=0

= XA
pg(f) .

Therefore Mp∗L
A
g = XA

pg and Mp∗A = XA
p (alternate definition of induced VF).

Theorem (4.8) Lie-group G has right action on manifolds M , M ′ with induced VFs
XA, X ′A and f : M →M ′ is equivariant (⇔ f(pg) = f(p)g ∀p ∈M, g ∈ G)
then

f∗X
A
p = X ′Af(p)

Proof
(f ◦Mp)(g) = f(pg) = f(p)g = M ′

f(p)(g)

f∗X
A
p = f∗Mp∗A = (f ◦Mp)∗A = M ′

f(p)∗A = X ′Af(p)

Special case: M = G with action δg = rg Then Mg(g
′) = gg′ = lg(g

′)

XA
g = Mg∗A = lg∗A = LAg .

So the left-invariant VFs are induced by right translation.
From definition of induced VF:

LAg (f) =
d

dt
f(g exp tA)

∣∣∣∣
t=0

.

This way of looking at the VFs LA leads to

Theorem (4.9) For A,B ∈ TeG

[LA, LB]e =
d

dt
Adexp tA∗B

∣∣∣∣
t=0

Proof In general (eq. 3.2.20) if φXt is a flow of X on M and Y some other VF then

[X, Y ] = − d

dt
φXt∗Y

∣∣∣∣
t=0

= lim
t→0

1

t

(
Y − φXt∗Y

)
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Here φAt = rexp tA and therefore

[LA, LB]e = lim
t→0

1

t

(
LBe − rexp tA∗LBexp−tA

)
= lim

t→0

1

t
(B − rexp tA∗lexp−tA∗B)

= lim
t→0

1

t
(B − Adexp−tA∗B) = lim

t→0

1

t
(Adexp tA∗B −B)

=
d

dt
Adexp tA∗B

∣∣∣∣
t=0

Theorem (4.11) If a Lie-group G has a right action on a manifold M then A 7→ XA

is a Lie-algebra homomorphism from L(G) into Vfld(M) i.e.

[XA, XB] = X [AB] := X [LA,LB ]e ∀A,B ∈ TeG .

This means a representation of the Lie-group gives a representation of the
Lie-algebra. (This also requires that A 7→ XA is linear which is clear because
XA
p = Mp∗A)

Proof First show XAdg∗A = δg−1∗X
A:

XAdg∗A
p = Mp∗Adg∗A = (Mp ◦ Adg)∗A

(Mp ◦ Adg)(g′) = p(gg′g−1) = (δg−1 ◦Mpg)(g
′)

XAdg∗A
p = (δg−1 ◦Mpg)∗A = δg−1∗X

A
pg

Now use eq 3.2.20 again with the flow δexp tA for XA

[XA, XB] = lim
t→0

1

t

(
XB − δexp tA∗XB

)
= lim

t→0

1

t

(
XB −XAdexp−tA∗B

)
= lim

t→0

1

t
XB−Adexp−tA∗B = lim

t→0

1

t
XAdexp tA∗B−B

= X limt→0(Adexp tA∗B−B)/t = X [LA,LB ]e .

The opposite direction (representation of algebra → representation of group) is
possible if G is simply connected and M is compact (“Palais’ theorem”).
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