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Abstract : In this article, we are interested in viscosity solutions for second-order fully
nonlinear parabolic equations having a L1 dependence in time and associated with nonlinear
Neumann boundary conditions. The main contributions of our study are, not only to treat
the case of nonlinear Neumann boundary conditions, but also to revisit the theory of viscosity
solutions for such equations and to extend it in order to take in account singular geometrical
equations. In particular, we provide comparison results, both for the cases of standard and
geometrical equations, which extend the known results for Neumann boundary conditions even
in the framework of continuous equations.

Résumé : Dans cet article, nous nous intéressons aux solutions de viscosité d’équations
paraboliques fortement non linéaires avec une dépendance L1 en temps, associées à des conditions
de Neumann éventuellement non linéaires. Les contributions de notre étude sont non seulement
de traiter le cas de conditions au bord de Neumann non linéaires, mais aussi de revisiter la
théorie des solutions de viscosité dans le cadre d’équations avec une dépendance L1 en temps
et de l’étendre afin de prendre en compte les équations singulières de type géométriques. En
particulier, nous obtenons des résultats de comparaison qui s’appliquent à la fois à des équations
standard et de type géométrique et qui généralisent les résultats connus pour les conditions aux
limites de Neumann, même dans le cas où l’équation a une dépendance continue en temps.

1 Introduction

In this article, we consider fully nonlinear parabolic equations, having a L1 dependence
in time, associated with nonlinear Neumann boundary conditions. The interest of this
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paper is twofold : first we provide new results, in particular new comparison results, for
nonlinear Neumann boundary conditions which extends those of G. Barles [3] even in the
framework of equations with a continuous dependence in time. Then we revisit viscosity
solutions’ theory for equations, having a L1 dependence in time and we extend it to the
case of singular equations, typically geometrical equations.

In order to be more specific, we consider the following boundary value problem

∂u

∂t
+ F (t, x, u,Du,D2u) = 0 in (0, T )× Ω, (1.1)

L(t, x, u,Du) = 0 on (0, T )× ∂Ω, (1.2)

where T > 0 and Ω is a bounded domain of IRN . The solution u is scalar,
∂u

∂t
, Du, D2u

denote respectively the derivate of u with respect to t, the gradient and the Hessian matrix
of u with respect to the space variable x. The function F is real-valued and defined for
almost every t ∈ (0, T ) and, at least, for every ξ = (x, r, p,X) ∈ Ω×IR×IRN \{0}×S(N),
where S(N) denotes the space of N × N symmetric matrices. For almost every t, it is
continuous with respect to ξ and satisfies t 7→ F (t, ξ) ∈ L1(0, T ) for every ξ.

We always assume that the function F is degenerate elliptic, i.e. for almost every
t ∈ (0, T ), for every (x, r, p) ∈ Ω× IR× IRN \ {0}, and X, Y ∈ S(N)

F (t, x, r, p,X) ≤ F (t, x, r, p, Y ) if X ≥ Y, (1.3)

where ” ≤ ” stands for the usual partial ordering on symmetric matrices.
The function L : [0, T ]×∂Ω×IR×IRN → IR is continuous and satisfies the characteristic

property of a Neumann type condition, namely: for every R > 0, there exists νR > 0,
such that, for every (t, x, p) ∈ [0, T ]× ∂Ω× IRN , |r| ≤ R and λ ≥ 0, one has,

L(t, x, r, p+ λn(x))− L(t, x, r, p) ≥ νRλ, (1.4)

where n(x) is the unit outward normal vector to ∂Ω at x. More precise conditions on the
functions F and L will be given later on.

Our study is motivated by several types of applications: on one hand, by stochastic
optimal control problems of (reflected) diffusion processes with L1 dependence in the data.
The associated Hamilton-Jacobi-Bellman Equations takes the classical form

∂u

∂t
− sup

α∈A

{1

2
Tr(Aα(t, x)D2u) + bα(t, x) ·Du+ cα(t, x)u+ fα(t, x)

}
= 0, (1.5)

where Tr is the trace operator and p1 ·p2 stands for the usual inner product of p1, p2 in IRN .
As in the continuous case, Aα = σασ

T
α , σα, bα, cα, fα are functions defined on (0, T )× Ω

which take values respectively in the sets of N ×m matrices for some m ≥ 1, IRN and IR
and which are continuous (and even Lipschitz continuous) with respect to x ∈ Ω but here
we assume them to have a L1 dependence in time. More precise conditions are given in
the third section.

On the other hand, we consider geometrical equations, arising in the so-called ”level-
set approach” for defining the weak notion of evolution of hypersurfaces with curvature
dependent normal velocities (and angle boundary conditions), i.e.

∂u

∂t
− a(t, x)

(
∆u− D2uDu ·Du

|Du|2

)
+ b(t, x) ·Du = 0 in (0, T )× Ω, (1.6)
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where a : (0, T ) × Ω → IR+ and b : (0, T ) × Ω → IRN are continuous with respect to x
and have a L1 dependence in time. Again precise conditions on these functions are given
in the fourth section.

A well-known particularity of geometrical equations is that they present a singularity
for p = 0 while, in the case of Hamilton-Jacobi-Bellman Equations, F is continuous in
ξ ∈ Ω×IR×IRN×S(N). This implies a different treatment of them and we refer below as
“standard case”, the case when F is defined and continuous for ξ ∈ Ω× IR× IRN ×S(N),
for almost every t ∈ (0, T ), while we refer to the “singular case” when F presents a
singularity for p = 0. Comparison results for each case are described separately in the
third and fourth sections respectively. However, it is worth mentioning that we provide
only one definition of viscosity solutions, which is valid both for the standard and the
singular case.

Concerning the Neumann boundary conditions, in the standard case, the more natural
conditions are either the classical homogeneous Neumann boundary condition, namely

∂u

∂n
= 0 on (0, T ]× ∂Ω, (1.7)

or, more generally, the oblique derivative boundary condition

Du(t, x) · γ(t, x) = Θ(t, x) on (0, T ]× ∂Ω, (1.8)

where γ : [0, T ] × ∂Ω → IRN and Θ : [0, T ] × ∂Ω → IR are continuous functions. The
condition (1.4) holds when the function γ satisfies: for every (t, x) ∈ [0, T ]× ∂Ω,
γ(t, x) · n(x) ≥ α > 0, for some α > 0 .

In the singular case, because of the geometrical aspect, capillarity boundary conditions
are more natural,

Du(t, x) · n(x) = Θ(t, x)|Du(t, x)|, on (0, T ]× Ω, (1.9)

where Θ : [0, T ]× ∂Ω → IR is continuous and satisfies, in order to have (1.4), |Θ(t, x)| ≤
δ < 1, on [0, T ]× ∂Ω. More generally, in the singular case, the function L is supposed to
be independent of r and homogeneous of degree one in p.

The case where F is continuous in time (referred in the sequel as the “classical case”),
was extensively studied, both for equations set in IRN and also with various type of
boundary conditions. We refer the reader to the “Users’ guide” of Crandall, Ishii and
Lions [9] and the books of Bardi and Capuzzo- Dolcetta [1], Barles [7] and Fleming and
Soner [12], for a complete presentation of the theory of viscosity solutions.

The case of geometrical equations was first studied by L.C. Evans et J. Spruck in [10]
for the Mean Curvature Equation and then by Chen, Giga and Goto [8] for more general
equations.

Viscosity solutions for equations with L1-dependences in time were first studied by H.
Ishii [13] for first-order Hamilton-Jacobi equations. In this article, H. Ishii introduces a
definition of viscosity solutions, taking into account the weak regularity of the Hamiltoni-
ans in time; he proves stability and comparison results. Then P.L. Lions and B. Perthame
[16] simplified Ishii’s proofs by using simpler equivalent definitions. The first paper (to
the best of our knowledge) dealing with the second-order case is the one of D. Nunziante
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[17]: she adapts Ishii’s definition to the second-order case and provide a maximum princi-
ple type result in bounded domains for fully nonlinear second-order parabolic equations.
Then, in [18], she studies the existence and uniqueness of unbounded viscosity solutions
for such equations.

Up to now, again to the best of our knowledge, the singular case and the Neumann
boundary conditions have not been studied, when F has a L1 dependence in time.

The study of continuous equations associated with Neumann boundary conditions
started with the work of P.L. Lions [15] on homogeneous Neumann boundary conditions for
first-order Hamilton-Jacobi Equations. In particular, this work contains the first definition
of boundary condition in the viscosity sense and a comparison result in this framework.
These results, still in the first order case, were extended to the case of nonlinear boundary
conditions by G. Barles and P.L Lions [5]. The case of second-order equations was first
considered by Ishii [13] and then by G. Barles [2]: while [13] provides results in the
case of C1-boundaries but rather restrictive assumptions on the boundary conditions, [2]
imposes stronger assumptions on the boundary (W 3,∞) but weaker ones on the boundary
conditions. These results were extended to the case of geometrical equations respectively
by H. Ishii and M.H. Sato [14] and G. Barles [3].

As we point out above, one of the aims of this paper is to revisit the L1 theory for
viscosity solutions of fully nonlinear second-order parabolic equations and to extend it
to the case of geometrical equations and nonlinear Neumann boundary conditions. This
explains the length of this paper and the fact that it is impossible to give an idea of all
the results of this work in this introduction. Thus, we are going to point out only the
main contributions of this article.

First we provide a definition of viscosity solutions of (1.1)-(1.2), consistent with the
classical one, adapting the one given by D. Nunziante in [17]. Then we give several
equivalent definitions, whose interest is to simplify the proofs of different results; a striking
example is the change of variable (a key result in the “level-sets approach”) u → Ψ(u)
where Ψ is a smooth function such that Ψ′ > 0 on IR: whereas this result can be proved
very easily in the classical case, it is much harder in the L1-case because of the specific
form of the test-functions used in the definition. Therefore, it is convenient to provide
a new definition where the space of the test-functions is stable by composition with a
smooth function Ψ.

Of course, a second contribution are the comparison results which are provided both for
the standard and singular case. For the treatment of the Neumann boundary condition,
we use the assumptions of G. Barles [3] and adapt the methods of this paper to our
framework. We point out that these results are obtained using natural hypothesis on F
and L.

These results, even when F is continuous, improved the ones of G. Barles [3] because

we only assume
∂L

∂t
to be in L1 while, in [3], this derivative has to be in L∞.

The paper is organized as follows: in the second section, we introduce a definition
of viscosity solutions for the Neumann problem in the L1 framework, we provide several
equivalent ones and give some properties of these solutions. The third and fourth sections
are devoted to the study of the standard and singular case respectively. In each section,
after describing the precise assumptions used on the functions F and L, we give and prove
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the comparison results.
Our proofs (even without considering the singular case and the Neumann boundary

condition) differ from the ones of D. Nunziante in [17]. In particular, in Section 5, we
show a Maximum Principle type result for viscosity solutions adapted to the L1 theory
and largely inspired of Theorem 3.2 in [9], which can be used independently. The sixth
section is dedicated to the construction of a suitable test-function. In the seventh section,
we provide the proofs of the properties of viscosity solutions given in the first section, of
the auxiliary lemmas given in the second and third sections and deal in details with the
quasilinear case.

2 Definition and properties of viscosity sub and su-

persolution for the Neumann problem

We first introduce some notations. In the sequel, we set Ω−T = (0, T )×Ω, ΩT = (0, T ]×Ω
and ΩT = [0, T ] × Ω. We also use the notations Γ = Ω × IR × IRN × S(N), Γ∗ =
Ω×IR×IRN \{0}×S(N), Σ = Ω×IR×IRN , Σ∗ = Ω×IR×IRN \{0} and ΣT = [0, T ]×Σ,
ΓT = [0, T ]× Γ, Γ∗T = [0, T ]× Γ∗.

For m ≥ 1, if A is a subset of IRm, USC(A) (resp. LSC(A)) is the set of real-valued
upper (resp. lower) semicontinuous functions on A. If A ⊂ ΓT (resp. ⊂ Γ), the notation
A∗ will be used for the set {(t, x, r, p,X) (resp. (x, r, p,X)) ∈ A such that p 6= 0}.

If A is a subset of IR × IRN , we say that f ∈ C1,2
t,x (A) if there exists a function

f̃ : IR × IRN → IR with f(t, x) = f̃(t, x) if (t, x) ∈ A and f̃ is a C1 function in t and C2

in x, all derivatives being continuous on A.
Before providing the definition, we recall that F is assumed to be a locally bounded

degenerate elliptic function, defined for almost every t ∈ (0, T ) and (at least) for every
ξ := (x, u, p,M) ∈ Γ∗ while L is a real-valued function continuous on [0, T ]×∂Ω×IR×IRN .

Definition 2.1 A function u ∈ USC(ΩT ) (resp. ∈ LSC(ΩT )) is a viscosity subsolution
(resp. supersolution) of (1.1)-(1.2) in ΩT , if and only if
for every (t0, x0) ∈ ΩT , b ∈ L1(0, T ), ϕ ∈ C1,2

t,x (ΩT ) and G ∈ C(ΓT ), such that the function

(t, x) 7→ u(t, x) +

∫ t

0

b(s)ds− ϕ(t, x), has a local maximum point (resp. minimum point)

at (t0, x0) and such that

b(t) +G(t, ξ) ≤ F (t, ξ), (resp. ≥) (2.1)

for almost every t ∈ (0, T ) in some neighborhood of t0 and for every ξ ∈ Γ∗ in some
neighborhood of ξ0 = (x0, u(t0, x0), p0, X0), p0 = Dϕ(t0, x0), X0 = D2ϕ(t0, x0), then

α0 :=
∂ϕ

∂t
(t0, x0) +G(t0, ξ0) ≤ 0 (resp. ≥ 0) if x0 ∈ Ω, (2.2)

min (resp. max)

(
α0, L(t0, x0, u(t0, x0), p0)

)
≤ 0 (resp. ≥ 0) if x0 ∈ ∂Ω. (2.3)

A locally bounded function u in ΩT is said to be a solution of (1.1)-(1.2) in ΩT , if u∗ and
u∗ are respectively subsolution and supersolution of (1.1)-(1.2) in ΩT .
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It is worth pointing out that the above definition does not use the upper and lower
semicontinuous envelope of F as the classical definition does but this fact is hidden in the
roles of G and b. In particular, the possible singularity for p = 0 is taken in account by
the inequalities (2.1) for which we remark that they have to hold only for ξ ∈ Γ∗.

Despite of this rather complicated definition, the classical basic reductions or exten-
sions in the definition hold as in the classical case : we may assume that u(t0, x0) +∫ t0

0
b(s)ds = ϕ(t0, x0), the space C1,2

t,x (ΩT ) may be replaced by C∞t,x(ΩT ) and we can also
assume that we have a strict maximum (resp. minimum) point.

2.1 A characterization in terms of sub and superdifferential

In order to give an equivalent definition in terms of sub and superdifferential, we recall
the following notions. If I ⊂ IR and U ⊂ IRm (m ≥ 1) and if v is a real-valued function
defined in I×U , for (t0, x0) ∈ I×U , we denote by P2,+

I×Uv(t0, x0) (resp. P2,−
I×U), the subset

of IR× IRm ×S(m), defined as follows : (a, p,X) ∈ P2,+
I×Uv(t0, x0) (resp. P2,−

I×Uv(t0, x0)) if,
for every (t, x) ∈ I × U , we have

v(t, x) ≤ v(t0, x0) + a(t− t0) + p · (x− x0) +
1

2
X(x− x0) · (x− x0) + o(|t− t0|+ |x− x0|2),

(resp. ≥).

Moreover, we say that (a, p,X) ∈ P2,+

I×Uv(t0, x0) (resp. P2,−
I×U), if there exists a sequence

((tk, xk))k converging to (t0, x0) and (ak, pk, Xk) ∈ P2,+
I×Uv(tk, xk) (resp. P2,−

I×Uv(tk, xk))
such that

(ak, pk, Xk) → (a, p,X) .

Finally, if I = IR and U = IRm, we set to simplify P2,+, P2,−,P2,+
and P2,−

.

Proposition 2.1 A function u ∈ USC(ΩT ) (resp. ∈ LSC(ΩT )) is a subsolution (resp.
supersolution) of (1.1)-(1.2) in ΩT , if and only if

for every (t0, x0) ∈ ΩT , b ∈ L1(0, T ), (a0, p0, X0) ∈ P
2,+

ΩT

(
u(t0, x0) +

∫ t0
0
b(s)ds

)
(resp.

P2,−
ΩT

), G ∈ C(ΓT ), such that (2.1) holds then (2.2) and (2.3) hold.

2.2 A new space of test-functions

As we mentioned it in the introduction, Definition 2.1 which essentially relies on test-
functions with separated variables, may not be convenient to prove some results : for
example, if u is a solution of some equation, it is not so clear that χ(u) is a solution of
the transformed equation, even if χ is a smooth, strictly increasing function.

To produce a more convenient definition, we first introduce some notations. If g :
IR× IR+ → IR+, we say that g ∈M if it satisfies

t 7→ g(t, r) ∈ L1
loc(IR) for all r ≥ 0, g(·, r) → 0 when r → 0, in L1

loc(IR),

r → g(t, r) is non-decreasing in IR+, for almost every t ∈ IR. (2.4)
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In the same way, a function f : IR× IRN → IR is in the space C2
s if it satisfies

∀t ∈ IR, x 7→ f(t, x) ∈ C2(IRN), with f, Df, D2f ∈ C(IR× IRN).

Finally, the space H is defined by : ϕ ∈ H if ϕ ∈ C2
s and if, in the sense of distributions,

∂ϕ

∂t
(., x) ∈ L1

loc(IR), |∂ϕ
∂t

(., x)− ∂ϕ

∂t
(., y)| ≤ gϕ(., |x− y|), ∀x, y ∈ IRN (2.5)

for some gϕ ∈M.
One checks easily that the functions of this spaceH have the following (clear) property.

Lemma 2.1 For every ϕ ∈ H and ψ ∈ C2(IR), ψ ◦ ϕ ∈ H.

Then, we have the following proposition, providing an equivalent definition using H as
space of test-functions.

Proposition 2.2 A function u ∈ USC(ΩT ) (resp. ∈ LSC(ΩT )) is a subsolution (resp.
supersolution) of (1.1)-(1.2) in ΩT , if and only if
for every (t0, x0) ∈ ΩT , ϕ ∈ H and G ∈ C(ΓT ) such that the function u − ϕ has a local
maximum point (resp. minimum point) at (t0, x0) and such that

G(t, ξ) ≤ ∂ϕ

∂t
(t, x) + F (t, ξ), (resp. ≥) (2.6)

for almost every t ∈ (0, T ) in some neighborhood of t0 and for every ξ ∈ Γ∗ in some
neighborhood of ξ0, then

G(t0, ξ0) ≤ 0 (resp. ≥ 0) if x0 ∈ Ω, (2.7)

min(resp. max)

(
G(t0, ξ0), L(t0, u(t0, x0), x0, p0)

)
≤ 0 (resp. ≥ 0) if x0 ∈ ∂Ω. (2.8)

2.3 Further Remarks and Results

We first remark that all the above equivalent definitions are consistent with the classical
definition when F is continuous in time. We consider two cases, corresponding respectively
to the standard and singular one.
(i) F ∈ C(ΓT ).
(ii) F ∈ C(Γ∗T ) is locally bounded in Γ∗T and

F ∗(t, x, r, 0, 0) = F∗(t, x, r, 0, 0), ∀ (t, x, r) ∈ [0, T ]× Ω× IR.

Proposition 2.3 Assume that F satisfies (i) or (ii), with, in this latter case, L being
homogeneous of degree 1 in p. Then the classical and the L1- notions of viscosity sub and
supersolutions are equivalent.

The proof of this result is given in Section 7.
The next remark consists in comparing viscosity sub and supersolutions of (1.1)-(1.2)

in Ω−T and in ΩT : it is a standard result in the classical framework that locally bounded
subsolution and supersolution of (1.1)-(1.2) in Ω−T are in fact sub and supersolutions in
ΩT .
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Proposition 2.4 Assume that, for every compact subset K of Γ, one has

sup
ξ∈K∗

|F (., ξ)| ∈ L1(0, T ), (2.9)

and that L is continuous on ΣT , then a subsolution (resp. supersolution) u of (1.1)-(1.2)
in Ω−T which is locally bounded up to time T , is a subsolution (resp. supersolution) of
(1.1)-(1.2) in ΩT .

The proof of this result is also given in Section 7.
Finally we present a results on a change of variables which leads to simplifications in

the proof of the comparison results below.

Proposition 2.5 Let u ∈ USC(ΩT ) (resp. v ∈ LSC(ΩT )) a subsolution (resp. superso-
lution) of (1.1)-(1.2) in ΩT . For every γ ∈ L1(0, T ), (x, r, p,X) ∈ Γ∗ and almost every
t ∈ (0, T ), we set

uγ(t, x) = e∫
t
0 γ(s)dsu(t, x), vγ(t, x) = e∫

t
0 γ(s)dsv(t, x),

Fγ(t, x, r, p,X) = −γ(t)r + e∫
t
0 γ(s)dsF (t, x, re−∫

t
0 γ(s)ds, pe−∫

t
0 γ(s)ds, Xe−∫

t
0 γ(s)ds),

Lγ(t, x, r, p) = e∫
t
0 γ(s)dsL(t, x, re−∫

t
0 γ(s)ds, pe−∫

t
0 γ(s)ds), (2.10)

then uγ (resp. vγ) is a subsolution of (1.1)-(1.2), with (Fγ, Lγ), in ΩT .

We leave the proof of this result to the reader : it is rather straightforward by using
Proposition 2.2.

3 Comparison Result I : the Standard Case

In this section, F is defined for almost every t ∈ (0, T ) and for every ξ ∈ Γ; F is also
continuous in ξ for almost every t. The following conditions on the function F are the
natural adaptations to the L1-case from the conditions given by G. Barles [3] for the
classical one. We use below the notations : a ∨ b = max(a, b) and a ∧ b = min(a, b).
(H0) F (., χ) ∈ L1(0, T ), for every χ ∈ Γ.
(H1) For any R > 0, there exists γR ∈ L1(0, T ) such that

F (t, x, r, p,X)− F (t, x, z, p,X) ≥ γR(t)(r − z),

for almost every t ∈ (0, T ), for every r, z ∈ IR, such that −R ≤ z ≤ r ≤ R, and for every
(x, p,X) ∈ Ω× IRN × S(N).
(H2) For any R > 0, there exists mR ∈M, such that, for every 0 < ν, ε ≤ 1

F (t, y, r, q, Y )− F (t, x, r, p,X) ≤ mR

(
t, ν + |x− y|(1 + |p| ∨ |q|)

)
, (3.1)

for almost all t ∈ (0, T ) , for any x, y ∈ Ω, p, q ∈ IRN , r ∈ IR with |r| ≤ R and for any
matrices X, Y ∈ S(N), satisfying the following properties(

X 0
0 −Y

)
≤ 1

ε2

(
Id −Id
−Id Id

)
+ νId, (3.2)

|p− q| ≤ min
(
νε(1 + |p| ∧ |q|), ν

)
, (3.3)

|x− y| ≤ νε. (3.4)
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(H3) For every R > 0, there exists gR ∈M, such that

|F (t, x, r, p,X)− F (t, x, z, p,X)| ≤ gR(t, |r − z|), (3.5)

for almost every t ∈ (0, T ), for every r, z ∈ IR, x ∈ Ω, p ∈ IRN , X ∈ S(N) with
|r| ∨ |z| ∨ |p| ∨ ||X|| ≤ R.

For the function L, the following assumptions are used.
(H4) For any R > 0, there exists νR > 0, such that, for any λ ≥ 0, t ∈ [0, T ], x ∈ ∂Ω,
−R ≤ z ≤ r ≤ R, p ∈ IRN , one has

L
(
t, x, r, p+ λn(x)

)
− L(t, x, z, p) ≥ νR λ,

where n(x) denotes the unit outward normal vector to ∂Ω at x.
(H5) For any R > 0, there exists CR > 0 such that, for every t ∈ [0, T ], x, y ∈ ∂Ω,
p, q ∈ IRN , r, z ∈ IR, with |r| ∨ |z| ≤ R, one has

|L(t, x, r, p)− L(t, y, z, q)| ≤ CR

((
1 + |p|+ |q|

)
|x− y|+ |r − z|+ |p− q|

)
.

(H6) For any R > 0, there exists a nonnegative function hR ∈ L1(0, T ), such that, for
every 0 ≤ t ≤ s ≤ T , |r| ≤ R, x ∈ ∂Ω and p ∈ IRN , one has

|L(t, x, r, p)− L(s, x, r, p)| ≤ (1 + |p|)
∫ s

t

hR(w)dw.

Finally, the assumption on the domain Ω is the following.
(H7) Ω is a bounded domain with a W 3,∞-boundary.

The comparison result is the following.

Theorem 3.1 (comparison result in the standard case)
Assume that u, v : ΩT → IR are respectively a bounded upper semicontinuous subsolution
and a bounded lower semicontinuous supersolution of (1.1)-(1.2) in ΩT . If F, L and Ω
satisfy conditions (H0)-(H7) and if u(0, .) ≤ v(0, .) in Ω, then

u ≤ v in ΩT . (3.6)

Before providing the proof of Theorem 3.1, we point out easy consequences of it. First,
if F ∈ C(ΓT ) satisfies the conditions given in [3] and conditions (H4)-(H6) hold for L,
then Theorem 3.1 applies; it is worth point out that (H6) is a weaker requirement on L
than in [3] where it was supposed to be locally Lipschitz in time.

Next we come back on the Hamilton-Jacobi-Bellman Equation (1.5) and the conditions
on Aα = σασ

T
α , σα, bα, cα, fα in order to have the assumptions of Theorem 3.1 being

satisfied for this equation. A natural condition is the existence of g ∈ L1(0, T ) such that,
for every α, ψ = bα, cα, fα satisfies, for almost every t ∈ (0, T ) and for every x, y ∈ Ω

|ψ(t, x)| ≤ g(t), |ψ(t, x)− ψ(t, y)| ≤ g(t)|x− y| , (3.7)

while, for σα, this inequality has to be satisfied with some g ∈ L2(0, T ).
In the proof of Theorem 3.1 below, we are going to regularize F ; this is why we require

the unusual additional condition (H3) and this is also partly the role of (H2). A precise
result in this direction is the following lemma proved in Section 7.
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Lemma 3.1 Assume that F satisfies (H0), (H2) and (H3) then F is degenerate elliptic.
Moreover, if K is a compact subset of Γ, we have

sup
χ∈K

|F (., χ)| ∈ L1(0, T ), (3.8)

and
hr

K(.) := sup
(ξ1, ξ2) ∈ K2

|ξ1 − ξ2| ≤ r

|F (., ξ1)− F (., ξ2)| ∈ L1(0, T ), (3.9)

and satisfies
hr

K(.) → 0 in L1(0, T ) as r → 0. (3.10)

Proof of Theorem 3.1 : As in the standard case, the proof relies on the construction of
a suitable test-function (cf Lemma 6.1) and a suitable extension of the Maximum Principle
for viscosity solutions (cf. Lemma 5.1). As in the classical case, we argue by contradiction
by assuming that

max
ΩT

(u− v) = M > 0. (3.11)

0. First, since u and v are bounded, we can set R := max(||u||∞, ||v||∞) and drop any
dependence in R in all the modulus and functions appearing in assumptions (H0)-(H6).
Moreover, by Proposition 2.5, we can assume w.l.o.g. that γR ≡ 0 in (0, T ) in condition
(H1). Finally we denote by K̃, h̃ and δ the constants and function appearing in Lemma
6.1
1. For ε > 0, we consider the following compact subset of Γ

Iε =

{
(x, r, p,X) ∈ Γ, such that |r| ≤ R + 1, |p| ≤ 1

ε
, ||X|| ≤ 1

ε5

}
. (3.12)

Next we introduce a sequence (ρn)n≥1 of smooth mollifiers, satisfying, for every n ≥ 1,

ρn ∈ D(IR), supp(ρn) ⊂ (− 1

n
,
1

n
),

∫
IR

ρn(s)ds = 1 and ρn ≥ 0 on IR.

If (ρn)n≥1 is such a sequence and h ∈ L1(0, T ), we introduce the sequence (hn)n as follows :
we first extend h to a L1(IR) function, extending it by 0 for t 6∈ (0, T ) and still denoting
by h this extension. Then we set hn = h ∗ ρn. For n ≥ 1, we define the functions Fn, mn,
gn, by Fn(., ξ) = (F (., ξ))n, mn(., s) = (m(., s))n and gn(., s) = (g(., s))n, for every ξ ∈ Γ
and s ∈ IR+.

By standard arguments, it is easy to show that, if F satisfies conditions (H0), (H2)
and (H3), then the following holds : for every n ∈ IN , Fn ∈ C(ΓT ) satisfies (H2) and
(H3) with mn, gn and for every compact subset K of Γ and for any n ∈ IN , we have

sup
χ∈K

|Fn(., χ)− F (., χ)| → 0 in L1(0, T ). (3.13)

2. For ε > 0, for almost every t ∈ (0, T ), we set bεn(t) = −sup
ξ∈Iε

|Fn(t, ξ)− F (t, ξ)|. By the

above recalled properties, for every n ∈ IN and ε > 0, Fn ∈ C(ΓT ) and bεn ∈ L1(0, T ).
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Moreover, for every ε > 0 fixed, ||bεn||L1(0,T ) → 0. Therefore, for every ε > 0, we can choose
nε ∈ IN , such that

||bεnε
||L1(0,T ) ≤ ε. (3.14)

For the sake of simplicity of notations, from now on, we write bε instead of bεnε
and Fε

instead of Fnε . By the definition of bε, we clearly have, for almost every t ∈ (0, T ) and for
every ξ ∈ Iε

bε(t) + Fε(t, ξ) ≤ F (t, ξ), −bε(t) + Fε(t, ξ) ≥ F (t, ξ). (3.15)

3. For 0 < ε ≤ ν ≤ 1, for almost every t ∈ (0, T ), we set mν(t) = m
(
t, (2K̃

3
2 + 1)ν

)
and

mν,ε = mnε,ν , where we recall that m appears in condition (H2) on F . As mR ∈ H, it
is clear that mν,ε ∈ C(IR). Let ψν,ε ∈ C2

s the function given by Lemma 6.1, we define the
function Φν,ε ∈ C2

s , for (t, x, y) ∈ IR× IRN × IRN , by

Φν,ε(t, x, y) = ψν,ε(t, x, y) + ν

∫ t

0

h̃(s)ds+

∫ t

0

mν,ε(s)ds+ νt.

Then, we consider the function defined, for t ∈ [0, T ], (x, y) ∈ Ω× Ω, by

Ψν,ε(t, x, y) = u(t, x) +

∫ t

0

bε(s)ds−
(
v(t, y)−

∫ t

0

bε(s)ds

)
− Φν,ε(t, x, y). (3.16)

As Ψν,ε ∈ USC([0, T ] × Ω × Ω), it achieves its maximum over [0, T ] × Ω × Ω at some
point (tν,ε, xν,ε, yν,ε). And to simplify, we set (t̄, x̄, ȳ) = (tν,ε, xν,ε, yν,ε). In the sequel, we
set px = DxΦν,ε(t̄, x̄, ȳ), py = DyΦν,ε(t̄, x̄, ȳ) and A = D2Φν,ε(t̄, x̄, ȳ).
4. As mR ∈M, we can choose ν > 0 small enough, such that

||mε,ν ||L1(0,T ) + ν||h̃||L1(0,T ) + νT ≤ δ

2
. (3.17)

With this choice of ν, classical arguments allow to prove that we have

|x̄− ȳ|
ε

→ 0 as ε→ 0, (3.18)

u(t̄, x̄)− v(t̄, ȳ) ≥M − δ > 0, t̄ > 0, for ε small enough. (3.19)

Noticing that px = Dxψν,ε(t̄, x̄, ȳ), py = Dyψν,ε(t̄, x̄, ȳ), A = D2ψν,ε(t̄, x̄, ȳ), Lemma 6.1
show that, for 0 < ε ≤ ν ≤ 1 small enough, we have

|px| ∨ |py| < ε−1, ||A|| < 3K̃ε−2, (3.20)

L(t̄, x̄, u(t̄, x̄), px) > 0 if x̄ ∈ ∂Ω, (3.21)

L(t̄, ȳ, v(t̄, ȳ),−py) < 0 if ȳ ∈ ∂Ω. (3.22)

By (3.18), for ε small enough, |x̄− ȳ| ≤ νε and therefore, inequality (6.6) in Lemma 6.1,

shows that
∂ψν,ε

∂t
(., x, y) ≥ −νh̃ in D′(0, 2T ), for every (x, y) ∈ B νε

2
,Ω(x̄, ȳ). This implies

the following inequality

∂Φν,ε

∂t
(., x, y) ≥ mν,ε(.) + ν in D′(0, 2T ), for all (x, y) ∈ B νε

2
,Ω(x̄, ȳ). (3.23)
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5. Next we use Lemma 5.1. We choose ∆ = ε−5. By (3.20), it is clear that for ε small
enough, we have ∆ > 3||A||. Then, let (X, Y ) ∈ (S(N))2, with ||X|| ∨ ||Y || ≤ ∆. By
(3.20), for every (x, r, p), (y, v, q) in Σ∗ closed enough to (x̄, u(t̄, x̄), px) and (ȳ, v(t̄, ȳ),−py)
respectively, we have (x̄, u(t̄, x̄), px, X), (ȳ, v(t̄, ȳ),−py, Y ) ∈ Iε. And therefore, (3.15)
shows (5.2) and (5.3), with b1 = −b2 = bε, G1 = G2 = Fε. Thus, using also (3.18),
(3.21), (3.22) and (3.23), we can use Lemma 5.1 with ϕ = ψν,ε, ∆, b1, b2, G1, G2 and with
ϑ = mν,ε + ν. Therefore, there exists (a, b) ∈ IR2, (X, Y ) ∈ (S(N))2, such that

(a, px, X) ∈ P2,+

ΩT

(
u(t̄, x̄) +

∫ t̄

0

bε(s)ds

)
, (3.24)

(b,−py, Y ) ∈ P2,−
ΩT

(
v(t̄, ȳ)−

∫ t̄

0

bε(s)ds

)
, (3.25)

a− b ≥ mν,ε(t̄) + ν, (3.26)

−
(

1

3ε5
+ ||A||

)
Id ≤

(
X 0
0 −Y

)
≤ A+ 3ε5A2. (3.27)

From inequalities (3.20) and (3.27), it is easy to show that, for ε small enough,

max(||X||, ||Y ||) ≤ 1

3ε5
+ ||A|| < 2

3ε5
. (3.28)

Therefore, by (3.12), (3.20) and (3.28), if ξ, ξ′ ∈ Γ are closed enough to (x̄, u(t̄, x̄), px, X)
and (ȳ, v(t̄, ȳ),−py, Y ) respectively, then ξ, ξ′ ∈ Iε. This shows that the inequalities (3.15)
hold true for almost every t in some neighborhood of t̄ in (0, T ), for every ξ, ξ′ ∈ Γ in
some neighborhood of (x̄, u(t̄, x̄), px, X) and (t̄, v(t̄, ȳ),−py, Y ), respectively.
6. Since u and v are respectively subsolution and supersolution of (1.1)-(1.2) in ΩT , we
get using (3.21) and (3.22) and then (3.15), (3.24), (3.25)

a+ Fε(t̄, x̄, u(t̄, x̄), px, X) ≤ 0, b+ Fε(t̄, ȳ, v(t̄, ȳ),−py, Y ) ≥ 0.

We have used in the above inequalities that Fε ∈ C(ΓT ). Moreover since (H1) holds with
γR ≡ 0, this implies by (3.19) and (3.26)

mν,ε(t̄) + ν ≤ Aε,ν := Fε(t̄, ȳ, v(t̄, ȳ),−py, Y )− Fε(t̄, x̄, v(t̄, ȳ), px, X). (3.29)

7. To estimate Aε,ν , we are going to use condition (H2) on Fε. To this end, we need the
following technical lemma, the proof of which is postponed.

Lemma 3.2 For ε small enough, (X, Y ), (x̄, ȳ) , (px,−py) satisfy conditions (3.2), (3.3)
and (3.4) of (H2), with (ε, ν) replaced by (ε̃, ν̃), where

ε̃ = εK̃−1/2, ν̃ = 2K̃
3
2ν.

Thanks to Lemma 3.2, we can use (H2) for Fε to get, for ε small enough,

Aε,ν ≤ mnε,R

(
t̄, 2K̃

3
2ν + |x̄− ȳ|(1 + |px| ∨ |py|)

)
, (3.30)

≤ mnε,R

(
t̄, 2K̃

3
2ν + 2

|x̄− ȳ|
ε

)
by (3.20), (3.31)

≤ mnε,R

(
t̄, (2K̃

3
2 + 1)ν

)
= mν,ε(t̄) by (3.18). (3.32)
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This gives a contradiction with (3.29) and the proof of Theorem 3.1 is then complete.

Now, it remains to provide the proof of Lemma 3.2: inequality (3.20) shows that,
for ε small enough,

3ε5||A||2 ≤ 27K̃2ε ≤ K̃ν. (3.33)

Therefore, inequalities (3.27), (3.33) and property (6.5) on the function ψν,ε, imply that(
X 0
0 −Y

)
≤ A+ 3ε5A2

≤ K̃

ε2

(
Id −Id
−Id Id

)
+ 2K̃νId. (3.34)

This shows that (X,Y) satisfies (3.2), with (ε̃, ν̃), as K̃ ≥ 1.
Let us prove now that (px,−py) satisfy (3.3), with (ε̃, ν̃). By (6.4), we have

|px + py| ≤ K̃
|x̄− ȳ|2

ε2
+ K̃νε. (3.35)

And therefore, using (3.18), it is clear that, for ε small enough, |px + py| ≤ 2K̃
3
2ν. On

another hand, by (6.2), we have for ε small enough,

|x̄− ȳ|
ε2

≤ K̃|px| ∧ |py|+ K̃2. (3.36)

Inequalities (3.18), (3.35) and (3.36) imply that, for ε small enough, the following inequal-
ities hold

|px + py| ≤ K̃
|x̄− ȳ|2

ε2
+ K̃νε,

≤ K̃2|x̄− ȳ|(|px| ∧ |py|) + K̃3|x̄− ȳ|+ K̃νε,

≤ 2K̃νε(1 + |px| ∧ |py|) = ν̃ε̃(1 + |px| ∧ |py|). (3.37)

This ends the proof of Lemma 3.2.

4 Comparison Result II : the Singular Case

As in the standard case, the following conditions on the function F are naturally adaptated
to the L1-case from the conditions given by G. Barles in [3].

We denote by conditions (H0-2), (H1-2) the conditions (H0), (H1) where we also
suppose that p 6= 0.

The conditions (H2) and (H3) are replaced by the following ones
(H2-2) For any R > 0, there exists mR ∈M, such that, for all 0 < ν ≤ 1

F (t, y, r, q, Y )− F (t, x, r, p,X) ≤ mR

(
t, ν + |x− y|(1 + |p| ∨ |q|)

)
, (4.1)
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for almost all t ∈ (0, T ) , for any x, y ∈ Ω, p, q ∈ IRN \ {0}, r ∈ IR, |r| ≤ R, 0 < ε and for
any matrices X, Y ∈ S(N), satisfying the following properties(

X 0
0 −Y

)
≤ ν

ε2

(
Id −Id
−Id Id

)
+ νId, (4.2)

|p− q| ≤ min
(
ε(|p| ∧ |q|), ν

)
, (4.3)

|x− y| ≤ νε. (4.4)

(H3-2) For every R > 0 and α > 0, there exists gα
R ∈M, such that

|F (t, x, u, p,X)− F (t, x, v, p,X)| ≤ gα
R(t, |u− v|), (4.5)

for almost every t ∈ (0, T ), for every u, v ∈ IR, x ∈ Ω, p ∈ IRN \ {0}, X ∈ S(N) with
|u| ∨ |v| ∨ |p| ∨ ||X|| ≤ R and |p| ≥ α.

We also need some information on the possible singularity of F at p = 0. It is the object
of the following condition on F which corresponds, in the case where F is continuous in
time, to the assumption (ii) of Proposition 2.3.
(H2-3) There exists a function f : (0, T )×Ω× IR→ IR, such that, for every R > 0, there
exists kR ∈M, with

|F (t, x, r, p,X)− f(t, x, r)| ≤ kR(t, |p|+ ||X||), (4.6)

for almost all t ∈ (0, T ), for every |r| ≤ R, p ∈ IRN \ {0} and X ∈ S(N).
The function f satisfies the following property,

for every R > 0, there exists fR ∈ M, such that, for almost every t ∈ (0, T ), for every
x, y ∈ Ω and r, z ∈ IR, with |r| ∨ |z| ≤ R, one has

|f(t, x, r)− f(t, y, z)| ≤ fR

(
t, |x− y|+ |r − z|

)
. (4.7)

For the function L, we modify the above assumptions as follows : L is independent of
r ∈ IR and homogeneous of degree 1 in p and we say that L satisfies (H4-2), (H5-2),
(H6-2) respectively if it satisfies (H4), (H5), (H6) with νR, CR, hR independent of R
(and dropping, of course, the |u−v| term in the left-hand side of the inequality in (H5)).

The result is the following.

Theorem 4.1 (comparison result in the singular case)
Assume that u, v : ΩT → IR are respectively a bounded upper semicontinuous subsolu-
tion and a bounded lower semicontinuous supersolution of (1.1)-(1.2) in ΩT . If Ω sat-
isfies (H7), F , L satisfy conditions (H0-2)-(H6-2) and and condition (H2-3) and if
u(0, .) ≤ v(0, .) in Ω, then

u ≤ v in ΩT . (4.8)

As in the case of Theorem 3.1, we point out easy consequence of Theorem 4.1. Again,
if F ∈ C(Γ∗T ) satisfies the conditions given in [3] and L conditions (H4-2)-(H6-2), then
Theorem 4.1 applies and we still notice that (H6-2) is a weaker requirement on L than
in [3] where it was supposed to be locally Lipschitz continuous in time.
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We come back to the geometric equation (1.6): the assumptions of Theorem 4.1 hold
for (1.6) if a := σσT with σ satisfying (3.7) with g ∈ L2(0, T ) while b has to satisfy it
with g ∈ L1(0, T ).

As in the proof of Theorem 3.1, we are going to regularize F but we have this time to
take care of the singularity for p = 0. The following lemma is the analogue of Lemma 3.1.

Lemma 4.1 Assume that F satisfies (H0-2), (H2-2) and (H2-3). For every compact
subset K of Γ, then (3.8)-(3.9)-(3.10) with K replaced by K∗. Moreover, if f is the
function given in condition (H2-3), then for every R > 0, we have

sup
z∈QR

|f(., z)| ∈ L1(0, T ),

where we have set QR = Ω× [−R,+R].

Proof of Theorem 4.1: The proof of Theorem 4.1 follows essentially from the same
ideas as the proof of Theorem 3.1 and we use the same notations, in particular for the
regularization procedure; it is based on the Lemmas 5.1, 5.2 and 6.1.
0. First, since u and v are bounded, we can set R := max(||u||∞, ||v||∞) and drop any
dependence in R in all the modulus and functions appearing in assumptions (H0-2)-
(H3-2). Moreover, by Proposition 2.5, we can assume w.l.o.g. that γR ≡ 0 in (0, T ) in
condition (H1-2).
1. We argue by contradiction by assuming that

max
ΩT

(u− v) = M > 0. (4.9)

2. For ε > 0, we consider the following compact subsets of Γ∗ and Γ respectively,

Jε = {(x, r, p,X) ∈ Γ, |r| ≤ R + 1, ε6 ≤ |p| ≤ ε−1, ||X|| ≤ ε−4}, (4.10)

Kε = {(x, r, p,X) ∈ Γ, |r| ≤ R + 1, |p|+ ||X|| ≤ ε}. (4.11)

For n ∈ IN , ε > 0, for almost every t ∈ (0, T ), we set

kε(t) = −kR+1(t, ε), cn(t) = − sup
z∈KR+1

|f(t, z)− fn(t, z)|,

bεn(t) = −sup
ξ∈Jε

|F (t, ξ)− Fn(t, ξ)|. (4.12)

By standard arguments, one shows that, for every n ∈ IN and ε > 0, cn, b
ε
n ∈ L1(0, T ),

with for every ε > 0

||cn||L1(0,T ) → 0, ||bεn||L1(0,T ) → 0, as n→ +∞. (4.13)

Therefore, for any ε > 0, we can choose nε ∈ IN , such that

||cnε||L1(0,T ) + ||bεnε
||L1(0,T ) ≤ ε. (4.14)

If we set Fε = Fnε where Fnε is the regularization in time of F by convolution as in the
step 1 of Theorem 3.1, then it is not difficult to show that Fε is continuous on Jε and can
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be extended as a continuous function on ΓT . In the sequel we set, for ε > 0, fε = fnε and
dε = bεnε

+ cnε + kε. By Lemma 4.1, we have for every ε > 0, fε ∈ C(IR × Ω × IR). As
kR+1 ∈M, ||kε||L1(0,T ) → 0, as ε→ 0 and combining it with (4.14), we get

||dε||L1(0,T ) →
ε→0

0. (4.15)

It is clear, using that dε ≤ bεnε
a.e. in (0, T ), that for almost every t ∈ (0, T ) and for every

ξ ∈ Jε, one has

dε(t) + Fε(t, ξ) ≤ F (t, ξ), −dε(t) + Fε(t, ξ) ≥ F (t, ξ). (4.16)

Then, condition (H2-3) on F , implies that for every ξ = (x, r, p,X) ∈ K∗
ε , for almost

every t ∈ (0, T ),
|F (t, ξ)− f(t, x, r)| ≤ kR+1(t, ε) = −kε(t).

Therefore, using that dε ≤ cnε +kε a.e. in (0, T ), the following inequalities hold, for almost
every t ∈ (0, T ) and for every ξ = (x, r, p,X) ∈ K∗

ε ,

dε(t) + fε(t, x, r) ≤ F (t, ξ), −dε(t) + fε(t, x, r) ≥ F (t, ξ). (4.17)

Now, as we have supposed γ ≡ 0 in (H1-2), for every ε > 0, (t, x, p,X) ∈ IR×Ω× IRN \
{0} × S(N), r, z ∈ IR, with r ≤ z, the following inequality holds

Fε(t, x, r, p,X) ≤ Fε(t, x, z, p,X). (4.18)

3. For 0 < ε ≤ ν ≤ 1, for almost every t ∈ (0, T ), we set mν(t) = mR(t, 2ν) + fR(t, ν)
and mν,ε(t) = mν,nε(t). As mR, fR ∈ H, it is clear that, mν,ε ∈ C(IR). We define the
function Φν,ε ∈ C2

s , for every (t, x, y) ∈ IR× IRN × IRN , by

Φν,ε(t, x, y) =

(
ψν,ε(t, x, y) + 2K̃νε

)6

+ ν

∫ t

0

h̃(s)ds+

∫ t

0

mν,ε(s)ds+ νt.

Then, we consider the function defined, for t ∈ [0, T ] and (x, y) ∈ Ω× Ω, by

Ψν,ε(t, x, y) = u(t, x) +

∫ t

0

dε(s)ds−
(
v(t, y)−

∫ t

0

dε(s)ds

)
− Φν,ε(t, x, y). (4.19)

As Ψν,ε ∈ USC([0, T ] × Ω × Ω), it achieves its maximum over [0, T ] × Ω × Ω at a
point (tν,ε, xν,ε, yν,ε). To simplify, we set (t̄, x̄, ȳ) = (tν,ε, xν,ε, yν,ε). In the sequel, qx =
DxΦν,ε(t̄, x̄, ȳ), qy = DyΦν,ε(t̄, x̄, ȳ) and A = D2Φν,ε(t̄, x̄, ȳ).
4. Now we use Lemma 6.1. Since mR, fR ∈ M, we can choose ν > 0 small enough, such
that

||mν ||L1(0,T ) + ν||h̃||L1(0,T ) + νT ≤ M

2
.

With this choice of ν, using again standard arguments, we have

|x̄− ȳ|
ε

→ 0 as ε→ 0, (4.20)

u(t̄, x̄)− v(t̄, ȳ) >0, t̄ > 0 for ε small enough. (4.21)
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5. Easy computations gives qx = βν,εDxψν,ε(t̄, x̄, ȳ) and qy = βν,εDyψν,ε(t̄, x̄, ȳ) with

βν,ε = gνε(t̄, x̄, ȳ) where gνε is given by gνε(t, x, y) = 6
(
ψν,ε(t, x, y) + 2K̃νε

)5

. Property

(6.1) on F shows that 0 < βνε, for every ε small enough. Therefore, (4.20), properties
(6.9), (6.10) and the fact that L is homogeneous of degree 1 in p, show that, for ε small
enough

L(t̄, x̄, u(t̄, x̄), qx) > 0 if x̄ ∈ ∂Ω, (4.22)

L(t̄, ȳ, v(t̄, ȳ),−qy) < 0 if ȳ ∈ ∂Ω. (4.23)

For almost every t ∈ IR and for every (x, y) ∈ IRN × IRN , we have

∂Φνε

∂t
(t, x, y) = gνε(t, x, y)

∂ψνε

∂t
(t, x, y) + νh̃(t) +mν,ε(t) + ν, (4.24)

Using (4.20), for ε small enough |x̄− ȳ| ≤ νε

2
, and therefore if (x, y) ∈ B νε

2
,Ω(x̄, ȳ), then

|x − y| ≤ 2νε. This shows at first, by property (6.1), that for ε small enough, for every
t ∈ IR, (x, y) ∈ B νε

2
,Ω(x̄, ȳ), the following inequalities hold

0 < gνε(t, x, y) ≤ 1. (4.25)

And then, (4.24), (4.25) and property (6.6), show that

∂Φνε

∂t
(., x, y) ≥ mν,ε(.) + ν, in D′(0, 2T ), ∀(x, y) ∈ B νε

2
,Ω(x̄, ȳ). (4.26)

Now, we are going to consider two cases, whether |x̄− ȳ| ≤ 3K̃2νε2 along a subsequence
or not.
6. We first assume that |x̄ − ȳ| ≤ 3K̃2νε2 along a subsequence and, to simplify the
exposure, we assume that it is true for every 0 < ε ≤ ν ≤ 1. In the sequel, we set
Ax = D2

xΦν,ε(t̄, x̄, ȳ) and Ay = D2
yΦν,ε(t̄, x̄, ȳ).

By the estimates on the test-function (cf. (6.1)) and using (4.17), it is easy to show
that, for ε > 0 small enough, for almost every t ∈ (0, T ), for every ξ1 = (x1, r1, p1, X1), ξ2 =
(x2, r2, p2, X2) ∈ Γ∗ in some neighborhood of (x̄, u(t̄, x̄), qx, Ax) and (ȳ, v(t̄, ȳ),−qy,−Ay)
respectively, the following inequalities hold,

dε(t) + fε

(
t, x1, r1 +

(
v(t̄, ȳ)− u(t̄, x̄)

))
≤ F (t, ξ1),

−dε(t) + fε(t, x2, r2) ≥ F (t, ξ2). (4.27)

In the sequel, we define Gε, G̃ε ∈ C(ΓT ), for (t, ξ) = (t, x, r, p,X) ∈ ΓT , by

Gε(t, ξ) = fε

(
t, x, r +

(
v(t̄, ȳ)− u(t̄, x̄)

))
, G̃ε(t, ξ) = fε(t, x, r),

for every t ∈ [0, T ] and ξ = (x, r, p,X) ∈ Γ. Inequalities (4.21), (4.22), (4.23) and (4.26)
show that we are in position to use Lemma 5.2, with b1 = −b2 = dε, ϕ = Φν,ε, G1 = Gε,
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G2 = G̃ε and ϑ(t, x, y) = mν,ε(t) + ν, for every (t, x, y) ∈ IR × IRN × IRN . Therefore, we
obtain

mν,ε(t̄) + ν ≤ A1
ε = fε(t̄, ȳ, v(t̄, ȳ))− fε(t̄, x̄, v(t̄, ȳ)). (4.28)

Then, the properties of f and (4.20) show that, for ε small enough,

A1
ε ≤ fnε,R(t̄, |x̄− ȳ|) ≤ fR,nε(t̄, ν) ≤ mν,ε(t̄).

Which is a contradiction with (4.28).
7. Now we assume that |x̄− ȳ| ≥ 3K̃2νε2 along a subsequence, and to simplify we assume
that it is true for every 0 < ε ≤ ν ≤ 1.

Using again the properties of the test-function, we have, for ε > 0 small enough,

||A|| < ε−2, |qx| ∧ |qy| > 0. (4.29)

Moreover, for almost every t ∈ (0, T ), for every (X, Y ) ∈ (S(N))2, with ||X|| ∨ ||Y || ≤ ε−4,
we have

dε(t) + Fε(t, x, r, p,X) ≤ F (t, x, r, p,X),

−dε(t) + Fε(t, y, z, q, Y ) ≥ F (t, y, z, q, Y ), (4.30)

for every (x, r, p), (y, z, q) in Σ, in some neighborhood if (x̄, u(t̄, x̄), qx) and (ȳ, v(t̄, ȳ),−qy)
respectively.

First of all, by (4.29), for ε small enough, 3||A|| < ε−4. Then, inequalities (4.21),
(4.22), (4.23), (4.26) and the above properties show that we are in position to use Lemma
5.1, with ∆ = ε−4, b1 = −b2 = dε, G1 = G2 = Fε and ϕ = Φν,ε, ϑ(t, x, y) = mν,ε(t) + ν,
for every (t, x, y) ∈ IR× IRN × IRN . Therefore, there exists (a, b) ∈ IR2, (X, Y ) ∈ (S(N))2,
such that

(a, qx, X) ∈ P2,+

ΩT

(
u(t̄, x̄) +

∫ t̄

0

dε(s)ds

)
, (4.31)

(b,−qy,−Y ) ∈ P2,−
ΩT

(
v(t̄, ȳ)−

∫ t̄

0

dε(s)ds

)
, (4.32)

a− b ≥ mν,ε(t̄) + ν, (4.33)

−
(

1

3ε4
+ ||A||

)
Id ≤

(
X 0
0 −Y

)
≤ A+ 3ε4A2. (4.34)

Using Lemma 6.1 in Section 6, (4.34) and, again, the fact that for ε small enough,
3||A|| < ε−4, we get

||X|| ∨ ||Y || ≤ ||A||+ 1

3ε4
<

2

3ε4
. (4.35)

But we also have ε6 < |qx| ∧ |qy| ≤ |qx| ∨ |qy| < ε−1 and, using (4.16), we deduce that,
for ε > 0, small enough, for almost every t ∈ (0, T ), for every ξ1, ξ2 ∈ Γ∗, in some
neighborhood of (x̄, u(t̄, x̄), qx, X) and (ȳ, v(t̄, ȳ),−qy, Y ) respectively, we have

dε(t) + Fε(t, ξ1) ≤ F (t, ξ1), −dε(t) + Fε(t, ξ2) ≥ F (t, ξ2).
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8. As u and v are respectively subsolution and supersolution of (1.1)-(1.2) in ΩT , (4.21),
(4.22), (4.23), (4.31), (4.32) and the above properties show that

a+ Fε(t̄, x̄, u(t̄, x̄), qx, X) ≤ 0, b+ Fε(t̄, ȳ, v(t̄, ȳ),−qy, Y ) ≥ 0.

(We have used in the preceding inequality that |qx|, |qy| > 0 by (4.29) and that Fε ∈
C(Γ∗T )). This implies, using (4.18) and (4.33), that the following inequality holds

mν,ε(t̄) + ν ≤ A2
ε = Fε(t̄, ȳ, v(t̄, ȳ),−qy, Y )− Fε(t̄, x̄, v(t̄, ȳ), qx, X). (4.36)

9. An estimate of A2
ε. To get such an estimate, we are going to use condition (H2-2)

on Fε, that is the reason why, we need the following lemma.

Lemma 4.2 For ε small enough, (X,Y ), (qx,−qy) and (x̄, ȳ) satisfy (4.2), (4.3) and
(4.4) with (ε, ν), and moreover

|qx| ∨ |qy| ≤ ε−1. (4.37)

We postpone the proof of this lemma at the end of this subsection and end the proof of
Theorem 4.1. By (4.20) and (4.37), we get for ε small enough

A2
ε ≤ mnε

R

(
t̄, ν + |x̄− ȳ|(1 + |qx| ∨ |qy|)

)
,

≤ mnε
R

(
t̄, ν +

2|x̄− ȳ|
ε

)
,

≤ mnε
R (t̄, 2ν) ≤ mν,ε(t̄).

This gives a contradiction with (4.36) and therefore the proof of Theorem 4.1 is complete.

To conclude, we provide the proof of Lemma 4.2: we first introduce some notations
and give some estimates, which will be useful. For every 0 < ε ≤ ν ≤ 1, we set px =
Dxψν,ε(t̄, x̄, ȳ), py = Dyψν,ε(t̄, x̄, ȳ), Cν,ε = D2ψν,ε(t̄, x̄, ȳ) and

ανε = ψν,ε(t̄, x̄, ȳ) + 2K̃νε, βνε = 6 α5
νε, γνε = 30 α4

νε. (4.38)

We clearly have

qx = βνε px, qy = βνε py, A = βνε Cν,ε + γνε B, (4.39)

where B =

(
px ⊗ px px ⊗ py

py ⊗ px py ⊗ py

)
. (4.40)

It is not difficult to show, that

||B|| ≤ 2(|px| ∨ |py|)2. (4.41)

Lemma 6.1, inequalities (4.20), (4.39) and (4.41) show the following assertions

ανε, βνε, γνε → 0, ε (|px| ∨ |py|) → 0, |px + py| → 0, as ε→ 0, (4.42)

||Cνε|| ∨ ||B|| = O(ε−2), ||A|| ≤ (βνε + γνε) O(ε−2). (4.43)
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We have already proved (4.37), let us show that (X,Y ), (qx,−qy) and (x̄, ȳ) sat-
isfy (4.2), (4.3) and (4.4), if we choose ε small enough. By (4.20), it is obvious that
(x̄, ȳ) satisfies (4.4), for ε small enough. Then, inequalities (4.39), (4.42) and (4.42)
show that, |qx + qy| ≤ ν, for ε small enough. Therefore, to show that (qx,−qy) satisfies
(4.3), we only have to prove that |qx + qy| ≤ ε|qx| ∧ |qy|, which is equivalent to prove that
|px + py| ≤ ε|px| ∧ |py|, by (4.37). By property (6.2), we have

|x̄− ȳ|
ε2

≤ K̃(|px| ∧ |py|) + K̃2νε.

Combining it with property (6.4) and using (4.20), we obtain

|px + py| ≤ K̃2|x̄− ȳ| (|px| ∧ |py|) + K̃3νε|x̄− ȳ|+ K̃νε,

≤ (|px| ∧ |py|)
(
K̃2 |x̄− ȳ|+ K̃2

2
ε|x̄− ȳ|+ ε

2

)
,

≤ ε (|px| ∧ |py|), for ε small enough.

Let us show now that (X,Y ) satisfies (4.2). First of all, by (4.42) and (4.43), for ε small
enough, 6ε4||A||2 ≤ ν, and therefore, by (4.34), the following inequality holds(

X 0
0 −Y

)
≤ A+

ν

2
Id. (4.44)

To conclude, it is enough to show that for ε small enough, we have

A ≤ ν

ε2

(
Id −Id
−Id Id

)
+
ν

2
Id. (4.45)

It is not very difficult to prove that the matrix B defined in (4.40) satisfies

B ≤
(
|px|2 + |py|2

)( Id −Id
−Id Id

)
+ |px + py|2Id,

≤ ν

ε2

(
Id −Id
−Id Id

)
+ Id, (4.46)

for ε small enough, using (4.42). Therefore, (4.39), (4.46), property (6.5) and finally
(4.42), show that, for ε small enough,

A = βνεD
2ψνε(t̄, x̄, ȳ) + γνεB,

≤ ν

ε2

(
γνε +

K̃βνε

ν

)(
Id −Id
−Id Id

)
+

(
K̃βνεν + γνε

)
Id,

≤ ν

ε2

(
Id −Id
−Id Id

)
+
ν

2
Id.

The proof of Lemma 4.2 is then complete.
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5 The Maximum Principle for Viscosity Solutions of

the Neumann Problem in the L1-case

In this section, if m ≥ 1, O ⊂ IRm, z ∈ O and r > 0, we set Br,O(z) = Br(z) ∩ O
and Br,O(z) = Br(z) ∩ O. In the following lemmas, u ∈ USC(ΩT ), v ∈ LSC(ΩT ) are
respectively subsolution and supersolution of (1.1)-(1.2) in ΩT . We suppose moreover
that u and v are bounded over ΩT . For z ∈ Ω × Ω and r > 0, we set, to simplify,
Br,Ω(z) = Br,Ω×Ω(z) and Br,Ω(z) = Br,Ω×Ω(z).
The following lemma is largely inspired of the Maximum Principle for viscosity solutions
proved by Crandall, Ishii and Lions in [9]. It is a key result to show the comparison results
either in the standard and in the singular cases.

Lemma 5.1 Let (t̄, x̄, ȳ) ∈ (0, T ] × Ω × Ω, b1, b2 ∈ L1(0, T ) and ϕ ∈ C2
s be such that

(t̄, x̄, ȳ) is a maximum point of

Ψ(t, x, y) = u(t, x) +

∫ t

0

b1(s)ds−
(
v(t, y) +

∫ t

0

b2(s)ds

)
− ϕ(t, x, y), (5.1)

over (0, T ]×Ω×Ω. If A = D2ϕ(t̄, x̄, ȳ), px = Dxϕ(t̄, x̄, ȳ), qy = −Dyϕ(t̄, x̄, ȳ), we assume
that there exists G1, G2 ∈ C(ΓT ) and ∆ > 3||A||, such that, for every (X, Y ) ∈ (S(N))2,
with ||X|| ∨ ||Y || ≤ ∆, we have

b1(t) +G1(t, x, r, p,X) ≤ F (t, x, r, p,X), (5.2)

b2(s) +G2(s, y, v, q, Y ) ≥ F (s, y, v, q, Y ), (5.3)

for almost every t ∈ (0, T ) in some neighborhood of t̄ and for every (x, r, p), (y, v, q) in Σ∗

in some neighborhood of (x̄, u(t̄, x̄), px) and (ȳ, v(t̄, ȳ), qy) respectively. Finally we suppose
that there exists r > 0, ϑ ∈ C((0, 2T )×Br,Ω(z)), such that

∂ϕ

∂t
(., z) ≥ ϑ(., z) in D′(0, 2T ), ∀z ∈ Br,Ω(z), (5.4)

and that we have

L(t̄, x̄, u(t̄, x̄), px) > 0 if x̄ ∈ ∂Ω. (5.5)

L(t̄, ȳ, v(t̄, ȳ), qy) < 0 if ȳ ∈ ∂Ω. (5.6)

Then, there exists (a, b) ∈ IR2 and (X, Y ) ∈ (S(N))2, such that

(a,Dxϕ(t̄, x̄, ȳ), X) ∈ P̄2,+
ΩT

(
u(t̄, x̄) +

∫ t̄

0

b1(s)ds

)
(b,−Dyϕ(t̄, x̄, ȳ), Y ) ∈ P̄2,−

ΩT

(
v(t̄, ȳ) +

∫ t̄

0

b2(s)ds

)
−
(

∆

3
+ ||A||

)
Id ≤

(
X 0
0 −Y

)
≤ A+

3

∆
A2

a− b ≥ ϑ(t̄, x̄, ȳ). (5.7)
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We then give the following lemma, which is used to get the comparison result in the
singular case.

Lemma 5.2 Under the same conditions and with the same notations as in Lemma 5.1
but replacing (5.2)-(5.3) by : there exists G1, G2 ∈ C(ΓT ), such that

b1(t) +G1(t, ξ1) ≤ F (t, ξ1) and b2(t) +G2(t, ξ2) ≥ F (t, ξ2), (5.8)

for almost every t ∈ (0, T ) in some neighborhood of t̄ and for every ξ1, ξ2 ∈ Γ∗ in
some neighborhood of (x̄, u(t̄, x̄), px, Ax) and (ȳ, v(t̄, ȳ), qy, By) respectively with Ax =
D2

xϕ(t̄, x̄, ȳ), By = −D2
yϕ(t̄, x̄, ȳ). Then, we have

ϑ(t̄, x̄, ȳ) ≤ G2(t̄, ȳ,v(t̄, ȳ), qy, By)−G1(t̄, x̄, u(t̄, x̄), px, Ax). (5.9)

We first give the proof of Lemma 5.2, the (very technical) proof of Lemma 5.1 is
postponed at the end of this section.
1. We first assume that ϕ ∈ C2 in x and t. We are going to prove that, we have

∂ϕ

∂t
(t̄, x̄, ȳ) ≤ G2(t̄, ȳ,v(t̄, ȳ), qy, By)−G1(t̄, x̄, u(t̄, x̄), px, Ax). (5.10)

For ν > 0, we consider the following function Ψν defined for (t, s, x, y) ∈ (0, T ]× (0, T ]×
Ω× Ω, by

Ψν(t, s, x, y) = u(t, x)+

∫ t

0

b1(r)dr −
(
v(s, y) +

∫ s

0

b2(r)dr

)
− ϕ(t, x, y)− |s− t|2

2ν

− (t− t̄)2 − |x− x̄|4 − |y − ȳ|4.

Let r0 > 0, small enough, such that the function given by (5.1) achieves its maximum at
(t̄, x̄, ȳ) over Kr0 , where Kr0 = [t̄− r0, t+ r0]×Br0,Ω(x̄, ȳ), if t̄ < T and

Kr0 = [t̄− r0, T ]×Br0,Ω(x̄, ȳ), if t̄ = T . As Ψν ∈ USC((0, T ]×(0, T ]×Ω×Ω), it achieves
its maximum at (tν , sν , xν , yν) over Kr0 . And it is not difficult to show that, as ν → 0,

(tν , sν , xν , yν) → (t̄, t̄, x̄, ȳ), u(tν , xν) → u(t̄, x̄), v(sν , yν) → v(t̄, ȳ). (5.11)

If we denote by gν the following function, defined for (t, x) ∈ ΩT , by

gν(t, x) = ϕ(t, x, yν) +
|t− sν |2

2ν
+ (t− t̄)2 + |x− x̄|2

and set pν = Dgν(tν , xν) and Xν = D2gν(tν , xν), it is clear that the function (t, x) 7→
u(t, x) +

∫ t

0
b1(s)ds − gν(t, x) achieves a local maximum over ΩT at (tν , xν) and (5.11)

shows that, as ν → 0

pν → px and Xν → Ax. (5.12)

By (5.8), (5.11) and (5.12), we have, for ν small enough,

b1(t) +G1(t, ξ) ≤ F (t, ξ),
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for almost every t ∈ (0, T ) in some neighborhood of tν and for every ξ ∈ Γ∗ in some
neighborhood of ξν = (xν , u(tν , xν), pν , Xν). If x̄ ∈ Ω, then by (5.11), for ν small enough,
xν ∈ Ω. Now, if x̄ and xν ∈ ∂Ω, then as L(t̄, x̄, u(t̄, x̄), px) > 0, using (5.11) and the con-
tinuity of L, for ν small enough, we have L(tν , xν , u(tν , xν), pν) > 0. As u is a subsolution
of (1.1)-(1.2) in ΩT , then in any case, for ν small enough, the following inequality holds

∂ϕ

∂t
(tν , xν , yν) +

tν − sν

ν
+ 2(tν − t̄) +G1(tν , ξν) ≤ 0.

Using that the function (s, y) 7→ v(s, y) +

∫ s

0

b2(r)dr + ϕ(tν , xν , y) +
|s− tν |2

2ν
+ |y − ȳ|4

has a local minimum at (sν , yν) over ΩT , that L(t̄, ȳ, v(t̄, ȳ), qy) < 0 if ȳ ∈ ∂Ω and that v
is a supersolution of (1.1)-(1.2) in ΩT , we can show similarly that

tν − sν

ν
+G2(sν , yν , v(sν , yν), qν , Yν) ≥ 0,

where, as ν → 0, qν → qy and Yν → By. Therefore, combining these two inequalitites,
we have proved, that for ν small enough, the following inequality holds

∂ϕ

∂t
(tν , xν , yν) + 2(tν − t̄) ≤ G2(sν , yν , v(sν , yν), qν , Yν)−G1(tν , xν , u(tν , xν), pν , Xν),

which gives (5.10), using (5.11) and letting ν go to zero.
2. Assume now that ϕ ∈ C2

s and satisfies (5.4). Let (ρn)n≥1 a real mollifier. For every
n ≥ 1, we define ϕn ∈ C2, ϑn ∈ C, for z ∈ Ω× Ω, by

ϕn(., z) = ϕ(., z) ∗ ρn, ϑn(., z) = ϑ(., z) ∗ ρn, in IR.

By (5.4), there exists δ > 0, such that, for n large enough

∂ϕn

∂t
≥ ϑn, in [t̄− δ, t̄+ δ]×Br,Ω(x̄, ȳ). (5.13)

And, by classical arguments, we have, as n→ +∞,

(ϑn, ϕn, Dϕn, D
2ϕn) → (ϑ, ϕ,Dϕ,D2ϕ), uniformly in Kr0 . (5.14)

For every n ∈ IN , let ψn ∈ C2, defined for every (t, x, y) ∈ (0, T ]× Ω× Ω, by

ψn(t, x, y) = ϕn(t, x, y) + (t− t̄)2 + |x− x̄|4 + |y − ȳ|4.

It is not difficult to show, using (5.14), that the function

(t, x) 7→ u(t, x) +

∫ t

0

b1(r)dr −
(
v(t, y) +

∫ t

0

b2(r)dr

)
− ψn(t, x, y),

achieves its maximum at (tn, xn, yn) over Kr0 , with as n→ +∞

(tn, xn, yn) → (t̄, x̄, ȳ), u(tn, xn) → u(t̄, x̄), v(tn, yn) → v(t̄, ȳ),

pn = Dxψn(tn, xn, yn) → px, qn = −Dyψn(tn, xn, yn) → qy,

Xn = D2
xψn(tn, xn, yn) → Ax, Yn = −D2

yψn(tn, xn, yn) → By. (5.15)
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Therefore, (5.8) is satisfied for almost every t ∈ (0, T ) in some neighborhood of tn and
for every ξ1, ξ2 ∈ Γ∗ in some neighborhood of (xn, u(tn, xn), pn, Xn) and (yn, v(tn, yn), qn, Yn)
respectively. Then, by the preceding step, we obtain that, for n large enough,

∂ψn

∂t
(tn, xn, yn) =

∂ϕn

∂t
(tn, xn, yn) + 2(tn − t̄)

≤ G2(tn, yn, v(tn, yn), qn, Yn)−G1(tn, xn, u(tn, xn), pn, Xn).
(5.16)

Using (5.13), (5.15), (5.16) and finally (5.14), we get (5.9) by letting n tend to infinity.
And the proof of Lemma 5.2 is complete.

Now we turn to the proof of Lemma 5.1 . It relies on the following proposition,
which long and very technical proof is postponed. In the sequel, k ∈ IN , k ≥ 1 and for
every i = 1 . . . k, Ni ∈ IN , Ni ≥ 1. We set N = N1 + . . .+Nk.

Proposition 5.1 Let I a bounded segment of IR, Oi a locally compact subset of RNi,
ui ∈ USC(I × Oi), for every i = 1 . . . k. We set O = O1 × . . . × Ok and define the
following function for t ∈ I, x = (x1, . . . , xk) ∈ O, by w(t, x) = u1(t, x) + . . . + uk(t, x).
Let ϕ ∈ C2

s , ϑ ∈ C, r > 0, J ⊃ I an open subset of IR, such that the function w − ϕ has
a maximum point at (t̂, x̂) over I ×O and such that

∂ϕ(., x)

∂t
≥ ϑ(., x) in D′(J), ∀x ∈ Br,O(x̂), (5.17)

We set A = D2ϕ(t̂, x̂) and we say that ε > 0 satisfies P (t̂, x̂, w, ϕ) if ε||A|| < 1 and if
there exists rε > 0 and Cε > 0 such that, for every i = 1, . . . , k

ai ≤ Cε, whenever (ai, pi, Xi) ∈ P2,+
I×Oi

ui(ti, xi, )

with |ti − t̂|+ |xi − x̂i|+ |ui(ti, xi)− ui(t̂, x̂i)|+ |pi −Dxi
ϕ(t̂, x̂)| ≤ rε

and ||Xi|| ≤
2

ε
+ ||A||. (5.18)

Then, if ε satisfies P (t̂, x̂, w, ϕ), there exists (a1, . . . , ak) ∈ IRk and (X1, . . . , Xk) ∈
S(N1)× . . .× S(Nk), such that

(ai, Dxi
ϕ(t̂, x̂), Xi) ∈ P̄2,+

I×Oi
ui(t̂, x̂i), for every i = 1 . . . k, (5.19)

−
(

1

ε
+ ||A||

)
I ≤

 X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ A+ εA2, (5.20)

a1 + . . .+ ak ≥ ϑ(t̂, x̂). (5.21)

Proof of Lemma 5.1: We are going to use Proposition 5.1, with I = (0, T ], J = (0, 2T ),
k = 2, N1 = N2 = N , O1 = O2 = Ω, (t̂, x̂1, x̂2) = (t̄, x̄, ȳ), and u1(t, x) = u(t, x) +∫ t

0
b1(s)ds, u2(t, x) = −(v(t, x) +

∫ t

0
b2(s)ds), for every (t, x) ∈ ΩT . To show Lemma 5.1,

we just have to prove that ε =
3

∆
satisfies P (t̄, (x̄, ȳ), w, ϕ). First of all, by hypothesis
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∆ > 3||A|| and therefore ε||A|| < 1. Next, for (t1, x1), (t2, x2) ∈ ΩT , r̄ > 0, we consider

(a, p,X) ∈ P2,+
ΩT
u1(t1, x1), (−b,−q,−Y ) ∈ P2,+

ΩT
u2(t2, x2), (5.22)

|t1 − t̄|+ |x1 − x̄|+ |u1(t1, x1)− u1(t̄, x̄)|+ |p− px| ≤ r̄, (5.23)

|t2 − t̄|+ |x2 − ȳ|+ |u2(t2, x2)− u2(t̄, ȳ)|+ |q − qy| ≤ r̄, (5.24)

||X|| ∨ ||Y || ≤ 2∆

3
+ ||A||. (5.25)

It is worth noticing that (b, q, Y ) ∈ P2,−
ΩT

(v(t, x) +
∫ t

0
b2(s)ds) = −P2,+

ΩT
u2(t2, x2).

Using again the fact that ∆ > 3||A|| and inequality (5.25) imply that ||X||∨||Y || < ∆.
Inequalities (5.23) and (5.24) show the following

|u(t1, x1)− u(t̄, x̄)| ≤ |u1(t1, x1)− u1(t̄, x̄)|+ |
∫ t̄

t

b1(s)ds| ≤ r̄ + |
∫ t̄

t

b1(s)ds| → 0,

|v(t2, x2)− v(t̄, ȳ)| ≤ |u2(t2, x2)− u2(t̄, x̄)|+ |
∫ t̄

t

b2(s)ds|

≤ r̄ + |
∫ t̄

t

b2(s)ds| → 0, (5.26)

as r̄ → 0, using that b1, b2 ∈ L1(0, T ) and |t− t̄| ≤ r̄. Therefore, (5.24), (5.25), (5.26), the
fact that ||X||∨ ||Y || < ∆, show that (5.2) and (5.3) hold, for almost every t, s ∈ (0, T ) in
some neighborhood of t1, t2 respectively and ξ, ξ′ ∈ Γ∗ respectively in some neighborhood
of ξ1 = (x1, u(t1, x1), p,X) and ξ2 = (x2, v(t2, x2), q, Y ) respectively.

If x̄ (resp. ȳ) ∈ Ω, then by (5.23) (resp. (5.24)), x1 (resp. x2) ∈ Ω, for r̄ small enough.
Now, if x̄ and x1 (resp. ȳ and x2) ∈ ∂Ω, then by (5.5) (resp. (5.6)), using the continuity
of L and (5.23) (resp. (5.24)), we have, for r̄ small enough,

L(t1, x1, u(t1, x1), p) > 0 (resp. L(t2, x2, v(t2, x2), q) < 0).

Therefore, as u (resp. v) is a subsolution (resp. supersolution) of (1.1)- (1.2) in ΩT , (5.22)
and the preceding remarks, we have shown, for r̄ small enough,

a+G1(t1, ξ1) ≤ 0 and b+G2(t2, ξ2) ≥ 0.

This shows the desired estimates on a and −b since G1, G2 ∈ C(ΓT ) and Lemma 5.1
follows from Proposition 5.1.

Now we give the proof of Proposition 5.1. It is based on the following result which
is largely inspired of the analogous lemma given in [9].

As defined and used in our paper, for m ≥ 1, Θ a subset of IRm, USC(Θ) consists of
the upper semicontinuous functions mapping Θ into IR; however it is convenient to allow
the value −∞, so in the sequel, we define USC(Θ) as the subset of upper semicontinuous
functions over Θ taking values in IR ∪ {−∞}.

Theorem 5.1 For every i = 1, . . . , k, let ui ∈ USC(IR × IRNi). For t ∈ IR, x =
(x1, . . . , xk) ∈ IRN1 × . . . × IRNk , we set w(t, x) = u1(t, x1) + . . . + uk(t, xk). Assume
that ui(0, 0) = 0, for every i = 1, . . . , k. Let A ∈ S(N), such that the function

(t, x) 7→ w(t, x)− 1

2
Ax · x,
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has a strict maximum point over IR× IRN at (0, 0).
We say that ε > 0 satisfies P̄ (w,A), if ε||A|| < 1 and if there exists rε > 0 and Cε > 0

such that, for every i = 1 . . . k,

ai ≤ Cε, whenever (ai, pi, Xi) ∈ P2,+ui(ti, xi), (5.27)

with |ti|+ |xi|+ |ui(ti, xi)|+ |pi| ≤ rε, (5.28)

and ||Xi|| ≤
2

ε
+ ||A||. (5.29)

Then, if ε satisfies P̄ (w,A), there exists (a1, . . . , ak) ∈ IRk and (X1, . . . , Xk)
∈ S(N1)× . . .× S(Nk), such that

(ai, 0, Xi) ∈ P̄2,+ui(0, 0), for every i = 1 . . . k, (5.30)

−
(

1

ε
+ ||A||

)
I ≤

 X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ A+ εA2, (5.31)

a1 + . . .+ ak = 0. (5.32)

Proof of Proposition 5.1 : the proof of Proposition 5.1 is divided into two steps. In
the first one, we suppose that ϕ ∈ C2 and use Taylor’s formula while, in the second one,
we regularize the function ϕ in order to be in position to use the first step.
First Step. Suppose that ϕ ∈ C2. We are going to prove that there exists (a1, . . . , ak) ∈
IRk and (X1, . . . , Xk) ∈ S(N1)× . . .× S(Nk), satisfying (5.19), (5.20) and

a1 + . . .+ ak =
∂ϕ

∂t
(t̄, x̄, ȳ). (5.33)

1. In order to simplify matters, we make some reductions. We may as well assume
that I = IR, for every i = 1 . . . k, Oi = RNi and that (t̂, x̂) = (0, 0). Indeed, let Ĩ a
compact neighborhood of t̂ in I and for every i = 1 . . . k, Ki a compact neighborhood of
x̂i in Oi. For i = 1 . . . k, we denote by ũi the function which is equal to ui in Ĩ × Ki

and to −∞ otherwise. For every i = 1 . . . k, the closeness of Ĩ × Ki guarantees that
ũi ∈ USC(IR × IRNi). Now, it is not difficult to show, that for (t, xi) ∈ Ĩ ×Ki, one has

P2,+

I×Oi
ui(t, xi) = P2,+

ũi(t, xi), as ui(t, xi) > −∞. It is clear that, if we set w̃ = ũ1+. . .+ũk,

the function w̃ − ϕ has a maximum point over IR × IRN at (t̂, x̂). One can then easily
ckeck that ε satisfies P (t̂, x̂, ŵ, ϕ̂), (where we have replaced P2,+

I×Oi
by P2,+) is equivalent

to ε satisfies P (t̂, x̂, w, ϕ). Then translations put (t̂, x̂) at the origin.
In the sequel, to simplify, we set P (0, 0, w, ϕ) = P (w,ϕ).
2. Now we use Theorem 5.1. For every γ > 0, we set Aγ = A+ γI, where A = D2ϕ(0, 0).
For i = 1 . . . k, we define the following functions, for t ∈ IR, xi ∈ IRNi and x = (x1, . . . , xk),
by

vi,γ(t, xi) = ui(t, xi)− ui(0, 0)−Dxi
ϕ(0, 0) · xi −

1

k

∂ϕ

∂t
(0, 0)t

− t
2
D2

(t,xi)
ϕ(0, 0) · xi −

1

2k

∂2ϕ

∂t2
(0, 0)t2 − γt2,

wγ(t, x) = v1,γ(t, x1) + . . .+ vk,γ(t, xk). (5.34)
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By Taylor’s formula, it is obvious that the function (t, x) 7→ wγ(t, x) − 1
2
(Aγx) · x has a

strict local maximum at (0,0) over IR× IRN and identical arguments as those used in (i),
allow us to consider that it is a strict global one. We then need the following technical
lemma, the proof of which is postponed at the end of this section.

Lemma 5.3
(i) If ε satisfies P (w,ϕ), then, for γ small enough, εγ =

ε

1− εγ
satisfies P̄ (wγ, Aγ).

(ii) For every i = 1 . . . k and γ > 0, the following equality holds

P2,+
vi,γ(0, 0) = P2,+

ui(0, 0)−
(

1

k

∂ϕ

∂t
(0, 0), Dxi

ϕ(0, 0), 0

)
. (5.35)

We first admit this lemma and continue the proof of Proposition 5.1. Suppose that ε
satisfies P (w,ϕ). Theorem 5.1 and Lemma 5.3 give the existence, for γ > 0 small enough,
of (a1,γ, . . . , ak,γ) ∈ IRk, (X1,γ, . . . , Xk,γ) ∈ S(N1)× . . .× S(Nk), such that

(ai,γ, 0, Xi,γ) ∈ P̄2,+vi,γ(0, 0), for every i = 1 . . . k, (5.36)

−
(

1

εγ

+ ||Aγ||
)
I ≤

 X1,γ . . . 0
...

. . .
...

0 . . . Xk,γ

 ≤ Aγ + εγA
2
γ, (5.37)

a1,γ + . . .+ ak,γ = 0. (5.38)

We first prove that, for every i = 1 . . . k, the sequences (ai,γ)γ, (Xi,γ)γ are bounded.
Indeed, (5.37) and the fact that for γ small enough, εγ||Aγ|| < 1 and ε−1

γ + ||Aγ|| ≤
ε−1 + ||A|| show that, for every i = 1 . . . k and γ small enough, we have

||Xi,γ|| ≤ ε−1
γ + ||Aγ|| ≤ ε−1 + ||A||. (5.39)

By (5.35), we have, for every i = 1 . . . k, γ > 0,(
ai,γ +

1

k

∂ϕ

∂t
(0, 0), Dxi

ϕ(0, 0), Xi,γ

)
∈ P2,+

ui(0, 0). (5.40)

(5.39) and (5.40) show that ai,γ ≤ Cε, for every i = 1 . . . k, for γ small enough. Combining
it with (5.38), it is clear that for every i = 1 . . . k, the sequence (ai,γ)γ is bounded. By
extracting if necessary subsequences, there exists (bi)1≤i≤k ∈ Rk, (Xi)1≤i≤k ∈ S(N1) ×
. . .× S(Nk), such that, for every 1 ≤ i ≤ k, as γ → 0,

ai,γ → bi, Xi,γ → Xi. (5.41)

By (5.37), we get (5.20), by letting γ tend to zero. Then the estimates on the Xi coming
from the matrix inequality, (5.40) and (5.41) show that, for every i = 1 . . . k,(

bi +
1

k

∂ϕ

∂t
(0, 0), Dxi

ϕ(0, 0), Xi

)
∈ P2,+

ui(0, 0).

And, if we set, for every i = 1 . . . k, ai = bi +
1

k

∂ϕ

∂t
(0, 0), we get, by (5.38), (5.33), by

letting γ tend to zero. This ends the proof of the first step.
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Second Step. Assume now that ϕ ∈ C2
s and satisfies (5.17). Let (ρn)n≥1 a real mollifier.

For n ≥ 1, we define the functions ϕn ∈ C2 and ϑn ∈ C, for (t, x) ∈ IR× IRN , by

ϕn(t, x) = (ϕ(., x) ∗ ρn)(t) and ϑn(t, x) = (ϑ(., x) ∗ ρn)(t).

By restricting if necessary I and J , we can assume that (5.17) holds with ϕn, ϑn. For
n, we consider the function Φn ∈ C2 defined for (t, x) ∈ I ×O, by

Φn(t, x) = ϕn(t, x) + (t− t̂)2 + |x− x̂|4.

It is not difficult to show that the function w − Φn achieves its maximum over I ×O at
a point (tn, xn), with as n→ +∞,

(tn, xn) → (t̂, x̂), ui(tn, xn) → ui(t̂, x̂), ∀i = 1 . . . k,

pn = DΦn(tn, xn) → p = Dϕ(t̂, x̂),

An = D2Φn(tn, xn) → A = D2ϕ(t̂, x̂). (5.42)

Let ε satisfying P (t̂, x̂, w, ϕ). For n ∈ IN , we set εn = 2ε(2 + ||A|| − ||An||)−1. It it
not difficult to prove, using (5.42) that for n large enough, εn satisfies P (tn, xn, w,Φn).
Therefore, we are in position to use the first step, and we know that, for every n large
enough, there exists (an

1 , . . . , a
n
k) ∈ IRk, (Xn

1 , . . . , X
n
k ) ∈ S(N1)× . . .× S(Nk) such that

(an
i , Dxi

Φn(tn, xn), Xn
i ) ∈ P̄2,+

I×Oi
ui(tn, xn), for every i = 1 . . . k, (5.43)

−
(

1

εn

+ ||An||
)
Id ≤

 Xn
1 . . . 0
...

. . .
...

0 . . . Xn
k

 ≤ An + εnA
2
n, (5.44)

an
1 + . . .+ an

k =
∂Φn

∂t
(tn, xn). (5.45)

Similarly as in the first step, we prove that for every i = 1 . . . k, the sequences (an
i )n,

(Xn
i )n are bounded. Therefore, by extracting if necessary subsequences, there exists

(a1, . . . , ak) ∈ IRk, (X1, . . . , Xk) ∈ S(N1)× . . .×S(Nk), such that, as n→ +∞, for every
i = 1 . . . k,

an
i → ai, Xn

i → Xi.

Then the estimates on the Xi coming from the matrix inequality, (5.42), (5.43), (5.44)
and finally (5.45), show that (ai)1≤i≤k, (Xi)1≤i≤k satisfy (5.19), (5.20) and (5.21). To end
the proof of this proposition, it is enough to prove Lemmas 5.3.
Proof of Lemma 5.3 : For (i) : as εγ||Aγ|| →

γ→0
ε||A||, it is clear that, for γ small enough,

εγ||Aγ|| < 1. It is easy to show, that for every i = 1 . . . k, for (t, xi) ∈ IR× IRNi , one has

P2,+vi,γ(t, xi) = P2,+ui(t, xi)

−
(

1

k

∂ϕ

∂t
(0, 0) + 2tγ +

t

k

∂2ϕ

∂t2
(0, 0) +

1

2
D2

(t,xi)
ϕ(0, 0) · xi, Dxi

ϕ(0, 0) +
t

2
D2

(t,xi)
ϕ(0, 0), 0

)
.

(5.46)
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For i = 1 . . . k, let (ai, pi, Xi) ∈ P2,+vi,γ(ti, xi), with

|ti|+ |xi|+ |pi|+ |vi,γ(ti, xi)| ≤ r, ||Xi|| ≤
2

εγ

+ ||Aγ||.

By the choose of εγ, one has,
2

εγ

+ ||Aγ|| ≤
2

ε
+ ||A||, for every γ > 0. Then, using also

(5.46), it is not difficult to show, that taking r small enough, we get, for every i = 1 . . . k,

(bi, qi, Xi) ∈ P2,+ui(ti, xi), ||Xi|| ≤
2

ε
+ ||A||,

|ti|+ |xi|+ |ui(ti, xi)|+ |qi −Dxi
ϕ(0, 0)| ≤ rε,

where bi = ai +
1

k

∂ϕ

∂t
(0, 0) +

t

k

∂2ϕ

∂t2
(0, 0) + 2γt+D2

(t,xi)
ϕ(0, 0) · xi,

qi = Dxi
ϕ(0, 0) +

t

2
D2

(t,xi)
ϕ(0, 0).

As ε satisfies P (w,ϕ), we have, for every i = 1 . . . k, bi ≤ Cε, which shows that ai ≤ C̄ε,

with C̄ε depends on Cε, γ, |
∂ϕ

∂t
(0, 0)|, |∂

2ϕ

∂t2
(0, 0)|, |D2

(t,xi)
ϕ(0, 0)| and on k. This ends the

proof of i).
(ii) is a direct consequence of (5.46), noticing that, by the definition of vi,γ, ui(tn, xn) →

ui(0, 0), as n→ +∞, if (tn, xn, vi,γ(tn, xn)) → (0, 0, vi,γ(0, 0)), as n→ +∞.
Now, we provide the Proof of Theorem 5.1: let ε > 0 satisfying P̄ (w,A).

1. For every ν > 0, x = (x1, . . . , xk) ∈ IRN1 × . . .× IRNk and (t1, . . . , tk) ∈ IRk, we define
the following function, by

fν(t1, . . . , tk, x) = u1(t1, x1) + . . .+ uk(tk, xk)−
1

2
Ax · x− 1

4ν

k∑
i=1

|ti − ti+1|2,

(where we have set tk+1 = t1). It is not very difficult to show that fν has a local maximum

at some point (ξν , xν) over IRk × IRN , which satisfies, for every i = 1 . . . k, as ν → 0,

(ξν , xν) → (0, 0),
|ξν

i − ξν
i+1|2

ν
→ 0, ui(ξ

ν
i , x

ν
i ) → 0. (5.47)

For every i = 1 . . . k, (t, xi) ∈ IR× IRNi , we set

vi(t, xi) = ui(t+ ξν
i , xi + xν

i )− ui(ξ
ν
i , x

ν
i )− (Axν)i · xi −

t

2ν
(2ξν

i − ξν
i+1 − ξν

i−1),

where we have set ξν
0 = ξν

k . Easy computations show that

v1(t1, x1) + . . .+ vk(tk, xk)−
1

2
Ax · x− 1

4ν

k∑
i=1

|ti − ti+1|2 ≤ 0, (5.48)
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for (t1, . . . , tk) ∈ IRk and x ∈ IRN , small enough. Using standard arguments, we can

suppose that (5.48) holds in whole IRk× IRN . In the sequel, for ξ = (ξ1, . . . , ξk) ∈ IRk and
x = (x1, . . . , xk) ∈ IRN1 × . . .× IRNk , we set

w̄(ξ, x) = v1(ξ1, x1) + . . .+ vk(ξk, xk).

2. We introduce sup convolutions procedures. The Cauchy-Schwarz inequality yields

Ax · x ≤ (A+ εA2)z · z +

(
1

ε
+ ||A||

)
|x− z|2 for every x, z ∈ IRN , (5.49)

and, for every (t1, . . . , tk), (s1, . . . , sk) ∈ IRk,

k∑
i=1

|ti − ti+1|2 ≤ 6
k∑

i=1

|ti − si|2 + 3
k∑

i=1

|si − si+1|2. (5.50)

Setting λ =
1

ε
+ ||A||, then using (5.48), (5.49) and (5.50), we get, for every x, z ∈ IRN

and (t1, . . . , tk), ξ ∈ IRk(
v1(t1, x1)−

λ

2
|x1 − z1|2 −

3

2ν
|ξ1 − t1|2

)
+ . . .+

(
vk(tk, xk)−

λ

2
|xk − zk|2 −

3

2ν
|ξk − tk|2

)
≤ 1

2
(A+ εA2)z · z +

3

4ν

N∑
i=1

|ξi − ξi+1|2. (5.51)

For every (ξ, z) ∈ IRk × IRN , we set

v̂i(ξi, zi) = Sup
t∈IR,xi∈IRNi

(
vi(t, xi)−

λ

2
|xi − zi|2 −

3

2ν
|ξi − t|2

)
,

g(ξ, z) = Sup
ξ,∈IRk,x∈IRN

(
w̄(ξ, x)− λ

2
|x− z|2 − 3

2ν
|ξ − ξ,|2

)
, (5.52)

so that,

g(ξ, z) = v̂1(ξ1, z1) + . . .+ v̂k(ξk, zk). (5.53)

Inequality (5.51) implies that

g(ξ, z) ≤ (A+ εA2)z · z +
3

4ν

k∑
i=1

|ξi − ξi+1|2, (5.54)

for every (ξ, z) ∈ IRk×IRN . This shows in particular that g(0, 0) = v̂1(0, 0)+. . .+v̂k(0, 0) ≤
0. On another hand, by definition, for every i = 1 . . . k, we have v̂i(0, 0) ≥ vi(0, 0) = 0.
Therefore, we have proved that v̂i(0, 0) = 0, for every i = 1 . . . k.
3. We now recall Alexandrov’s Theorem and Jensen’s Lemma.
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Theorem 5.2 Let ϕ : IRn → IR be semiconvex. Then ϕ is twice differentiable almost
every where on IRn.

Lemma 5.4 Let ϕ : IRn → IR be semiconvex and x̂ be a strict maximum point of ϕ. For
p ∈ IRn, we set ϕp(x) = ϕ(x) + p · x. Then, for r, δ > 0,

K = {x ∈ B(x̂, r) : there exists p ∈ Bδ(0) for which ϕp has a local maximum at x}
has a positive measure.

For the proof of these Theorem and Lemma, we refer to [9].
For every i = 1 . . . k, the functions g and v̂i are semiconvex. Indeed, the supremum

of convex functions is convex and clearly, the functions (ξ, z) 7→ g(ξ, z) +
λ

2
|z|2 +

3

2ν
|ξ|2

and (t, xi) 7→ v̂i(t, xi) +
λ

2
|xi|2 +

3

2ν
t2 are convex.

Inequality (5.54) shows that the following function defined for ξ ∈ IRk and z ∈ IRN , by

Ψ(ξ, z) = g(ξ, z)− 1

2
(A+ εA2)z · z − 1

2ν

k∑
i=1

|ξi − ξi+1|2 − |z|4 − |ξ|4

has a strict global maximum at (0,0) and by the semiconvexity of g, Ψ is clearly semi-
convex. Therefore Theorem 5.2 and Lemma 5.4 show that, for every α > 0, there exists
(pα, zα) ∈ (IRN)2, (qα, ξα) ∈ (IRk), with |pα|, |zα|, |qα|, |ξα| ≤ α and such that the following
function

(ξ, z) 7→ Ψ(ξ, z) + pα · z + qα · ξ,

has a maximum at (ξα, zα) over IRk × IRN , with Ψ twice differentiable at (ξα, zα).
This implies in one hand that g(ξα, zα) = v̂1(ξ1,α, z1,α) + . . . + v̂k(ξk,α, zk,α) ≥ O(α).
Now, for every 1 . . . i . . . k, using the upper semicontinuity of the fucntion v̂i,α, we have
lim sup

α→0
v̂i(ξi,α, zi,α) ≤ v̂i(0, 0) = 0. This shows finally, that for every 1 ≤ i ≤ k, we have,

v̂i(ξi,α, zi,α) → 0, as α→ 0. (5.55)

In a second hand, that shows that g is twice differentiable at (ξα, zα) and therefore, for
every i = 1 . . . k, v̂i is twice differentiable at (ξi,α, zi,α). Then, using the properties of
maximum, we show easily that

|Dξg(ξα, zα)|+ |Dzg(ξα, zα)| = O(α), (5.56)

D2
zg(ξα, zα) ≤ A+ εA2 +O(α2). (5.57)

For every α > 0, i = 1 . . . k, we set ai,α =
∂v̂i

∂t
(ξi,α, zi,α), pi,α = Dzi

v̂i(ξi,α, zi,α) and Xi,α =

D2
zi
v̂i(ξi,α, zi,α). Then, (5.53) and (5.56), show that, for every i = 1 . . . k and α, we have

(ai,α, pi,α, Xi,α) ∈ P2,+v̂i(ξi,α, zi,α), (5.58)

|ai,α|+ |pi,α| = O(α), (5.59)

−λId ≤

 X1,α . . . 0
...

. . .
...

0 . . . Xk,α

 ≤ A+ εA2 +O(α2), (5.60)
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the left equality in (5.60) coming from the semiconvexity of g.
Next we use the following result which proof is easy and left to the reader.

Lemma 5.5 Let 0 < ε satisfying P (t̂, x̂, w, ϕ) and rε, Cε, such that (5.18) holds. Suppose
that, for every 1 ≤ i ≤ k,

(ai, pi, Xi) ∈ P
2,+

I×Oi
ui(ti, xi),

with |ti − t̂|+ |xi − x̂i|+ |ui(ti, xi)− ui(t̂, x̂i)|+ |pi −Dxi
ϕ(t̂, x̂)| ≤ rε

2
,

and ||Xi|| ≤
1

ε
+ ||A||. (5.61)

Then ai ≤ Cε.

Inequality (5.55), (5.59), (5.60 and Lemma 5.5, show that, by extracting if necessary
subsequences and letting α tend to zero, there exists (X1, . . . , Xk) ∈ S(N1) × . . .S(Nk),
such that

(0, 0, Xi) ∈ P
2,+
v̂i(0, 0), for every i = 1 . . . k

and −λId ≤

 X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ A+ εA2. (5.62)

4. Lemma 5.6, which is provided and proved below shows that, for every i = 1 . . . k,

(0, 0, Xi) ∈ P
2,+
vi(0, 0). In fact, as vi depends on ν, the matrices Xi depend on ν. This

is the reason why, in the sequel, we will denote them by Xi,ν . By the definition of vi, we
show easily that, for every i = 1 . . . k, we have

(ai,ν , pi,ν , Xi,ν) ∈ P
2,+
ui(ξiν , xi,ν) (5.63)

where ai,ν =
1

2ν

(
2ξi,ν − ξi+1,ν − ξi−1,ν

)
and pi,ν = (Axν)i.

As a consequence of the matrix inequality, we have, for every ν, ||Xi,ν || ≤
1

ε
+ ||A||. Then,

as ε satifies P (w,A), (5.47), (5.63) and Remark 5.5, show that, for ν small enough,
ai,ν ≤ Cε, for every i = 1 . . . k. On another hand, it is easy to verify that a1,ν+. . .+ak,ν = 0,
which implies, with the preceding inequality that, for every i = 1 . . . k, the sequence (ai,ν)ν

is bounded.
Therefore, by extracting subsequences if necessary, using the estimates on the Xi,ν

and (5.47), we obtain Theorem 5.1.
It remains to state and prove Lemma 5.6.

Lemma 5.6 Let p ∈ IN, p ≥ 1, and v defined in IR × IRp. For (t, x) ∈ IR × IRp, we set
v̂(t, x) = Sup

(s,y)∈IR×IRp

(
v(s, y)− λ1|x− y|2 − λ2|s− t|2

)
.

If (a, p,X) ∈ P2,+v̂(s0, y0), with (p, y0) ∈ IRp × IRp, (a, s0) ∈ IR2, X ∈ S(p), then

(a, p,X) ∈ P2,+v(s0 +
1

2λ2

a, y0 +
1

2λ1

p), (5.64)

v̂(s0, y0) = v(s0 +
1

2λ2

a, y0 +
1

2λ1

p)− |p|2

4λ1

− a2

4λ2

. (5.65)
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Therefore if (0, 0, X) ∈ P2,+
v̂(0, 0), then (0, 0, X) ∈ P2,+

v(0, 0).

Proof of Lemma 5.6: Let (t0, x0) ∈ IR× IRp such that

v̂(s0, y0) = v(t0, x0)− λ1|x0 − y0|2 − λ2|s0 − t0|2.

For every (x, y) ∈ IR2p and (s, t) ∈ IR2 , the following inequalities hold

v(t, x)− λ1|x− y|2 − λ2|t− s|2 ≤ v̂(s, y)

= v̂(s0, y0) + a(s− s0) + p · (y − y0) +
1

2
X(y − y0) · (y − y0) + o(|s− s0|+ |y − y0|2)

= v(t0, x0)− λ1|x0 − y0|2 − λ2|s0 − t0|2 + a(s− s0) + p · (y − y0)

+
1

2
X(y − y0) · (y − y0) + o(|s− s0|+ |y − y0|2). (5.66)

First, taking y = x+ y0 − x0 and s = t+ s0 − t0, we show that (a, p,X) ∈ P2,+v(t0, x0).
Then taking x = x0 and t = t0, we get

0 ≤ λ1

(
|x0 − y|2 − |x0 − y0|2

)
+ λ2((t0 − s)2 − (t0 − s0)

2) + a(s− s0)

+ p · (y − y0) +
1

2
X(y − y0) · (y − y0) + o(|s− s0|+ |y − y0|2). (5.67)

Then choosing, for β ∈ IR, y = y0 + β(2λ1(y0 − x0) + p) and s = s0, we obtain

0 ≤ β|2λ1(y0 − x0) + p|2 +O(β2).

Taking β > 0 (then β < 0) and letting it tend to zero, we get x0 = y0 +
1

2λ1

p.

Now, setting y = y0 and s = s0 + β, with β ∈ IR, we get

0 ≤ β (a+ 2λ2(s0 − t0)) + o(β).

And we obtain that t0 = s0 +
1

2λ2

a.

Therefore, we have shown (5.64) or (5.65). Let (0, 0, X) ∈ P2,+
v̂(0, 0), there exists

(an, pn, Xn) → (0, 0, X), (tn, xn) → (0, 0) and v̂(tn, xn) → v̂(0, 0),

such that for every n ∈ IN , (an, pn, Xn) ∈ P2,+v̂(tn, xn). By (5.64) and (5.65), we have

for every n ∈ IN , (an, pn, Xn) ∈ P2,+v(tn +
an

2λ2

, xn +
pn

2λ1

) and

v(tn +
an

2λ2

, xn +
pn

2λ1

) = v̂(tn, xn) +
|pn|2

4λ1

+
a2

n

4λ2

. To conclude, we only have to prove that

v(tn +
an

2λ2

, xn +
pn

2λ1

) → v(0, 0), as n → +∞. By the definition, v̂(0, 0) ≥ v(0, 0), then

using the upper semicontinuity of v, we get

v(0, 0) ≥ lim sup
n→+∞

v(tn +
an

2λ2

, xn +
pn

2λ1

) ≥ lim inf
n→+∞

v(tn +
an

2λ2

, xn +
pn

2λ1

)

≥ lim inf
n→+∞

v̂(tn, xn) +
|pn|2

4λ1

+
a2

n

4λ2

= v̂(0, 0) ≥ v(0, 0).

This ends the proof of Lemma 5.6.
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6 The test-function

The following lemma is an adaptation of Lemma 5.1 proved by G. Barles in [3]. The diffi-
culty to construct a suitable test-function, in our case, comes from the weak dependence
of L in time; more precisely, the main difference is that L is not assumed to be locally
Lipschitz continuous in t. In the sequel, u ∈ USC(ΩT ), v ∈ LSC(ΩT ) and u and v are
bounded over ΩT . Let R > 0 such that |u|, |v| ≤ R in ΩT . We assume that Ω satisfies
(H7).

Lemma 6.1
(i) If L satisfies conditions (H4), (H5) and (H6) and if

M = max
ΩT

(
u(t, x)− v(t, x)

)
> 0,

then, there exists K̃ > 1, 0 < ν̃ < 1, such that if 0 < ν < ν̃ and 0 < ε ≤ ν small enough
compared to ν, there exists ψν,ε ∈ C2

s , with, for every t ∈ IR, x, y ∈ Ω,

−K̃νε+ K̃−1 |x− y|2

ε2
≤ ψν,ε(t, x, y) ≤ K̃

|x− y|2

ε2
+ K̃νε. (6.1)

Moreover, for every t ∈ IR, x, y ∈ Ω such that |x− y| ≤ νε, one has

−K̃β + K̃−1 |x− y|
ε2

≤ |Dxψν,ε(t, x, y)| ∧ |Dyψν,ε(t, x, y)| (6.2)

|Dxψν,ε(t, x, y)| ∨ |Dyψν,ε(t, x, y)| ≤ K̃
|x− y|
ε2

+ K̃β, (6.3)

with β = 1, and

|Dxψν,ε(t, x, y) +Dyψν,ε(t, x, y)| ≤ K̃
|x− y|2

ε2
+ K̃νε, (6.4)

−K̃
ε2
Id ≤ D2ψν,ε(t, x, y) ≤ K̃

ε2

(
Id −Id
−Id Id

)
+ K̃νId. (6.5)

There exists h̃ ∈ L1
loc(IR), such that, for every x, y ∈ Ω, with |x− y| ≤ 2νε, one has

∂ψν,ε(., x, y)

∂t
≥ −νh̃, in D′(0, 2T ). (6.6)

The constants K̃, ν̃ depends on T,R,CR, νR, ||hR||L1(0,T ) and on diam(Ω), where we set

diam(Ω) = sup
(x,y)∈Ω2

|x− y| and h̃ is equal to hR + 1 on (0, T ) and to 1 otherwise.

Finally, there exists δ > 0, such that if t ∈ [0, T ], x, y ∈ Ω, with |x− y| ≤ νε(≤ δ) are
such that u(t, x)− v(t, y) ≥M − δ, then we have

L
(
t, x, u(t, x), Dxψν,ε(t, x, y)

)
> 0, if x ∈ ∂Ω, (6.7)

L(t, y, v(t, y),−Dyψν,ε(t, x, y)) < 0, if y ∈ ∂Ω. (6.8)
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(ii) If L satisfies (H4-2),(H5-2) and (H6-2), then there exists a constant K̃ > 1,
0 < ν̃ < 1, such that, if 0 < ν < ν̃ and 0 < ε < ν, small enough compared to ν,
there exists ψν,ε ∈ C2

s satisfying conditions (6.1) to (6.7), with β = νε, and h̃ is the
function equal to h + 1 in (0, T ) and to 1 otherwise. The constants K̃, ν̃ depends on
T,R,C, ν, ||h||L1(0,T ) and on diam(Ω).

Finally, for every t ∈ [0, T ], for every x, y ∈ Ω, with |x− y| ≤ νε, one has

L(t, x,Dxψν,ε(t, x, y)) > 0, if x ∈ ∂Ω, (6.9)

L(t, y,−Dyψν,ε(t, x, y)) < 0, if y ∈ ∂Ω. (6.10)

Proof of Lemma 6.1 : We are going to prove i), the proof of (ii) being similar and even
simpler. We are only pointing out the differences between the proof of Lemma 6.1 and
Lemma 5.1 in [3]; we refer to the paper of [3] for additional details.

We consider M and R defined as above. Using the regularity of Ω, there exists d ∈
W 3,∞(IRN) be a function, which agrees with the sign-distance to ∂Ω in a neighborhood of
∂Ω, with d > 0 in Ω, which satisfies |Dd(x)| ≤ 1 in IRN and Dd has a compact support.
We will denote below n(x) = −Dd(x) even if x 6∈ ∂Ω. As G. Barles remarks, we can
suppose that n ∈ C2, indeed it is enough to use regularization arguments, noticing that
only the L∞ norm of D2n is playing a role in the proof.
0. The same way as in Lemma 5.1 of [3], we extend the function L to IR×W× [−R,R]×
IRN , where W is a neighborhood of ∂Ω, in order that properties (H4), (H5) and (H6)
are still available. We can show quite easily that there exists a function C : IR × IRN ×
IR× IRN → IR, such that

L(t, x, u, p+ C(t, x, u, p)n(x)) = 0,

for every t ∈ IR, x ∈ W , |u| ≤ R and p ∈ IRN , and which satisfies moreover,

|C(t, x, u, 0)| ≤ C1, (6.11)

|C(t, x, u, p)− C(t, y, v, q)| ≤ C2

(
(1 + |p|+ |q|)|x− y|+ |u− v|+ |p− q|

)
, (6.12)

|C(t, x, u, p)− C(s, x, u, p)| ≤ C3 (1 + |p|)
∫ s

t

h̄(w)dw, (6.13)

for every t, s, u, v ∈ IR, with t ≤ s, x, y, p, q ∈ IRN and h̄ is equal to hR in (0, T ) and to
zero otherwise. In the sequel, we say that a constant C depends on the data if it depends
on R,CR, νR, ||hR||L1(0,T ) and on diam(Ω). The constants C1, C2 and C3 depend on the
data.
1. Regularization of the function C in the variables (x, u, p) ∈ IRN × IR× IRN .
For α > 0, we define the functions Cα, for every (t, x, u, p) ∈ IR× IRN × IR× IRN , by

Cα(t, x, u, p) =

∫ ∫ ∫
IRN×IR×IRN

C(t, y, v, q)ρ

(
(x− y)

Γ

Λ

)
ρ̃(
u− v

Λ
)ρ

(
p− q

Λ

)
ΓN

Λ2N+1
dydvdq,

where ρ ∈ D(IRN), ρ ≥ 0, supp(ρ) ⊂ B(0, 1), with
∫

IRN ρ(y)dy = 1 and where ρ̃ satisfies
the same properties as ρ except for N = 1. Finally

Λ =
(
α2 + p · n(x)2

) 1
2 and Γ = (1 + |p|2)

1
2 .

35



The estimations on the function Cα, its first and second derivates with respect to the
variables (x, u, p), given in [3], are still available, for every (t, x, u, p) ∈ IR×IRN×IR×IRN ,
with K is a constant depending on the data. In particular, we have, for every (t, x, u, p) ∈
IR× IRN × IR× IRN and α > 0,

|DuCα(t, x, u, p)| ≤ K. (6.14)

2. The dependence of L in u.
Using Lemma 5.2 in [3] and looking carefully at its proof, we show that there exists a C∞

function ξ : IRN+1 → IR and a constant δ > 0, such that, if t ∈ [0, T ], x, y ∈ Ω are such
that u(t, x)− v(t, y) ≥M − δ and |x− y| ≤ δ, then

u(t, x)− ξ(t,
x+ y

2
) ≥ 0 and ξ(t,

x+ y

2
)− v(t, y) ≥ 0.

Moreover, we can choose ξ, such that |ξ| ≤ R + 1, in IR× IRN .
3. The test function.
For 0 < ε ≤ ν, we introduce the function ψν,ε ∈ C2

s defined for (t, x, y) ∈ IR× IRN × IRN ,
by

ψν,ε(t, x, y) = exp
(
−K̃1[d(x) + d(y)]

) |x− y|2

ε2
− Cνε

(
t,
x+ y

2
, ξ

(
t,
x+ y

2

)
, p

) (
d(x)− d(y)

)
+
A(d(x)− d(y))2

ε2
− K̃2νε

(
d(x) + d(y)

)
,

where p = exp
(
−K̃1[d(x) + d(y)]

) 2(x− y)

ε2
.

By choosing the constant A, K̃1, K̃2 as in [3], we get (6.1) to (6.5), (6.7) and (6.8).
4. An estimate on the derivate in the sense of distribution of the test function in t.
By the definition of Cνε, we show easily that Cνε satisfies (6.13) with 2C3 instead of C3.

Then, for every t, s ∈ [0, 2T ], with t ≤ s and x, y ∈ Ω× Ω, setting z =
x+ y

2
, we have

|ψν,ε(t, x, y)− ψν,ε(s, x, y)| = |d(x)− d(y)|
(
Cνε (t, z, ξ(t, z), p)− Cνε (s, z, ξ(s, z), p)

)
,

≤ |x− y|
(

2C3(1 + |p|)
∫ t

s

h̄+K

∫ t

s

|∂ξ
∂t

(., z)|
)
, by (6.14)

≤ C̄

(
|x− y|2

ε2
+ |x− y|

)∫ t

s

(1 + h̄), by the definition of p

≤ C̄(ν2 + ε2)

∫ t

s

(1 + h̄) ≤ ν

∫ t

s

(1 + h̄), (6.15)

for ν small enough then ε small enough compared to ν, the constant C̄ depends on the
data. To get (6.6), it is enough to use the following lemma, which proof, based on Lebesgue
and Fubini’s Theorems is left to the reader.

Lemma 6.2 Let a < b, f, g ∈ L1(a, b), such that, for almost every a < s ≤ t < b,

|f(s)− f(t)| ≤
∫ t

s
g(r)dr. Then, we have, −g ≤ ∂f

∂t
≤ g in D′(a, b).
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7 Proof of the Lemmas and Propositions given in

Sections 2,3,4

7.1 Proofs of Lemmas and Propositions given in the second sec-
tion

In the sequel, we will only consider the case of subsolutions, the supersolutions one being
treated similarly.
Proof of Proposition 2.3: We only prove it in the case when F satisfies (ii) and L is
homogeneous of degree 1 in p, the case when F ∈ C(ΓT ) being simpler

At first, let us show that a L1 subsolution is a classical one. To this end, consider
(t0, x0) ∈ ΩT , ϕ ∈ C∞, such that u − ϕ has a local maximum over ΩT . If F∗ is the
lower semicontinuous envelope of F , by classical arguments, there exists a sequences
(Fn)n∈IN ∈ C(ΓT ) such that Fn ≤ F∗ in ΓT , for every n and

Fn(t0, ξ0) → F∗(t0, ξ0), as n→ +∞.

Therefore, using Definition 2.1, with b ≡ 0 and G = Fn, we get the result by letting n
tend to infinity.

Conversely, assume that u is a classical subsolution and show that it is a L1 one. Let
(t0, x0) ∈ ΩT , b ∈ L1(0, T ), ϕ ∈ C∞, G ∈ C(ΓT ), such that the function

(t, x) 7→ u(t, x) +

∫ t

0

b(s)ds− ϕ(t, x),

has a strict maximum point at (t0, x0) over Qt0 and such that (2.1) holds.
Recalling the notations of Definition 2.1, namely p0 = Dϕ(t0, x0) andX0 = D2ϕ(t0, x0),

we have the following technical lemma, largely inspired of Proposition 2.2 in G. Barles
and Ch. Georgelin [4], which is proved at the end of the present proof.

Lemma 7.1 If L is homogeneous of degree 1 in p, we can assume in Definition 2.1 that
either p0 6= 0 or p0 = 0 and X0 = 0.

By Lemma 7.1, we can assume either that p0 6= 0 or that p0 = 0 and X0 = 0. And as
F satisfies (ii), it implies in particular, that t 7→ F∗(t, ξ0) ∈ C([0, T ]).
Inequality (2.1) implies the following inequality, for almost every t close enough to t0

b(t) ≤ k(t) = F (t, ξ0)−G(t, ξ0), (7.1)

and using the above remark, we know that k ∈ C([0, T ]). Then, we still denote by k and
b their extensions to IR, which are equal to k(0) in ]−∞, 0] and to k(T ) in [0,+∞[. Let
(ρn)n≥1 a real mollifier. For every n ≥ 1, we set bn = b∗ρn and kn = k∗ρn, which are contin-

uous on IR. It is not difficult to show that the function ψn : (t, x) 7→ ϕ(t, x)−
∫ t

0

bn(s)ds

achieves its maximum over Qt0 at (tn, xn), with as n→ +∞,

(tn, xn) → (t0, x0), u(tn, xn) → u(t0, x0). (7.2)
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Using that u is a classical subsolution of (1.1)-(1.2) in ΩT , we have

∂ψn

∂t
(tn, xn) + F∗(tn, ξn) ≤ 0 if xn ∈ Ω,

min

(
∂ψn

∂t
(tn, xn) + F∗(tn, ξn), L(tn, xn, u(tn, xn), Dϕ(tn, xn))

)
≤ 0 if xn ∈ ∂Ω,

with ξn = (xn, u(tn, xn), Dϕ(tn, xn), D2ϕ(tn, xn)). But, by (7.1), we have, for every n ≥ 1,

∂ψn

∂t
(tn, xn) ≥ ∂ϕ

∂t
(tn, xn)− kn(tn).

Using (7.2) and the fact that kn(tn) → k(t0) = F∗(t0, ξ0) − G(t0, ξ0), we get the wanting
result by letting n to infinity. This ends the proof of Proposition 2.3.

We now give the proof of Lemma 7.1: Let (t0, x0) ∈ ΩT , b ∈ L1(0, T ), ϕ ∈ C∞(ΩT )

and G ∈ C(ΓT ), such that (t, x) 7→ u(t, x) +

∫ t

0

b(s)ds− ϕ(t, x), has a strict maximum at

(t0, x0) over Qt0 , and such that (2.1) holds. Assume that p0 = 0. As L is homogeneous
of degree 1, (2.3) is satisfied if x0 ∈ ∂Ω. Therefore, in the sequel, we can assume that
x0 ∈ Ω. For ε > 0, we define the following function, by

ϑε(t, x, y) = u(t, x) +

∫ t

0

b(s)ds− |x− y|4

ε
− ϕ(t, y), ∀(t, x, y) ∈ (0, T ]× Ω× Ω.

It is not difficult to show that it achieves its maximum over [
t0
2
, T ]× Ω× Ω, at (tε, xε, yε),

with (tε, xε, yε) → (t0, x0, x0), u(tε, xε) → u(t0, x0), as ε→ 0. (7.3)

Thus pε = Dϕ(tε, yε) → p0 = 0 and Xε = D2ϕ(tε, yε) → X0. (7.4)

As x0 ∈ Ω, for ε small enough, xε, yε ∈ Ω. Therefore, the function y 7→ ϑε(tε, xε, y) ∈ C∞
and has a local minimum at yε over IRN , for ε small enough, thus

pε =
4(xε − yε)|xε − yε|2

ε
, Xε ≥ −

4|xε − yε|2

ε
Id− 8

(xε − yε)⊗ (xε − yε)

ε
. (7.5)

Now, we consider two cases, whereas there is an infinity of ε such that xε = yε or not.
(i) Assume that there exists an infinity of ε such that xε = yε. To simplify, we can
assume that it is true for every ε. This implies in particular, by (7.5), that pε = 0 and
Xε ≥ 0, for every ε. This shows, by (7.4), that X0 ≥ 0. In the sequel, we set for
(t, ξ) = (t, x, r, p,X) ∈ Γ∗T , G0(t, ξ) = G(t, x, r, p,X + X0) ∈ C(ΓT ). By (2.1), as F is
degenerate elliptic, we have

b(t) +G0(t, ξ) ≤ F (t, ξ), (7.6)

for almost every t ∼ t0 and for every ξ ∼ (x0, u(t0, x0), 0, 0) and therefore, by (7.3), for
almost every t ∼ tε and for every ξ ∼ (xε, u(tε, xε), 0, 0). Now, the function
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(t, x) 7→ u(t, x) +

∫ t

0

b(s)ds− ψε(t, x), where ψε(t, x) =
|x− yε|4

ε
+ ϕ(t, yε) achieves its max-

imum over Qt0 at (tε, xε). And as xε = yε, for every ε, then Dψε(tε, xε) = 0 and
D2ψε(tε, xε) = 0. Therefore, by (7.6), as xε ∈ Ω for ε small enough, we get

∂ψε

∂t
(tε, xε) +G0(tε, xε, u(tε, xε), 0, 0) ≤ 0.

The result follows using the definition of G0, (7.3), (7.4) by letting ε tend to zero.
(ii) Assume now that there exists an infinity of ε, such that xε 6= yε and to simplify, we
suppose that it is true, for every ε. By (7.5), we have in particular pε 6= 0, for every ε.
The following function, defined for (t, x) ∈ ΩT , by

ϑε(t, x, x− (xε − yε)) = u(t, x) +

∫ t

0

b(s)ds− ϕε(t, x), where ϕε(t, x) = ϕ(t, x− (xε − yε)),

has a local maximum at (tε, xε) over ΩT . And we have clearly,

Dϕε(tε, xε) = pε, D2ϕε(tε, xε) = Xε,
∂ϕε

∂t
(tε, xε) =

∂ϕ

∂t
(tε, yε). (7.7)

By (7.3) and (7.4), (2.1) holds for almost every t ∼ tε and for every ξ ∼ ξε = (xε, u(tε, xε), pε, Xε).
As pε 6= 0, using (7.7) and as xε ∈ Ω, for ε small enough, we have the following inequality

∂ϕ

∂t
(tε, yε) +G(tε, ξε) ≤ 0.

And the result follows, using (7.3) and (7.4) and letting ε tend to zero.

Proof of Proposition 2.4: Let u a subsolution of (1.1)-(1.2) in Ω−T and 0 < h < T ,
we are going to prove that u is a subsolution of (1.1)-(1.2) in Ωh. The only difficulty is
when the maximum point is achieved at time h. Therefore, let b ∈ L1(0, h), ϕ ∈ C∞,
x0 ∈ Ω, G ∈ C(Γh), such that the function Ψ : (t, x) 7→ u(t, x) +

∫ t

0
b(r)dr − ϕ(t, x) has

a strict maximum point at (h, x0) over [
h

2
, h]× Ω, and such that (2.1) holds for almost

every 0 < t < h, t ∼ h and for every ξ ∼ ξ0. We define Gh ∈ C(ΓT ), for every ξ ∈ Γ, by
Gh(t, ξ) = G(t, ξ) if 0 ≤ t ≤ h and Gh(t, ξ) = G(h, ξ) if h ≤ t ≤ T and we denote by K0

the following compact subset of Γ

K0 = {(x, r, p,X) ∈ Γ, |r| ≤ |u(h, x0)|+ 1, |p| ≤ |p0|+ 1, ||X|| ≤ ||X0||+ 1}.

We set, for almost every t ∈ (0, T ), a(t) = sup
ξ∈K∗

0

|F (t, ξ) − Gh(t, ξ)| and we define c ∈

L1(0, T ), as follows c(t) = b(t) if 0 < t < h and c(t) = −a(t) if h < t < T . For ε > 0, we
consider the following function defined, for (t, x) ∈ Ω−T , by

Ψε(t, x) = u(t, x) +

∫ t

0

c(s)ds− ϕ(t, x)− (h− t)2

ε2
.

It achieves its maximum over [
h

2
,
T + h

2
]× Ω at a point (tε, xε), with as ε→ 0,(

tε, xε, u(tε, xε)
)
→
(
h, x0, u(h, x0)

)
. (7.8)
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and such that h ≤ tε <
T + h

2
, for ε small enough. (7.9)

The right-hand of this last inequality is a direct consequence of (7.8), as h < T . Let us
show the left-hand. Assume that tε < h, then we get,

Ψ(tε, xε)−
(h− tε)

2

ε2
= Ψε(tε, xε) ≥ Ψε(h, x0) = Ψ(h, x0). (7.10)

Now, by (7.8), tε >
h

2
, for ε small enough, and therefore (7.10) contradicts the fact that

Ψ has a strict maximum point at (h, x0) over [
h

2
, h]× Ω.

By (2.1), the definitions of Gh, a and c and (7.8), we clearly have, for ε small enough,

c(t) +Gh(t, ξ) ≤ F (t, ξ), (7.11)

for almost every t ∼ tε and for every ξ ∼ ξε = (xε, u(tε, xε), pε, Xε), where pε = Dϕ(tε, xε)
and Xε = D2ϕ(tε, xε). As u is a subsolution of (1.1)-(1.2) in Ω−T , the following holds

αε =
∂ϕ

∂t
(tε, xε) +

2(tε − h)

ε2
+Gh(tε, ξε) ≤ 0 if xε ∈ Ω,

min
(
αε, L(tε, xε, u(tε, xε), pε)

)
≤ 0 if xε ∈ ∂Ω.

The result follows, using (7.8), (7.9), the definition of Gh and letting ε tend to zero.

7.2 Proofs of Lemmas 3.1 and 4.1

We do it at the same time for Lemma 3.1 and Lemma 4.1. We first show that F is
degenerate elliptic.

Let X, Y ∈ S(N), with Y ≥ X, t ∈ (0, T ) and (x, r, p) ∈ Σ (resp. Σ∗). First, we have,
for every λ > 0, (

X 0
0 −Y

)
≤ 1

2λ

(
Id −Id
−Id Id

)
+ λ||Y ||2 Id. (7.12)

Using (7.12), with λ = ε2 (resp. λ = ε), (X, Y ) satisfies (3.2), (resp. (4.2)), for every
ε > 0 and ν = νε = ε2 (||Y ||2 + 1) (resp. ν = νε = ε (||Y ||2 + 1)). Therefore, for ε small
enough, we are in position to use condition (H2) (resp. (H2-2)) on F and we get,

F (t, x, r, p, Y )− F (t, x, r, p,X) ≤ mR(t, νε), (7.13)

where R = |r|+ 1. As mR ∈M, mR(t, νε)→
ε→0

0 in L1(0, T ), and therefore by extracting a

subsequence if necessary, mR(t, νε)→
ε→0

0, for almost every t ∈ (0, T ). This shows that F

is degenerate elliptic.
Now we prove (3.9)-(3.10). Let K be a compact subset of Γ (resp. Γ∗) and R > 0

such that K ⊂ B̄R(0). (resp. with moreover α > 0, such that |p| ≥ α, whenever
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ξ = (x, r, p,X) ∈ K). Let t ∈ (0, T ), ξ1 = (x1, r1, p1, X1) and ξ2 = (x2, r2, p2, X2) ∈ K,
with |ξ1 − ξ2| ≤ r. We have

|F (t, ξ1)− F (t, ξ2)| ≤ A1(t) +A2(t),

where A1(t) = |F (t, ξ1)− F (t, x1, r2, p1, X1)|,
and A2(t) = |F (t, x1, r2, p1, X1)− F (t, ξ2)|. (7.14)

By (H3) (resp. (H3-2)), then A1(t) ≤ g(t, r), with g ∈M, g = gR (resp. g = gα
R).

To give an estimate of A2, we are going to use condition (H2) (resp. (H2-2)) on F . At
first, it is not very difficult to prove that for every (X,Y ) ∈ (S(N))2 and λ > 0, one has(

X 0
0 −Y

)
≤ λ

(
Id −Id
−Id Id

)
+

(
1

2
||X − Y ||+ 1

λ
||X + Y ||2

)
Id. (7.15)

Therefore, (X1, X2) satisfies, for every λ > 0,(
X1 0
0 −X2

)
≤ λ

(
Id −Id
−Id Id

)
+

(
r

2
+

2R2

λ

)
Id. (7.16)

This implies that, for r small enough, (X1, X2), (p1, p2), (x1, x2) satisfy (3.2), (3.3) and

(3.4), with ν = 2R
2
3 r

2
3 , ε = 2−1r

1
3R−

2
3 and λ = ε−2 (resp. they satisfy (4.2), (4.3) and

(4.4), with ν = (2Rr)1/2, ε = r1/2(2R)−1/2 and λ = νε−2. Therefore, we obtain, by (3.1)
(resp. (4.1)), A2(t) ≤ mR(t, αr), where αr →

r→0
0. The result follows, using that g,mR ∈M.

Now we prove (3.8). Let K a compact subset of Γ and r small enough fixed, such that

hr
K ∈ L1(0, T ). There exists m ∈ IN , (ξi)1≤i≤m ⊂ K, such that K ⊂

m⋃
i=1

Br(ξi). Thus, for

almost every t ∈ (0, T ),

sup
ξ∈K

|F (t, ξ)| ≤ hr
K(t) + sup

1≤i≤m
|F (t, ξi)|.

This proves (3.8), by (3.9)-(3.10) and condition (H0) on F .
Finally we point out that the assertion on f in Lemma 4.1 is proved in the same way

as above.
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