Université de Tours-Préparation à l'Agrégation Leçons d'Analyse et Probabilités Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exercices

VRAI OU FAUX

- 1. Soit f une fonction numérique définie sur un intervalle I de centre 0.
- a) Si f est dérivable à gauche et à droite au point 0, alors f est continue en ce point.
- b) Si $\frac{f(h) f(0)}{h}$ tend vers $+ \infty$ lorsque h tend vers 0 par valeurs strictement positives, alors f n'est pas continue à droite au point 0.
- \bullet c) Si f est lipschitzienne sur I, alors f est dérivable à droite et à gauche au point 0.
- d) Si f est dérivable au point 0, il existe un nombre réel strictement positif α tel que f soit continue sur $[-\alpha, \alpha]$.
- 2. Soient f une fonction numérique de classe C^1 sur un intervalle I et x_0 un point de I.
 - a) Si $f'(x_0) = 0$, alors f admet un extrémum local au point x_0 .
 - b) Si f admet un maximum local au point x_0 , alors $f'(x_0) = 0$.
- c) Si f admet un extrémum local strict au point x_0 et si x_0 est intérieur à I, alors x_0 est un zéro isolé de f'.
- d) Si f admet un extrémum local au point x_0 et si x_0 est un zéro isolé de f', alors cet extrémum local est strict.
- lacktriangleq 3. Soient f une fonction numérique dérivable sur un intervalle I et c un point intérieur à I.
- a) Le rapport $\frac{f(y) f(x)}{y x}$ tend vers f'(c) si x et y tendent vers c en restant tels que $x \neq y$.
 - b) Même conclusion si l'on suppose que f est de classe C^1 sur I.
- c) Même conclusion si l'on suppose que x et y tendent vers c en restant tels que x < c < y.
 - 4. Soit [a, b] un intervalle compact de \mathbb{R} non réduit à un point.
- a) Les fonctions de classe C^1 par morceaux sur [a, b] constituent une sous-algèbre pleine de l'algèbre unifère $\mathscr{F}([a, b], \mathbb{R})$.
- b) Si f est de classe C^1 par morceaux sur [a, b] et si g est de classe C^1 par morceaux sur un intervalle [c, d] contenant f([a, b]), alors $g \circ f$ est de classe C^1 par morceaux sur [a, b].
- 5. Soient f une fonction numérique définie sur un intervalle [a, b] et c un point de [a, b].

- a) Si f est continue sur [a, c] et sur [c, b], alors f est continue sur [a, b].
- b) Même question lorsqu'on remplace continue par lipschitzienne.
- c) Même question lorsqu'on remplace continue par dérivable.
- d) Même question lorsqu'on remplace continue par de classe C^{∞} .
- 6. Soit f une fonction numérique continue sur un intervalle [a, b] et de classe C^1 sur [a, b].
- a) Si f'(x) admet une limite finie 1 lorsque x tend vers a, alors f est de classe C^1 sur [a, b].
- b) Si f'(x) tend vers $+\infty$ lorsque x tend vers a, alors f n'est pas dérivable au point a, et le graphe de f admet une demi-tangente verticale au point d'abscisse a.
- c) Si f'(x) n'admet pas de limite lorsque x tend vers a, alors f n'est pas dérivable au point a.
- 7. Soit f une fonction numérique continûment dérivable. Si f' est positive, alors f est croissante.
- 8. Soient f et g des fonctions numériques de classe C^1 . Si f' = g', alors f g est constante.
 - 9. Soient f et g des fonctions numériques de classe C^1 sur un intervalle I.
- a) Si f' coïncide avec g' sur le complémentaire d'une partie finie de I, alors f-g est constante.
- b) Même question si l'on suppose seulement que f et g sont dérivables sur I.
 - 10. Soit f une fonction numérique de classe C^1 sur un intervalle I.
 - a) Si f est strictement croissante, f' est à valeurs strictement positives.
 - b) Si-f' est strictement positive, f est strictement croissante.
 - c) Si f est strictement croissante, f' est strictement positive.
 - d) Si f' est à valeurs strictement positives, f est strictement croissante.
 - 11. Soit f une fonction numérique définie sur un intervalle compact [a, b].
 - a) Si f est continue, f est monotone par morceaux.
 - b) Si f est de classe C^{∞} , f est monotone par morceaux.
- \blacklozenge d) Si f est de classe C^{∞} et n'admet aucun point plat (i.e. aucun point où toutes les dérivées de f s'annulent), f est monotone par morceaux.
- e) Si f est de classe C^1 et non constante, il existe un intervalle non réduit à un point sur lequel f est strictement monotone.
- ♦ 12. Soient f une fonction numérique strictement croissante de classe C^1 sur [a, b] et E l'ensemble des points x de [a, b] tels que f'(x) = 0.

- a) L'ensemble E est fini.
- b) L'intérieur de E est vide.
- 13. Soit f une fonction numérique définie sur un intervalle [a, b] telle que f(a) = f(b).
- a) Si f est de classe C^1 sur]a, b[, il existe un point c de]a, b[tel que f'(c) = 0.
- b) Même conclusion si f est continue sur [a, b] et si f est dérivable sur le complémentaire d'une partie finie de [a, b].
 - c) Même conclusion si f est de classe C^1 sur [a, b] à valeurs complexes.
- d) Si f est continue sur [a, b] et si f est dérivable à gauche et à droite en tout point de]a, b[, il existe un point c de]a, b[tel que $f'_a(c) f'_b(c) \le 0$.
- 14. Soit f une fonction numérique continue sur [a, b] et dérivable sur [a, b], telle que f' admette une limite l au point a. Alors $\frac{f(x)-f(a)}{x-a}=f'(c_x)$, où $c_x\in]a$, x[. Lorsque x tend vers a, c_x tend vers a. Donc $\frac{f(x)-f(a)}{x-a}$ tend vers l lorsque x tend vers a.
- 15. Soit f une fonction numérique dérivable sur un intervalle de centre 0, telle que f(0) = 0.
 - a) Si f'(0) = 0, alors f(x) est négligeable devant x au voisinage de 0.
 - b) Si f(x) est négligeable devant x au voisinage de 0, alors f'(0) = 0.
- c) Si f'(x) est négligeable devant x au voisinage de 0, alors f(x) est négligeable devant x^2 au voisinage de 0.
- d) Si f(x) est négligeable devant x^2 au voisinage de 0, alors f'(x) est négligeable devant x au voisinage de 0.
- e) Si f est de classe C^2 et si f(x) est négligeable devant x^2 au voisinage de 0, alors f'(x) est négligeable devant x au voisinage de 0.
- 16. Soient f et g des fonctions numériques de classe C^1 sur un intervalle de centre 0, telles que f(0) = g(0) = 0.
- lacktriangle a) Si f' est négligeable devant g' au voisinage de 0, alors f est négligeable devant g au voisinage de 0.
- lacklost b) Si f' est équivalente à g' au voisinage de 0, alors f est équivalente à g au voisinage de 0.

Soit p un entier naturel non nul.

- c) Si f'(x) est équivalent à x^p au voisinage de 0, alors f(x) est équivalent à $\frac{x^{p+1}}{p+1}$ au voisinage de 0.
- d) Si f(x) est équivalent à x^p au voisinage de 0, alors f'(x) est équivalent à px^{p-1} au voisinage de 0.
 - 17. Soit f une fonction numérique continue sur \mathbb{R} et de classe C^{∞} sur \mathbb{R}^* .
- a) Si f(x) est négligeable devant x au voisinage de 0, alors f est dérivable à l'origine, et f'(0) = 0.

- b) Si f(x) est négligeable devant x au voisinage de 0, alors f est de classe C^1 sur \mathbb{R} .
- c) Si f(x) est négligeable à tout ordre au voisinage de 0, alors f est de classe C^{∞} sur \mathbb{R} .
- d) Si, pour tout entier naturel p, $D^p f$ admet une limite à l'origine, alors f est de classe C^{∞} sur \mathbb{R} .
- 18. Soit f une fonction dérivable sur un intervalle [a, b]. Alors f' est continue sur [a, b].
- 19. a) Toute fonction bornée et dérivable sur un intervalle [a, b] se prolonge en une fonction bornée et dérivable sur [a, b].
- \blacklozenge b) Même question pour les fonctions de classe C^1 dont la dérivée est bornée.
- \blacklozenge c) Même question pour les fonctions de classe C^{∞} dont toutes les dérivées sont bornées.
- 20. Soit f une fonction numérique de classe C^1 sur $[1, +\infty[$, admettant 0 pour limite en $+\infty$.
 - a) La fonction f' admet 0 pour limite en $+\infty$.
- \bullet b) Même question lorsqu'on suppose en outre que f est décroissante.
 - c) Si f' admet une limite a dans $\overline{\mathbb{R}}$ au point $+\infty$, alors a=0.
- d) Si f' est uniformément continue, alors f' admet 0 pour limite au point $+\infty$.
 - 21. Soit f une fonction numérique de classe C^1 sur $[1, +\infty[$.
- a) Si f(x) est négligeable devant x au voisinage de $+\infty$ et si f' admet une limite a dans \mathbb{R} au point $+\infty$, alors a=0.
- b) S'il existe un nombre réel non nul a tel que $f(x) \sim ax$ au voisinage de $+\infty$.
- c) Si f' admet une limite finie a au point $+\infty$, alors $f(x) \sim ax$ au voisinage de $+\infty$.
- d) Si f(x) est prépondérant sur x au voisinage de $+\infty$, alors f' admet $+\infty$ pour limite au point $+\infty$.
- 22. Soit f une fonction numérique de classe C^1 sur $[1, +\infty[$, telle que f' admette 0 pour limite au point $+\infty$.
- a) Si f(n) tend vers 0 lorsque n tend vers $+\infty$, alors f(x) tend vers 0 lorsque x tend vers $+\infty$.
 - b) Même question lorsqu'on suppose que $\lim_{n \to +\infty} f(\sqrt{n}) = 0$.
 - c) Même question lorsqu'on suppose que $\lim_{n \to +\infty} f(n^2) = 0$.
- 23. Reprendre le nº 22 lorsqu'on suppose que f est de classe C^1 sur $[1, +\infty[$ et que f' est bornée.

Exercices tirés du livre Léonhard EpisTETTON "

Analyse exercices et problèmes Vol 1 Cédic-Fornand Nothan
1883.