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Abstract

This paper is concerned with first-order time-dependent Hamilton-Jacobi Equations.
Exploiting some ideas of Barron and Jensen [9], we derive lower-bound estimates for the
gradient of a locally Lipschitz continuous viscosity solution u of equations with a con-
vex Hamiltonian. Using these estimates in the context of the level-set approach to front
propagation, we investigate the regularity properties of the propagating front of u, namely
I'' = {z € R" : u(z,t) = 0} for t > 0. We show that, contrary to the smooth case, such
estimates do not guarantee, in general, any expected regularity for T'; even if u is semiconcave.
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1 Introduction

We consider the first-order time-dependent Hamilton-Jacobi Equation

%—(:—FH(w,t,D:Ew):O in R" x (0,T) (1)

with the initial condition
w(z,0) =up(z) inIR" (2)

where H € C(IR" x [0,T] x IR"), up € C(IR™) and the solution w is a real-valued function.
Under suitable assumptions on the Hamiltonian H, if the initial condition ug is in W% (IR™),
it is well-known that there exists a unique viscosity solution v € W1H%(IR™ x [0,T]) of (1)-(2).
Many works are related to this problem: Crandall and Lions [14], Lions [22], Ishii [19], Barles
[5, 7], Bardi and Capuzzo-Dolcetta [4], ... and references therein.

Here, we are given an Hamiltonian H(z,t,p) which is assumed to be Lipschitz continuous
with respect to z and p and which satisfies

(H1-B) ‘%—Z(m,t,p)‘ <Ci(B+1p|) for a.e. (z,t,p) € R" x[0,T] x R"

(in the sequel, 8 will be chosen equal to 0 or 1) and
oOH
(H2) ‘a—p(x,t,p)‘ < As|z| + By for a.e. (z,t,p) € R" x [0,T] x R".

Assumption (H2) implies a property of “finite speed of propagation”: the value of the solution
u at the point (z,t) does not depend on the initial condition ug in the whole space IR™ but only
in a ball

B(z,r(z,t)) where r(z,t) = elAz+BatA2lzt _ 1

the base of the so-called domain of dependence D(z,r) C IR™ x [0,T] (see Remark A.1). This
property allows to localize many arguments and to compare unbounded solutions, regardless to
their growth at infinity. This fact was first proved by Ishii in [19]. To be as self-contained as
possible, we give in the appendix a simplified proof of this comparison theorem (Theorem A.1).

As an application, if the initial data ug is locally Lipschitz continuous in /IR", we obtain upper
bound estimates for the gradient of a solution u of (1)-(2) which imply that u is locallyLipschitz
continuous in IR"™ x [0,T] (Theorem 4.1). In the same way, if ug is semiconcave in IR"™, then so
is u(-,t) for ¢t € [0,T] (Theorem 5.2).

On the other hand, when H satisfies (H1-3) and

(H3) H(z,t,p) is conver in the p — variable,

Barron and Jensen showed in [9] that a continuous viscosity solution of (1) satisfies stronger
properties than the ones needed to be a viscosity solution. In particular, the inf-convolution of
a solution u of (1) is an approximate subsolution of (1) in addition to be, as it is well-known, an
approximate supersolution (see Lemma 3.2). Exploiting this fact with the help of the comparison
theorem, we prove a lower-bound estimate for the gradient which is an unusual result in the



theory of partial differential equations: suppose that, for some positive > 0 and some ball
B(zy,r) C IR", we have

|Dug| >n in B(zg,7) in the viscosity sense. (3)

Then the solution u of (1)-(2) satisfies the following similar lower-bound in the viscosity sense,
namely

|Dyu| > 7”72 in the domain of dependence D(zg, ). (4)

If ug is smooth, from the implicit function theorem, (3) implies that T'o N B(xg,7) is a smooth
hypersurface where I'y = {z € IR"™ : ug(z) = 0} is the 0-level set of ug. In the same way, if the
solution w is smooth, (4) implies that, for any ¢ € [0,T], I'; N D(zg,7) is a smooth hypersurface
where

I'y={zeR" : u(z,t) =0} (5)

is the 0-level set of u. Now, the question is: what can we say about the regularity of I'; if wug
and u are only Lipschitz continuous or if they are semiconcave?

This question is especially relevant in the theory of the level set approach to weak propagation
of fronts developed by Evans and Spruck [17] and Chen, Giga and Goto [11] (see also Barles,
Soner and Souganidis [8]). It can be described in the following way. We consider equation (1)
with an Hamiltonian which is homogeneous of degree 1 in the gradient variable i.e.

(H4) H(z,t,\p) = AH(z,t,p) forallz € R",t€[0,T],p € R" and X\ > 0.

(note that it implies that the equation is invariant by changes u — ¢(u), ¢’ > 0). Given an
open set 2y whose boundary is I'g, we first choose a function uy such that

IFo={z € R" : up(z) =0} and Qp={z e R" : ug(z) < 0}. (6)

We define the front I'; at time ¢ by (5) where u is the unique viscosity solution of (1)-(2). Then
it is shown in [17] and [11] that the propagation of I'; depends only on the sets I'g and € but
not on the choice of wy satisfying (6).

In this context, we consider an Hamiltonian which satisfies (H1-5), (H2), (H3) and (H4).
Then T'y can be seen as a front which propagates in the sense of the level-set approach described
above. The most typical example is the well-known Eikonal Equation

%—L: +c|Dyw| =0
which is related to a front propagating with a constant normal velocity ¢ (see Examples 4.1 and
5.3).

In order to investigate the regularity properties of the front I'y, we have to assume some

regularity properties of the initial hypersurface I'y. We suppose that

(H5)  there exists a positive constant n such that

|uo| + |Dug| > 217 >0 in IR" in the viscosity sense.



If ug is smooth, (H5) is nothing but saying that the graph {z = ug(x)} intersects the hyperplane
{#z = 0} transversely. If ug is only Lipschitz continuous, this condition means that, for every
z € IR™, either |ug(z)| > n or |p| > n where p € D™ ug(z). Let us mention that if D~ ug(z) = 0,
then (H5) is fulfilled at = even if ug(z) = 0. We refer to Examples 5.3, 5.4 and Theorem 5.5 for
some illustrations.

With these assumptions on H and on the initial data wg, we obtain the lower bound estimate

vyt
|u| + %|Dmu\2 >C(n) >0 in IR" x [0,T] in the viscosity sense (7

for some positive constants C(n) and «y (Theorem 4.2).

Now, we want to investigate the regularity of a front associated to a semiconcave function.
Semiconcave functions arise naturally in the theory of viscosity solutions (see Lions [22], Ishii [19],
Cannarsa et al. [10, 3, 1] and Theorem 5.2). In general, they are the most regular solutions one
can hope for time-dependent Hamilton-Jacobi Equations. Roughly speaking, they are “nearly
C'”. If the semiconcave function u satisfies (7) which can be seen as an expected generalization
of a transversality condition for nonsmooth functions, a natural question arises: do estimate (7)
implies regularity for I';?

We unfortunately answer in a negative way. On the one hand, surprisingly, even if u is
semiconcave, the front can be nasty (see the example developed in Theorem 5.5). On the other
hand, if we start with a smooth set I'y, “non Lipschitz” singularities can occur (see Example
5.3).

Nevertheless, we obtain some partial positive results. As an immediate corollary of Theorem
4.2, we recover a known result of Barles et al. [8] about the so-called nonempty interior difficulty:
the front has zero Lebesgue measure in this case.

For Lipschitz continuous solutions, the sharpest regularity we can hope would be a front
which is locally Lipschitz (i.e. locally the graph of a Lipschitz continuous function, see Definition
5.2). In fact, the front for semiconcave solutions is “regular from one side” which means that
the front has locally smooth support hypersurfaces which lie in

Qo ={z € R : up(z) <0}

(see Theorem 5.3).
A sufficient condition for I'y to be locally Lipschitz at x is

0 ¢ Ocu(z,1) (8)

where Jdcu(-,t) denotes the Clarke subdifferential. In this case, we can apply a nonsmooth
inversion Theorem of Clarke [12] (see Theorem 5.4). But Condition (8) does not characterize
such points of regularity (cf. Example 5.4) and we cannot hope regularity everywhere.

The (n — 1)-Hausdorff measure H"~! can be viewed as a measure on the level sets. The co-
area formula implies that for almost every level set of a semiconcave function, the 4™ !-measure
of the set of the singular points is 0 (Corollary 5.2). But this gives no result to particular level
sets like the front. Theorem 5.5 gives an example of a semiconcave function whose front contains
a positive (n — 1)-Hausdorff measure set of singular points, which shows that we cannot have
more regularity.



The paper is organized as follows. In Section 3, we give a simplified proof of a theorem of [9],
using some ideas of Barles [6]. In Section 4, we prove the upper and lower-bound estimates for
the gradient of a solution u of (1)-(2). Finally, Section 5 is devoted to the study of the regularity
the front I';.

Acknowledgements. T am grateful to Guy Barles who brought this problem to my attention. I
wish to thank Piermarco Cannarsa for helpful discussions and valuable suggestions and Francis
Clarke who pointed out an error to me in a previous version of this paper. Moreover I am
indebted to Stéphane Munier for his help with the pictures.

2 The notion of viscosity solution

Throughout the paper, 2 will denote an open subset of IR" and | - | is the standard Euclidean
norm.

We recall for convenience the definition of viscosity solutions for equations like (1) (see Crandall,
Ishii and Lions [15], Barles [7], Bardi and Capuzzo-Dolcetta [4], Fleming and Soner [18], ...).

Definition 2.1 A function u € C(Q x (0,T)) is a viscosity solution of (1) if and only if:
u 1§ a viscosity subsolution i.e.

wehave 22(2,7) + H(5,, Dap(5,) <0,

{ forall p € CH( x (0,T)), at each local mazimum point (z,t) € Q x (0,T) of u — @,
ot

and u is a viscosity supersolution i.e.

forall p € CY(Q x (0,T)), at eachlocal minimum point (z,t) € Q x (0,T) of u — ¢,
we have Z—i(a‘:,t_) + H(Z,t,Dyp(Z,t)) > 0.

If one considers initial conditions, u € C(Q x [0,T7]) is a viscosity solution of (1)-(2) if and only
if u is a viscosity subsolution of (1) and u(z,0) < ug(z) for all z € Q, and v is a supersolution
of (1) and u(z,0) > ug(z) for all z € Q. Therefore, in the case of continuous viscosity solutions,
the initial conditions are taken in a classical sense: u(z,0) = ug(z) for all z € Q.

Viscosity solutions can also be characterized in terms of sub- and superdifferential, the definitions
of which are recalled.

Definition 2.2 Let u € C(Q x (0,T)). The superdifferential (resp. the subdifferential) of u at
the point (z,t) € Q x (0,T) is the closed convex set

ur) 00 ey 2“0 (028 g
ly — x| + |7 — ] -

D;L,tu(w,t) = {(p, q) € R" x (0,T): limsup
y—>z,y €N
T—t,1€(0,T)



(resp.

- . ou(y,T) —u(s,t) - (py—x) —q- (1 1)
D= u(z,t) = {(p,q) € R" x (0,T): liminf
x,tu($ ) {(p Q) X( ) y—)i‘,ylenﬂ ‘y—.’E‘+|T—t|
T—t,71€(0,T)

>0}).

3 Barron-Jensen solutions to first-order Hamilton-Jacobi Equa-
tions

We recall the concept of Barron-Jensen viscosity solutions which are defined for equations with
a convex Hamiltonian.

Definition 3.1 Let u be a lower-semicontinuous in Qx(0,T). We say that u is a Barron-Jensen
solution of (1) if it satisfies the condition

we have 8—('0(50,{) + H(z,t,Dyp(Z,t)) = 0.

{ forall o € CH(Q x (0,T)), at each local minimum point (Z,t) € Q x (0,T) of u — ¢,
ot

This concept of solution was introduced in 1990 by Barron and Jensen [9]. It was also studied
for example in Barles [6, 7] and Bardi and Capuzzo-Dolcetta [4] (in the last reference they call
such solutions bilateral supersolutions). The link with the classical notion of viscosity solution
is given by the following theorem:

Theorem 3.1 Assume that (H1-8) and (H3) hold. Letu € C(Q2x(0,T)). Then u is a viscosity
solution of (1) if and only if u is a Barron-Jensen solution of (1).

This theorem was first stated by Barron and Jensen in [9]. It says that in the continuous case,
if the Hamiltonian is convex in p and Lipschitz continuous in z, then viscosity solutions and
Barron-Jensen solutions coincide. We present here a simplified proof due to Barles [6] which we
adapt in the case of an evolution equation. We point out that contrary to the original proof, we
do not require to have an Hamiltonian which is Lipschitz continuous in the ¢ variable.

We start by giving two fundamental lemmas, proving them and using them to prove Theorem 3.1.
We introduce some notations: for (zg,%y) € Q x (0,7T), we define A = B(zg,0) X (to — 0,to + 0)
and A, = B(zg,0 — p) X (to — 0 + p,to + 0 — p) where 0 > 0 is taken small enough such that
ACQx(0,T) and 0 < p < 0. If u is continuous we define M 4 = (2 SUP(y o)A [u(Y; s)[)1/2.

Lemma 3.1 Assume (H3). If u € C(Q x (0,T)) is a locally Lipschitz continuous subsolution
of (1) in Q x (0,T), then u is a viscosity supersolution of
Oow

—E—H(m,t,Dng) =0 nQx(0,7).



Proof of Lemma 3.1. Let (z9,%0) € 2 x (0,T) and define A, A, as above, taking o > 0 small
enough such that u is Lipschitz continuous in A with Lipschitz constant £. By Rademacher’s
Theorem, u is differentiable almost everywhere in A and then, by Corollary 2.1 of Barles [7], we

have

%(w,t) + H(z,t,Dyu(z,t)) <0 ae.  inA 9)
Let ¢ € C®(IR" x IR),¢ > 0, such that supp¢ C B(0,1) x (0,1) and [pn, g ¢(y,s)dyds = 1.
We set ¢, (z,t) = 77" "¢ (x/7,t/7). Let 7 < p/2. Then the classical convolution

ur(xat) :(u*qST)(x,t) :/ u(y,s)qST(x—y,t—s)dyds
R"xIR
is well-defined for every (z,t) in A, since ¢.(z —y,t —s) = 0 for (y, s) outside A. From (9), we

get
%(x,t) + H(y,s,Dyu(y,s))¢-(x —y,t — s)dyds < 0.
ot Rr xR
To deal with the integral, we define a modulus of continuity u4 of H in the compact set
AxB(0,€). Recall that ¢,(z—y,t—s) = 0 for (y, s) outside A and that [, ¢(y,s)dyds = 1.
We have
ou,

8—(:8, t) + H(z,t, Dyu(y, s))¢r(z — y,t — s) dyds < pa(r). (10)
t R"xR

Since H is convex in p, from Jensen’s inequality, we get

H(x,t,/RnXlRDmu(y,s)¢T(x—y,t—s) dyds) (11)

~ /
~~

Dyur(z,t)

< / H(z,t,Dyu(y,s))¢r(z —y,t — s) dyds.
IR™ X IR

Combining (10) and (11), we have

ou,
ot

Now, since u, € C*(A,), (12) means that u, is a classical subsolution of the equation dw/dt +
H(z,t,Dyw) — pa(7) = 0 in A, thus it is a classical supersolution of the equation —0w/0t —
H(z,t, Dy w) = —pa(7) in A,. Applying the discontinuous stability result (see Theorem 4.1 of
Barles [7]), we obtain that (liminf, u.)(z,t) = u(z,t) is a viscosity supersolution of

(z,t) + H (2,1, Dyur(w,1)) < palr). (12)

7—0
Ow .
5 — H(z,t,Dyw) >0 inA,. (13)
Since Ugyo,r1Ap = 2%]0, T'[, we conclude that u is a viscosity supersolution of (13) in  x (0,T)
as desired. O



Lemma 3.2 Assume (H1-8) and (H3) and take v > 5C1/2. Let u € C(Q2 x [0,T]) be a
Barron-Jensen solution of (1) and (zo,t9) € Q@ x (0,T). Ife < p/2My4 and a < p/2M 4 then
the inf-convolution

. _plz =yt = sl
Ue o(z,t) = inf <u(y,s)+e 7l +
e,a( ) () eA { (y,5) 2 o2

18 a viscosity subsolution of

YT
Ow '80126 =0 inA,

where pe A(+) is a modulus of continuity for H in the compact set A x B(0,2M /).

Proof of Lemma 3.2 Let ¢ € C'(Q2 x (0,T)), (Z,%) € A, be a local minimum of . o — ¢ and
(7,3) € A be a point where the infimum in u, o(Z,?) is achieved. Define

> It=sP?
+ —

5 p(z,1).

m —
P11, 5) = uly, 5) + e IE=Y

g2 a

We see easily that (Z,,7,3) is a minimum for f in A, x A. From classical estimates for inf-
convolutions, we have that |§ — Z| < Mye and |5 — | < Mya. Hence, if ¢ < p/2M 4 and
a < p/2M 4 then it forces (7, 3) to lie in the open set A thus (Z,t,7, 5) is a local minimum for f.
On the one side, (7,5) is a local minimum of f(Z,%,y,s), hence taking —e 7|z — y|?/e* —
[t — s|2/a? + p(z,t) as a test function, since u is a Barron-Jensen of (1), we get

t—35
a2

2

I S
+H<y,s,2e vt = )zO. (14)
On the other side, (Z,7) is a local minimum of the C'-function f(z,t,%,35) hence

e;mslczi—:frl2 t—5 z-g

9 o
a_(f(i'ai) =7 2 +2 o2 and D:E‘;D(:z'aﬂ =2e " 2 (15)
From (14) and (15), we have
890 = —vf‘g — j|2 R -
E(waﬂ-l_'ye T+H(yasaD$¢(xa{)) =0. (16)

We want to replace (7, 3) by (Z,t) in H in the equality (16). Since

|y —7 2M
77 fL’|S A

Dz, 9] =267 < 22

we define a modulus of continuity p. 4(-) for H in the compact set A x B (0,2M 4/¢). We have

H('g,E, ch‘;o(jaﬂ) > H(g,f, D:E(P(jai)) - NS,A(MAO‘)' (17)



Note that we do not replace y by Z using the uniform continuity of H not to get a term p. 4(M 4¢)
we cannot control; we need (H1-43) which implies

H(gat_, Dm(p(‘f,f)) > H (.’f‘,t_, Dm(p(‘faf)) - Cl (6 + ‘Dm(p(‘iaf)n |‘f - g' (18)
and

BC eV
2

|y — z|?
e

|57 — 7|2 _
+ 5016_77:'?/27;‘ +2C1e
€

BC1|z — y| + C1|Dyp(z, 1) ||z — | <
Using (17) and (18) in (16) we get

n BC1e T2

.(19)

0 C |y — z|? —
Y@+ (v- 2 -20) e I 4 (08 Dapl@,0) < s a(Mao)

| +l2
If v > 5C;/2, the “bad term” (7 _BG 201> o

5 5— 1s positive than we can get rid
€

of it in (19). Since the inf-convolution w, o is Lipschitz continuous in A,, the inequality (19)
holds almost everywhere in A,. Then we proceed as in the proof of Lemma 3.1, regularizing
Ug,o Dy classical convolution, using the uniform continuity of H, Jensen’s inequality and the
discontinuous stability result. We obtain that u., is a subsolution of the desired equation
which completes the proof. O

Remark 3.1 The fact that we can write an equality in (14) is essential for the proof; if we only
use that u is a viscosity supersolution, we will obtain that u. o is a supersolution (instead of a
subsolution as desired) of a perturbated Hamilton-Jacobi equation which is a classical result (for
classical results about sup-convolution, we refer to Lasry and Lions [21], Barles [7] and Bardi
and Capuzzo-Dolcetta [4]). Here, in a sense, the concept of Barron-Jensen solutions allows us
to “reverse the inequality”.

Remark 3.2 In fact, we can conclude directly from (19) by using a result of Lions [22] since H
is convex.

We now turn to the proof of the theorem.

Proof of Theorem 3.1 We start by showing that a continuous viscosity solution of (1) is a
Barron-Jensen solution of the same equation. Let (zo,%p) € Q x (0,7) and A, A, be defined as
above. The sup-convolution

2 2
_ t —
’U,E,a(x, t) = Sup {u(y’ 3) _ eKt |‘T 2y| _ | 23| }
(y,5)€A £ @

is a locally Lipschitz continuous solution of 8w/t + H(z,t, Dyw) — fC12 /2 — pe a(M ) = 0
in A, for K > 5C/2, € < p/2M 4 and o < p/2M 4. This result is classical and does not require
H to be convex. Applying Lemma 3.1, u®¢ is a viscosity supersolution of

ow BC1 e
2

+ pe A(Mg0) =0 in A,



Letting « go to 0 first, then € go to 0, we obtain, from the discontinuous stability result, that u
is a supersolution of —0w/0t — H(z,t, Dy w) = 0 in A, thus in Q x (0,7') since Ugy(o,1)Ap =
Q x (0,7). Adding the fact that u is a viscosity solution — thus a supersolution of (1), we can
conlude that u is a Barron-Jensen solution of (1) in Q x (0,7).

Conversely, if u is a Barron-Jensen solution of (1) in 2 x (0,7), we have to show that u is a
viscosity solution. It is clear that u is a supersolution, it suffices to prove that u is a subsolution
of (1). Let (zo,tp) € 2 x (0,7). From Lemma 3.2, the inf-convolution u, , is a subsolution of
Ow/0t+ H(z,t, Dyw) — pe a(Mac) — fC1€7T€? /2 = 0 in A,. Letting o — 0 first, then ¢ — 0 and
thanks to the discontinuous stability theorem once more, we get that u is a viscosity subsolution
of (1) in every A, thus in € x (0,7) which ends the proof. O

Remark 3.3 Theorem 3.1 is true for a slightly more general equation

%—(:—}-H(x,t,w,Dzw) =0 inQx(0,7)

if we assume, as in Barron and Jensen [9], that for all z € R", t € [0,T], u,v € IR and p € R",
|H(z,t,u,p) — H(z,t,v,p)| < pp(jlu —v|) where pg(a) — 0 when a — 0.

4 A lower-bound estimate for the gradient
We start by stating a result which provides a locally Lipschitz continuous solution.

Theorem 4.1 (Upper bound for the gradient) Assume (H1-3), (H2) and that wuy is locally
Lipschitz continuous in IR™. Let u € C(IR"™ x [0,T]) be a viscosity solution of (1)-(2). Then u
is locally Lipschitz continuous in IR™ x [0,T).

Moreover, if ug is Lipschitz continuous in IR™ then u is Lipschitz continuous in the r-variable
in IR™, uniformly with respect to t € [0,T] and

C:T 1/2
| Dgu(-,t)|loo < € where €= 26°C1T/4 <||Duo||c2><> + p 21 ) .

Upper bounds for the gradient are classical estimates for the solutions of pdes. Now, if the
Hamiltonian is convex, we obtain a surprising result: some lower-bound estimates also hold.

Theorem 4.2 (Lower-bound for the gradient) We suppose that the assumptions of Theorem /.1
and (H3) hold.

(i) Let zy € IR™ and r > 0. If |Dug| > n in B(xzg,r) in the viscosity sense for some positive 1
then there exist some positive constants 7,7y and 0 < tg < T such that

|Dyu| > e %5 in D(xo,r) N (IR™ x (0,49)) in the viscosity sense

where D(xg,r) = {(w,t) € B(zo,r) x (0,T) : eA2FBetA2lzolt (1 4|5 — g0|) < r + 1}.
(ii) If B =0 in (H1-8), (H5) and (H4) hold, then there exist positive constants C and v such
that

vt
|u| + %\Dwuf >C>0 in IR"™ x (0,T) 1in the viscosity sense.

10



Before giving the proof of the theorems, we give some examples of Hamiltonians which satisfy
the assumptions of Theorems 4.1 and 4.2.

Example 4.1 The most typical example in our context is H (z,t,p) = a(z,t)|p| with a(z,t) > 0
since it leads to equations which are related to a front propagating with a normal velocity a(z, t).
If a € C(IR™ x [0,T]) is Lipschitz continuous in z (uniformly with respect to t) then H satisfies
(H1-0) and (H2). Moreover, H satisfies (H3) and (H4). An example of a front propagating
with constant normal velocity is developed in Example 5.3.

Example 4.2 From optimal control problems, we get some Hamiltonians of the form H(z,t,p) =
sup,cy {(b(z,t,v),p) + f(z,t,v)} where V is a compact set. H is clearly convex in p. If b, f are
continuous and Lipschitz continuous in z (uniformly with respect to (¢,v)) and b is bounded
(which is usually supposed in classical control theory) then H satisfies (H1-0) and (H2). If
f =0 then H satisfies (H4).

Proof of Theorem 4.1 Let 2y € IR"™ and » > 0. We define

M,= sup (2u))/? and ||Dugl||, = sup {M :x,yEB(xo,r),w#y}.
Bzo,r) x[0,T] lz —yl

Notice that || Dug||, < +oo since ug is locally Lipschitz continuous. We start by showing that u is
locally Lipschitz continuous in the z-variable, uniformly with respect to ¢ € [0, T]. From classical
results about sup-convolutions, for 0 < p < r,e < p/2M, and K > 5C1/2, the sup-convolution

2
u®(z,t) =  sup {u(y,t) — eKtu}
y€B(z0,2R) €

is a viscosity subsolution of dw/8t + H(x,t, Dyw) — BC1€%/2 = 0 in B(xg,r — p) x (0,T). From

now on, we fix L = Ay + By + As|zg| and we take r — p > 2el?". Then, since u is a supersolution
of (1), the comparison theorem A.1 yields

tpC

Wt —ue ) S s {w5(0) —uly, 0} + [ 1 ds (20)
yEB(zo,r) 0o 2

for all (z,t) € B(zg,e T (r — p)/2) x [0,T]. )

We estimate the supremum supy¢ gz, ) {4 (¥,0) —u(y,0)} . Let y € B(zo,r) and suppose that

7 € B(zg,r) is a point where the supremum in u(y, 0) is achieved. Then

2
0 < (,0) ~ u(y: 0) = uo(®) ~ L~ uo(y) 1)

< ug(y) —uo(y) < [[Duoll, |y — |- This implies

ly =yl < | Duoll, €. (22)

11



Using (21) and (22) we obtain the desired estimate: u®(y,0) — u(y,0) < ||Duo||,2,52 for all
y € B(xo,r).
From (20), it follows

BC\T

uf(z,t) —u(z,t) < Ae? where \= ||Du0||2 + 5

Hence, for every z,y € B(zg,e 1T (r — p)/2) and t € [0, T], we have

2
u(y,t) —u(z,t) < Ae? + eKTu.

€
The C"-function f(¢) = Ae? +eXT|y — z|?/&? achieves its minimum at & = eXT/A\=1/4|y — z|'/2.
Taking |y — x| small enough such that ¢ < p/2M,, we obtain that

u(y,t) — u(z,t) < f(&) = 2657 2\Y2)y — 2|

which implies that u is locally Lipschitz continuous in z in B(zg,e T (r — p)/2), uniformly with
2 ﬁcz'lT

T

1/2
respect to ¢ € [0,7], with Lipschitz constant £, = 2eX7/ 2<||Duo|| ) . This implies

that w is Lipschitz continuous in z in B(zq,e T (r — p)/2) with the same Lipschitz constant as

desired. Moreover, if ug is Lipschitz continuous in IR", then u is clearly Lipschitz continuous in
ﬁClT 1/2

)

& with Lipschitz constant £ = 2¢X7/2 (||Duo||io +

It remains to prove that u is Lipschitz continuous in the ¢ variable in [0, 7], uniformly with
respect to & € B(xzg,r). Define

S, = _sup |H (y, 8,)|-
(ya 5)_6 B(l‘O:T) X [OaT]
p € B(0,¢;)

Let © € B(xg,r — p) where 0 < p < r and t € [0,T).The function

— zl?
W(y,s5) = uly,s) ~ Ofs 1)~ L0

achieves its maximum in B(zo,r) X [¢,T] at a point (7,5). If ¢ < p/2M,, then § € B(zo,r).
If C > 2M,/(T — t) then the maximum cannot be achieved at § = T otherwise we have
U(z,t) < ¥(y,T) and it follows that

—2M, < u(z,t) —u(y,T) < —C(T —t)

which leads to a contradiction. If ¢ < 5 < T, since u is a viscosity subsolution of (1), we have

C+H(y,s,2q> <0.
(9

12



But 2|y — z|/e? < £, since u is locally Lipschitz continuous in z and if C' > S, this inequality
cannot hold. Finally, if C = C,; = max{2M, /(T —t),S,} + 1, then the maximum has to be
achieved at s = ¢. Letting € go to 0, we obtain

u(z,s) —u(z,t) < Cry(s — 1) (23)

for every s > t. In the same way, using the function u(y,s) + C,+(s —t) + |y — z|?/? and the
fact that u is a supersolution of (1), we obtain

u(z,s) —u(z,t) > —Cri(s —t) (24)

for every s > t. From (23) and (24), it follows that u is locally Lipschitz continuous in ¢ in
[0,7). To conclude, let us show that the Lipschitz constant is independent of ¢. Since w is
locally Lipschitz continuous in B(zg,r) x [0,T), from Rademacher’s theorem, u is differentiable
almost everywhere thus

%(m,t) + H(z,t,Dyu(z,t)) =0 a.e. in B(zg,r) x [0,T).
Hence

ou .

E(a:,t)‘ < Sr a.e. inB(zy,R) x[0,7T).

which implies that u is Lipschitz continuous in the ¢ variable in [0, 7], uniformly with respect
to ¢ € B(x,r), with Lipschitz constant S, which completes the proof of the theorem. O

Proof of Theorem 4.2 We start by (i); we aim at showing that u is a viscosity supersolution
of |Dyu| — fle=2 = 0 in D(x,r) N (IR™ x (0,%y)) where +,7 and #; have to be specified. We
use the notations introduced in the proof of Theorem 4.1.

From Lemma 3.2, if ¢ < p/2M, and vy = 5C1 /2, then the inf-convolution

’u,s(x,t) = inf { (y’ )+e_7t‘ _y|2}

y€B(z0,2R) g2
is a viscosity subsolution of

ow B BCeT

e2=0 in B(zo,r — p) x (0,T).
Since u is a supersolution of (1), from Theorem A.1, we get

ﬁC1e7T

uee,t) —ule,t) S swp{ue(e,0) — u(e,0)) + [
yeB(zo,r)

e2ds (25)
for all

(z,t) € {(z,t) € B(zo,m—p) x[0,T] : "' (1+|z—10|) < 7+1} = D(zq,7)N(B(z0,7—p) x [0,T7]).

The estimate of the supremum in (25) is a fundamental step in the proof of this theorem and is
given in the following proposition:

13



Proposition 4.1 If |Dug| > n in B(xo,r) in the viscosity sense then

2
sup  {uc(z,0) — u(z,0)} < —"—e2.
yEB(zo,r) 4

The proof of the proposition is postponed for clarity and uses as a main tool the following
lemma:

Lemma 4.1 (Viscosity decrease principle) Let Q an open subset of IR" and v a lower- semi-
continuous function satisfying |Dv| > n > 0 in Q in the viscosity sense. Then, for all zy € IR™
and for all v > 0 such that B(zo,7) C Q, we have

inf  wv(y) < wv(zg) —nr.
yEB(‘TOa"')
The proof of this lemma and some comments about it are postponed.
We now return to the proof of the theorem. Using the above proposition, we get
2 Cie"''t
n 2 T BC1 2

ue(z,t) —u(z,t) < ——¢

1 5 (26)

for all (z,t) € D(wg,7) N (B(zo, — p) x [0,T)).

Let (Z,t) € D(zo,r) N (B(zo,m — p) x [0,T]) and (p,q) € D ,u(Z,t). By definition of the
subdifferential, u(y,t) > w(Z,t) + (p,y — Z) + |y — Z|u(y — T) for all y € IR™ where u(:) is a
function with limit 0 at 0. Writing this inequality at a point § where the infimum is achieved in
ue(Z, 1), we obtain

|7 — ]2 |z — 4
wel ) =@ D)+ 2T s u@ D+ -2 e 20 g s -2, @0

On the one side, the C'-function g(y) = (p,y — z) +e~?*|z — y|?/e? achieves its minimum at the
point § = T — pe??e? /2 thus

o7) > 9(i) =~ 2, (28)

On the other side, we want to obtain an estimate for the term |y — Z|u(y — Z) in (27). We have

_ _ il —yl? _
'U’E(xat_) = ’U,(y,f) +e7 2 < ’U,(.’E,i)
€

which implies

|z —g* < ee? (u(z,7) — u(; 7)) -
But, from Theorem 4.1, u is locally Lipschitz continuous, uniformly with respect to ¢ € [0, 7]
thus

w(,t) —u(y,t) < 4|z — 7|

14



where £, is the Lipschitz constant of u(-,¢) in B(xg,r). Defining M = 14, (note that M does
not depend on g), it follows that

|7 — Z|p(y — ) < Me’u(Me?). (29)

Now, using the informations (28) and (29) in (27), we obtain

~t
ue(@,9) 2 u(@,?) — -|pl’e? — Meu(Me). (30)
Finally, combining (30) with the inequality (26) and dividing by €2, we get
pl? > n? — 28Ce7TT — AMpu(Me?).

Letting ¢ go to 0 and fixing ¢y € (0,7 small enough such that 5? — 28C1e’ 'ty = 72 > 0 (note
that we can take 7 = n and ¢ty = T if 8 = 0), we obtain

lp| > "% for every (p,q) € D;,(z,%).
Since 7 does not depend on p, we can let p go to 0 which achieves to show that u is a viscosity
supersolution of |Dyu| — e~ "/2f = 0 in D(zg,r) N (B(zg,7) X (0,%)).
Now, we turn to the proof of (ii). We have to show that u is a vsicosity supersolution of
e7t 2
|w| + Z|Dzw| —C =0 inR" x (0,T)

where v and C has to be specified. Let (zg,t) € IR" x (0,T) and r > 0. As in proof of (i), for
any 0 < p < r,ify=5C1/2 and € < p/2M, then the inf-convolution u, is a viscosity subsolution
of Ow/0t+ H (z,t, Dyw) = 0 in B(xg,7—p) X (0,T) (here § = 0). We need the following Lemma.

Lemma 4.2 Assume (H4). Let 0 < ¢ < 1 and Y (u)(z,t) = u(z,t) + 2|ju(z,t)|. If u is a
viscosity solution of (1) then ¥ (u) is still a viscosity solution of (1).

This lemma is classical in the theory of viscosity solutions (see Barles [7] for example). The
proof is based on (H4) since, under this assumption, the equation (1) is invariant by increasing
changes of variable.

From now on, we take r — p > 2elT where L = Ay + By + Ag|zg|. Applying the lemma and the
comparison theorem A.1 for the subsolution u. and the supersolution ¥, (u), we get

Us(mat) _\Ils(u)(xat) < sup {'U'E(xao) —u(x,O) _52‘21’(3710)‘} :
y€B(zo,T)

The estimate of the supremum is given by

Proposition 4.2 Assume (H5). Then

- - n
sup {ug(a;,O) —u(z,0) — 52|u(a;,0)\} < —Ce* where C = min (— —) .
y€B(zo,r)
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The proof of this proposition is a straightforward adaptation of the proof of Proposition (4.1)
so we skip it. Applying this proposition, the end of the proof can be obtained using the same
arguments as in the proof of (i). O

We turn to the proof of Proposition 4.1 and Lemma 4.1.

Proof of Proposition 4.1 Let Z € B(xg,r) and 0 < # < r. Using the viscosity decrease
principle (Lemma 4.1) in B(zo,7), we have

@0 = it {um+ BT < e w4+ 5 <wl@) -+
us(z,0) = in u ——— 7 < inf w — <up(z) — ™+ —.
© yeB(zo,r) oW €2 yeB(z,7) oW 2 0 T e

Taking 7 = £2n/2, it follows that u.(z,0) — u(z,0) < —n%e2/4 which ends the proof. O
Proof of Lemma 4.1 We argue by contradiction: suppose that

IF >0, inf w(y) >v(zy) —nr. (31)
yEB(zo,F)
Since the inequality in (31) is strict, we can find 7,7 > 0 such that 7 < 7 < 5 and (31) holds with
7i. For 6 > 0, define f(y) = v(y)+ily — zo|* 0 /7. If S(xq, 7) is the sphere {z € R™ : |z—zo| = 7},
then, from (31) with 7, we have

inf _f(y) > v(zo) — N7 + A7 > v(zo). (32)

y€S(zo,7)
Hence, the minimum of the lower-semicontinuous function f in the compact B(zg,7) is achieved
at a point ¢ which lies in the open ball B(z, ) since (32) shows that it cannot be achieved on

the boundary S(zg,7). Thus ¢ is a local minimum of f. Since v is a viscosity supersolution of
|Dw| —n =0 in Q, it follows that

7
‘Dy (_T_9|y - $0|1+0>‘ > 7.

But . 21+ 6)
Ui nil+o) .
n< ‘Dy (‘T_9|y - $0|1+0>‘ = TW — x|’ <A(1+6)
which leads to a contradiction for # small enough since 7 < 7. It ends the proof. O

Remark 4.1 The viscosity decrease principle is an adaptation of a result of Clarke [12] in the
context of lower-semicontinuous viscosity solutions (see Clarke et al. [13] for a similar result
with proximal gradients). Roughly speaking, it means that, if the gradient of a function is large
enough, then the function has to decrease enough if we move away enough from z( in the right
direction.
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5 Regularity properties of the level sets for semiconcave solu-
tions

5.1 Semiconcave solutions

For properties of semiconcave functions, we refer to Cannarsa et al. [10, 2, 3].

Definition 5.1 A function v € C(IR™) is said to be semiconcave if for every convex compact
subset C of IR™, there exists 0 € (0,1] and A > 0 such that v(y + h) — 2v(y) +v(y — k) < A|R|'H?
for every y, h such that y,y — h,y + h € C. We say that u is uniformly semiconcave if 6 and A
can be chosen independent of C.

Note that the definition implies that a semiconcave function can be seen locally as the sum of a
concave and a smooth function.

We give below some results which provide that a solution u of (1)-(2) is semiconcave under an
additional assumption on H. For a convex, compact subset C C IR"™ and [ > 0, we state

(H6-C-1) There exist some constants £ = £'(l) > 1, 6 = 0(l) € (0,1] and a = a(C,1),b =
b(C,1) > 0 such that

H(z+ h,t,p+ k) — 2H(z,t,p) + H(z — h,t,p — k) > —alh|"™ — b|h||k|
for all z,h such that z,z +h,z —h €C, t € [0,T] and p,k in the ball B(0,/').

Remark 5.1 If H is smooth and convex in p, then we see easily that (H6-C-1) is fulfilled for
every convex, compact set C C IR" and every [ > 0. This example shows that (H6-C-1) is not
too restrictive.

Theorem 5.1 Let u be a solution of (1)-(2) which is Lipschitz continuous in the z-variable with
a Lipschitz constant £. Assume (H2) and (H6-C-£) for every convez, compact subset C. If ug
is uniformly semiconcave in IR"™, then u(-,t) is semiconcave in IR™, uniformly with respect to
t€[0,T].

Theorem 5.2 Assume (H1-8), (H2) and (H6-C-1) for every convez, compact subset C and
every | > 0. If ug is semiconcave in IR™, then u(-,t) is semiconcave in IR"™, uniformly with
respect to t € [0,T].

Theorem 5.1 is an adaptation of a theorem of Ishii [19] in the case of an evolution equation.
The proof is similar, so we skip it. Theorem 5.2 is a straightforward application of previous
results. At first, notice that ug, being semiconcave, is locally Lipschitz continuous in IR™. Thus
the solution u of (1)-(2) is locally Lipschitz continuous from Theorem 4.1. Moreover, Theorem
A.1 allows to localize the arguments of the proof of Theorem 5.1. This implies the result.

Let us give some examples of Hamiltonians which satisfy (H6-C-1):
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Example 5.1 Coming back to Example 4.1, if a is locally Lipschitz continuous and uniformly
semiconvex (i.e. —a is uniformly semiconcave) then the Hamiltonian H(z,t,p) = a(z,t)|p| with
a(z,t) > 0 satisfies (H6-C-) for every convex compact subset C and for every [ > 0.

Example 5.2 If b is C'Y (in z uniformly with respect to (¢,v)) for some 6 € (0,1] and —f
is uniformly semiconcave, then the Hamiltonian H of Example 4.2 satisfies (H6-C-l) for every
every convex, compact subset C and for every [ > 0.

5.2 Regularity of the level sets

We start by introducing some notations and giving some definitions. In this section, £P denotes
the Lebesgue measure in IRP and H? is the Hausdorff measure (for a definition, see Morgan [23]
or Evans and Gariepy [16]). Let v € C(IR™ x [0,T']). We denote by I'f = {z € R" : u(z,t) = a}
the a-level set of u at time ¢. To simplify the notation, we write ['; for the 0-level set and we call
it front of u at time t; finally, if u does not depend on ¢, we note I'* the a-level set and I' the
front. If (e1,eq,---,ey,) is an orthonormal basis of IR", we denote by (y1,y2, -, Yn) = (¥,Yn)
the coordinates of a vector y in this basis.

Definition 5.2 We say that I'f* is locally Lipschitz at x € I's if I's" is the graph of a Lipschitz
continuous function near z i.e. there exists a neighborhood V (x) of x in IR™, an orthonormal
basis (e1, ez, ,e,) and a Lipschitz continuous function ¢ : R"* — IR such that: T¢ NV (z) =
{(9,¢(9)) : g € V(£)} where V(&) = V(z) N Span(e1, e2,--,en—1) is a neighborhood of &.

From now on, we consider a solution u of (1)-(2) under the assumptions of Theorem 4.2 (ii).
Then, for any ¢ € [0,7],

|Dgu(-,t)] > ¢>0 inQ in the viscosity sense (33)

where ¢ = min{, (2C)"/2¢=77/2} and Q = {z € R" : |u(z,t)| < min{n, C/2}} is a neighborhood
of I';. Notice that €2 depends on ¢ but for the sake of simplicity of notations, we will omit to
write, here and below, the subscript ¢ as much as possible. We aim at proving some properties
of regularity of the front provided by (33).

Corollary 5.1 Under the assumptions of Theorem 4.2, L™(T';) =0 for any t > 0.

Proof of Corollary 5.1 We use a classical theorem which is given in Kavian [20], p.85 (another
reference is Evans and Gariepy [16], p.84): for any function v € Wlf)’f(Q), 1 < p < o0, we have
L(y—0} - Dv =0 a.e. in 2 where 14 is the characteristic function of the set A.

We argue by contradiction, supposing that £"(I';) > 0. Since u is locally Lipschitz continuous,
U € Wllo’coo and Ly, - Dyu = 0 a.e. in €. There exists a point z¢ € I'; such that v is differentiable
at zyg and Dyu(zg,t) = 0. But (33) has to be satisfied in the classical sense at such a point,
hence |Dgu(zg,t)| > 0 which leads to a contradiction. O

Note that the above result is an immediate corollary of Theorem 4.2 and is true even if u is not
semiconcave. Now, suppose in addition that ug is semiconcave and that (H6-C-1) holds for every
convex compact subset C and for every [ > 0. Then, from Theorem 5.2, u(-,t) is semiconcave
and I'; satisfies the following property for any ¢ € [0,7:
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Theorem 5.3 Let x = (&,x,) € I't. There exists an orthonormal basis (e1,e2,---,ep), a neigh-
borhood V(z) = V(2) x V(z,) of z and a C*-function ¢ : V(&) — IR such that D{(£) = 0 and
{(9,2) € 2:2>¢(9)} C{y € Q:u(y,t) <O}

Remark 5.2 This theorem means that the front has locally C'-support hypersurfaces “to one
side”. It comes from the fact that a semiconcave function admits at each point C'-upper-support
functions.

Proof of Theorem 5.3 We start by a general fact: let x in €2, there exists p in D} u(z,t)
such that [p| > ¢ > 0. Let us prove this assertion: the function w is differentiable a.e. in
thus from (33) we get a sequence zy — z of points of Q such that v is differentiable at z; and
|Dyu(zg,t)| > c. We conclude, letting £k — oo, by using the upper-semicontinuity of D} u(-,t)
(see Cannarsa and Soner [10]).

Now, we turn to the proof of the theorem. Let z € T';. There exists p € D u(z,t) such that
Ip] > c. As u is a viscosity subsolution of (1), there exists ¢ € C'(€2 x (0,T)) such that
u — ¢ has a local maximum at (z,t) and Dyp(z,t) = p (see Barles [7], p. 18). Moreover,
we can assume that u(x,t) — ¢(x,t) = 0 which implies p(z,t) = 0 since z € T'y. We fix an
orthonormal basis (e1,e2,---,e,) with e, = —p/|p|. From the implicit function theorem, there
exists a neighborhood V' (z) of # and a C'-function ¢ : V(2) — IR such that (¢, ((§),t) = 0 for
all § € V(z). It follows that u(g,((9),t) <0 for all § € V(&) and D((Z) = 0. Moreover,

u(gaynat) < (p(gay'mt) = (P(‘T’t) + <Dz(p($’t)ay —5(7) +O(y _‘/E) = _|p| ' (yn _x'n) +O(y - ‘7") <0

for y sufficiently close to z and y, — z, > 0. It ends to prove that {(7,2) € Q:z > {(9)} C
{y € Q:ufy,t) <0} O

Remark 5.3 Regularity property of Theorem 5.3 does not hold for the front if w is not semi-
concave. Let us give a counter-example: let w(z,y) = |z| — y. The function w is Lipschitz
continuous, is convex but not semiconcave. The estimate (33) is clearly satisfied. We compute
the front T' = {(z,y) € R? : y = |z|} and {(z,vy) € R? : w(z,y) <0} = {(x,y) € R? : y > |z|}
and, from now on, it is clear that the regularity property of Theorem 5.3 is not fulfilled at (0, 0).

We need some definitions. The Clarke subdifferential or Clarke generalized gradient (see Clarke
[12]) is well adapted for Lipschitz continuous functions:

Definition 5.3 Let u be a Lipschitz continuous function in IR™ and denote by 3(u) the subset
of R™ of Lebesgue measure zero where u is not differentiable. The Clarke subdifferential of u at
the point x in IR™ is the nonempty compact convex set

Jcu(z) = {§ € R" : limsup uly +tp) — uly)

> (&, p) forallp € Rn}
y—z,tl0 t

= co{ lim Du(zg) : zp — =, T ¢E(u)}

k——+o00
Definition 5.4 We set S = {z € Q : T%®" is not locally Lipschitz at z} and Sy = {z € Q :
0 € Ocu(z,t)}.
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Theorem 5.4 Let u € C(IR" x [0,T]) be locally Lipschitz continuous. If x ¢ Sy then T?(x’t) is
locally Lipschitz at x.

Remark 5.4 This theorem means that for every x € IR" such that the Clarke subdifferential
of the function does not contain 0, the u(z,t)-level set is locally Lipschitz at z. The converse is
not true. The function defined in Example 5.4 satisfies 0 € dcu(z) for every z in the 0-level set
of u though the front is locally Lipschitz.

Proof of Theorem 5.4 The proof consists in showing that we can use the nonsmooth inversion
theorem of Clarke [12]. Let z € Q such that 0 ¢ dcu(z,t) and let o = u(z,t). The set dou(x)
is convex and compact and does not contain 0 thus by the separation theorem of convex sets we
have:

dg € IR", |q| = 1 such that Vp € dcu(z), (¢,p) > v > 0. (34)

From now on, we fix an orthonormal basis (e1, ez, - -, e,) of IR™ such that e, = q. Let F} : R™ —
IR" be the function Fy(§,yn) = (9, u(9, yn,t)) . Since F} is locally Lipschitz continuous, we have

ou
—(y t
e (G Yn,t)
Idn—1 .
DFy(j,yn) = aya“ (39,1
i
ou .
0 _(y,yn,t)
Oyn

for almost every y € IR™. The generalized Jacobian of F} at z is

OcFi (%, z,) = co{ lim DFt(y(k)), y*®) — 7z and F, is differentiable at y(k)}
k—+00 k—+00
p1
= ldn—y , D= (pla Tt apn) € aC’U,(iL')
Pn—1
0 | pn

By definition, 0¢ F}(£, ) is of maximal rank provided every matrix in ¢ Fy(Z, ) is of maximal
rank. This condition is clearly fulfilled since, from (34), p, = (p,e,) > v > 0. Thus we can
apply the nonsmooth inverse function theorem:

there exists a neighborhood V = V(%) x V(z,) of (£,%,), a neighborhood V' = V'(2) x V'(a)
of Fy(Z,2zy) = (2,u(z,t)) = (£, @) and a Lipschitz continuous function Gy : V! — V such that

V(@' yn) € V', Fro Ge(,yn) = (7, yp) (and Y(§,yn) €V, Gro Fy(i) yn) = (§,yn) )-

We obtain that for all y' = (¢/,4.,) € V',

Ft 0 Gt(gla y:z) = (Sel’ Gt(?/))ﬁ ) <en*1’ Gt(yl)zvy (<ela Gt(y,»a Tt <67L7 Gt(y,»’t)l)

~~ ~~
N ]

Yn
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hence for all (§',y!) € V(2) x V'(a), u (¥, {en, G¢(§,yh)),t) = yl,- We take y, = a and define
C(§") = (en, Ge(#', ). The function ¢ is Lipschitz continuous since G is Lipschitz continuous.
Note that ¢ has the same Lipschitz constant as Gy which is 1/ where ¢ is the distance from 0
to the convex compact set dou(z,t). We get the desired result: for all §' € V'(%),

u(@,{(§),t) = a
and ¢(¢') is the unique solution of u(¢',-,t) = a in V. O

Corollary 5.2 Under the assumptions of Theorem 4.2 and Theorem 5.2,
(i) L(8) = 0;
(ii) for any t > 0, H" 1 (SNT$) =0 for L a.e. a € IR.

Remark 5.5 (i) means that for a semiconcave function which satisfies (33) then the front is
locally Lipschitz almost everywhere. H"~! can be seen as a measure on the a-level set T'¢.
Hence, (ii) means that almost every a-level set is locally Lipschitz almost everywhere in the
sense of the H™ ! measure. But, note that this theorem gives no information about special level
set, particularly the front (see the counter-example developed in Theorem 5.5).

Proof of Corollary 5.2 We start by proving (i). If u(-,¢) is differentiable at a point z¢ € IR™
then Dfu(zo,t) = Dyu(zo,t) = {Dyu(zo,t)} and |Dyu(zo,t)] > ¢ > 0 by (33). Thus 0 ¢
D} u(zg,t). Moreover, since u(-,t) is semiconcave, D} u(-,t) = dcu(-,t) for every t € [0,T] (see
Cannarsa and Soner [10] for instance). Since u(-,?) is differentiable almost everywhere, it follows
that L™(Sy) = 0 which implies the result since S C Sp.

Now, we turn to the proof of (ii). We apply the coarea formula (see Evans and Gariepy [16])
with the set S and the locally Lipschitz continuous function u(-,t),¢ > 0:

[ 1Dauat)ldz = [ 1S NTE) da
S R
Since L™(S) = 0, we obtain the desired result. O

We end by giving some examples and a theorem which develops an example of a semiconcave
function, satisfying (33), whose front is however very nasty.

Example 5.3 A smooth front which develops a “non Lipschitz singularity”

Let ug : IR?> — IR defined by ug = min{ui,us} where ui(z,y) = (2% + (y — 5)%)/? — 4 and
ug(z,y) = (2% + (y + 5)>)/2 — 4. On the one side, the function u; (resp. wup) is Lipschitz
continuous and its graph is a cone centered at the point (0,5) (resp. (0,—5)). Thus ug is
Lipschitz continuous. On the other side ug satisfies (H5): |ug| + |[Dug| > 1 since:

— for every (z,y) € {(0,-5),(0,5)} such that ui(z,y) # ua(z,y), uo is differentiable and
|Duo(z,9)] = 1

— at each point (z,y) such that ui(z,y) = us(z,y), D ug(z,y) = 0;

— |uo(0, —5)| > 1 and |ug(0,5)| > 1.
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We consider the Eikonal Equation whose associated front propagates with a normal constant

velocity equal to 1

% L Dyw| =0 in B2 x (0,2

ot R ’ (35)
w(z,0) = up(z) in IR2.

The Hamiltonian H(p) = |p| satisfies the assumptions of Theorem 4.2 (with (H1-0)) thus the
lower-bound inequality (33) holds for ¢ € [0,2]. Moreover, the solution of (35) is unique and
given by the Oleinik-Lax formula (to go into the details, see e.g. Lions [22] or Barles [7]):

u(z,y,t) = influo(a’, ), ((z -2+ (y —y)*)"* <t}

Then, one computes easily I'y = 0(B1; U Ba,) for t € [0,2] where 0(By ;U Ba;) is the boundary
of the union of the balls By; = {(z,y) € R? : 2 + (y — 5)? < (44 t)?} and By = {(z,y) €
R? : 22 + (y +5)? < (4 +t)?}. The front is smooth for ¢ € [0,1) (union of 2 disjoint circles), is
not locally Lipschitz at (0,0) for ¢ = 1 (the circles are tangent at (0,0)) and is locally Lipschitz
for ¢ € (1,2]. This illustrates the case of a front which is initially smooth but develops a non
Lipschitz singularity. Note that from the result of uniqueness of the propagation of the front
(see Introduction), up to regularize ug, we can even start with a smooth function ug (thus a
semiconcave function) whose front T'g is 0(B1,0 U B2g). The propagation of the front will be the
same.

Example 5.4 The “roof”

let v : IR? — IR defined by v(z,y) = —|y|. The function v is Lipschitz continuous, concave and
I = {(x,y) € IR? : y = 0}. The function v satisfies the lower-bound estimate of Theorem 4.2
since D™ v(z,0) = 0 and |D~v(z,y)| = 1 if y # 0. And DV v(z,0) = dcv(z,0) = {0} x [-1,1].
In this case, the front is locally Lipschitz everywhere but 0 € O¢v(z,y) for every (z,y) € T
thus S is not equal to Sy. Moreover, coming back to Example 5.3, we see that (0,0) € T'y(u),
D;u(0,0,1) = D~ v(0,0) and D;u(0,0,1) = D*v(0,0) while I'(v) is smooth and T'y(u) is
singular at the point (0,0). It shows that sub- and superdifferentials do not characterize the
points of the front which are not locally Lipschitz.

Theorem 5.5 Let K be a Cantor set in [0, 1] such that L(K) > 0. Definev : [0,1]x[-1,1] = R
by v(z,y) = —|y| + d%(z) where di(x) is the distance of x to K. Then

(i) v is Lipschitz continuous, semiconcave and satisfies the lower-bound estimate (33);

(ii) HY(T'NS) > 0 where T = {(z,y) € [0,1] x [-1,1] : |y| = d%(z)} is the front of v.

Proof of Theorem 5.5 The function v is clearly Lipschitz continuous since [0,1] x [—1,1] is
bounded. Writing
v(w,y) = —lyl + inf {|2']° =2, 2")} + |2,
I

we see that v is semiconcave. The function v satisfies (33) since for every p € D~ v(z,y), |p| >
|{p, (0,1))] > 1 (notice that if D~ v(z,y) =0, (33) is trivially fulfilled). }
Now we look more precisely at the front T" of v (depicted in Figure 1). We define I" by

I =rn(0,1] x {0}) = {(z,0) € [0,1] x {0} : d%(z) = 0} = K x {0}
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Figure 1: T = {(z,y) € [0,1] x [-1,1] : |y| = d§ (=)}

since K is closed. We want to prove that every point of ' is singular (i.e. lies in S). We start
by an important remark: if (zg,0) € T (i.e. zg € K) then T N {(z0,y) : y € [-1,1]} = {(z0,0)}
since in this case, a point (zg,y),y # 0 cannot satisfy |y| = d%(zo) = 0 (roughly speaking, if
(%0,0) € I" then there cannot be another point of I' above or below). Recalling that there is no
isolated point in the Cantor set K, we can divide the points of I in two sets:

— the first set is countable and contains every point (z1,0) € I' which is an extremity of a
segment ((z1,0), (z1 + A,0)), A > 0, which was removed in order to construct the Cantor set.
An easy computation shows that, in this case, the piece of curve {(z,y) € [z1,z1 + A x [-1,1] :
z = /]y + 71} is contained in T and is not locally Lipschitz at (z1,0) thus T' is not locally
Lipschitz at (z1,0);

— the second set consists of points (z2,0) € T such that there exists two sequences

£,0) — 0), o} € K, = d (z,,0) — 0), 7, € K, 7, <o
(zf, )k—>oo(x2’ ), zp € K, x;7 >y and (z, )k—)oo(x2, )z, €K, z; <
From the remark, there cannot exist any piece of continuous curve which passes through (z2,0)
and lies in I'. Thus the connected component of (z2,0) in I’ is {(z2,0)} and I' is not locally
Lipschitz at (z2,0). 3

It follows that H}(T'NS) > HY(T) = LK) > 0. 0
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A Appendix

We state here a comparison result for unbounded continuous viscosity solutions. This result was
proved by Ishii [19]. We give a simplified proof which avoids the classical step-by-step argument.

Theorem A.1 (Comparison result for unbounded solutions) Assume (H1-8) and (H2) and let
fig € C(R" x [0,T7). Let o € R" and r > 0 and define L = Ay + By + A2|zo|-
If u € C(B(xo,7) % [0,T]) is a viscosity subsolution of

ow

¥ + H(z,t,Dyw) = f in B(xg,r) X (0,T) and w(z,0) =ug(z) in B(zg,r) (36)
and v is a viscosity supersolution of

(?9—(;) + H(z,t,Dyw) = g in B(zg,r) X (0,T) and w(z,0) =vo(z) in B(zg,T) (37)
then

ue,t)—o(e) < s {u@) v+ [ s (f@0) g akds  (38)

y€B(zo,r) 0 yeB(zo,r)
for every (z,t) € D(zg,r) where
D(zo,7) = {(,t) € B(zo,7) x (0,T) : "T(1 + |z — zo]) — 1 < 7}.
In particular, if r > 2elT then (38) holds in B(xq,e~LTr/2) x [0,T).

Remark A.1 The main point is that assumption (H2) implies a property of “finite speed of
propagation” which can be described from two points of view:

e the values of the solution u at the point (z,%) does not depend on the initial data ug in
the whole space IR" but only in a ball B(z,r(z,t)) where r(z,t) = e(A2+B2FAzlzol)t _ 1.

e the values of the initial data in some ball B(zg, ) completely determine the values of the
solution u of the equation in the domain of dependence D(zy,r) (cf. Figure 2).

We start by a lemma, proving it and using it to prove the theorem.

Lemma A.1 Under the assumptions of Theorem A.1, the function w = u — v s a viscosity
subsolution of

—- — (A2|z[ + B2) |Dsw| < f =g in B(zo,r) x (0, 7). (39)

Proof of Lemma A.1. Let ¢ € CY(B(zg,r) % (0,T)) and let (z,%) € B(zo,7) X (0,T) be a
local maximum of w — . Without loss of generality, we can suppose that (Z,%) is a strict local
maximum in B(Z,0) x [t — 0, + o] for o > 0 small enough. We define

z—yl® _Jt—sP
- 2 - 2 - (P(',I"7t)

\I!E,a(ac,y,t, 3) = u(xat) - U(ya 3)

& (0%
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n (r + 1)

Figure 2: D(zo,7) = {(z,t) € B(zg,r) x [0,T] : "7 (1 + |z — z0]) — 1 < 7}

and
MEaa = B(EU)QIS[a{‘XUE+g]2\IJE’a = \Ps,a(l's,aays,aats,aass,a)'
) ]

Since (Z,%) is a strict maximum, we know (see Barles [7]) that

M,o—_ max w—¢ = (w—¢)(Z1), Tea,Ye,a — T and teq,Se,q — t when g, — 0.
B(z,0)X[t—o,t+0]

As wu is a subsolution of (36) and v is a supersolution of (37), by a straightforward calculation,
we obtain
glea =8 dp

) -’1: ) — y )
Ot2 =2 + E(ms,aats,a) + H (xs,aats,aaz% + Dz@(xs,aats,a)) S f(a"g,a7t5,05) (40)

and

t

9 - 8 b $ ) - y 3
2% +H <y5,aa5€,aa2%) > g(yf,aa 35,0&)- (41)

Substracting (41) from (40) and letting o go to 0, we get that z. o = Z¢, Ve = Ye, te,a — Lo
and
Oy Te — Ye

Te — Ye
E(xsats) +H <$57t572? +D$(P(xsate)) -H (ysat6a2 62?/ ) < (f _g)(xsats)'

From (H1-8) and (H2), we have

H (xs’ts’QL_Zyg + Dz@(xsats)) - H (ys,t€,2$5 _2?/6)
€ €

Te — Ye
> - (A2|335‘ +BQ) |Dw‘P($sats)| - (ﬁ‘l' 2| 62?} |) |$5 - ys|
Cye? C Ze — ye|?
>~ (afee] + B) [Daplae )] - 255 — (BF 490 ) 222 vl
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It follows that

0 C1e? 501 |ze — ye|?
(s te) = (Azlec| + Ba) | Dol 1) < o+ 2” 552‘”5'

+ (f - 9)($Eats)'
Letting € go to 0, we end the proof since |z. — y:|*/e? = 0, ¢, Y. — T and t. — 1. O

Proof of Theorem A.1. Let 0 < e < r and x. : R" — IRt U{+00} be a C!-function in [0, )
such that x. = 0 in [0,7 — €], x. is increasing in [0,r) with limit +oco at r and x. = +o0 in
[r,4+00). Let n > 0. The function

i
wia,t) —nt— == [ sup {F(09) = 9l.9)} ds = xe (K L+ (12— wof + £)F) - 1)
T—t 0 yeB(zo,r)

achieves its maximum at a point (Z,t) € B(zg,r) x [0,T). If £ > 0 then we have a local maximum
and, using that w is a subsolution of (39) in B(zg,r) x (0,7"), we obtain from Lemma A.1,

nor (T ﬁ 7)2 + ye%l(lz,r) {fy,t) —g(y, )} — (f(z,t) — 9(z,1)) (42)
oy, el (L(l 4 (|17 — 0|2 + €2)2) = (As|Z| + Bo) 0 _|§0‘—25_U|_0|62)1/2> < 0

But

|£E—$0| B
(7= a0 + )72 < Aglz — mo| + Azfzo| + Be

which implies that (42) leads to a contradiction since L = Ay + By + |z¢|- Thus ¢ = 0 and we
obtain that, for every (z,t) € IR" x [0,T],

(A2|z| + By)

t 1
wiz,t) —nt— = [ s {F(09) ~ gl9)} ds — xe (M1 + (o~ mof? + £)E) - 1)
- 0 yEB(mo,T‘)

< w(z,0) < sup  w(y,0).
yE€B(zo,r)

Letting 1 go to 0, we have the desired comparison (38) for every (z,t) such that
Xe ("1 + (|7 — mo? +€%)7) = 1) =0 <= eX(1+ (jo —zol* +€%)7) —1 <7 —e.

Letting € go to 0, we get the comparison (38) for every (z,t) € D(xg,r). Moreover, if r > 2T,
a straightforward computation (taking ¢ = 1) shows that (38) is fulfilled for every (z,t) €
B(zg,e£Tr/2) x [0, T] which completes the proof. O
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