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Abstract

We consider an optimal control problems of reflected trajectories with a dis-
continuous terminal cost. We follow the the discontinuous approach of Barles and
Perthame to study this problem. By a counter-example, we prove that this approach
does not apply in order to characterize the value function.

Key-words: Optimal control, reflected trajectories, viscosity solutions, Hamilton-Jacobi
equations with Neumann boundary conditions

1 The optimal control problem with reflection

We are interested in a deterministic optimal control problem of reflected trajectories at
the boundary of an open bounded subset Q C IRY whose boundary 99 is W#*. We use
the framework of Lions [11] (see also [9], [2]); the reflected trajectories are governed by
the system of ordinary differential equations

dXPt = b(XP't —s,a(s))ds — dk3* in [0,1], t < T,
Xg,t =z €0, Xzt e Q for every s € [0, ], (1)
k= / Moo (X7 (X7 d|k™|;,
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where 7' > 0, A is a compact metric space, the control a(-) € L*([0,7],.A) and the vector
field b € C(Q x [0,T] x A, IRY) is Lipschitz continuous in the first variable uniformly with
respect to the others.

From Lions and Sznitman [12] (see also Lions [11]), we know that, for any (z,t) € Q x
[0, T], the system (1) admits a unique solution (X%, k%) € C([0,t], RY)x BV ([0, ], R").
The notation lati

Remark 1.1 In our simple case, we have an explicit formula for k%t
k3" = Ton (XT)N(XT) (DXt — s, a(s)), n( X)) T ds. (2)

We define the optimal control problem by introducing the value function

t f (X2t — d Xt
il = e et sat) s o}, )
where f € C(Q x [0,T] x A) is uniformly continuous in the first variable uniformly with
respect to the others, and the final cost v : IRV — IR, is locally bounded. The classical
dynamical programming principle holds and provides the

Theorem 1.1 For any locally bounded function 1, the value function u[v] is a viscosity
solution of the Hamilton-jacobi equation

875 +sup{ (b(z,t,a), Du) — f(z,t,a)} =0 in Q x (0,7),
acA (4)

— =0 ondQ x(0,7), u(-,0) =1 in Q.
8n
For a proof of the theorem, see [11] and [10]. For the definition of viscosity solutions
of this problem, we refer to [11] and [2]; notice that the boundary conditions has to be
“relaxed” in the viscosity sense.

When 9 is continuous, Lions [11] characterized the value function using the Hamilton-
Jacobi equation.

Theorem 1.2 Under the previous assumptions, if, in addition, 1 € C(S), then u[] is
the unique viscosity solution of (4).

We address the same problem but with a locally bounded final cost . This case
is of importance for applications (for instance when considering problems with punctual
targets). It leads to a discontinuous value function u[t] which is still a viscosity solution of
(4) but its characterization appears to be more difficult since one does not have uniqueness
for (4) anymore.

Many authors (see [8, 9], [3], [4, 5], [1], [7], [14], [6], etc.) have investigated the problem
of characterizing the value function of such discontinuous control problems. Here we follow
the discontinuous approach introduced by Barles and Perthame [3].
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We need first to introduce the relaxed control problem associated to the control prob-
lem with reflection. For relaxed control problems, see for example [15] and [2]. We replace
the first ordinary differential equation in (1) by

dX = / b(Xt t — s, 0) dus(a)ds — dk® in [0,1], t < T,
A

where the control (j)seo,r] € L*°([0,T], P(A)) and P(A) is the space of the probability
measures on A. All the previous results (in particular the existence and uniqueness of a
relaxed solution to the system (1)) apply; Therefore, defining the relaxed value function
by

vl = nf { / t [ 105 = s dufoyds + w(f(f’t)},

peLe ([0,T],P(A

this function turns out to be a viscosity solution of (4). Note that [¢)] < u[t)] and, if ¢
is continuous, then, by uniqueness, we have the equality.

Finally, we define the semicontinuous envelopes. For any locally bounded function
v : Qx[0,T] - IR, we define the upper-semicontinuous (USC' in short) and lower-
semicontinuous (LSC) envelopes by v*(z,t) = limsup v(y,s) and v, (z,t) =
lim inf(y o (24 v(y, s) respectively.

We have

Y»s) = (2t)

Theorem 1.3 Under the previous assumption, for any locally bounded final cost v, let
v be a wviscosity solution of (4). Then a[,] < v, and v* < ufyp*] in Q x [0,T]. The
value function u[yp*] is the mazimal USC subsolution and 4[] is the minimal LSC
supersolution.

This result was first proved in Barles and Perthame [3] in the case of a optimal stopping
time problem with discontinuous stopping cost which corresponds to a time-independent
Hamilton-Jacobi equation set in the whole space IR". We refer to [10] for a proof in the
Neumann case.

From this result, Barles and Perthame obtain the following uniqueness result for their
problem in IRY: if the final cost 1) satisfies a “regularity” condition, namely

(W)* = lb*, (5)
then all the discontinuous viscosity solutions have the same LSC envelope. It means that
the LSC envelope of the value function u[t] is the unique LSC viscosity solution of the
Hamilton-jacobi equation.

The question we address: is it possible to prove such a characterization for the Neu-
mann problem? In the next section, we provide a counter-example answering the question
in a negative way. To our knowledge, the problem of uniqueness for discontinuous solu-
tions to (4) is still open. We learn recently that this problem is investigated by Serea [13]
who obtained some uniqueness results defining a new notion of solution which is related
to the other main discontinuous approach of Barron and Jensen [4, 5].

3



t 7//
SR
X2 ", b(t-s)
0 xi(,[ 1
uO

0 1

Figure 1: Reflected trajectories of the system (1)

2 The counter-example

We construct a control problem with reflection for which @[i).] < u.[1*].
Set £ = (0,1) and take a space and control-independent vector field b in (1) such that

0 for 7 € [0, 1],

_ ) Fsin[r(2—7)] for7e[1,2],

b(r) = 2—71 for 7 € 2, 3],
-1 for 7 € [3,4+00).

From (2), we have an explicit formula for the reflected process, dk?"* = Ty (XZ") min{0, b(t—
s)}ds + Ly (X2 max{0, b(t — s)}ds, and we can compute explicitely the reflected tra-
jectories of (1). We claim that we chose the vector field b such that,

Xf’t =1/2 for any (z,t) € [0,1] x [3, +00).

Indeed, let € [0,1] and ¢t > 3. For s € [0,¢t — 3], dX®' = —ds if X®' € (0,1] and
dX®" = 0if X = 0. In any case, X5 = 0. For s € [t—3,t—2], dX%" = 0 and X, = 0.
For s € [t — 2,t — 1], we have to integrate dX»' = msin[r(2 — ¢ + 5)]/4 with the initial
data X', = 0, which gives X, = 1/2. And for s € [t — 1,t], dX®* = 0. It proves the
claim. Such trajectories are drawn on Figure 1.

We then consider the control problem governed by (1) with the running cost f = 0
and the final cost ¢ such that ¢(y) = 1if y € [0,1/2) and ¢(y) = 0if y € [1/2,1]. The
function v is LSC in [0, 1] and satisfies (5). Since (1) is independent of the control, the
value function is u[y](z,t) = h(X7).



On the one hand, a[,](z,t) = u[i,](z, 1) = (X)) = 1,(1/2) = 0.

On the second hand, u[¢*](z, t) = ¢*(X""). For any sequence (z,,t,) which converges
to (z,t), there exists ng such that ¢, > 3 for n > ng. It follows u[)*](z,, t,) = ¢¥* (X)) =
1*(1/2) = 1; Taking the infimum over all such sequences, we get u.,[)*](z,t) = 1.

Remark 2.1 Note that we recover the classical continuous dependence of the trajectory
X*' with respect to the data (x,t) for the system (1). But we point out that, contrary
to the system without the term “dk™'” when Xﬁ"’t” — X" as n — +00, we do not have
anymore (z,,t,) — (x,t) (see Figure 1 for an illustration).
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