A counter-example to the characterization of the discontinuous value function of a reflected control problem

Olivier Ley
Laboratoire de Mathématiques et Physique Théorique
Université de Tours
Parc de Grandmont, 37200 Tours, France

Abstract

We consider an optimal control problems of reflected trajectories with a discontinuous terminal cost. We follow the discontinuous approach of Barles and Perthame to study this problem. By a counter-example, we prove that this approach does not apply in order to characterize the value function.

Key-words: Optimal control, reflected trajectories, viscosity solutions, Hamilton-Jacobi equations with Neumann boundary conditions

1 The optimal control problem with reflection

We are interested in a deterministic optimal control problem of reflected trajectories at the boundary of an open bounded subset $\Omega \subset \mathbb{R}^N$ whose boundary $\partial\Omega$ is $W^{2,\infty}$. We use the framework of Lions [11] (see also [9], [2]); the reflected trajectories are governed by the system of ordinary differential equations

$$\begin{cases}
dX_s^{x,t} = b(X_s^{x,t}, t - s, \alpha(s))ds - dk_s^{x,t} & \text{in } [0, t], \ t \leq T, \\
X_0^{x,t} = x \in \overline{\Omega}, \quad X_s^{x,t} \in \overline{\Omega} & \text{for every } s \in [0, t], \\
k_s^{x,t} = \int_0^s \mathbb{I}_{\partial\Omega}(X_\tau^{x,t}) n(X_\tau^{x,t}) d|k^{x,t}|_\tau,
\end{cases} \tag{1}$$

This work was partially supported by the TMR program "Viscosity Solutions and Their Applications."

where T > 0, \mathcal{A} is a compact metric space, the control $\alpha(\cdot) \in L^{\infty}([0,T],\mathcal{A})$ and the vector field $b \in C(\overline{\Omega} \times [0,T] \times \mathcal{A}, \mathbb{R}^N)$ is Lipschitz continuous in the first variable uniformly with respect to the others.

From Lions and Sznitman [12] (see also Lions [11]), we know that, for any $(x,t) \in \overline{\Omega} \times [0,T]$, the system (1) admits a unique solution $(X^{x,t},k^{x,t}) \in C([0,t],\mathbb{R}^N) \times BV([0,t],\mathbb{R}^N)$. The notation $|k^{x,t}|_s$ stands for the total variation of the bounded variation process $k^{x,t}$.

Remark 1.1 In our simple case, we have an explicit formula for $k^{x,t}$:

$$dk_s^{x,t} = \mathbb{1}_{\partial\Omega}(X_s^{x,t}) n(X_s^{x,t}) \langle b(X_s^{x,t}, t - s, \alpha(s)), n(X_s^{x,t}) \rangle^+ ds.$$
 (2)

We define the optimal control problem by introducing the value function

$$u[\psi](x,t) = \inf_{\alpha(\cdot) \in L^{\infty}([0,T],\mathcal{A})} \left\{ \int_{0}^{t} f(X_{s}^{x,t}, t - s, \alpha(s)) \, ds + \psi(X_{t}^{x,t}) \right\},\tag{3}$$

where $f \in C(\overline{\Omega} \times [0, T] \times \mathcal{A})$ is uniformly continuous in the first variable uniformly with respect to the others, and the final cost $\psi : \mathbb{R}^N \to \mathbb{R}$, is locally bounded. The classical dynamical programming principle holds and provides the

Theorem 1.1 For any locally bounded function ψ , the value function $u[\psi]$ is a viscosity solution of the Hamilton-jacobi equation

$$\begin{cases} \frac{\partial u}{\partial t} + \sup_{\alpha \in \mathcal{A}} \left\{ -\langle b(x, t, \alpha), Du \rangle - f(x, t, \alpha) \right\} = 0 & \text{in } \Omega \times (0, T), \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega \times (0, T), \qquad u(\cdot, 0) = \psi & \text{in } \overline{\Omega}. \end{cases}$$
(4)

For a proof of the theorem, see [11] and [10]. For the definition of viscosity solutions of this problem, we refer to [11] and [2]; notice that the boundary conditions has to be "relaxed" in the viscosity sense.

When ψ is continuous, Lions [11] characterized the value function using the Hamilton-Jacobi equation.

Theorem 1.2 Under the previous assumptions, if, in addition, $\psi \in C(\overline{\Omega})$, then $u[\psi]$ is the unique viscosity solution of (4).

We address the same problem but with a locally bounded final cost ψ . This case is of importance for applications (for instance when considering problems with punctual targets). It leads to a discontinuous value function $u[\psi]$ which is still a viscosity solution of (4) but its characterization appears to be more difficult since one does not have uniqueness for (4) anymore.

Many authors (see [8, 9], [3], [4, 5], [1], [7], [14], [6], etc.) have investigated the problem of characterizing the value function of such discontinuous control problems. Here we follow the discontinuous approach introduced by Barles and Perthame [3].

We need first to introduce the relaxed control problem associated to the control problem with reflection. For relaxed control problems, see for example [15] and [2]. We replace the first ordinary differential equation in (1) by

$$d\hat{X}_{s}^{x,t} = \int_{\mathcal{A}} b(\hat{X}_{s}^{x,t}, t - s, \alpha) d\mu_{s}(\alpha) ds - d\hat{k}_{s}^{x,t} \text{ in } [0, t], \ t \leq T,$$

where the control $(\mu_s)_{s\in[0,T]}\in L^{\infty}([0,T],P(\mathcal{A}))$ and $P(\mathcal{A})$ is the space of the probability measures on \mathcal{A} . All the previous results (in particular the existence and uniqueness of a relaxed solution to the system (1)) apply; Therefore, defining the relaxed value function by

$$\hat{u}[\psi](x,t) = \inf_{\mu \in L^{\infty}([0,T],P(\mathcal{A}))} \left\{ \int_{0}^{t} \int_{\mathcal{A}} f(\hat{X}_{s}^{x,t}, t-s, \alpha) d\mu_{s}(\alpha) ds + \psi(\hat{X}_{t}^{x,t}) \right\},$$

this function turns out to be a viscosity solution of (4). Note that $\hat{u}[\psi] \leq u[\psi]$ and, if ψ is continuous, then, by uniqueness, we have the equality.

Finally, we define the semicontinuous envelopes. For any locally bounded function $v: \overline{\Omega} \times [0,T] \to \mathbb{R}$, we define the upper-semicontinuous (*USC* in short) and lower-semicontinuous (*LSC*) envelopes by $v^*(x,t) = \limsup_{(y,s)\to(x,t)} v(y,s)$ and $v_*(x,t) = \liminf_{(y,s)\to(x,t)} v(y,s)$ respectively.

We have

Theorem 1.3 Under the previous assumption, for any locally bounded final cost ψ , let v be a viscosity solution of (4). Then $\hat{u}[\psi_*] \leq v_*$ and $v^* \leq u[\psi^*]$ in $\overline{\Omega} \times [0,T]$. The value function $u[\psi^*]$ is the maximal USC subsolution and $\hat{u}[\psi_*]$ is the minimal LSC supersolution.

This result was first proved in Barles and Perthame [3] in the case of a optimal stopping time problem with discontinuous stopping cost which corresponds to a time-independent Hamilton-Jacobi equation set in the whole space \mathbb{R}^N . We refer to [10] for a proof in the Neumann case.

From this result, Barles and Perthame obtain the following uniqueness result for their problem in \mathbb{R}^N : if the final cost ψ satisfies a "regularity" condition, namely

$$(\psi^*)_* = \psi_*, \tag{5}$$

then all the discontinuous viscosity solutions have the same LSC envelope. It means that the LSC envelope of the value function $u[\psi]$ is the unique LSC viscosity solution of the Hamilton-jacobi equation.

The question we address: is it possible to prove such a characterization for the Neumann problem? In the next section, we provide a counter-example answering the question in a negative way. To our knowledge, the problem of uniqueness for discontinuous solutions to (4) is still open. We learn recently that this problem is investigated by Serea [13] who obtained some uniqueness results defining a new notion of solution which is related to the other main discontinuous approach of Barron and Jensen [4, 5].

Figure 1: Reflected trajectories of the system (1)

2 The counter-example

We construct a control problem with reflection for which $\hat{u}[\psi_*] < u_*[\psi^*]$. Set $\Omega = (0, 1)$ and take a space and control-independent vector field b in (1) such that

$$b(\tau) = \begin{cases} 0 & \text{for } \tau \in [0, 1], \\ \frac{\pi}{4} \sin[\pi(2 - \tau)] & \text{for } \tau \in [1, 2], \\ 2 - \tau & \text{for } \tau \in [2, 3], \\ -1 & \text{for } \tau \in [3, +\infty). \end{cases}$$

From (2), we have an explicit formula for the reflected process, $dk_s^{x,t} = \mathbb{I}_{\{0\}}(X_s^{x,t}) \min\{0, b(t-s)\}ds + \mathbb{I}_{\{1\}}(X_s^{x,t}) \max\{0, b(t-s)\}ds$, and we can compute explicitly the reflected trajectories of (1). We claim that we chose the vector field b such that,

$$X_t^{x,t} = 1/2$$
 for any $(x,t) \in [0,1] \times [3,+\infty)$.

Indeed, let $x \in [0,1]$ and $t \geq 3$. For $s \in [0,t-3]$, $dX_s^{x,t} = -ds$ if $X_s^{x,t} \in (0,1]$ and $dX_s^{x,t} = 0$ if $X_s^{x,t} = 0$. In any case, $X_{t-3}^{x,t} = 0$. For $s \in [t-3,t-2]$, $dX_s^{x,t} = 0$ and $X_{t-2}^{x,t} = 0$. For $s \in [t-2,t-1]$, we have to integrate $dX_s^{x,t} = \pi \sin[\pi(2-t+s)]/4$ with the initial data $X_{t-2}^{x,t} = 0$, which gives $X_{t-1}^{x,t} = 1/2$. And for $s \in [t-1,t]$, $dX_s^{x,t} = 0$. It proves the claim. Such trajectories are drawn on Figure 1.

We then consider the control problem governed by (1) with the running cost $f \equiv 0$ and the final cost ψ such that $\psi(y) = 1$ if $y \in [0, 1/2)$ and $\psi(y) = 0$ if $y \in [1/2, 1]$. The function ψ is LSC in [0, 1] and satisfies (5). Since (1) is independent of the control, the value function is $u[\psi](x, t) = \psi(X_t^{x,t})$.

On the one hand, $\hat{u}[\psi_*](x,t) = u[\psi_*](x,t) = \psi_*(X_t^{x,t}) = \psi_*(1/2) = 0.$

On the second hand, $u[\psi^*](x,t) = \psi^*(X_t^{x,t})$. For any sequence (x_n,t_n) which converges to (x,t), there exists n_0 such that $t_n \geq 3$ for $n \geq n_0$. It follows $u[\psi^*](x_n,t_n) = \psi^*(X_{t_n}^{x_n,t_n}) = \psi^*(1/2) = 1$; Taking the infimum over all such sequences, we get $u_*[\psi^*](x,t) = 1$.

Remark 2.1 Note that we recover the classical continuous dependence of the trajectory $X^{x,t}$ with respect to the data (x,t) for the system (1). But we point out that, contrary to the system without the term " $dk_s^{x,t}$," when $X_{t_n}^{x_n,t_n} \to X_t^{x,t}$ as $n \to +\infty$, we do not have anymore $(x_n,t_n) \to (x,t)$ (see Figure 1 for an illustration).

Acknowledgment. I am grateful to Guy Barles, who brought this problem to my attention. I would like to thank Élisabeth Rouy for helpful discussions and valuable suggestions.

References

- [1] Barles G., Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Anal., 20(9) (1993) 1123–1134.
- [2] Barles G., Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994.
- [3] Barles G., Perthame B., Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér., 21(4) (1987) 557–579.
- [4] Barron E. N., Jensen R., Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex hamiltonians, Commun. Partial Differ. Eq., 15(12) (1990) 1713–1740.
- [5] Barron E. N., Jensen R., Optimal control and semicontinuous viscosity solutions, Proc. Amer. Math. Soc., 113(2) (1991) 397–402.
- [6] Blanc A.-P., Deterministic exit time control problems with discontinuous exit costs, SIAM J. Control Optim., 35(2) (1997) 399–434.
- [7] Frankowska H., Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim., 31(1) (1993) 257–272.
- [8] Ishii H., Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ., 28 (1985) 33–77.
- [9] Ishii H., Lectures at Brown University, 1988.
- [10] Ley O., Thèse de doctorat, Université de Tours, 2001.

- [11] Lions P.-L., Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J., 52 (1985) 793–820.
- [12] Lions P.-L., Sznitman A. S., Stochastic differential equations with reflecting boundary conditions, Commun. Pure Appl. Math., 37 (1984) 511–537.
- [13] Serea O. S., Prépublication, Université de Bretagne Occidentale, 2001.
- [14] Soravia P., Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians, Commun. Partial Differ. Eq., 18(9-10) (1993) 1493–1514.
- [15] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972.