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10, rue Alice Domon et Léonie Duquet, Paris, 75013 France
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Abstract: We define the analytic continuation of the number of black hole microstates
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construction deeply relies on the link between black holes and Chern-Simons theory. Tech-

nically, the key point consists in writing the number of microstates as an integral in the

complex plane of a holomorphic function, and to make use of complex analysis techniques

to perform the analytic continuation. Then, we study the thermodynamical properties

of the corresponding system (the black hole is viewed as a gas of indistinguishable punc-

tures) in the framework of the grand canonical ensemble where the energy is defined à la

Frodden-Gosh-Perez from the point of view of an observer located close to the horizon.

The semi-classical limit occurs at the Unruh temperature TU associated to this local ob-

server. When γ = ±i, the entropy reproduces at the semi-classical limit the area law with

quantum corrections. Furthermore, the quantum corrections are logarithmic provided that

the chemical potential is fixed to the simple value µ = 2TU.
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1 Introduction

Proposing a consistent microscopic explanation of the celebrated thermodynamical prop-

erties of black holes found by Bekenstein [1] and Hawking [2] in the 70’s is certainly one of

the most important theoretical tests for any candidates to quantum gravity. It is indeed

expected from any theories of quantum gravity to provide a framework for understanding

the statistical physics behind these thermodynamical properties and, more particularly,

for finding the fundamental excitations responsible for the black hole entropy. Almost four

decades after the discovery by Bekenstein and Hawking, in different approaches of quantum

gravity, we have witnessed a lot of progresses in the field of black hole thermodynamics.
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There exist dozens of different technical derivations of the black hole entropy from semi-

classical arguments or from theories of quantum gravity. However, it is fair to observe that

the question of the microscopic structure of black holes is not totally resolved. We still

do not precisely know what does the huge black hole entropy really count: the counting is

clear but the content is not. Even in the much simpler case of three dimensional gravity,

the nature of the fundamental excitations of the celebrated BTZ black hole [3, 4] respon-

sible for its entropy remains unknown (see [5] for a review). From the point of view of

Loop Quantum Gravity, the derivation of black hole entropy relies mainly on the idea that

this entropy counts essentially the number of ways the macroscopic horizon area can be

obtained as a sum of fundamental excitations. The area law has been recovered originally

for non-rotating macroscopic black holes in [6, 7] and then the counting was upgraded in

different ways [7–11].

Black hole entropy with a real γ. In fact, the derivation of the black hole entropy

in Loop Quantum Gravity relies essentially on two ingredients. First, the black hole is

defined by its horizon which is assumed to be a boundary in space-time. Second, the

classical geometrical properties of the horizon (null-surface, no expansion etc. . . ) are turned

into quantum constraints which make the quantum black hole degrees of freedom to be

described by a Chern-Simons theory. More precisely, the symplectic structure of the black

hole degrees of freedom are given by the Chern-Simons Poisson bracket on a punctured

two-sphere S2 with gauge group G = SU(2) and the level k is proportional to the horizon

area aH [12]. The compact group SU(2) is reminiscent of the internal gauge group of gravity

expressed in terms of the Ashtekar-Barbero connection. Regarding the punctures, there is

a priori an arbitrary number of them, denoted n in the sequel. They are the fundamental

excitations, associated to a spin-network in the space manifold and colored with SU(2)

unitary irreducible representations (j1, · · · , jn), which cross the horizon. The macroscopic

horizon area

aH =

n∑
`=1

a` with a` = 8π`2Pγ
√
j`(j` + 1) (1.1)

results from the sum of the fundamental excitations a` carried by the punctures. Here γ

denotes the Barbero-Immirzi parameter which enters in the spectrum of the area operator

in Loop Quantum Gravity and `P =
√
G~ is the Planck length [13, 14]. Therefore, in

this picture, the black holes micro-states are elements of the physical Hilbert space of the

SU(2) Chern-Simons theory on a punctured two-sphere, and the entropy of a black hole

whose horizon has an area aH counts the number of such micro-states provided that the

condition (1.1) is fulfilled.

Then, one needs to understand the Hamiltonian quantization of Chern-Simons theory.

For this reason, the three dimensional space-time required for the Chern-Simons theory is

assumed to be locally of the form Σ× [0, 1] where Σ is a Riemann surface. When the gauge

group G is compact, the (canonical and covariant) quantization is very well understood.

It has been studied intensively since the discoveries by Witten that first three dimensional

gravity can be reformulated in terms of a Chern-Simons theory [15], and then that the

quantum amplitudes of the Chern-Simons theory are closely related to topological three-
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manifolds invariants and knots invariants [16]. The so-called combinatorial quantization is

certainly one of the most powerful Hamiltonian quantization scheme of the Chern-Simons

theory because it can be applied not only to a large class of compact [17–19] and non-

compact gauge groups [20–24] but also to any punctured Riemann surfaces Σ (Note that

Loop Quantum Gravity techniques are very successful when there is no cosmological con-

stant [25, 26], and the case of non-vanishing cosmological is still under construction [27, 28]).

When the gauge group is G = SU(2) and the surface Σ is a punctured two-sphere, the phys-

ical Hilbert space H(j`), where (j1, · · · , jn) color the punctures, has a very simple structure.

It can be constructed from the representation theory of the quantum group Uq(su(2)) where

the quantum deformation parameter q is related to the level k of the Chern-Simons theory

by q = exp(iπ/(k + 2)). Because the gauge group is compact, k is necessarily integer and

then q is a root of unity. This result has important consequences: it makes the number of

unitary irreducible representations (irreps) of Uq(su(2)) finite and is somehow responsible

for the good convergence properties of the Chern-Simons quantum amplitudes. As for the

classical Lie group SU(2), the irreps are labeled by spins j (which are half-integers), they

are realized on a finite dimensional vector space Vj of dimension d = 2j + 1, but contrary

to the classical case, j is bounded from above according to the inequality j ≤ k/2. Finally,

the physical Hilbert space Hk(j`) is the space of Uq(su(2)) invariant vectors (equivalently

intertwiners) in the tensor product of the representations vector spaces Vj

Hk(j`) =

{
Inv

(
n⊗
`=1

Vj`

)
; dµ

}
(1.2)

where dµ is inherited from the (right or left invariant) Haar measure on the quantum

group SUq(2) (the standard notation for the space of polynomial functions or its Cauchy

completion). In that respect, the black hole microstates from the point of view of Loop

Quantum Gravity are intertwiners between the representations coloring the links crossing

the horizon. These representations are viewed as Uq(su(2)) representations. Obviously,

Hk(j`) has a finite dimension given by [11]

Nk(d`) =
2

k + 2

k+1∑
d=1

sin2

(
πd

k + 2

) n∏
`=1

sin
(

π
k+2dd`

)
sin
(

π
k+2d

) (1.3)

where d` = 2j` + 1. This formula (or its classical limit when k → ∞) is known as the

Verlinde formula and is in the core of the calculation of the black hole entropy in Loop

Quantum Gravity. The counting of microstates leads to the Bekenstein-Hawking area law

provided that the Barbero-Immirzi parameter γ is fixed to a particular finite and real value.

Recovering the area law is clearly a non-trivial success of Loop Quantum Gravity but the

important role played by γ in this result, whereas it is totally irrelevant in the classical

theory, has raised important questions on the validity of this counting.

Black hole entropy with γ = ±i. These last couple of years may have brought new

interesting insights to resolve this puzzle. These new ideas mainly relies on an interpre-

tation of γ as a regulator in the theory and not as a fundamental constant. Indeed, the

– 3 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
5

Ashtekar-Barbero connection together with the Barbero-Immirzi parameter γ has been

introduced [13, 14] in Loop Quantum Gravity to circumvent the problem of the reality

conditions. Therefore, considering a real parameter γ appears as a technical trick (a kind

of Wick rotation) to avoid having to work with the original complex Ashtekar variables and

to start the quantization, at least at the kinematical level. So far, no one knows how to

start the quantization of gravity in the complex Ashtekar formulation, which corresponds

to taking γ = ±i. In that sense, the introduction of a real γ in the theory is a neces-

sity in Loop Quantum Gravity, exactly as it is necessary to consider a Wick rotation in

quantum field theory to compute path integrals for instance. However, we should return

to the complex value γ = ±i at some point. Furthermore, this requirement is strongly

suggested by the classical theory. Indeed, it has been known for a long time that the

Ashtekar-Barbero connection is not a full space-time connection whereas the original com-

plex connection is certainly one [29–31]. This observation has led to the idea that, even

though the Ashtekar-Barbero connection is suitable for the kinematical quantization of

Loop Quantum Gravity, it could not be the proper variable to deal with the dynamics

and the Hamiltonian constraint. This fact was concretely realized in three space-time di-

mensions where, after introducing a Barbero-Immirzi parameter γ in the model [32, 33],

it has been shown that the Ashtekar-Barbero connection could not lead to a resolution

of the Hamiltonian constraint, and it is necessary to work in the self-dual variables to

solve the dynamics [34, 35]. Moreover, we showed that if the spectrum of the geometric

operators is discrete and γ-dependent at the kinematical level, it becomes continuous and

γ-independent at the physical level. Formally, it is possible to recover the physical spec-

trum from the kinematical one sending γ to the values ±i and, at the same time, sending

the representations (which label the edges of the spin-networks) j` to the complex values

(−1 + is`)/2 where s` is a real number. Considering j` = (−1 + is`)/2 instead of j` half-

integer is easily interpreted as coloring the spin-networks in terms of SU(1, 1) irreps (in the

continuous series) instead of SU(2) irreps. It is interesting to notice that a simple analytic

continuation of the physical parameter reproduce the exact physical expressions for the

eigenvalues of geometric operators. All these strongly suggests that one should interpret γ

as a regulator which should be sent to the complex value γ = ±i.
Another strong indication comes from the physics of black holes in Loop Quantum

Gravity. It was shown in [36], that for a fixed number of punctures and in the limit of

large spins, the analytically-continued dimension of the SU(2) Chern-Simons Hilbert space

(which can be understood as the weight assigned to a black hole microscopic configuration)

behaves exactly as exp(aH/4`
2
Pl). The analytic continuation consists in first replacing the

discrete dimensions d` in the formula (1.3) by the complex numbers (−1 + is`)/2 and then

in fixing γ to the value ±i in order for the area spectrum (1.1) to remain positive and

real. Interestingly, it was observed that the same analytically-continued technique can be

naturally applied to compute the three-dimensional BTZ black hole entropy [37]. In this

case however, it is the sign of the cosmological constant and not γ that plays the role of a

regulator. The proposal of [36] is supported by remarkable additional facts [38–45]. Finally,

all these observations strongly suggest that we should take seriously the idea to return in

some way to the original self-dual variables in Loop Quantum Gravity. Either we extend
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the analytic continuation method to the full kinematical Hilbert space and eventually to

the Spin-Foam amplitudes, or we use this analytic continuation process to guide us towards

a resolution of the reality conditions. In both cases, it is first of all necessary to understand

in a more (mathematically) rigorous way the analytic continuation proposed in [36] which

is precisely the aim of this article.

Using complex analysis. What has been proposed in [36] is an analytic continuation

of the dimension (1.3) viewed as a function on a discrete set1 where the discrete variables

d` ∈ N becomes complex (more precisely, purely imaginary). Schematically, the analytic

continuation is defined by the map d` → is` ∈ iR. It goes without saying that such a process

is highly non-trivial and in general not unique. However, complex analysis provides us with

powerful tools to define rigorously this kind of transformations. These tools (essentially

Morse theory) have been extensively used by Witten [46] to study the analytic continuation

of Chern-Simons theory from integer values of k to complex values. As we want to perform

an analytic continuation of the dimension of the Chern-Simons Hilbert space, the methods

developed in [46] seem totally appropriate for our purposes. We show this is indeed the

case. Not only we obtain a mathematically well-defined analytic continuation of (1.3) (with

ambiguities related to choices of the contour in the complex plane) but we also compute its

(semi-classical) asymptotic behavior. Interestingly, we obtain the result of [36] with some

corrections.

To obtain these results, we proceed in different steps. First we write (1.3) as an integral

in the complex plane because we interpret the sum over d in (1.3) as a sum of residues.

Hence, (1.3) can be written as
∫
C dz µ(z)F (z) where C is a closed contour in the complex

plane, µ a measure independent of the colors and F (z) a holomorphic function which

depends on the colors. Then, we perform an analytic continuation to a purely imaginary

level k → iλ (λ ∈ R+) keeping the contour C fixed. We see immediately that such a

continuation leads to a vanishing integral and then to a non-consistent analytic continuation

of the number of microstates. However, when the dimensions d` become are non longer

integer (they are purely imaginary dimension d` → is`, s` ∈ R+, in our case), then the

analytic continuation is non-trivial and leads to a very interesting analytic continuation

of (1.3). In fact, this continuation is uniquely defined up to a discrete ambiguity which is

very similar to the one raised by Witten [46] (and mainly based on [47]) when he recalls the

construction of the analytic continuation of the Bessel function. More precisely, the contour

is defined up to a translation z 7→ z + ip2π, p ∈ N, in the complex plane. Fortunately,

there exists one natural choice of the contour which leads to the expected semi-classical

behavior of the analytic continued number of microstates. Computing such an asymptotic

is technically rather involved. To simplify the problem, we first assume that the horizon

is punctured by n edges all colored with the same complex spin d = is: this defines what

is called the one color black hole model in the article. In that case, the expression of the

1The status of the Chern-Simons level k is not clear in this process [36]. It seems that k remains real.

Nonetheless, it is possible to assume that k is sent to a purely imaginary variable, exactly as the summation

variable d, which makes the sum (1.3) unchanged (at the classical limit when k is large). The role of k will

be totally clarified in the present article.
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function F (z) introduced above simplifies and the complex integral can be reformulated

as an integral
∫
C dz µ(z) exp(nS(z)) where n plays the role of the inverse Planck constant

and the action S(z) is a holomorphic function (which depends on s) in the complex plane

(z ∈ C). As shown in [48], n becomes large at the semi-classical limit. As a consequence,

the semi-classical behavior is determined from the saddle point approximation, hence from

the analysis of the critical points of the action S(z). We show that there is one critical point

which dominates the classical limit. Following the saddle point approximation techniques

at the vicinity of this critical point, we obtain the large n behavior of the number of

microstates. This enables us to obtain the microcanonical entropy for the one color black

hole model which reproduces the area law supplemented with quantum corrections. We

go further and compute the canonical and grand canonical entropy. Interestingly, with a

simple choice of the chemical potential, the quantum corrections are logarithmic, of the

form −3/2 log(aH/`
2
p), i.e. the same as the one obtained for black holes with a real γ. We

reproduce the analysis in the case where the punctures are colored by an arbitrary but

finite number p of different colors (s1, · · · , sp) assuming that each number np of punctures

colored by sp becomes large in the same way at the semi-classical limit. We show that the

black hole entropy still satisfies the area law in this general case with quantum corrections

(which are logarithmic with a particular choice of chemical potential). Our calculation is

rigorous and gives a mathematical justification of [36]. In that respect, it is particularly

interesting to note that the “naive” analytic continuation presented in [36] reproduces, at

the semi-classical limit, the good leading-order term. Furthermore, the method we are

developing in this article can be applied to generic situations and we hope to extend it to

construct Spin-Foam models or kinematical scalar products for complex Ashtekar gravity.

Organization of the article. The article is organized as follows. After this introduction,

we propose in section 2 an overlook of the recent results obtained in the context of complex

black holes. First, we recall the main results of the “naive” analytic continuation in [36]

and show how the area law is immediately recovered at the semi-classical limit. Then, we

recall and adapt the analysis of the black hole (canonical and grand canonical) partition

function done in [48] when the area spectrum is continuous. This analysis is particularly

important for our purposes because the study of the thermodynamical limit enables us to

define the semi-classical limit as the regime where the horizon area aH is large together

with the number of punctures n and their colors s`. Section 3 is devoted to studying the

analytic continuation of (1.3) from rigorous complex analysis. We start by studying the

effect of turning the (discrete) level k into a pure imaginary number iλ. This is done by

expressing the Chern-Simons dimension as an integral I in the complex plane. We show

that, if k becomes purely imaginary, the representations d` must no longer be discrete

for the analytic continuation to be non-vanishing, hence we replace the integers d` by

purely imaginary numbers, i.e. d` = is`. Then, we analyze the asymptotic of the analytic

continued version of the number of microstates. To do so, we first study the case where

the n punctures are colored with the same s` = s: this defines the one color black hole

model. In that case, the integral I can be written as I =
∫
C dµ(z) exp(nS(z)) where C is the

integration contour,
∫
dµ(z) is a well-defined measure and the action S(z) is a holomorphic

– 6 –
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function which depends on the color s. The saddle point approximation immediately leads

us to the large n asymptotic of I and reproduces the area law for the microcanonical

entropy. We perform the grand canonical analysis of the model and show that, with a

simple choice of chemical potential, the quantum correction of the entropy are logarithmic.

We generalize the study to a system of n punctures colored by a finite number p of colors

s1, · · · , sp. We conclude in section 4 with a brief summary and a discussion. We argue on

the possibility to adapt these techniques to construct Spin-Foam amplitudes or kinematical

scalar products in the self-dual sector of Loop Quantum Gravity.

2 Complex black holes in Loop Quantum Gravity

The derivation of black hole entropy relies essentially on the idea that the macroscopic

horizon area is realized as the sum of microscopic contributions (quanta of area) excited

by the spin network edges which puncture the horizon. In this picture, the counting

of the microstates leads to the Bekenstein-Hawking area law provided that γ is fixed to

a particular finite and real value. The fact that this parameter seems to play such a

crucial role in the quantum theory even though it is totally irrelevant at the classical level

has raised some doubts. New insights have been developed the last years to resolve this

contradiction. The first one is that the quantum degrees of freedom of a spherical black

hole in Loop Quantum Gravity are those of an SU(2) Chern-Simons theory where the level

k is proportional to the horizon area aH according to the relation aH/`
2
p = 2γ(1−γ2)k [12].

The second one is to consider a black hole with a complex Barbero-Immirzi parameter.

This makes totally sense because considering γ complex is directly related to considering

the analytic continuation of Chern-Simons theory to complex values of the level k [46].

This last idea was realized concretely in [36] and led in a very direct way to the area law

for the black hole entropy when γ takes the special values ±i. This strongly indicates that

γ is a regulator which should be fixed to ±i at some point. It corresponds to returning to

the original complex Ashtekar variables.

This section aims at recalling first the analytic continuation performed in [36]. Then,

we will recall and adapt (to continuous spins) the thermodynamical properties of the com-

plex black holes studied recently in [48]. This enables to characterize the semi-classical

regime and, in particular, to show that the number of punctures becomes large at the

semi-classical limit (or equivalently the thermodynamical limit) when aH is large.

2.1 Black holes with γ = ±i

The computation of the black hole entropy in Loop Quantum Gravity is roughly based

on two formulae. The first one is the expression of the horizon area aH recalled in the

introduction (1.1). The second one is the expression (1.3) of the number of microstates

with the level k fixed by the relation aH/`
2
p = 2πγ(1− γ2)k as shown in [12].

For a configuration where d` = d for every `, it is easy to show that (1.3) reproduces

the area law at the semi-classical limit (d� 1 and k � 1)

log(Nk(d`)) = n log(d) + o(n) =
aH
4`2p

log(d)

πγd
+ o(aH) (2.1)

– 7 –
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provided that γ is fixed according to πγd = log(d). A similar result holds when we take

into account all the possible configurations with a different real value for the Barbero-

Immirzi parameter. In the latter case, one recovers the area law only if one assumes

the distinguishability of the punctures. In [36], we asked the question whether it could

make sense to extend the framework of black hole thermodynamics in Loop Quantum

Gravity to complex values of γ. In fact, we are interested only in the case γ = ±i. For

the answer to be positive, it is necessary to keep the area aH (1.1) real while γ becomes

complex. This condition is satisfied when j` = (−1+ is`)/2 or equivalently if the dimension

d` = 2j`+1 = is` becomes purely imaginary.2 In that case, aH is necessarily real and we can

easily make it positive by choosing the suitable square root
√
j`(j` + 1) =

√
−(s2` + 1)/4

in the area spectrum (1.1).

Concerning the number of states, its analytic continuation is much less obvious to

define. The reason is that the level k which appear in the upper bound of the sum (1.3)

becomes purely imaginary k = iλ. We can suppose λ > 0 without loss of generality.

Therefore, the sum becomes a priori meaningless. To make it well-defined, a “naive” idea

is to assume that the label d becomes also purely imaginary, which would correspond

to a discrete analog of turning the integration path (in the integral of a complex-valued

function) in the complex plane from the real line R to the purely imaginary line iR. With

this “naive” definition of the analytic continuation, it is immediate to show that the number

of microstates behaves as

ε2
n∏
`=1

sinh(2πs`)

ε
=
ε2−n

2n
exp

(
aH
4`2p

)
+ o(1) (2.2)

at the semi-classical limit (λ � 1 and s` � 1) and then reproduces the area law up to a

small and real regulator ε. In the right hand side of (2.2), o(1) refers to a function of aH in

Planck units. The more striking observation is that we recover immediately the area law

with the natural choice γ = ±i. This situation strongly contrasts with what happens in

the real γ case. Nonetheless, this observation raises several questions and remarks.

1. The method proposed to perform the analytic continuation needs a finite regulator ε

to be well defined, otherwise it diverges. What it the deep meaning of this regulator?

How is it fixed to a non-zero value?

2. One analytic continuation was proposed. Is it uniquely defined?

3. For the last remark, let us assume that the representations j` are all equal and fixed to

the value j. In that case, we notice immediately that, at the classical limit, the num-

ber of microstates is polynomial in j when the representations are discrete whereas it

increases exponentially in j when it is complex, j = −1/2 + is where s is continuous.

This remark generalizes immediately to the case where the representations j` are

different. A similar phenomenon exists in Chern-Simons theory where the quantum

2There is also the possibility to have −1 < j` < 0 but this choice has no interpretation in terms of

unitary irreducible representations. We thank the referee for this remark.
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amplitudes (which are given by the colored Jones polynomial up to eventual normal-

izations) behave in total different ways at the semi-classical limit when k is discrete

or not. This observation is crucial for the celebrated volume conjecture [46, 49].

The last remarks suggests that our question present strong similarities with some im-

portant questions related to the quantum amplitudes of Chern-Simons theories. Therefore,

we should look at the analytic continuation of Chern-Simons theory which is essential to

understand the volume conjecture according to Witten [46]. This strategy has been suc-

cessfully applied for our purpose. As we are going to show in section 3, we have adapted the

complex analysis techniques presented in great detail in [46] to define properly the analytic

continuation of (1.3). Interestingly, we have recovered in that way exactly the leading order

term (2.2) obtained in the naive analytic continuation, but the quantum corrections are

different. Furthermore, these methods have enabled us to answer the two first questions

above. The regulator ε can be shown to be a function of the area aH at the semi-classical

limit. The question of the unicity of the analytic continuation is transposed into a question

of finding suitable integration contours in the complex plane. We have shown that there is

indeed an ambiguity in the choice of the integration contour, the same one as the ambigu-

ity illustrated by Witten in [46] to define the analytic continuation of the Bessel function

(as originally shown in [47]). But the “simplest” choice (and somehow the most natural

one) leads to the expected behavior for the number of microstates. Before explaining these

results in detail in section 3, we will continue presenting the complex black hole focussing

now on its thermodynamical physical properties. Understanding these properties is essen-

tial in the construction and in the asymptotic analysis of the analytic continuation of the

number of microstates.

2.2 Grand canonical partition function: semi-classical analysis

In statistical physics, the number of microstates (1.3) and its analytic continuation is the

building block for computing the microcanonical partition function of the black hole. There

is no need of notion of energy nor of temperature to define this partition function because we

are counting the number of microstates of a totally isolated system. As a consequence, the

microcanonical ensemble is not the good framework to study thermodynamical properties

of the black hole and to understand, for instance, how the semi-classical regime is achieved.

On the contrary, the canonical and grand canonical ensemble do enable us to study the

thermodynamical limit provided that we could associate to the quantum black hole a

proper notion of energy. Defining a good notion of black hole energy is a difficult problem

in quantum gravity mainly because of the famous problem of time. However, it was shown

in [50, 51] that there is a well-defined notion of energy if one introduces a new length scale

L = a−1 into the scenario. This scale measures the proper distance of a stationary observer

from the black hole horizon, and a is the acceleration needed to keep its distance to the

horizon fixed. It is remarkable to notice that such an observer associates an energy to the

black hole which is proportional to the area horizon aH according to the formula

E{(n`, j`)} =
aH

8πL
=
γ`2p
L

∑
`

n`
√
j`(j` + 1) . (2.3)
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We have denoted by n` the number of punctures crossing the horizon colored by j`. This

expression is different from the energy (the mass) of the black hole far away from the

horizon which is proportional to the square root of aH. Note that this formula holds for j`
integers or j` complex with respectively γ real and γ = ±i.

Now, we have the main ingredient to compute the canonical partition function Qn(β)

defined for a fixed number n of punctures as a function of the inverse temperature β. The

equivalence between the microcanonical and the canonical ensembles implies that,

Qn(β) =
∑
{n`}

1∏
` n`!

g{(n`, j`)} exp(−βE{(n`, j`)}) (2.4)

where the sum over n` is such that
∑

` n` = n. Here, the partition function is obtained as a

sum over families {n`} which define microstates {(j`, n`)} such that the color j` appears n`
times. The degeneracy factor g{(n`, j`)}, it is given by the dimension of the Chern-Simons

Hilbert space (1.3) or by its analytic continuation for the microscopic black hole configura-

tion {(n`, j`)}. The presence of the factorials enables us to implement indistinguishability

between the n` punctures with the same color j`. The appropriate way to implement the in-

distinguishability would have been to make a choice of quantum statistics (bosons, fermions

or eventually anyons) for these punctures which was done in [48]. For simplicity here, we

implement the indistinguishability by introducing a Gibbs factor in the partition function

(the factorials) which is well-known to be a good approximation of the quantum statistics

at the (high temperature) thermodynamic limit. The computation of (2.4) does not give a

simple closed formula when we take the exact Chern-Simons dimension for the degeneracy

factors g{(n`, j`)}. Fortunately, it is good enough to consider the expression of g{(n`, j`)}
for large j` (or equivalently large s` in the complex case) which enables us to understand

properly the thermodynamical limit. With this approximation, the area spectrum becomes

linear and the degeneracy factor is either polynomial (2.1) in the variables j` when they

are discrete whereas it is exponential (2.2) in the variables s` when j` = (−1 + is`)/2 is

complex:

g{(n`, j`)} = Gd
∏
`

(2j`)
n` for j` discrete (2.5)

g{(n`, j`)} = Gc
∏
`

exp(πn`s`) for j` = (−1 + is`)/2 (2.6)

where Gd and Gc are normalization coefficients. We will not take them into account in

this section, and for simplicity, we fix them to Gd = Gc = 1 (even if Gc depends on the

regulator ε). Indeed, the normalization factors are not relevant for our purposes here, but

we will not neglect them in the following section. We will show that there are responsible

for the quantum corrections to the entropy.

It is straightforward to make sense of the partition function Qn when j` are discrete. A

simple calculation leads to the following exact formula (when the area spectrum is linear)

Qn(β) =
q(β)n

n!
with q(β) =

∑
j

2j exp

(
−β

γ`2p
L
j

)
=

2 exp
(
β
γ`2p
2L

)
(

exp
(
β
γ`2p
2L

)
− 1
)2 . (2.7)
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The canonical partition function is a smooth function of the temperature and then admits

no singularities (apart from its divergence at very high temperature β → 0). Furthermore,

it is immediate to see that the grand canonical partition function and all thermodynamical

functions behave also correctly for non infinite values of the temperature. As a consequence,

we do not expect any phase transition and nothing special happens when j` are integers.

Thus, this case is physically not relevant.

The situation is much more interesting when the degeneracy is holographic and grows

exponentially with the area. However, in that case, the explicit calculation of Qn is more

subtle because there is an uncountable set of possible colors for the punctures. The ex-

pression (2.7) is no more relevant and have to be adapted. In fact, it is immediate to see

that (2.7) is equivalent to

Qn(β) =
∑
p

∑
n1,··· ,np

1∏
` n`!

∑
j1>···>jp

g{(n`, j`)} exp(−βE{(n`, j`)}) . (2.8)

Such an expression is easily extended to the case where j` = (−1 + is`)/2:

Qn(β) =
∑
p

∑
n1,··· ,np

1∏
` n`!

∫
ds1

∫ s1

ds2 · · ·
∫ sp−1

dsp
∏
`

exp(−xn`s`) (2.9)

where: x = β`2p/2L − π and where the integration measure
∫
ds is the Lebesgue measure

on [s0,∞], s0 > 0 being an eventual area gap. Note that the sum over (n1, · · · , np) is

constrained to
∑

` n` = n. To perform the calculation, we start by replacing the integrals

by the limit of their Riemann sums according to∫
dsf(s) = lim

ε→0
ε
∑
k

f(kε) (2.10)

where the sum runs over the integers. In that way, the calculation of the partition function

reduces exactly to the previous one:

Qn(β) = lim
ε→0

εn
∑
{n`}

∏
`

1

n`!
exp(−xn`k`ε) =

q(β)n

n!
with q(β) =

exp(−xs0)
x

(2.11)

where s0 is eventually a non-zero gap in the continuous area spectrum. As we are going

to see, the presence of the area gap does not affect the thermodynamical limit. Contrary

to the discrete case, the partition function converges only for sufficiently low temperature,

more precisely for β > βU where βU = 2πL/`2p is the Unruh temperature for the near

horizon observer. The divergence of the partition function at the Unruh temperature is a

signature of a phase transition. In fact, the black hole becomes classical at βU in the sense

that its macroscopic area becomes infinitely large.

In the regime we consider here, we do not expect the number of punctures to be strictly

conserved. Hence, it is best to use the grand canonical ensemble. Furthermore, we argue

in [48] that the system of punctures is very much analogous to a system of photons where

the photon number is not conserved, hence the chemical potential should vanish. For that
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reason we set the fugacity z = 1 here (we will consider a non vanishing chemical potential

later) and the grand canonical partition function is given by:

Z(β) =
∑
n

Qn = exp(q) = exp

(
exp(−xs0)

x

)
. (2.12)

As a consequence, the expression of the mean value 〈aH〉 of the horizon area

〈aH〉 = −8πL
∂

∂β
logZ(β) =

4π`2p
x2

(1 + o(1)) (2.13)

enables us to see that the thermodynamical limit is achieved when x → 0 or equivalently

when β approaches the inverse Unruh temperature βU. In this regime, the area becomes

macroscopic. Even if the number of punctures is not conserved, we can compute their mean

number 〈n〉 and look for its asymptotic behavior at the thermodynamic limit (x� 1):

〈n〉 =
1

Z

∑
n

nQn =
q exp q

Z
=

1

x
(1 + o(1)) ∼

√
〈aH〉
4π`2p

. (2.14)

The symbol ∼ means equivalent. Therefore, we see that the number of punctures is large

at the semi-classical limit and grows as the square root of the macroscopic horizon area. It

can be shown [48] that the average complex 〈s〉 becomes large as well at the semi-classical

limit and grows as 〈aH〉1/2 (for the bosonic or Maxwell-Boltzmann statistics). These results

justify to define the thermodynamical limit as the regime where the colors and the number

of punctures become large.

3 Complex black holes from complex analysis

In this section, we give a rigorous construction of the analytic continuation of the dimension

of Chern-Simons theory Hilbert space (1.3) for a punctured 2-sphere. The dimension (1.3)

is viewed as a function of the level k and the spin dimensions d` = 2j`+1, and the analytic

continuation refers to taking k and d` away from integer values. More precisely, we will

be concerned with the case where k and d` are purely imaginary. As we have seen from

the relationship between Chern-Simons theory and black holes in Loop Quantum Gravity,

these “complex” spins case correspond to fixing the Barbero-Immirzi parameter to the

value γ = ±i keeping at the same time the area spectrum (1.1) real and positive.

First of all, we express (1.3) as an integral Ik of a holomorphic function along a contour

in the complex plane. We study the effect of sending the level k to a purely imaginary value

iλ where λ ∈ R. We show in particular that, if we want the integral Ik to be non-trivial

when k is purely imaginary then d` must take non integer values as well. The requirement

that the horizon area is still real and positive imposes that d` is also purely imaginary

and can be written as d` = is`. This enables us to define the analytic continuation of Ik,
denoted Jλ, by a suitable choice of contour. Finally, we study the asymptotic of Jλ when

λ, n and s` are large. We start with the case where there is only one type of puncture, all

colored with the same complex spins. Then, we analyze the general case with many colors.
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C+

z = 0

z = iπ

C−

Figure 1. The contour C encircles the complex segment [0, iπ] in the purely imaginary line iR.

The points z = 0 and z = iπ belong to C. To study the limit when k → ∞, one decomposes the

contour into two parts C± defined on the right or left half-planes Re(z) > 0 and Re(z) < 0.

3.1 Analytic continuation

Any finite sum can be trivially interpreted as the sum of residues of a suitable function,

and therefore it can be expressed as an integral on the complex plane along a contour which

encircles the poles associated to the residues. Hence, the sum (1.3) can be written as the

integral3

Ik =
i

π

∮
C
dz sinh2(z)

{
n∏
`=1

sinh(d`z)

sinh z

}
coth((k + 2)z) (3.1)

where the contour C is illustrated in figure 1. For simplicity, we assume that the points

z = 0 and z = iπ belong to C. Here, we have explicitly indicated the k dependence of the

integral, and the dependence on the d` is implicit. When d` are integer, the poles of the

integrand are those of the function coth((k + 2)z), hence they are located at the points

zp = iπ p
k+2 where p is an integer which is not a multiple of k + 2. Notice that there is an

ambiguity in the choice of the contour. Indeed, one can globally translate C in the direction

of the imaginary axis with an arbitrary length iα ∈ iR in order to obtain a new contour

that encircles the segment [iα, i(π + α)]. This ambiguity is obviously not relevant when k

and d` are discrete due to the periodicity of the integrand in (3.1). But it has important

consequences when these labels are away from integer values. We will discuss this aspect

later. A very similar ambiguity exists in the analytic continuation process of the Bessel

function (see [46] where this ambiguity is well-explained).

At the large k limit (k being an integer), the integral (3.1) simplifies and gives, as

expected, the number of classical SU(2) intertwiners between the representations j`:

N∞(d`) =
2

π

∫ π

0
dθ sin2(θ)

n∏
`=1

sin(d`θ)

sin θ
. (3.2)

3One would obtain the same value for the integral if one multiplies the integrand by a function F (z, k)

which admits no poles in the contour C and takes the values F (zp, k) = 1 at the poles zp = iπp/(k + 2).

However, such a function could affect the analytic continuation (for complex k). Fortunately, this is not

really the case if one assumes that F (z, k) is analytic in both variables and have no poles at all, which is

a very natural requirement. More precisely, two different choices of such functions would lead to analytic

continuations which would differ only by a multiplicative constant. This is easily seen from the formula (3.6)

of the analytic continuation.
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This can be seen directly from the sum (1.3) which is in fact the Riemann sum of the

previous integral with π/(k + 2) as elementary interval in [0, π]. Interestingly, it can also

be seen from the integral expression Ik, which is more helpful in the perspective of the

analytic continuation to complex k. Indeed, for any z ∈ C/iR, when k →∞, the evaluation

coth((k+2)z) tends to a discontinuous function χ(z): χ(z) = 1 if Re(z) > 0 and χ(z) = −1

if Re(z) < 0. A priori, χ is not defined on iR. Hence, to evaluate the integral (3.1) when

k is infinite, one must decompose the contour C as a product of two contours C+ and

C− defined respectively on the half-planes Re(z) > 0 and Re(z) < 0 as illustrated in the

figure 1. Using this decomposition, it is immediate to write the integral (3.1) as a sum

Ik = I+k + I−k where the two components are identical at k =∞. As a consequence,

I∞ = 2 I+∞ =
2i

π

∫
C+
dz sinh2(z)

n∏
`=1

sinh(d`z)

sinh z
. (3.3)

The last equality has been obtained by shrinking the contour C+ to the interval [0, iπ].

What happens when the level k becomes complex? The poles of the integrand in (3.1)

are no longer located on the imaginary axis but they still belong to a straight-line passing

by the origin whose equation is z(t) = tiπ/(k + 2), t ∈ R. As k is assumed to be large, we

can approximate k + 2 by k (in fact, this can be viewed by a redefinition of k). When k is

purely imaginary, i.e. k = iλ with a positive (and hence large) λ, the poles of the integrand

are real. As a consequence, the integral (3.1) along the contour C represented in the

figure 1 vanishes identically, and the analytic continuation of the Chern-Simons dimension

to complex levels is a non-sense (at least it is totally useless). There are two options to

make this analytic continuation relevant. The first one consists in changing the integration

contour and choosing a new contour that encircles a part of the real axis. Unfortunately,

there are no natural choice for the new contour and we do not see any mathematical or

physical guide to select one contour rather than another. The second option is physically

and mathematically much more interesting. It is based on the observation that one cannot

make k purely imaginary without making the dimensions d` purely imaginary at the same

time if one wants to keep the area spectrum real. Indeed, k purely imaginary means that

the Barbero-Immirzi parameter is fixed to γ = ±i. Therefore, we replace d` by is` where

s` ∈ R+ and we observe immediately that (if n > 2) the integrand in (3.1) admit new poles

of order n− 2 located at the points zp = ipπ where p is a non-vanishing integer.

The pole located at z1 = iπ belongs to the contour C introduced to define Ik (3.1)

and therefore the analytic continuation diverges. However, having considered a contour C
that passes by z1 (when d` are integers) was just a matter a choice which was convenient

to study the large k limit. We could have moved the contour C such that it passes slightly

below the point z1 or above it provided C do not cross one of the zp. Thus, considering a

contour C which passes exactly at z1 or slightly above or slightly below gives the same result

for the integral (3.1) when k and d` are discrete. However, when k = iλ and d` = is`, the

situation is completely different. If z1 ∈ C, then Ik diverges as we said whereas Ik vanishes

identically if C passes below z1. The only relevant analytic continuation is obtained taking

C which passes slightly above iπ. From now on, C denotes this particular contour. As a
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consequence, the analytic continuation of the integral (3.1) is defined by

Jλ = Iiλ|d`=is` =
i

π

∮
C
dz sinh2(z)

{
n∏
`=1

sinh(is`z)

sinh z

}
coth((iλ+ 2)z). (3.4)

It can equivalently be expressed as a residue according to the formula

Jλ = −2 Res(f ; iπ) with f(z) = sinh2(z)

{
n∏
`=1

sinh(is`z)

sinh z

}
coth((iλ+ 2)z). (3.5)

It is important to remark that there is in fact another ambiguity in the definition

of (3.4), more precisely in the choice of the contour C. When k and d` are integers, we

noticed that one can arbitrarily translate C in the direction of the imaginary axis without

changing the value of the integral (3.1). This symmetry in the choice of the contour does

not hold anymore for the analytic continuation we have just defined (3.4). If the translation

is too large, the contour C will encircle a new pole of the integrand in (3.4) located at a

point zp = ipπ, p > 1. The value of the integral would be in that case different from the

original one (3.4) and the semi-classical limit of the analytic continuation would be strongly

affected. As we will show in the following subsections, the choice we made above, which is

the simplest and somehow the most natural one, will lead to the correct expression for the

black hole entropy. Another choice would not enable to recover the area law. This justifies

a posteriori our original definition of the contour C. However, it would be very interesting

to find an independent argument to support our choice.

We finish this section by a brief study of the limit λ→∞. Understanding this limit is

necessary to obtain the semi-classical behavior of (3.4). In fact, to obtain the semi-classical

behavior, one should study the limits s` large, n large and k large simultaneously. However,

it is simple to see that the large k limit commutes with the two others when one writes the

integral (3.4) as follows:

Jλ=
i

π

∮
C
dz sinh2(z)

{
n∏
`=1

sinh(is`z)

sinh z

}
(−1+νλ(z)) where νλ(z)=

2

1−exp(−2(iλ+2)z)
.

Then, Jλ = J∞+Jcor where the correction Jcor is the integral which contains the function

νλ. To see that Jcor is totally negligible, it is sufficient to look at the value of νλ at the

location of the pole z1 = iπ. Indeed, using the residue theorem (3.5) it is immediate to see

that there exists a real positive number M such that |Jcor| < M |νλ(iπ)J∞|. Furthermore, a

direct calculation shows that νλ(iπ) decreases exponentially with λ according to |νλ(iπ)| '
e−2πλ. For that reason, we can consider k → ∞ first. As a consequence, the large k

behavior of the analytic continuation (3.4) is dominated by

J∞ =
1

iπ

∮
C
dz sinh2(z)

n∏
`=1

sinh(is`z)

sinh z
. (3.6)

It remains to evaluate the large n and large s` asymptotic of this function. This aspect

will be studied in great details in the following two subsections.
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3.2 Asymptotic: one color black hole

This subsection is devoted to study the semi-classical limit of the function (3.6). We saw

in the previous section that the horizon area (2.13) becomes macroscopic at the semi-

classical limit such that the mean number 〈n〉 of punctures is large (2.14) and necessarily

the mean color 〈s〉 becomes large as well. In principle, we should study the two limits

simultaneously to obtain the correct asymptotic behavior of the analytic continuation of

the number of microstates. This is quite an involved problem to analyze when there is an

arbitrary number of colors s`. The problem is that if we know the semi-classical behavior

of the mean color and the mean number of particles but we do not know how each color

individually behaves at this limit. It might be for instance that the growth rate of the

colors s` with the horizon area depends on the colors themselves. A similar remark holds

for the number of punctures n` as well. For that reason, we will exclusively consider black

hole configurations with a finite number p of colors (s1, · · · , sp). Furthermore, we assume

that these colors s` together with the number n` of punctures colored by s` becomes large

at the semi-classical limit in the same way. The case with an arbitrary number of punctures

will not be studied in this article, but it will presumably lead to the same qualitative (and

even quantitative) results as the ones we are going to establish. For clarity reasons, we

start with a configuration where the n punctures have the same color s. In that case, the

function (3.6) reduces to the form

Js(n) =
1

iπ

∮
C
dz sinh2(z)

(
sinh(isz)

sinh z

)n
(3.7)

and the horizon area is given by aH = 4π`2pns.

3.2.1 Saddle point approximation

We assume that s is fixed but large and we study the asymptotic when n goes to infinity.

To study the large n limit, it is more convenient to write (3.7) as the integral

Js(n) =

∮
C
dz µ(z) exp(nS(z)) where S(z) = log

(
sinh(isz)

sinh z

)
(3.8)

and n plays the role of the inverse temperature. The measure factor µ(z) = sinh2(z)/iπ

will play a central role in the calculations of the quantum corrections of the entropy. The

study of the asymptotic relies on the analysis of the critical points zc of the action S(z).

They are given by the solutions of the equation

tan(sz) = s tanh(z) . (3.9)

The precise analysis of these critical points have been done in the appendix. In particular,

it is shown that critical points are either on the real line R or on the purely imaginary axis

iR. All these points could contribute to the asymptotic of the function (3.7). However,

the dominant contribution comes from the critical point zc located at the vicinity of the

pole z1 = iπ. A short analysis shows that zc = i(π + ε) where ε = s−1(1 + o(s−1)). As

s is supposed to be large, we will approximate ε by s−1. The corrections o(s−1) we are
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neglecting will not have any relevance in the study of the asymptotic neither at the level of

the leading order nor at the level of the quantum sub-leading corrections (for the entropy).

Hence, we can make use of the gaussian approximation at the vicinity of zc to obtain

the asymptotic of (3.7). For this, we need to evaluate the function S at the critical points

S(zc) = log

(
−isinh(sπ + 1)

sin(1/s)

)
' −iπ

2
+ sπ + log

(se
2

)
(3.10)

but also its second derivative S ′′ and the measure µ

S ′′(zc) = −(s2 +1)+
1

tanh2(zc)
− s2

tan2(szc)
' −s2 µ(zc) =

1

iπ
sinh2(zc) '

i

πs2
. (3.11)

We used the principal branch for the complex logarithm in (3.10) and the equation (3.9)

to simplify the expression of S ′′(zc) in (3.11). In these formulae, the symbol ' means

that we keep the relevant dominant contributions when s is large. The neglected terms do

not contribute at all to the asymptotic. As a consequence, according to the saddle point

approximation, when n is large, the complex integral is equivalent to the following gaussian

integral

Js(n) ∼ Gs(n) = µ(zc) exp(nS(zc))

∫
dx exp

(
nS ′′(zc)

x2

2

)
(3.12)

which can be explicitly evaluated to obtain the asymptotic expression for Js(n)

Gs(n) =

√
2

π

1

s3
√
n

(se
2

)n
exp

(
πns+ i(1− n)

π

2

)
. (3.13)

As the horizon area is given by aH = 4π`2pns in this case, we see immediately that the

leading order term of the microcanonical entropy S = log Gs(n) reproduces exactly the

area law S ∼ aH/4`2p when aH is large with the proper 1/4 factor. Before going further, let

us make some important remarks concerning this result.

1. The presence of the phase exp(i(1−n)π2 ) in the asymptotic expansion raises questions.

Indeed, we expect the analytic continuation to be a non-negative real function for it

to define a number of black hole microstates. We propose two options to resolve this

puzzle. First, it might be that only the modulus |Js(n)| could be interpreted as the

number of microstates and then there is no more problem with the phase. Another

possibility is that the number of punctures n is not totally arbitrary and one must

choose it such that the phase is fixed to one, which implies that n = 4m+ 1 where m

is a natural number. The interpretation of such a condition is not clear but since we

are working in the semi classical limit, i.e. for n large, the only requirement is that

n be odd. For the time being, we will chose the first option and then we will simply

omit the phase in the asymptotic.

2. Up to a global multiplicative factor, the asymptotic obtained rigorously here has an

expression very similar to the one obtained “intuitively” or “naively” in [36] and

briefly recalled in the introduction (2.2). In particular, we can clearly identify the
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regular ε introduced in [36] to avoid having divergences in the analytic continuation

with the term es/2 which appears at the power n in the formula above. Thus, the

regulator is not arbitrary and its relevance receives here a clear justification. This

gives an answer to the first question raised in subsection 2.1.

3. So far we have a clear interpretation of the leading order term S ∼ aH/4`
2
p in the

large aH expansion of the entropy S but the status of the subleading terms is still

enigmatic at this point. If we remind the analysis of [48] recalled in subsection 2.2,

both the average number of punctures and the average color grow like
√
aH. Thus,

it is expected that, at the semi-classical limit, we can replace n by n = ν
√
aH/`p and

the color s by s = σ
√
aH/`p where ν and σ are numerical constant. If this is the case,

the analytic continuation of entropy behaves at the classical limit as

S(aH) ∼ aH
4`2p

+
ν

2

√
aH
`p

log

(
aH
`2p

)
+ ν log

(σe
2

) √aH
`p
− 7

4
log

(
aH
`2p

)
+O(1). (3.14)

where the phase in (3.13) has been disregarded. Due to the presence of the second

term in the previous expansion, quantum corrections seem a priori larger than the

ones found in [48]. The reason of these discrepancies is simple and relies on the fact

that we have not implemented the indistinguishability so far. An immediate way to

implement the indistinguishability consists in adding a Gibbs factor in the definition

of the number of microstates. Concretely, we replace Js(n) by Js(n)/n!. Finally, the

Stirling formula leads to the following expansion of the microcanonical entropy

Smicro(aH) ∼ aH
4`2p

+ ν log

(
e2σ

2ν

) √
aH
`p
− 2 log

(
aH
`2p

)
(3.15)

which agrees with [48] as expected. We also obtain logarithmic corrections. Nonethe-

less, at this point we cannot trust completely the quantum corrections and partic-

ularly the numerical coefficients in each subleading terms in the large aH expansion

of the entropy. Indeed, we have assumed here that n and s are exactly proportional

to
√
aH with no subleading corrections. But, as we are going to see, subleading

corrections do exist and slightly modify the quantum corrections of the entropy.

Up to now, the analysis is microcanonical and the asymptotic behavior of n and s is

essentially based on an analogy with [48]. Hence, the parameter ν and σ are unfixed, and,

as we have just said, the precise form of n and s in terms of aH is unknown. To get a more

accurate expression of n and s and explicit values of these two parameters ν and σ, it is

necessary to perform a grand canonical analysis of the complex black hole. This is indeed

the good framework to compute the mean values of the number of punctures, the mean

color and the quantum corrections to the entropy.

3.2.2 Partition function

Here, we consider the black hole as a gas of indistinguishable punctures. As proposed

in [48], we first assume that the chemical potential of these punctures vanishes. As we

– 18 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
5

are going to see later, considering a non-vanishing chemical potential will appear very

interesting concerning the quantum corrections of the entropy. For the time being, the

grand canonical partition function depends only on the (inverse) temperature β and is

defined by

Z(β) =

∫
ds Zs(β) with Zs(β) =

∑
n

g(n, s)

n!
exp(−βE(n, s)) (3.16)

where the energy (2.3) is E(n, s) =
`2p
2Lns and the degeneracy factor g(n, s) should be given

by the integral Js(n) (3.7). In the series n runs over non-zero integers and the integral over

s is the Lebesgue measure on [s0,∞] where s0 is an eventual non-zero area gap. There is

no explicit and simple expression for Z(β) when g(n, s) is exactly given by (3.7): the sum

over n can be performed but the integral over s is difficult to handle. For simplicity, we

will approximate g(n, s) by the large n asymptotic of Js(n), up to the phase factor and

the irrelevant
√

2/π multiplicative factor which will be omitted. Hence, the degeneracy is

g(n, s) =
1

s3
√
n

(se
2

)n
exp (πns). (3.17)

The partition function defined with this degeneracy is in fact equivalent to the exact par-

tition function at the thermodynamical limit. We will come back to this statement later.

To simplify the expression of the partition function, we start with the calculation of Zs(β):

Zs(β) =
1

s3

∞∑
n=1

1√
n

qn

n!
with q =

se

2
e−xs and x = β

`2p
2L
− π . (3.18)

The thermodynamical limit is defined by x → 0 which is equivalent to taking β → βU
where βU is the inverse Unruh temperature. It is easy to see that the grand canonical

partition function is defined only for x > 0. Indeed, when x is non positive, the integral

over s diverges. This is the reason why the exact partition function is equivalent to the

one where the degeneracy is given by g(n, s) as x approaches 0.

Now, we are going to see that the mean value of the area scales as x−2 at the vicinity

of x = 0 whereas we argued that, at the same time, the mean color s increases with
√
aH,

and then it scales as x. As a consequence, the variable q defined above (3.18) becomes

large at the semi-classical limit. This motivates the study of the large q expansion of the

series in (3.18). To do so, we first express the series as follows:

I(q) ≡
∞∑
n=1

1√
n

qn

n!
=

1√
π

∞∑
n=1

∫
du

(q exp(−u2))n
n!

=
1√
π

∫
du
(

exp(qe−u
2
)− 1

)
.

The large q limit of this last integral is governed by the critical points of the function

f(u) = e−u
2
. There is only one critical point (at u = 0) and therefore we obtain the

following large q expansion

I(q) = I∞(q)(1 + o(1)) with I∞(q) =
1√
π

∫
du exp(q(1− u2)) =

exp(q)√
q

. (3.19)
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As a consequence, the expression of Zs(β) reduces to the form

Zs(β) =
1

s3
exp(q)√

q
(1 + o(1)) (3.20)

which is particularly interesting to study the semi-classical limit of the partition function.

It is indeed now easy to get an equivalent of Z(β) when x approaches zero that we will call

Z0(β) in the following. First we notice that part which contains o(1) does not contribute

to Z(β) at the leading order and then we obtain immediately

Z(β) ∼ Z0(β) =

∫
ds

s3
exp(q)√

q
=

∫
ds

s3

(
2

es
exs
)1/2

exp
(es

2
e−xs

)
. (3.21)

Then, we change of variable s 7→ u = e−xs in the integral

Z0(β) =

√
2

e
x5/2

∫
du

u3/2(− log u)7/2
exp

(
− e

2x
u log u

)
(3.22)

where the integral runs from 0 to 1− ε, ε being related to the area gap s0 by ε = 1− e−xs0 .

The leading order is obtained by the saddle point approximation at the critical point

u = e−1 of the exponent:

Z0(β) ∼
√

2

e
x5/2

∫
du e3/2 exp

(
− e

2x

(
−1

e
+ e

u2

2

))
=
√

8πx3 exp

(
1

2x

)
. (3.23)

As a conclusion, the grand canonical partition function of the (one color) black hole be-

haves as

Z(β) ∼ Zsc(β) =

√
π

8

`6p
L3

(β − βU)3 exp

(
L

`2p(β − βU)

)
(3.24)

at the vicinity of the inverse Unruh temperature βU. As expected, it diverges at βU which

is the signature to a phase transition from the quantum to the classical regime of the black

hole. The singular point of Z(β) at β = βU is an essential singularity.

3.2.3 Thermodynamical limit

Once we have computed the partition function, we can determine the mean horizon area,

the mean number of punctures and the mean color. We are particularly interested in finding

the scaling of this mean values with x ∝ (β−βU) at the vicinity of the Unruh temperature.

Concerning the mean horizon area, it is immediately obtained from derivatives of Z(β):

〈aH〉 = −8πL∂β logZ(β) ∼
2π`2p
x2

=
8πL2

`2p(β − βU)2
. (3.25)

As expected 〈aH〉 scales as x−2 and becomes macroscopic when β approaches βU.

It remains to compute the mean color and the mean number of particles. The latter

is the simplest to evaluate. By definition, it is given by

〈s〉 =
1

Z(β)

∫
ds s Zs(β). (3.26)
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Using results of the previous subsection, it is straightforward to see that the mean color

behaves according to

〈s〉 ∼ 1

Z0(β)

√
2

e
x3/2

∫ 1 du

u3/2(− log u)9/2
exp

(
− e

2x
u log u

)
(3.27)

at the vicinity of the Unruh temperature. The same techniques (saddle point approxi-

mation) as the one used to simplify (3.22) to the expression (3.23) enables us to find the

behavior of the mean color in the semi-classical regime

〈s〉 ∼ 1

x
=

2L

`2p(β − βU)
. (3.28)

As expected, the mean color increases when β approaches βU and scales as σ
√
〈aH〉/`p. Fur-

thermore, now we can extract the value of the coefficient σ introduced previously in (3.14):

σ = (2π)−1/2. Thus, the mean color of the spins becomes large at the semi-classical limit.

This result contrasts with the usual black hole treatment in LQG where small spins seem

to dominate when the area is large. However, it is consistent with the semi-classical limit

in spin-foam models. Notice that in the context of spin-foam, the large spin-limit is taken

by hand, which is not the case here. This behaviour of the mean color has interesting

phenomenological consequences that we are going to discuss in the conclusion.

The mean number of punctures is defined by

〈n〉 =
1

Z(β)

∫
ds Ns(β) with Ns(β) =

∑
n

n
g(n, s)

n!
exp(−βE(n, s)) (3.29)

where the series Ns(β) differs from the function Zs(β) (3.16) by the presence of an extra

factor n. The calculation of Ns(β) and the evaluation of its asymptotic at the vicinity of

the Unruh temperature βU is similar to the calculation of Zs(β). Indeed, following what

we have done for the partition function, we first compute the first term in the large q

expansion of Ns(β)

Ns(β) =
1

s3
exp(q)

√
q(1 + o(1)), (3.30)

where q has been defined in (3.18). This implies the following equivalences at the vicinity

of the Unruh temperature:

N0(β) ≡
∫
ds Ns(β) ∼

∫
ds

s3
exp(q)

√
q ∼
√

2πx2 exp

(
1

2x

)
. (3.31)

We used the same saddle point approximation as in (3.23). As a consequence, the mean

number of punctures is given by

〈n〉 ∼ N0(β)

Z0(β)
∼ 1

2x
=

L

`2p(β − βU)
(3.32)

at the vicinity of the Unruh temperature. As expected, we see that the mean number of

punctures increases with the horizon area according to the law

〈n〉 ∼ ν
√
〈aH〉 with ν =

σ

2
=

1√
8π
. (3.33)
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This determines the second parameter ν introduced in (3.14). As a conclusion of this sub-

section, we proved that the mean number of punctures and the mean color scales as
√
〈aH〉

at the semi-classical limit. This is self-consistent with the saddle point approximation used

to find the asymptotic number of microstates in subsection 3.2.1.

3.2.4 Microcanonical vs. grand canonical entropy: quantum corrections

Fixing of the parameters ν and σ enables to determine with no ambiguities the first three

terms in the large aH expansion of the microcanonical entropy with the Gibbs factor (3.15).

To do so, we recall that the gas of punctures is described at the semi-classical limit by the

partition function

Zsc(β) =
√

8πx3 exp

(
1

2x

)
. (3.34)

For simplicity, we will omit the brackets to denote the mean quantities as the area, the

number of punctures and the color. From this expression, we easily exhibit the mean

horizon area aH as a function of x

aH = 2π`2p

(
1

x2
− 6

x

)
(3.35)

where now we do not consider only the leading order term, but we take into account

the subleading corrections. These corrections will be important to compute the large aH
expansion of the microcanonical entropy. Expressing x in terms of aH allows to determine

n and s as functions of aH according to

s = 2n =

√
aH

2π`2p
+ 3 + o(1). (3.36)

Now, we are ready to compute the microcanonial entropy replacing these previous expres-

sions in the formula (3.13):

Smicro(aH) = 2πn2 + 2n− 4 log n+ o(log(n))

=
aH
4`2p

+K

√
aH
`2p
− 2 log

(
aH
`2p

)
+ o

(
log

(
aH
`2p

))
(3.37)

where K = (1 + 6π)/
√

2π. As in [48], the subleasing corrections to the area law starts with

a term proportional to
√
aH. In addition, we have here logarithmic corrections. Note the

discrepancies between this expression for the entropy and the one we would have obtained

from (3.15) replacing ν and σ by their expressions found above. The reason comes from

the fact that now we have not neglected to subleading terms in the large aH expansion of

the mean number of punctures n and the mean color s (3.36).

It is interesting to compare this expression to the grand canonical entropy. As we have

argued, we start with a vanishing chemical potential for the punctures. Hence, the grand

canonical entropy simply depends on the temperature and is defined by

Sgrand = βU + logZ = β
〈aH〉
8πL

+ logZ. (3.38)
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There is no simple formula for the grand canonical entropy in general. However, close

to the Unruh temperature, we can replace Z by its semi-classical expression (3.34) and a

direct calculation leads to

Sgrand = 2πn2 + 2(1− 3π)n+ 3 log(n) + o(log(n))

=
aH
4`2p

+

√
aH

2π`2p
− 3

2
log

(
aH
`2p

)
+ o

(
log

(
aH
`2p

))
(3.39)

where we used the relations 2n = 1/x and β = 2L
`2p

(x + π). Of course, the leading order

terms of the two entropies agree (which is a consequence of the equivalence of the statistical

ensembles) but the subleading terms differ essentially due to the fluctuations of the area

in the grand canonical ensemble.

3.2.5 Chemical potential and logarithmic corrections

In general, it is expected that quantum corrections to the entropy are logarithmic. Here,

they are much larger because they start with a
√
aH term and then comes the logarithmic

term. Let us note that
√
aH is proportional to the mean number of punctures n which

means that considering a non trivial chemical potential µ for the gas of punctures might

cancel the
√
aH term of the entropy and leaves us with logarithmic corrections only. We

are going to show that, for a particular choice of µ, this is indeed the case. Note that a

statistical analysis of black holes in Loop Quantum Gravity with a chemical potential was

done in [52] in the case of a real Barbero-Immirzi parameter γ.

It is important to emphasize that assuming a non vanishing chemical potential for the

punctures implies that their number is conserved. There is a priori no dynamical reasons

to expect this number to be conserved. Yet, introducing a non vanishing chemical potential

µ offers new possibilities regarding the status of the quantum corrections to the entropy

but also the description of the evaporation process. Up to now, its physical interpretation

remains unclear and we introduce it at this level only to explore the technical consequences

in this model.

The grand canonical partition function in the presence of a chemical potential µ is very

similar to (3.16) and can be defined as a function of β and the fugacity z = exp(βµ)

Z(β, z) =

∫
ds

s3

∞∑
n=1

1√
n

Qn

n!
with Q =

se

2
ze−xs . (3.40)

Note that z enters in the definition of the variable Q (denoted q in the absence of chemical

potential). The analysis of its behavior close to the Unruh temperature is now immediate

and leads to the following asymptotic expansion:

Z(β, z) ∼ Zsc(β, z) =
√

8π
x3

z
exp

( z
2x

)
. (3.41)

As previously, we will replace the exact partition function by its semi-classical approxima-

tion. The mean area aH and the mean number of punctures n at the vicinity of βU follow
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immediately

n = z∂z logZsc(β, z) =
z

2x
− 1 and aH = −8πL∂β logZsc(β, z) = 4π`2p

(
z

2x2
− 3

x

)
.

(3.42)

Notice that we recover what has been computed in previous subsections when z = 1. We

have now all the ingredients to compute the large aH expansion of the grand canonical

entropy

Sgrand = β
aH

8πL
+ logZ(β, z)− βµn . (3.43)

We start by expressing the entropy in term of the variable x. Using the approximations

z = zU

(
1 +

µβU
π

x

)
and β = βU

(
1 +

x

π

)
(3.44)

where zU = exp(µβU), we obtain

Sgrand =
πzU
2x2

+
(zU
π
− 3
) π
x

+ 3 log(x) + o(log(x)) (3.45)

where o(log(x)) is in fact a constant . When we replace x by its expression in terms of aH,

we get the following large aH expansion

Sgrand =
aH
4`2p
− 3

2
log

(
aH
`2p

)
+
zU
2x

(2− µβU) + o

(
log

(
aH
`2p

))
. (3.46)

As a consequence, when the chemical potential is fixed at µ = 2TU where TU is the Unruh

temperature, the grand canonical entropy has only logarithmic corrections

Sgrand(aH) =
aH
4`2p
− 3

2
log

(
aH
`2p

)
+ o

(
log

(
aH
`2p

))
(3.47)

when the area is large. Note that the logarithmic corrections comes with the numeri-

cal factor −3/2 which is identical to the one obtained for black hole entropy with a real

Barbero-Immirzi parameter γ. This observation is particularly interesting because loga-

rithmic corrections are supposed to be universal and independent of γ when it is real. The

universality of the quantum corrections to the entropy seems to hold when γ = ±i. This

universality is nonetheless limited to the one color black hole model. When many colors

are allowed, the rate of logarithmic corrections change and depends, as we will see, in the

number of colors.

3.3 Many colors black hole

In this section, we are going to show that previous results generalize to black holes with a

finite number p of colors. Among the n punctures which cross the horizon, n1 are colored

with the color s1, n2 with the color s2 and so on. Therefore, we get the relations:

n =

p∑
`=1

n` and aH = 4π`2p

p∑
`=1

n`s`. (3.48)
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3.3.1 Number of microstates and semi-classical limit

Exactly as in the one color black hole model, we assume a priori that, at the classical

limit, each colors s` and each number of punctures n` are large for ` ∈ [1, p] and check

that this assumption is self-consistent. Following the previous strategy for the study of

the thermodynamical properties of the system of punctures, we fix the colors s` to large

values and we consider the limit where the numbers n` become large. We suppose that all

these numbers increase at the same velocity, i.e. we can write n` = κν` where ν` are fixed

and κ becomes larger and larger at the semi-classical limit. We will see that necessarily κ

scales as
√
aH/`p where aH is the (mean) area of the horizon. In that case, the analytic

continuation of the number of black hole microstates can be written as

Js`(n`) =

∮
C
dz µ(z) exp(κSp(z)) where Sp(z) =

p∑
`=1

ν` log

(
sinh(is`z)

sinh z

)
(3.49)

where the measure µ(z) and the contour C are the same as in the prior model (3.8).

The analysis of the large κ asymptotic is very analogous to what we have already done

even if it is a bit more involved. For this reason, we will not detail the calculations here.

The study of the asymptotic relies on the analysis of the critical points of Sp. As it is

shown in the appendix, the “dominant” critical point zc is located on the imaginary axis.

When the colors are large (what we are assuming from the begining), zc is very close to

the pole z1 = iπ and can be written as

zc = i(π + ε) with ε =
1

s
+ o(s−1) and s =

∑
` ν`s`∑
` ν`

. (3.50)

The expression of zc is similar to the one color model where the color s is the arithmetic

mean color. From now, we will neglect the term o(s−1) in the expression of ε because it

will not play any role in the asymptotic of (3.49). The large κ behavior can be captured

from the saddle point approximation which indeed leads to the following semi-classical

equivalent for the integral (3.49):

Js`(n`) ∼ Gs`(n`) = µ(zc) exp(nSp(zc))
∫
dx exp

(
nS ′′p (zc)

x2

2

)
. (3.51)

The evaluation of µ, Sp and S ′′p at zc is immediate and gives formally exactly the same

expression as in the one color model

Gs`(n`) =

√
2

π

1

s3
√
n

(se
2

)n
exp

(
πns+ i(1− n)

π

2

)
(3.52)

where s (3.50) and n (3.48) have already been defined above. At the semi-classical limit,

the (analytic continuation of the) number of microstates depends only on the two variables

s and n and not on the details of the punctures colors. As a result, the leading order

term of the microcanonical entropy S = log Gs`(n`) reproduces the area law as in the one

color model. Although, all the remarks we raised at the end of subsection 3.2.1 still hold.

In particular, to compute the quantum corrections of the entropy and to have a deeper

physical interpretation of the model, it is necessary to study it in the framework of the

grand canonical ensemble where we can naturally implement the indistinguishability.
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3.3.2 Grand canonical partition function: indistinguishability and chemical

potential

We start directly with the calculation of the grand canonical partition function. For sim-

plicity, we assume that the chemical potential µ is the same for all the punctures, i.e. µ

does not depend on the color. If we use the usual notation z = exp(βµ) for the fugacity,

then the grand canonical partition function is given by

Zp(β, z) =

∫
dµ(s1, · · · , sp)

∑
n1,··· ,np

1∏p
`=1 np!

gp(n`, s`)z
n exp(−βEp(n`, s`)) (3.53)

where the degeneracy g(n`, s`) and the black hole energy E(n`, s`) are

gp(n`, s`) = g(n, s) =
1

s3
√
n

(se
2

)n
exp (πns), Ep(n`, s`) =

`2p
2L
ns . (3.54)

These two quantities have exactly the same expression as in the one color model. The

novelties in the multi-colors model rely on the form of the Gibbs factor and on the expression

of the measure associated to the colors which is explicitly given by∫
dµ(s1, · · · , sp) =

∫
s1>s2>···>sp

∏
`

ds` =

∫
ds1

∫ s1

ds2 · · ·
∫ sp−1

dsp (3.55)

where
∫
ds is the standard Lebesgue measure. The presence of the Gibbs factor and the

definition of this integral enable us to implement the indistinguishability of the punctures,

but they make the calculation of Zp(β, z) (even at the vicinity of the Unruh temperature)

more involved, as we are going to see.

To write the partition function in a simpler form, we first replace the measure (3.55)

by the standard multiple Lebesgue measure∫
dµ(s1, · · · , sp) =

1

p!

p∏
`=1

∫
ds` (3.56)

then we perform the change of variables

nt1 = n1s1, nt2 = n1s1 + n2s2, · · · ntp = n1s1 + n2s2 + · · ·+ npsp = ns (3.57)

whose Jacobian is given J = |(∂s`/∂tm)| = np
∏
` n
−1
` . This allows to simplify any integral

of the form ∫
dµ(s1, · · · , sp)f(s) =

1

p!

p∏
`=1

∫
ds`f(s) =

∫
ds

sp−1

(p− 1)!
f(s) (3.58)

for any function f(s) of the variable s only because t1 ≤ t2 ≤ · · · ≤ tp = s. As the partition

function (3.53) is an integral of the type (3.58), we can use such a formula to simplify its

expression to the form

Zp(β, z) =
1

p!(p− 1)!

∫
ds sp−1

∑
n

Cp(n)
np

n!
g(n, s)zn exp(−βE(n, s)) (3.59)
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with

Cp(n) =
∑

n1+···+np=n

n!∏p
`=1(n` n`!)

. (3.60)

Due to the presence of this coefficient in the series (3.59), we do not see how to simplify

further the expression of the partition function without some approximations. But, as for

the one dimensional model, we are exclusively interested in the behavior of the partition

function at the vicinity of the Unruh temperature (where the quantum to classical phase

transition occurs). Fortunately, we can replace Cp(n) by its large n asymptotic to get

the behavior of the partition function when x → 0: we can show that Cp(n) ∼ pn+p/np

as n → ∞. As a consequence, at the semi-classical limit, the grand canonical partition

function behaves as

Zp(β, z) ∼ pp

p!(p− 1)!

∫
ds sp−1

∑
n

pn

n!
g(n, s)zn exp(−βE(n, s)) . (3.61)

Following the same strategy as for the one color black hole model, we obtain immediately

Zp(β, z) ∼ pp

p!(p− 1)!

∫
ds sp−4

exp(Qp)√
Qp

where Qp =
ezp

2
se−xs (3.62)

and x = β`2p/2L−π as previously (3.18). The expression of this asymptotic is very similar

to the one color black hole model one and is given by

Zp(β, z) ∼ Zp,sc(β, z) =

√
8π pp

p!(p− 1)!

x4−p

zp
exp

(pz
2x

)
(3.63)

at the vicinity of the Unruh temperature. As in the previous subsections, we now take

Zp,sc as the grand canonical partition function. In that case, the mean (total) number of

punctures n, the mean (average) color s and the mean area aH are given by:

s =
1

x
, n =

pz

2x
− 1 , aH = 4π`2p

(
pz

2x2
+
p− 4

x

)
. (3.64)

As a conclusion, at the thermodynamical limit, the black hole area becomes macroscopic

together with the total number of punctures and the average color. Hence, the results

obtained in the one color black hole are still valid when the punctures are colored with an

arbitrary but finite number of colors. In particular, the grand canonical entropy is given

by (3.47) and reproduces the area law with logarithmic corrections when the chemical

potential is fixed to µ = 2TU:

Sp,grand(aH) =
aH
4`2p

+
p− 4

2
log

(
aH
`2p

)
+ o

(
log

(
aH
`2p

))
. (3.65)

In this formula, we see that the logarithmic corrections depend on the number of colors p,

and we get the coefficient −3/2 only for the one color black hole model. This coefficient is

the one that appears in the context of real (the Barbero-Immirzi parameter is real) black

holes in Loop Quantum Gravity, and also in other approaches to black holes thermody-

namics. As the one color black hole is the only that reproduces the “expected” logarithmic
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corrections, it has something special. In fact, it would correspond to a spherical symmetric

quantum black hole, and maybe, implementing the spherical symmetry at the quantum

level, would lead to the requirement that all the punctures are colored by the same repre-

sentation. However, to understand properly the role of p, we should study the asymptotic

of the partition function with an arbitrary large number of colors. We leave this study for

future investigations.

4 Conclusion

The content of this article is twofold. On the one hand, we construct, in a mathematically

rigorous way, the analytic continuation of the number of microstates of a spherical black

hole in loop quantum gravity from real values to complex values of the Barbero-Immirzi

parameter γ (in fact, our analysis is limited to γ = ±i which is the physically relevant

case). On the other hand, we study the semi-classical properties of the associated statistical

system.

For a given microscopic black hole configuration (defined by a family of integers d`),

the number of black hole microstates is given by the dimension of the Chern-Simons theory

Hilbert space on a punctured 2-sphere. Hence, it is a function of the Chern-Simons level k

and of the integers d`. The analytic continuation relies on an expression of this dimension as

a complex integral along a given contour C of a holomorphic function. With this formulation

at hand, the analytic continuation to γ = ±i becomes well defined, and consists in taking

k and d` purely imaginary, which is a consequence of going from γ real to γ = ±i. We

argue that the analytic continuation is unique up to a discrete ambiguity in the choice

of the contour C. Only one choice of contour leads to the area law at the semi-classical

limit, and fortunately this choice is the simplest and somehow the most natural. As a

consequence, this defines the number of microstates of the “complex” black hole in Loop

Quantum Gravity. Nonetheless, it would be very interesting to find another independent

argument to justify our choice of contour. Such a result is a mathematical justification of

the “naive” continuation proposed originally in [36]. It is very interesting to enhance that

the intuitive analytic continuation ([36]) reproduced in fact the correct result not only at

the leading order but also at the first subleading order, even if the regulator ε (2.2) was

unknown. It would be instructive to establish a link between our construction and the one

proposed recently by Han in [44].

Once we have constructed the number of microstates for a complex black hole, we

can study its statistical and thermodynamical properties. We restrict ourselves to the case

where the number of punctures is arbitrary but finite. Following [48], we compute the grand

canonical partition function where the energy is defined à la Frodden-Gosh-Perez [51] from

the point of view of an observer located close to the horizon, and the chemical potential µ

is assumed to be identical for all the punctures. We show that a phase transition occurs

at the Unruh temperature TU. When the temperature tends to TU, the system becomes

classical in the sense that the area becomes macroscopic together with the total number

of punctures and the arithmetic mean of colors. We compute the entropy and show that

it reproduces, as expected, the area law at the semi-classical limit with some quantum
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correction. With a very simple choice of the chemical potential, fixed to µ = 2TU, the

corrections are logarithmic.

The fact that the punctures have a chemical potential means that their number remains

conserved along a thermodynamical process. A clear physical interpretation of a non

vanishing chemical potential associated for the punctures is still missing up to now. Its

introduction in the model is only technical at this point since it provides a way to obtain

the correct logarithmic quantum corrections. However, the presence of a non vanishing

chemical potential for the punctures means that when they disappear (in an adiabatic

process for instance) they release energy. This could be interpreted as an evidence of black

hole radiation. It would be very interesting to go further and to establish a clear link

between the presence of a non-vanishing chemical potential and the near horizon radiation.

Note that the logarithmic corrections come with the “universal” factor −3/2 when all the

punctures are colored with only one representation. Considering a one color black hole

could be interpreted as a quantization of a spherical black hole, and this might be the

reason why we recover the expected logarithmic corrections in that case only.

Another interesting consequence of this model comes from the behaviour of the mean

spin 〈s〉 at the semi-classical limit. Taking for example the black hole at the center of

our galaxy, whose mass is of order M ' 1036 kg, the mean quantum of area is of order

10−24m2, which is 1046 order of magnitude above the Planck area.4 While this simple

numerical application seems to provide a “large” quantum gravitational effect far above

the Planck domain, one has to interpret this numerical value with due care. Indeed, all

the computations have been done from the point of view of a local observer, extremely

close to the horizon. Moreover, since one can probe the area spectrum of the black hole

only through its emission spectrum, one could only expect from this result to measure, in

principle, large frequencies for a large semi classical black hole. This point deserves further

studies but remains up to now, far from clear.

To finish, let us emphasize that the results of this article raise several questions and

open interesting outlooks. The method we have developed (the analytic continuation) is

generic and could be adapted to other situations than black holes. We expect to apply

them to spin foam models and also to quantum cosmology to see how taking γ = ±i
affects these models. Furthermore, the analytic continuation techniques could provide us

with new insights to solve the reality conditions and therefore to open a new Hamiltonian

quantization of gravity starting from complex Ashtekar variables [53].
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A Analysis of the critical points

This appendix contains the details of the analysis of the critical points of the action S(z)

Sp(z) =

p∑
`=1

ν` log

(
sinh(d`z)

sinh z

)
(A.1)

4We would like to thank the anonymous referee for this interesting remark.
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Figure 2. These pictures illustrate the structure of the critical points in the complex plane of

the action S (one puncture) for two different values of the representation d. More precisely, they

represent Re(S) as a function of z = x+ iy. When d is an integer (here d = 7), the critical points

are located on the imaginary axis. When d is imaginary, there are two types of critical points: the

ones located on the real axis, and the ones located on the imaginary axis. The contribution to the

semi-classical limit of the imaginary critical points is clearly more important than the contribution

of the real ones. All these observations are proven in this appendix. The red line represents the

component C+ of the integration contour illustrated in the figure 1.

where ν` are constant and p is the number of colors. This analysis is necessary to understand

the large κ expansion of the integral

Id`(n`) =

∮
C
dz µ(z) exp(κSp(z)) with µ(z) =

1

iπ
sinh2(z). (A.2)

The integration contour has been illustrated in figure 1. The structure of the critical points

in the complex plane has been illustrated in figure 2.

We will start with the simple case where p = 1 and then we will generalize to an

arbitrary number of punctures. Moreover, we will study the cases where d` are integer and

d` = is` are purely imaginary.

A.1 One color model

We start with the case p = 1. In that case, we fix n = κ, ν1 = 1, d = d1, we denote the

integral (A.2) by Id(n) and the function (A.1) by S to be coherent with the notations in

the core of the article. Critical points are solutions of the equation:

tanh(dz) = d tanh(z). (A.3)

The solutions are different depending on whether d is discrete or d is purely imaginary.

Notice that we will not study the general case where d is any complex number.

A.1.1 The color is discrete

Let us assume that the color d is an integer (d > 1). First, we show that the solutions

of (A.3) are either real or purely imaginary. To show this is indeed the case, we decompose
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z = x+ iy in terms of its real and imaginary parts and, using

tanh(x+ iy) =
sinh(2x) + i sin(2y)

cosh(2x) + cos(2y)
(A.4)

we obtain the relation

sinh(2dx) + i sin(2dy)

cosh(2dx) + cos(2dy)
= d

sinh(2x) + i sin(2y)

cosh(2x) + cos(2y)
. (A.5)

This implies necessarily the equality between the phases of the complex numbers in the

r.h.s. and in the l.h.s. of the equation, i.e.:

sinh(2dx)

sinh(2x)
=

sin(2dy)

sin(2y)
(A.6)

if sinh(2dx) and sin(2x) are not vanishing. We obtain an equation of the form f(x) = g(y)

where f(x) ≥ d and g(y) ≤ d. Furthermore, the minimum of f is reached only once when

x = 0, hence the solutions of (A.3) are necessarily in the real axis or in the imaginary axis.

Furthermore, there is no non-zero real solutions. Therefore, all the solutions are purely

imaginary i.e. z = iy with

tan(dy) = d tan(y) (A.7)

which admits an infinite number of solutions. Trivially, if y is a solution, y+mπ is solution

for any m ∈ N. Therefore, we concentrate on the interval y ∈ [0, π] where the solutions ym
are labelled by m ∈ {0, · · · , d} such that:

y0 = 0 , yd = π and for m = 1, · · · , d− 1 , ym ∈
[ π

2d
(2m− 1),

π

2d
(2m+ 1)

]
.

(A.8)

Notice that when d is even, there is no solution for m = d/2.

All these critical points could give a contribution to the large n expansion of the

integral (A.2). However, the critical points y0 and yd contribute the most because the

action is maximal (when z = iy ∈ iR) at these points. In fact, by symmetry, these two

contributions are totally identical, hence the large n behavior of the integral is obtained

from the saddle point approximation at the vicinity of y0, i.e.:

Id(n) ∼ 2

iπ
exp(nS(0))

∫
dz z2 exp

(
n
z2

2
S ′′(0)

)
(A.9)

where

S(0) = log(d) and S ′′(0) = d2 − 1. (A.10)

The integration is necessarily defined along the imaginary axis for convergence purposes.

Hence, we set z = −ix and we obtain

Id(n) ∼ 2

π
dn
∫
dxx2 exp

(
n(1− d2)x

2

2

)
= 2

√
2

π

dn

(n(d2 − 1))3/2
. (A.11)

As a consequence, the corresponding entropy admits the following large n expansion:

S = log(Id(n)) = n log(d)− 3

2
log(n) +O(1). (A.12)
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Using the expression of the horizon area aH = 4π`2pγ
√
d2 − 1, we recover the large aH

expansion of the black entropy which contains a term proportional to aH and logarithmic

corrections. We need a suitable choice of γ to reproduce the semi-classical area law whereas

the logarithm corrections are universal and given by −3/2 log(aH/`
2
p). This closes the study

of the discrete case.

A.1.2 The color is purely imaginary

Let us now assume that the color d = is ∈ iR with s > 0 for instance. We are going to

show that the critical points are still either real or purely imaginary as in the previous case.

To see this is indeed the case, we write the equation (A.5) replacing d by is:

sin(2sx) + i sinh(2sy)

cos(2sx) + cosh(2sy)
= s

sinh(2x) + i sin(2y)

cosh(2x) + cos(2y)
. (A.13)

The r.h.s. and the l.h.s. have the same phase and then, x and y satisfy necessarily the

condition
sin(2sx)

sinh(2x)
=

sinh(2sy)

sin(2y)
(A.14)

if they are non-vanishing. Such a condition can be written as f(x) = g(y) and it is easy to

see that |f | ≤ f(0) = s whereas |g| ≥ g(0) = s. Hence, the previous requirement is fulfilled

only if x = 0 and y = 0. As a consequence, the critical points are real or purely imaginary.

Let us start describing the real critical points z = x which are solutions of

tan(sx) = s tanh(x). (A.15)

It is easy to see that there is an infinite numerable number of solutions denoted xm for

m ∈ N such that

x0 = 0 and xm ∈
[ π

2s
(2m− 1),

π

2s
(2m+ 1)

]
for m > 0. (A.16)

When z = x belongs to the real line, the action

S(x) = log

(
sinh(isx)

sinh(x)

)
= i

π

2
+ log

(
sin(sx)

sinh(x)

)
(A.17)

reaches its maximum at x = 0, then its exponent decreases exponentially. We used the

principal evaluation of the logarithm with the cut on the negative real half-line. There-

fore, among the real critical points, x0 contributes the most at the semi-classical limit

and the other contributions are suppressed. Using the saddle point approximation, we

know that the x0 contribution to the large n expansion of the integral (A.2) is (up to

the oscillating phase) governed by the evaluation of the real part of S(x) at this point,

namely Re(S(0)) = log(s).

Concerning purely imaginary critical points z = iy, they are solutions of

tanh(sy) = s tan(y) (A.18)

and are labelled with an integer m such that ym = mπ+ε. When s� 1, it is straightforward

to see that ε = 1/s + o(1/s). We are only interested in the point y1, all the others are
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not relevant for our choice of contour C. The contribution of this point to the large n

asymptotic of the number of states is governed by the evaluation of the action at this

point, namely

S(iy1) = log

(
i
sinh(sy1)

sin(y1)

)
' −iπ

2
+ sπ + log

(es
2

)
. (A.19)

Therefore, when s � 1, S(iy1) � S(0), which implies that the semi-classical asymptotic

is totally dominated by what happens at the critical point z = iy1. We can neglect the

contribution of all the other critical points.

To finish this part, let us again point out that we have not considered the critical points

iyp with p > 1 due to our choice of contour. Another choice would have selected another

critical point which in turn would have implied a different (larger) asymptotic behavior.

The choice we made is the only one that reproduces the area law at the semi-classical limit.

A.2 Many colors model

The analysis of the critical points is very similar to the previous one, even if it is a bit

more involved in that case. For that reason, we will not give the details here and we will

give only the relevant results. Now, critical points satisfy the equation

∂Sp
∂z

=

p∑
`=1

ν`

(
d`

tanh(d`z)
− 1

tanh(z)

)
= 0 . (A.20)

As we are essentially interested in the case where d` = is` are purely imaginary, we will

not study the discrete model. Furthermore, we know from the one color model that purely

imaginary critical points have the most important contribution of the large κ expansion

of (A.2). For that reason, we will only concentrate on the purely imaginary critical points.

As for the one color model, purely imaginary solutions are of the form ym = mπ+ ε where

ε � 1 when the colors become large (at the semi-classical limit). A simple calculation

leads to

ε '
∑p

`=1 ν`∑p
`=1 ν`s`

(A.21)

i.e. ε is the inverse of the arithmetic mean of colors. This allows to compute the large n

expansion of the (analytic continuation of) number of black hole microstates given in the

core of the article.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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