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Abstract The Noether theorem connecting symmetries and conservation laws
can be applied directly in a Hamiltonian framework without using any in-
termediate Lagrangian formulation. This requires a careful discussion about
the invariance of the boundary conditions under a canonical transformation
and this paper proposes to address this issue. Then, the unified treatment of
Hamiltonian systems offered by Noether’s approach is illustrated on several
examples, including classical field theory and quantum dynamics.
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1 Introduction

After its original publication in German in 1918, and even though it was
first motivated by theoretical physics issues in General Relativity, it took a
surprisingly long time for the physicists of the twentieth century to become
aware of the profoundness of Noether’s seminal article (see [22] for an English
translation and a historical analysis of its impact, see also [20, § 7] and [7]).
Since then, about the 1950’s say, as far as theoretical physics is concerned,
Noether’s work spread widely from research articles in more general textbooks
and, nowadays, it even reaches some online pages like Wikipedia’s [8] intended
to a (relatively) large audience including undergraduate students (see also [27]
and [21, § 5.2]). However, the vast majority of these later presentations, un-
fortunately following the steps of [19] (see [22, § 4.7]), reduces drastically the
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scope of Noether’s article1; (i) because they commonly refer to the first main
theorem (“The Noether theorem”) without even mentioning that Noether’s
1918 paper contains more physically relevant material2 and also (ii) because
the connection between the existence of a conservation law and some invari-
ance under a continuous group of transformation in a variational problem is
predominantly illustrated in a Lagrangian framework, for instance [34, §7.3],
(not to speak that the order of the derivatives involved in the Lagrangian do
not generally exceed one, albeit Noether explicitly works with integrands of
arbitrary orders). As a consequence, an enormous literature flourished that
claimed to generalise Noether’s results whereas it only generalised the sec-
ondary poor man’s versions of it without acknowledging that these so-called
generalisations were already present in Noether’s original work [22, § 5.5] or in
Bessel-Hagen’s paper [4] — directly owed to a “an oral communication from
Emmy Noether” (see also [28, § 4, footnote 20]) — where invariance of the
integrand defining the functional is considered “up to a divergence”.

Nevertheless, fortunately, the success of gauge theories in quantum field
theory motivated several works where Noether’s contribution was employed in
(almost) all its powerful generality (for articles not concerned by (i) see for
instance [2,26] and the more epistemological approach proposed in [5]). To
counterbalance (ii), the present paper is an attempt to provide a unified treat-
ment of Noether’s conservation laws in the Hamiltonian framework, i.e. where
the canonical formalism is used. In this context, the advantages of the latter
have already been emphasized by a certain number of works among which we
can cite [18,25,12] where the main focus was naturally put on the Noether’s
second theorem (see footnote 2) but not necessarily, since classical mechanics
was also considered — [32], regrettably suffering of flaw (i) — even with ped-
agogical purposes [23], [11, § 7.11]. The main advantage of the Hamiltonian
approach over the standard Lagrangian one is that it incorporates more nat-
urally a larger class of transformations, namely the canonical transformations
(in phase-space), than the point transformations (in configuration space). To
recover the constants of motion associated with the canonical transformations
that cannot be reduced to some point transformations, one has to consider
some symmetry transformations of the Lagrangian action that depend on the
time derivative of the degrees of freedom. Anyway, these so called “dynami-
cal”, “accidental” or “hidden” symmetries (the best known example being the
Laplace-Runge-Lenz vector for the two-body Coulombian model [24, § 5A])
are completely covered by Noether’s original treatment, even if we stick to a
Lagrangian framework.

1 Obviously, the common fact that research articles are more quoted than read is all the
more manifest for rich fundamental papers.

2 There is a second main theorem establishing a one-to-one correspondence between
Gauge invariance and some identities between the Euler-Lagrange equations and their
derivatives (see § 4.3 below). These Noether identities render that a gauge-invariant model
is necessarily a constrained Hamiltonian/Lagrangian system in Dirac’s sense [13]. Further-
more, a by-product result also proven by Noether [28, § 5] is that the constants of motion
associated, through the first theorem, with an invariance under a Lie group are themselves
invariant under the transformations representing this group.
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As a starting point I will explain in § 2, how the price to pay when working
within the Hamiltonian framework is that special care is required concerning
the boundary conditions imposed when formulating the variational principle:
unlike what occurs in the configuration space, in phase-space not all the initial
and final dynamical variables can be fixed arbitrarily but rather half of them;
the choice of which ones should be fixed is an essential part of the model and
therefore should be included in any discussion about its invariance under a
group of transformations. As far as I know, in the literature where Noether’s
work is considered, including [28] itself or even when a Hamiltonian perspec-
tive is privileged, the invariance of the boundary conditions is not genuinely
considered and only the invariance of the functional upon which the varia-
tional principle relies is examined. This may be understood because as far
as we keep in mind a Lagrangian formulation, the boundary conditions are
not generically constrained; on the other hand, in a Hamiltonian formulation,
there are some constraints that fix half of the canonical variables and the in-
variance of the action under a canonical transformation does not guarantee
that the constraints are themselves invariant under this transformation. Since
the present paper intends to show how Noether’s conservation laws can be
directly applied in a Hamiltonian context, I will have to clarify this issue and
for this purpose I propose to introduce (§ 2.3) a boundary function defined on
phase space whose role is to encapsulate the boundary conditions. In § 3, for a
classical Hamiltonian system we derive the conservation laws from the invari-
ance under the most general canonical transformations. Then, before I show
in § 5.1 that the same results can be obtained with Noether’s approach, I will
paraphrase Noether’s original paper in § 4 for the sake of self-containedness
and for defining the notations. Before I briefly conclude, I will show explic-
itly how Noether’s method can be applied for models involving classical fields
(§ 5.2) and in quantum theory (§ 6). For completeness the connection with the
Lagrangian framework will be presented in § 5.3.

2 Hamiltonian variational principle and the boundary conditions

2.1 Formulation of the variational principle in a Hamiltonian context

We shall work with a Hamiltonian system described by the independent canon-
ical variables (p, q) referring to a point in phase space. Whenever required, we
will explicitly label the degrees of freedom by α that may be a set of discrete in-
dices, a subset of continuous numbers or a mixture of both. For instance, for L

degrees of freedom, we have (p, q) = (pα, qα)α∈{1,...,L} whereas for a scalar field
in a D-dimensional space we will take α = x = (x1, . . . , xD) = (xi)i∈{1,...,D}

and then (p, q) will stand for the fields
{
π(x), ϕ(x)

}

x∈Rd
. The dynamics of the

system is based on a variational principle i.e. it corresponds to an evolution
where the dynamical variables are functions of time3 that extremalise some

3 We will never bother about the regularity of all the functions we will meet, assuming
they are smooth enough for their derivative to be defined when necessary.
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functional S called the action. In the standard presentation of the Hamil-
ton principle in phase space, see [30] and its references, the action is de-

fined as the functional
∫ tf
ti

(
pdq/dt − H(p, q, t)

)
dt of the smooth functions

of time t 7→
(
p(t), q(t)

)
(the summation/integral on the degrees of freedom

labeled by α is left implicit). When the Hamiltonian H(p, q, t) depends ex-
plicitly on time t, it is often convenient to work in an extended phase space
where (−H, t) can be seen as an additional pair of canonical dynamical vari-
ables; we shall not use this possibility but still, we shall keep some trace of the
similarity between q and t on one hand and between p and −H on the other
hand by considering the action

S0[p(·), q(·), t(·)]
def
=

∫ sf

si

(

p(s)
dq

ds
(s)−H

(
p(s), q(s), t(s)

) dt

ds
(s)

)

ds (1)

as a functional of s 7→ p(s), s 7→ q(s) and s 7→ t(s) where s is a one-dimensional
real parametrisation. An infinitesimal variation p(s)+δp(s), q(s)+δq(s), t(s)+
δt(s) induces the variation S + δS of the value of the action where, to first
order in (δp, δq, δt), we have, with the customary use of integration by parts,

δS0 = p(sf )δq(sf )− p(si)δq(si)

−H
(
p(sf ), q(sf ), t(sf )

)
δt(sf ) +H

(
p(si), q(si), t(si)

)
δt(si)

+

∫ sf

si

{[
dq

ds
(s)− ∂pH

(
p(s), q(s), t(s)

) dt

ds
(s)

]

δp(s)

+

[

−
dp

ds
(s)− ∂qH

(
p(s), q(s), t(s)

) dt

ds
(s)

]

δq(s)

+

[
d

ds
H
(
p(s), q(s), t(s)

)
− ∂tH

(
p(s), q(s), t(s)

) dt

ds
(s)

]

δt(s)

}

ds

(2)

and, then, the Hamilton variational principle can be formulated as follows:
in the set of all phase-space paths connecting the initial position q(si) = qi
at t(si) = ti to the final position q(sf ) = qf at t(sf ) = tf the dynamics of the
system follows one for which S0 is stationary4; in other words, the variation δS
vanishes in first order provided we restrict the variations to those such that

δq(sf ) = δq(si) = 0 ; (3a)

δt(sf ) = δt(si) = 0 (3b)

whereas the other variation δt(s), δp(s) and δq(s) remain arbitrary (but small),
hence independent one from the other. Hamilton’s equations

dp

dt
= −∂qH(p, q, t) ; (4a)

dq

dt
= ∂pH(p, q, t) ; (4b)

4 This classical path is not necessarily unique and may be even a degenerate critical path
for S0, see however the next footnote.
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come from the cancellation of the two first brackets in the integrand of (2), then
the cancellation of the third one follows. The restrictions (3) on the otherwise
arbitrary variations δp(s), δq(s), δt(s) provides sufficient conditions to cancel
the boundary terms given by the two first lines of the right-hand side of (2)
but they are not necessary, one could impose δq to be transversal to p both
at ti and tf , or impose some periodic conditions (see footnote 10).

2.2 The differences concerning the boundary conditions between Lagrangian
and Hamiltonian models

In the usual Lagrangian approach the q’s constitute all the dynamical variables
and a generic choice of (qi, qf , ti, tf ) leads to a well-defined variational problem
having one isolated solution5: no constraint on (qi, qf , ti, tf ) is required and it
is commonly assumed that the variations of all the dynamical variables vanish
at the boundary; any point transformation q → qT(q) preserves this condition
since then δqT = (∂qq

T)δq and we have δq = 0 ⇔ δqT = 0.
In a Hamiltonian framework, obviously, because the dynamical variables q

and p are not treated on the same footing in the definition (1) of S0, there is
an imbalance in the boundary conditions and in their variations between δq
and δp. More physically, this comes from the fact that the classical orbits,
defined to be the solutions of (4), are generically determined by half of the
set (pi, qi, pf , qf ); in general, there will be no classical solution for a given
a priori set (pi, qi, pf , qf ) and a well-defined variational principle — that is,
neither overdetermined nor underdetermined — requires some constraints that
make half of these dynamical variables to be functions of half the independent
other ones. Any canonical transformation, which usually shuffles the (p, q)’s,
will not only affect the functional S0 but also the boundary conditions required
by the statement of variational principle. For a canonical transformation the
transformed dynamical variables qT and pT are expected to be functions of
both q and p and, then, as noted in [29], the conditions (3a) alone do not
imply that δqT

i = δqT

f = 0 since neither δpT
i nor δpT

f vanish in general.
In any case, the behaviour of the initial conditions under a transformation

should be included when studying the invariance of a variational model but
this issue is made more imperative in a Hamiltonian than in a Lagrangian
viewpoint.

2.3 The boundary function

To restore some sort of equal treatment between the q’s and the p’s in the
Hamiltonian framework, one can tentatively add to S0 a function A of the dy-

5 In the space of initial conditions, the singularities corresponding to bifurcation points,
caustics, etc. are submanifolds of strictly lower dimension (higher co-dimension) and there-
fore outside the scope, by definition, of what is meant by “generic”. In other words we consider
as generic any property that is structurally stable, that is, unchanged under a small enough
arbitrary transformation.
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namical variables at the end points (qf , pf , tf ; qi, pi, ti) whose variations δA de-
pend a priori on the variations of all the dynamical variables at the boundaries.
Nevertheless we will restrict the choice of A(qf , pf , tf ; qi, pi, ti) to functions of
the form B(qf , pf , tf )−B(qi, pi, ti) in order to preserve the concatenation prop-
erty according to which the value of the action of two concatenated paths is
the sum of the actions of each of the two paths. This strategy is equivalent
to add to the integrand of S0 the total derivative of the boundary function B
(see [9, § IV.5.1, footnote 1 p. 211]):

SB [p(·), q(·), t(·)]
def
=

∫ sf

si

(

p
dq

ds
+
(

−H(p, q, t) +
d

dt
B(p, q, t)

) dt

ds

)

ds .

(5)
This modification does not alter Hamilton’s equations (4)6 but allows to re-
formulate the variational problem within the set of phase-space paths defined
by the boundary conditions such that

[

pδq −Hδt+ δB
]sf

si
= 0 . (6)

For instance by choosing B(p, q, t) = −pq, the roles of the p’s and the q’s
are exchanged and (3a) is replaced by δp(sf ) = δp(si) = 0 whereas if we
take B(p, q, t) = −pq/2 the symmetry between p and q is (almost) obtained.

We see that the boundary function is defined up to a function of time only
since the substitution

B′(p, q, t)
def
= B(p, q, t) + b(t) ; H ′(p, q, t)

def
= H(p, q, t) +

db

dt
(t) (7)

leaves unchanged both the action (5) and the boundary conditions (6). A
dependence of b on the other dynamical variables is unacceptable since it
would introduce time derivatives of p and q in the Hamiltonian.

3 Transformation, invariance and conservation laws

3.1 Canonical transformation of the action, the Hamiltonian and the
boundary function

In the present paper we refrain to use the whole concepts and formalism of
symplectic geometry that has been developed for dynamical systems and pre-
fer to keep a “physicist touch” without referring to fiber bundles, jets, etc. even
though the latter allow to work with a completely coordinate-free formulation.
With this line of thought, we follow a path closer to Noether’s original formu-
lation. However, keeping a geometrical interpretation in mind, if we consider
the action (5) as a scalar functional of a geometrical path in phase space, any

6 The fact that a total derivative can be added to a Lagrangian without changing the
evolution equations is well-known for a long-time. As already noticed above it is mentioned
by Noether [28, § 4, footnote 20] and this flexibility has been used for many purposes ; in
particular in Bessel-Hagen’s paper [4, § 1], see also the discussion in [5, § 3].
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canonical transformation (q, p, t) 7→ (qT, pT, tT) can be seen as a change of co-
ordinate patch (the so-called passive transformation on which the geometrical
concept of manifold relies) that does not affect the value of the action for the
considered path, so we should have

ST

BT [pT(·), qT(·), tT(·)]
def
= SB [p(·), q(·), t(·)] ; (8)

in this point of view, the latter relation is a definition of the transformed
functional, not an expression of the invariance of the model. The canonical
character of the transformation guarantees that ST

BT takes the same form
as (5), namely

ST

BT [pT(·), qT(·), tT(·)] =

∫ sf

si

(

pT(s)
dqT

ds
(s)−HT

(
pT(s), qT(s), tT(s)

) dtT

ds
(s)

+
d

ds

[

BT
(
pT(s), qT(s), tT(s)

)]
)

ds , (9)

which leads to a definition ofHT and BT up to a function of time only (see (7)).
Since the equality (8) holds for any phase-space path (whether classical or not),
a necessary (and sufficient) condition is that

pT dqT −HT(pT, qT, tT) dtT + d
(
BT(pT, qT, tT)

)

= pdq −H(p, q, t) dt+ d
(
B(p, q, t)

)
, (10)

which provides an explicit expression for HT(pT, qT, tT) and BT(pT, qT, tT) ac-
cording to the choice of the independent coordinates in phase-space. For in-
stance, if we pick up pT, q and t and assume that the transformation of time
is given by a general function tT(pT, q, t)7, the expression (10) in terms of the
corresponding differential forms is

qT dpT + pdq +HT(pT, qT, tT) dtT −H(p, q, t) dt

= d
(
pTqT +BT(pT, qT, tT)−B(p, q, t)

)
, (11)

which is the differential of a generating function F (pT, q, t) of the canonical
transformation implicitly defined (up to a function of time only) by

p =
∂F

∂q
−HT(pT, qT, tT)

∂tT

∂q
; (12a)

qT =
∂F

∂pT
−HT(pT, qT, tT)

∂tT

∂pT
. (12b)

Then, we get

HT(pT, qT, tT)
∂tT

∂t
(pT, q, t) = H(p, q, t) +

∂F

∂t
(pT, q, t) (13)

7 A notable case where tT depends on q is provided by the Lorentz transformations.
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and

BT(pT, qT, tT) = B(p, q, t)− pTqT + F (pT, q, t) . (14)

The substitution (7) corresponds to the alternative choice F ′ def
= F − b. From

the latter relation, we understand why a boundary function B has to be intro-
duced in the definition of the action when discussing the effects of a general
canonical transformation. Even if we start with a B that vanishes identically,
a canonical transformation turns B ≡ 0 into −F̆

(
qT, q

)
where F̆ is the gener-

ating function given by the following Legendre transform of F

F̆ (qT, q)
def
= pTqT − F (pT, q) , (15)

and therefore BT 6≡ 0 in general (this special case is the point raised in [29]). In
the particular case of point transformations qT = f(q, t), the boundary func-
tion can remain unchanged since we can always choose F (pT, q, t) = pTf(q, t)
for which F̆ ≡ 0.

3.2 What is meant by invariance

When talking about the invariance of a Hamiltonian model under a transfor-
mation, one may imply (at least) three non-equivalent conditions: the invari-
ance of the form of the action (5), the invariance of the form of Hamilton’s
equations (4) or the invariance of the form of Newton equations derived from
the latter. As far as only classical dynamics is concerned, the invariance of
the action appears to be a too strong condition: if only the critical points of
a function(nal) are relevant, there is no need to impose the invariance of the
function(nal) itself outside some neighbourhood of its critical points and, pro-
vided no bifurcation occurs, one may substantially transform the function(nal)
without impacting the location and the properties of its critical points. For
instance the transformation S 7→ ST = S + ǫ sinhS, with ǫ being a the real
parameter, would actually lead to the same critical points8. However, by con-
sidering that quantum theory is a more fundamental theory than the classical
one, from its formulation in terms of path integrals due to Feynman9 we learn
that the value of the action is relevant beyond its stationary points all the
more than we leave the (semi-)classical domain and reach a regime where the
typical value of the action of the system is of order ~. Therefore we will retain
the invariance of the form of the action as a fundamental expression of the
invariance of a model:

ST

BT [pT(·), qT(·), tT(·)] = SB [p
T(·), qT(·), tT(·)] . (16)

8 It is also easy to construct an example for which not only the critical points are preserved
but also their stability as well as the higher orders of the functional derivatives of S evaluated
on the classical solutions.

9 The original Feynman’s formulation has a Lagrangian flavour and introduces integrals
over paths in the configuration space [16]. An extension to integrals over phase-space paths
has been done in [15, Appendix B] (see also [33,10,17]).
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This means the invariance of the boundary function up to a function of time
only

BT(pT, qT, tT) = B(pT, qT, tT) + b(tT) (17)

and the invariance of the Hamiltonian function up to ḃ

HT(pT, qT, tT) = H(pT, qT, tT) +
db

dtT
(tT) (18)

that both assure the invariance of the boundary conditions (6). When, on the
one hand, we put (18) into (13) and, on the other hand, when we put (17)
into (14), the invariance of the model under the canonical transformation T is
equivalent to

H(pT, qT, tT)
∂tT

∂t
(pT, q, t) = H(p, q, t) +

∂F

∂t
(pT, q, t) (19)

for the Hamiltonian and

B(pT, qT, tT) = B(p, q, t)− pTqT + F (pT, q, t) (20)

for the boundary function, once we have absorbed the irrelevant term b in an
alternative definition of F .

3.3 Conservation of the generators

From the Hamilton’s equations, the classical evolution of any function O(p, q, t)
is given by

dO

dt
= {H,O}+

∂O

∂t
. (21)

where the Poisson brackets between two phase-space functions are defined by

{O1, O2}
def
= ∂pO1∂qO2 − ∂pO2∂qO1 (22)

(recall that the summation/integral on the degrees of freedom is left implicit).
Consider a continuous set of canonical transformations parametrised by

a set of essential real parameters ǫ = (ǫa)a where ǫ = 0 corresponds to the
identity. The generators G = (Ga)a of this transformation are, by definition,
given by the terms of first order in ǫ in the Taylor expansion of the generating
function F (pT, q, t; ǫ)

F (pT, q, t; ǫ) = pTq + ǫG(pT, q, t) + O(ǫ2) (23)

(in addition to the implicit summation/integral on the degrees of freedom α,
there is also an implicit sum on the labels a of the essential parameters of the
Lie group, those being continuous for a gauge symmetry). We shall consider
the general canonical transformations where tT is a function of (pT, q, t) whose
infinitesimal form is

tT(pT, q, t) = t+ ǫτ(pT, q, t) + O(ǫ2). (24)
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Now with HT(p, q, t) = H(p, q, t), using the form (23) in equations (12) one
obtains the canonical transformation explicitly to first order

pT = p− ǫ∂qG(p, q, t) + ǫH(p, q, t)
∂τ

∂q
p,q,t

+O(ǫ2) ; (25a)

qT = q + ǫ∂pG(p, q, t)− ǫH(p, q, t)
∂τ

∂p
p,q,t

+O(ǫ2) . (25b)

Reporting (23) and (25) in (19), the identification of the first order terms in ǫ
leads, with help of (21), to

d

dt

(

G(p, q, t)− τ(p, q, t)H(p, q, t)
)

= 0. (26)

Similarly, from (20), we get

τ
dB

dt
+ {G− τH,B}+ p(∂pG−H∂pτ)−G = 0 (27)

where the arguments of all the functions that appear are (p, q, t).

As a special case, first consider the invariance with respect to time trans-
lations pT = p, qT = q, tT = t + ǫ for any real ǫ, then with F (pT, q, t) =
pTq corresponding to the identity, the relations (19) and (20) read respec-
tively H(p, q, t+ ǫ) = H(p, q, t) and B(p, q, t+ ǫ) = B(p, q, t) that is ∂tH = 0
and ∂tB = 0. The identity (21) considered for O = H and O = B leads
respectively to

dH

dt
= 0 (28)

and
dB

dt
= {H,B} (29)

which of course are also obtained from (26) and (27) with G ≡ 0 and τ ≡ 1.
Now consider a continuous set of canonical transformations such that tT = t,
then from (26) with τ ≡ 0 we get

dG

dt
= 0. (30)

Not only the conservation law follows straightforwardly from (19) but the
constant of motion are precisely the generators of the continuous canonical
transformations [1]. Similarly, from (27) with τ ≡ 0 we get a relation

{G,B} = G− p ∂pG (31)

that must be fulfilled by B to have the invariance of the boundary conditions.
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4 Noether’s original formulation

4.1 General variational principle

The above result is actually completely embedded in Noether’s original formu-
lation except the discussion on the boundary conditions. Indeed, being more
Lagrangian in flavour, [28] works systematically with a variational principle
where the variations of all the dynamical variables u vanish (as well as the
derivatives of δu if necessary, see below). To illustrate this let us first follow
Noether’s steps and paraphrase her analysis. The variational principle applies
to any functional whose general form is

S[u(·)]
def
=

∫

D

f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, ∂

3
xxxu|x, . . .

)
ddx (32)

where the functions u(x) =
(
u1(x), . . . , uN (x)

)
=
(
un(x)

)

n
(the dependent

variables in Noether’s terminology) are defined on a d-dimensional domain D
in R

d where some coordinates (the independent variables) x = (x0, . . . , xd−1) =
(xµ)µ are used. Physically, one may think the u’s to be various fields defined
on some domain D of space-time and x to be a particular choice of space-time
coordinates. The function f depends on x, on u(x) and on their higher deriva-
tives in x (the dots in its argument refer to derivatives of u of order four or
more).

An infinitesimal variation u(x) + δu(x) implies the first-order variation

δS
def
= S[u(·) + δu(·)]− S[u(·)] =

∫

D

δf ddx (33)

where δf , with the help of integration by parts, takes the form

δf =
N∑

n=1

Enδun +
d−1∑

µ=0

dµδX
µ = E · δu+ dx · δX (34)

where E stands for the N -dimensional vector whose components are

En =
∂f

∂un
− dµ

(
∂f

∂(∂µun)

)

+ d2µν

(
∂f

∂(∂2µνun)

)

− d3µνρ

(
∂f

∂(∂3µνρun)

)

+ · · ·

(35)
(from now on we will work with an implicit summation over the repeated
space-time indices or field indices and the same notation “ · ” will be indif-
ferently used for a — possibly Minkowskian — scalar product between d-
dimensional space-time vectors or between N -dimensional fields) and δX a
d-dimensional infinitesimal vector in first order in δu and its derivatives which
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appears through a divergence:

δXµ =

[
∂f

∂(∂µun)
− dν

(
∂f

∂(∂2µνun)

)

+ d2νρ

(
∂f

∂(∂3µνρun)

)

− · · ·

]

δun

+

[
∂f

∂(∂2µνun)
− dρ

(
∂f

∂(∂3µνρun)

)

+ · · ·

]

∂ν(δun)

+

[
∂f

∂(∂3µνρun)
− · · ·

]

∂2νρ(δun)

+ · · · .

(36)

The notation dµ distinguishes the total derivative from the partial deriva-
tive ∂µ:

dµ = ∂µ + ∂µun
∂

∂un
+ ∂2µνun

∂

∂(∂νun)
+ · · · . (37)

The stationarity conditions of S when computed for the functions ucl imply
the Euler-Lagrange equations

E|ucl
= 0 . (38)

Then, remains

δS[ucl(·)] =

∫

D

dx · δX|ucl
ddx =

∫

∂D

δX|ucl
· dd−1σ (39)

(Stokes’ theorem leads to the second integral which represents the outgoing
flux of the vector δX through the boundary ∂D whose surface element is
denoted by dσ) and S will be indeed stationary if we restrict the variations δu
on the boundaries such that the last integral vanishes10 (and Noether assumes
that all the variations δun, ∂ν(δun), ∂

2
ν,ρ(δun) . . . appearing in the right-hand

side of (36) vanish on ∂D).
Adding the divergence of a d-vector B

(
x, u(x), ∂xu|x, ∂

2
xxu|x, ∂

3
xxxu|x, . . .

)

to the integrand,
fB = f0 + dµB

µ (40)

does not affect the expressions of the Euler-Lagrange vector E

EB = E0 (41)

but adds to S a boundary term

SB [u(·)] = S0[u(·)] +

∫

∂D

B · dd−1σ (42)

from which we have
δXB = δX0 + δB (43)

10 Working with δX|ucl
orthogonal to dd−1σ is sufficient and generalises the transversality

condition discussed in [9, §§ IV.5.2 and IV.12.9]. A radical way of getting rid of the discussion
on boundary conditions is also to work with a model where D has no boundaries.
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or, more explicitly,

δXµ
B = δXµ

0 +
∂Bµ

∂un
δun +

∂Bµ

∂(∂νun)
∂νδun +

∂Bµ

∂(∂2νρun)
∂2νρδun + · · · (44)

where the “ · · · ” stand for derivatives of B with respect to higher derivatives
of u.

4.2 Invariance with respect to infinitesimal transformations and Noether
currents

The most general transformation T comes with both a change of coordi-
nates x 7→ xT and a change of functions u 7→ uT. By definition the transformed
action is given by

ST[uT(·)] =

∫

DT

f T
(
xT, uT(xT), ∂xTuT

|xT , ∂2xTxTuT

|xT , . . .
)
ddxT (45)

with ST[uT(·)] = S[u(·)] for any u and for any domain D. After the change of
variables xT 7→ x that pulls back DT to D, we get

f T
(
xT, uT(xT), ∂xTuT

|xT , ∂2xTxTuT

|xT , . . .
)
∣
∣
∣
∣
det

(
∂xT

∂x

)∣
∣
∣
∣

= f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, . . .

)
(46)

which provides a definition of f T. We have an invariance when the same
computation rules are used to evaluate S and ST that is f T = f . Then we
have

f
(
xT, uT(xT), ∂xTuT

|xT , ∂2xTxTuT

|xT , . . .
)
∣
∣
∣
∣
det

(
∂xT

∂x

)∣
∣
∣
∣

− f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, . . .

)
= 0 . (47)

The Noether conservation theorem comes straightforwardly from the com-
putation of the left-hand side of (47) when the transformation T is infinitesi-
mal11:

xT = x+ δx ; (48a)

uT(x) = u(x) + δu(x) . (48b)

11 In Noether’s spirit the transformation of all the dependent and independent variables
can be as general as possible and therefore she first considers the case where δx is a function
of both x and u; her two theorems indeed apply in this very general situation. Physically
this corresponds to a transformation where the variations of the space-time coordinates δx

depend not only on x, as this is the case in General Relativity where all the diffeomorphisms
of space-time are considered, but also on the fields u. I do not know any relevant model in
physics where this possibility has been exploited. In the following we will restrict δx to
depend on x only, this simplification is eventually done by Noether from § 5 in [28].
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To first order in δx and δu, (47) reads

f ∂x ·δx+(∂xf)·δx+
∂f

∂un
Dun+

∂f

∂(∂µun)
D(∂µun)+

∂f

∂(∂2µνun)
D(∂2µνun)+· · ·

· · ·+O(δ2) = 0 , (49)

where O(δ2) denotes terms of order at least equal to two. The first term of the
left-hand side comes from the Jacobian

∣
∣
∣
∣
det

(
∂xT

∂x

)∣
∣
∣
∣
= 1 + ∂x · δx+O(δ2) . (50)

The infinitesimal quantity δu denotes the variation of the field u while staying
at the same point x and Du stands for the infinitesimal variation “following
the transformation”12

Du(x)
def
= uT(xT)−u(x) = δu(xT)+u(xT)−u(x) = δu(x)+(∂xu) ·δx+O(δ2) .

(51)
The chain rule for a composite function reads

∂xTuT(xT) = ∂xTx ∂x
(
uT(xT)

)
= ∂xTx ∂x

(
u(x) +Du(x)

)
(52)

where the d× d Jacobian matrix of the transformation is

∂xx
T = (∂xTx)

−1
= 1 + ∂xδx+O(δ2) . (53)

By putting (51) and (53) in (52), we obtain13

D(∂xu)
def
= ∂xTuT

|xT − ∂xu|x = ∂x(δu) + ∂x(∂xu) · δx+O(δ2) . (54)

In the same way,

D(∂2xxu)
def
= ∂2xTxTuT

|xT − ∂2xxu|x = ∂2xx(δu) + ∂x(∂
2
xxu) · δx+O(δ2) (55)

and so on for the derivatives of u of higher orders. By reporting D(· · · ) in (49)
we get

f ∂x · δx+ (∂xf) · δx+
∂f

∂un
(∂xun) · δx

+
∂f

∂(∂µun)
∂x(∂µun) · δx+

∂f

∂(∂2µνun)
∂x(∂

2
µνun) · δx

+
∂f

∂un
δun +

∂f

∂(∂µun)
∂µδun +

∂f

∂(∂2µνun)
∂2µνδun + · · ·+O(δ2) = 0 .

(56)

12 Borrowing the usual notation of fluid dynamics, this variation corresponds to the
derivative following the motion often known as the convective/particle/material/Lagrangian
derivative.
13 If one prefers a notation where the indices are made explicit, the equations (54) and (55)

can be respectively re-written as D(∂νun) = ∂ν(δun)+(∂2
νµun)δxµ+O(δ2) and D(∂2

µνun) =

∂2
µν(δun) + (∂3

µνρun)δxρ +O(δ2) .
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The first two lines provide the divergence dx ·
(
f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, . . .

)
δx
)

and at the last line we recognise the variation δf given by (34). Then

E · δu+ dx · (δX + fδx) = 0 . (57)

With the help of (38), we deduce Noether’s conservation law for the infinites-
imal current: If the functional (32) is invariant under a continuous family
of transformations having, in the neighbourhood of the identity the form (48),
then for any solution ucl such that S is stationary, the (infinitesimal) Noether
current

δJ
def
= δX + fδx (58)

with δX given by (36) is conserved; that is

dx · δJ|ucl
= dµδJ

µ

|ucl
= 0 . (59)

More explicitly we have

δJµ = fδxµ +
∂f

∂(∂µun)
δun − dν

(
∂f

∂(∂2µνun)

)

δun +
∂f

∂(∂2µνun)
∂ν(δun) + · · ·

(60a)

=

[

fδµν −
∂f

∂(∂µun)
∂νun + dρ

(
∂f

∂(∂2µρun)

)

∂νun −
∂f

∂(∂2µρun)
∂2νρun + · · ·

]

δxν

+
∂f

∂(∂µun)
Dun − dν

(
∂f

∂(∂2µνun)

)

Dun +
∂f

∂(∂2µνun)
D(∂νun) + · · · (60b)

where the Kronecker symbol δ is used and “ · · · ” stands for terms involving the
derivatives of f with respect to third order or higher derivatives of u. Since
the invariance of the variational problem depends on the choice of boundary
function, so will the Noether current as we can see from (40) and (43):

δJB = δJ0 + (dx ·B)δx+ δB . (61)

In fact, Noether currents δJ are defined up to a divergence-free current since
adding such a term does not affect (59). For instance

δJ ′µ = δJµ + dν

[(
∂Bµ

∂(∂νun)
−

∂Bν

∂(∂µun)

)

δun

]

(62)

would be also an acceptable Noether current associated with the symmetry
under the scope.
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4.3 Aside remarks about the two Noether theorems

The result established in the previous section is neither the first Noether the-
orem nor the second one but encapsulates both of them; the conservation of
the infinitesimal current δJ occurs for any global or local symmetry. Noether’s
first theorem follows from the computation of δX for a global symmetry i.e.
when the number of the essential parameters ǫ = (ǫa)a of the Lie group of
transformations is finite. In that case

δJ = J ǫ+O(ǫ2) (63)

or in terms of coordinates

δJµ = J µ
a ǫ

a +O(ǫ2) (64)

and the first Noether theorem states the conservation of the non infinitesi-
mal J

dx · Ja = ∂µJ µ
a = 0 (65)

obtained immediately from the infinitesimal conservation law (59) since ǫ is
arbitrary and x-independent.

Noether’s second theorem (see footnote 2) follows from the computation
of δX for a local symmetry i.e. when the essential parameters are functions ǫ(x)
and, in that case, the proportionality relation (63) does not hold anymore ;
the right-hand side now includes the derivatives of ǫ:

δJµ = J µǫ+ Fµν∂νǫ+ K µνρ∂2νρǫ+ · · ·+O(ǫ2) . (66)

By expanding the variation of the fields according to

δu =
∂u

∂ǫ
ǫ+

∂u

∂(∂µǫ)
∂µǫ+

∂2u

∂(∂2µνǫ)
∂2µνǫ+ · · ·+O(ǫ2) , (67)

then (57) reads

[

E ·
∂u

∂ǫ
+ dµJ µ

]

ǫ+

[

E ·
∂u

∂(∂µǫ)
+ J µ + dνF

νµ

]

∂µǫ

+

[

E ·
∂2u

∂(∂2µνǫ)
+

1

2
(F νµ + Fµν) + dρK

ρνµ

]

∂2µνǫ+ · · · = 0 . (68)

Since the functions ǫ are arbitrary, all the brackets vanish separately. When
evaluated on the stationary solutions ucl, we get

dµJ µ = 0 ; dµFµν = −J ν , dρK
ρνµ = −

1

2
(F νµ + Fµν) , etc. (69)

For a constant ǫ we recover the first theorem from the first equality. The second
theorem stipulates that to each a there is one identity connecting the E’s:

E ·
∂u

∂ǫ
− dµ

(

E ·
∂u

∂(∂µǫ)

)

+ dµdν

(

E ·
∂2u

∂(∂2µνǫ)

)

+ · · · = 0 . (70)
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Those can be obtained from the vanishing brackets of (68) or directly from
the following re-writing of (57):

[

E ·
∂u

∂ǫ
−dµ

(

E ·
∂u

∂(∂µǫ)

)

+ dµdν

(

E ·
∂2u

∂(∂2µνǫ)

)

+ · · ·

]

ǫ

+dµ

[

δJµ + E ·
∂u

∂(∂µǫ)
ǫ− dν

(

E ·
∂2u

∂(∂2µνǫ)

)

ǫ+ E ·
∂2u

∂(∂2µνǫ)
∂νǫ+ · · ·

]

= 0 .

(71)

By an integration on any arbitrary volume and choosing ǫ and its derivatives
vanishing on its boundary, on can get rid of the integral of the second term of
the left-hand-side. Since ǫ can be chosen otherwise arbitrarily within this vol-
ume, the first bracket vanishes which is exactly the Noether identity (70)14. If
one had to speak of just one theorem connecting symmetries and conservation
laws, one could choose the cancellation of all the brackets of (68) from which
Noether’s theorems I and II are particular cases.

Eventually, let us mention that both Noether’s theorems include also a
reciprocal statement: the invariance in the neighbourhood of ǫ = 0 implies an
invariance for any finite ǫ and this comes from the properties of the underlying
Lie structure of the transformation group and its internal composition law that
allow to naturally map any neighbourhood of ǫ = 0 to a neighbourhood of any
other element of the group.

5 Applications

5.1 Finite number of degrees of freedom

From the general formalism in § 4 it is straightforward to show that the
conservation law we obtained within the Hamiltonian framework in § 3.2 is
encapsulated in Noether’s original approach. For L degrees of freedom q =
(qα)α∈{1,...,L} we have u = (p, q, t) with N = 2L+1, S is of course SB given by
equation (5), D is [si, sf ], x is identified with s (d = 1) and only the first deriva-
tives of q, t, and possibly p through dB/ds are involved. We are considering
transformations where s is unchanged: δx = δs = 0, and then, D = δ. There-

14 As a consequence, the cancellation of the first bracket in (68) allows to write the first
term of (70) as a total derivative and this leads to the conservation of a current

dµ

[

J µ + E ·
∂u

∂(∂µǫ)
− dν

(

E ·
∂2u

∂(∂2
µνǫ)

)

+ · · ·

]

= 0 (72)

which is qualified as a “strong” [2, § 6 and its references] because this constraint holds even if
the Euler-Lagrange equations are not satisfied (a primary constraint in Dirac’s terminology
[13]).
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fore, with fB(p, q, t, dp/ds, dq/ds, dt/ds) = pdq/ds−H(p, q, t) dt/ds+dB/ds,

δJB = δXB =
∂fB

∂(dp/ds)
δp+

∂fB
∂(dq/ds)

δq +
∂fB

∂(dt/ds)
δt ; (73a)

= ∂pB δp+ (p+ ∂qB) δq − (H − ∂tB) δt ; (73b)

= pδq −Hδt+ δB , (73c)

which is a particular case of (61). Precisely because of the invariance, the vari-
ations coming from the infinitesimal transformation under the scope naturally
satisfy the boundary conditions (6) used to formulate the variational principle
that now can be interpreted as the conservation of δJB between si and sf .
The invariance (20) of B reads δB = −pTqT + F (pT, q, t) = −pT(qT − q) +
ǫG(pT, q, t) + O(ǫ2) = −pδq + ǫG(p, q, t) + O(ǫ2) and

δJB = ǫG(p, q, t)−Hδt . (74)

For an arbitrary pure time translation δt is s-independent and ǫ = 0, then (59),
which reads dδJB/ds = 0, just expresses the constancy of H. For a canonical
transformation that does not affect the time, the latter equation shows that its
generator G is an integral of motion. Thus, with a presentation much closer to
Noether’s original spirit we actually recover the results of section § 3.2. What is
remarkable is that, in the latter case, the Noether constants are independent
of H and B whereas, a priori, the general expression of the current (60a)
depends on f (see also (61)): only the canonical structure, intimately bound to
the structure of the action (1), leaves its imprint whereas the explicit forms of
the Hamiltonian and the boundary function have no influence on the expression
of the conserved currents (as soon as the invariance is maintained of course).
In other words, it is worth noticed that the Noether currents keep the same
expression for all the (infinite class of) actions that are invariant under the
associated transformations.

5.2 Examples in field theory

The discussion of the previous paragraph still holds at the limit L → ∞ but
it is worth to adapt it to the case of field models. A field involves an infinite
number of degrees of freedom that we shall take continuous and preferably
labeled by the D-dimensional space coordinates α = x rather than the dual
wave-vectors k. The additional discrete “internal” quantum numbers like those
that distinguish the spin components are left implicit. Now the Hamiltonian
appears to be a functional of the dynamical variables, namely the fields {π, ϕ}
and their spatial derivatives—restricted to order one for the sake of simplicity
whereas we have seen from the general approach that this assumption is not
mandatory—of the form

H[π(t, ·), ϕ(t, ·), t] =

∫

V

H
(
π(t,x), ϕ(t,x), ∂xπ(t,x), ∂xϕ(t,x), t,x

)
dD

x

(75)
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where V is a D-dimensional spatial domain and H , the Hamiltonian density
that may a priori depend explicitly on x = (t,x). The action

SB [π(·), ϕ(·)] =

∫

V×[ti,tf ]

(π∂tϕ− H + dtB) dD
x dt (76)

involves a boundary density B
(
π(t,x), ϕ(t,x), ∂xπ(t,x), ∂xϕ(t,x), t,x

)
from

which the boundary function(nal) is given by
∫

V
BdD

x keeping the same lo-
cality principle as we used for H (we assume that neither H nor B involve
non-local terms like ϕ(x)V (x′ − x)ϕ(x)). Whenever working in a relativistic
framework, B can be seen as the 0th-component of a (D + 1)-vector B =
(B0, B1, . . . , BD) = (B, 0, . . . , 0) such that dtB = dµB

µ and the space-time
integral defining SB can be seen as an integral over the d = (D+1)-dimensional
domain D between two appropriate Cauchy surfaces. The action (76) takes the
general expression form (32) with now N = 2 fields u = (u1, u2) =

(
π, ϕ

)
and f

given by

fB
(
π, ϕ, ∂xπ, ∂xϕ, x

)
= π∂0ϕ− H

(
π, ϕ, ∂xπ, ∂xϕ, x

)
+ dµB

µ . (77)

By canceling the components E1 and E2 computed from (35) we obtain the
evolution equations of the classical fields

∂tϕ =
∂H

∂π
−

d

dxi

(
∂H

∂(∂iπ)

)

; (78a)

∂tπ = −
∂H

∂ϕ
+

d

dxi

(
∂H

∂(∂iϕ)

)

. (78b)

The Noether infinitesimal current is given by (61) with

δJµ
B =(π∂tϕ− H )δxµ +

(

πδµ0 −
∂H

∂(∂µϕ)

)

δϕ− δπ
∂H

∂(∂µπ)

+ (dρB
ρ)δxµ +

∂Bµ

∂ϕ
δϕ+ δπ

∂Bµ

∂π
+

∂Bµ

∂(∂ρϕ)
∂ρδϕ+ ∂ρδπ

∂Bµ

∂(∂ρπ)
.

(79)

As an illustration, let us specify the latter general expression in the special
case of the space-time translations. We have ϕT(x) = ϕ(x− δx) and πT(x) =
π(x− δx) so the infinitesimal variations of the fields are

δπ = −∂π · δx ; δϕ = −∂ϕ · δx (80)

and then, since we take δx to be independent of x, we get (cf equation (64)
with a being now the space-time label and ǫ = δx)

δJµ
B = T µ

B|νδx
ν (81)
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with the energy-momentum tensor given up to a divergence-free current15 by

T µ

B|ν=T µ

0|ν+(dρB
ρ)δµν −

∂Bµ

∂ϕ
∂νϕ− ∂νπ

∂Bµ

∂π
−

∂Bµ

∂(∂ρϕ)
∂2ρνϕ− ∂2ρνπ

∂Bµ

∂(∂ρπ)
;

(82)

=T µ

0|ν+(dρB
ρ)δµν − dνB

µ + ∂νB
µ , (83)

and

T µ

0|ν = (π∂tϕ− H ) δµν + ∂νπ
∂H

∂(∂µπ)
+
( ∂H

∂(∂µϕ)
− πδµ0

)

∂νϕ . (84)

The invariance of the boundary function under translations requires ∂νB
µ =

0 and the corresponding (D + 1)-momentum contained in the volume V is
therefore given by

PB|ν =

∫

V

T 0
B|ν dD

x = Pν +∆Pν (85)

where

Pν =

∫

V

[

(π∂tϕ− H ) δ0ν − π∂νϕ
]

dD
x . (86)

On can check that P 0 = −P0 is given by (75). The boundary function brings
some surface corrections

∆Pν =

∫

V

[

(dρB
ρ)δ0ν − dνB

0
]

dD
x (87)

that is

∆P0 =

∫

V

diB
i dD

x =

∫

∂V

Bi dD−1σi (88)

and

∆Pi =

∫

V

diB
0dD

x =

∫

∂V

B0 dD−1σi (89)

where dD−1σi are the D components of the surface element defined on ∂V.
In any reasonable model these corrections are expected to vanish when ∂V is
extended to infinity.

15 Adding a divergence-free current may be exploited to work with a symmetric tensor
known as the Belinfante-Rosenfeld tensor since this was first proposed by [3,31].
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5.3 Comparison with the Lagrangian approach

For the sake of completeness let us comment on the connection with the La-
grangian framework of a system with L degrees of freedom. Consider now (32)
with f being L(q, q̇, t) + dB/dt where B is a function of q, q̇ and t, the in-
tegration variable x is just the time t (d = 1) and the number of dynamical
variables u = q is divided by two (N = L) by comparison with the Hamiltonian
framework. The derivative dB/dt depends on q̈ and this must be taken into
account when computing directly δX from (36)

δX =
∂f

∂q̇
δq −

d

dt

(
∂f

∂q̈

)

δq +
∂f

∂q̈

dδq

dt
; (90a)

=

[

∂L

∂q̇
+
∂B

∂q
+
∂2B

∂q̇∂q̇
q̈ +

∂2B

∂q̇∂q
q̇ +

∂2B

∂q̇∂t
−

d

dt

(
∂B

∂q̇

)

︸ ︷︷ ︸

= 0

]

δq +
∂B

∂q̇

dδq

dt
.

(90b)

Hence, since δx = δt, we have rederived a particular case of (61),

δJ =
∂L

∂q̇
δq + Lδt+

∂B

∂q
δq +

∂B

∂q̇

dδq

dt
+

dB

dt
δt . (91)

To reconcile (91) and (73c), one must be aware that δq has a different mean-
ing in the two equations. Indeed, in the general expression (36) δu stands for
a variation of u computed at the same x (see (48b)); within the Hamilto-
nian formalism, δ(ham)q thus denotes a variation of q at the same parameter s
whereas within the Lagrangian formalism, δ(lag)q denotes a variation of qat the
same time t. Precisely when the transformation modifies t, these two varia-
tions differs. To connect them one has to introduce the parametrisation s in
the Lagrangian formalism

δ(lag)q
(
t(s)

)
= qT

(
t(s)

)
− q
(
t(s)

)
(92)

and then

δ(ham)q
(
t(s)

)
= qT

(
tT(s)

)
− q
(
t(s)

)
= D(lag)q , (93)

with tT(s) = t(s) + δt(s) 16. Then,

δ(lag)q = δ(ham)q − q̇δt . (94)

Reporting this last expression in (91), we get

δJ =
∂L

∂q̇
δ(ham)q+

(

L−
∂L

∂q̇
q̇

)

δt+
∂B

∂t
δt+

∂B

∂q
δ(ham)q+

∂B

∂q̇

(
dδ(ham)q

dt
− q̇

dδt

dt

)

.

(95)

16 Because δ(ham)t = tT(s) − t(s) = tT − t = δ(lag)t, we won’t use two different notations
for the variations of t.
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Turning back to the parametrisation by s, the last parenthesis is

δ(ham)

(
dq

dt

)

= δ(ham)

(
1

dt/ds

dq

ds

)

; (96)

=
1

dt/ds
δ(ham)

(
dq

ds

)

︸ ︷︷ ︸

=
dδ(ham)q

ds

−
1

(dt/ds)2
dq

ds
δ(ham)

(
dt

ds

)

︸ ︷︷ ︸

=
dδt

ds

. (97)

therefore one recovers

δJ =
∂L

∂q̇
δ(ham)q +

(

L−
∂L

∂q̇
q̇

)

δt+ δ(ham)B (98)

which coincides with (73c) using

L

(

q,
dq

dt
, t

)

def
= p

dq

dt
−H(p, q, t) . (99)

We could also have obtained (73c) by working with the Lagrangian functional
where all the functions are systematically computed with s

SB =

∫ sf

si

[

L

(

q(s),
1

dt/ds

dq

ds
, t(s)

)
dt

ds
+

dB

ds

]

ds , (100)

or, conversely, by eliminating all the references to s in the Hamiltonian func-
tional

SB =

∫ tf

ti

[

p
dq

dt
−H +

dB

dt

]

dt . (101)

For a Lagrangian field model we have u = ϕ and (60a) reads

δJµ = L δxµ +
∂L

∂(∂µϕ)
δϕ . (102)

Using the fact that H does not depend on ∂tπ nor ∂tϕ and with the help of

L = π∂tϕ− H (103)

and

π =
∂L

∂(∂tϕ)
, (104)

the two first terms of the right-hand-side of (79) are identical to those appear-
ing in (102):

δJµ
0 = (π∂tϕ− H )δxµ +

(

πδµ0 −
∂H

∂(∂µϕ)

)

δϕ− δπ
∂H

∂(∂µπ)
. (105)

The two currents coincide when H does not depend on ∂xπ which is a common
case.
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6 Quantum framework

6.1 Complex canonical formalism

In quantum theory, any state |ψ〉 can be represented by the list z = (zα)α
of its complex components zα

def

= 〈φα|ψ〉 on a given orthonormal basis
(
|φα〉

)

α
labeled by the quantum numbers α. For simplicity we will work with discrete
quantum numbers but this is not a decisive hypothesis here and what follows
can be adapted to relativistic as well as non-relativistic quantum field the-
ory. The quantum evolution is governed by a self-adjoint Hamiltonian17 Ĥ(t)
according to

i~
d

dt
|ψ〉 = Ĥ(t) |ψ〉 (106)

or equivalently

i~żα(t) =
∑

α′

Hα,α′(t) zα′(t) (107)

with the matrix element

Hα,α′(t)
def
= 〈φα| Ĥ(t) |φα′〉 . (108)

Provided we accept to extend the classical Hamiltonian formalism to complex
dynamical variables, one can see that the quantum dynamics described above
can be derived from the “classical” quadratic Hamiltonian

H(w, z, t)
def
=

1

i~

∑

α,α′

wαHα,α′(t)zα′ (109)

where each couple (wα, zα) is now considered as a pair of complex canonical
variables (pα, qα). The equation (107) corresponds to Hamilton’s equations
for q whereas Hamilton’s equations for p are

i~ẇα(t) = −
∑

α′

wα′(t)Hα′,α(t) (110)

which can also be derived by complex conjugation of (107) since the hermiticity
of Ĥ reads H∗

α,α′ = Hα′,α.
The quantum evolution between ti and tf can therefore be rephrased with

a variational principle based on a functional having the classical form (5)
with a boundary function B(w, z, t). Since in this context we will not consider
transformations of time that depend on the dynamical variables, we can use t
as the integration variable and work with

SB [w(·), z(·)]
def
=

∫ tf

ti

{
∑

α

wα(t) żα(t)− H(w, z, t) +
dB

dt

}

dt (111)

17 For a non-isolated system, even in the Schrödinger picture, the Hamiltonian may depend
on time.
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where the complex functions t 7→ zα(t) and t 7→ wα(t) are considered to be
independent one from the other. Together they constitute u = (w, z) with x =
t (d = 1). Thus, all the classical analysis of § 2 and § 5.1 still holds. The
variations of z and w are constrained by the boundary conditions

[∑

α

wα δzα + δB
]tf

ti
=
[

〈χ|
(
δ |ψ〉

)
+ δB

]tf

ti
= 0 (112)

where 〈χ| is such that wα = 〈χ|φα〉. All the variations δ |ψ〉 of the dynamical
variables given by |ψ〉 cannot generically vanish at ti and tf since there is
in general no solution of the Schrödinger equation (106) for an a priori given
arbitrary choice of an initial and a final state. Due also to the linear dependence
of the Hamiltonian H with respect to z and w, we cannot express p = w as
a function of (q, q̇) = (z, ż) and therefore we cannot switch to a Lagrangian
formulation unless we collect the variables w with the variables z into the same
configuration space.

According to Wigner theorem, a (possibly time-dependent) continuous
transformation is represented by a unitary operator Û implemented as fol-
lows

T〈χ|
def
= 〈χ| Û∗ ; |ψ〉

T def
= Û |ψ〉 (113)

or with the canonical complex notation,
∑

α′

wT

α′ 〈φα′ | Û |φα〉 = wα ; zT

α =
∑

α′

〈φα| Û |φα′〉 zα′ . (114)

By straightforward identification with the complex version of (12) with van-
ishing derivatives of tT, we have

wα =
∂F

∂zα
; (115a)

zT

α =
∂F

∂wT
α

(115b)

with the generating function

F(wT, z) =
∑

α,α′

wT

α 〈φα| Û |φα′〉 zα′ (116)

or, equivalently,
F = T〈χ| Û |ψ〉 . (117)

For a one-parameter transformation, its generator is a self-adjoint operator Ĝ,
possibly time-dependent, such that

Û(ǫ) = 1 +
iǫ

~
Ĝ+O(ǫ2). (118)

Then the generating function F(w, z, t; ǫ) given by

F(wT, z, t; ǫ) =
∑

α

wT

αzα +
iǫ

~

∑

α,α′

wT

α 〈φα| Ĝ |φα′〉 zα′ +O(ǫ2) (119)
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from which, by identification with the complexification of (23), we read the
“classical” generator

G =
i

~

∑

α,α′

wα 〈φα| Ĝ |φα′〉 zα′ =
i

~
〈χ| Ĝ |ψ〉 (120)

of the transformation.
Now for an invariance we respect the time translations, (28) reads

0 =
dH

dt
=

d

dt
〈χ| Ĥ |ψ〉 = 〈χ|

dĤ

dt
|ψ〉 (121)

for any 〈χ| and |ψ〉, that is we recover

dĤ

dt
= 0. (122)

For an invariance with respect to a time-independent transformation, (30)
reads

0 =
dG

dt
=

i

~

d

dt
〈χ| Ĝ |ψ〉 =

i

~
〈χ|

(

dĜ

dt
+

i

~
[Ĥ, Ĝ]

)

|ψ〉 (123)

where [ , ] denotes the commutator between two operators. Then we get the
identity

dĜ

dt
+

i

~
[Ĥ, Ĝ] = 0 . (124)

In the Schrödinger picture the time-independence of the transformation is
equivalent to dĜ/dt = 0 and therefore the previous identity reduces to

[Ĥ, Ĝ] = 0 (125)

which is of course the well-known consequence of the invariance of the quantum
dynamics under the transformations generated by Ĝ.

6.2 Following Noether’s approach

It is instructive to check directly that the results of the previous section can
be obtained with more Noether flavour by the method of § 5.1. In terms of
bras and kets we rewrite (111) as

SB [χ, ψ]
def
=

∫ tf

ti

{

〈χ|
d

dt
|ψ〉+

i

~
〈χ| Ĥ |ψ〉+

dB

dt

}

dt (126)

The general expression (60a) together with (61) provides

δJB = 〈χ|

(
d

dt
+

i

~
Ĥ

)

|ψ〉 δt+ 〈χ|
(
δ |ψ〉

)
+

dB

dt
δt+ δB . (127)
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Moreover, in order to preserve the structure of SB, we naturally choose the
boundary function with the same structure as the Hamiltonian (109), that is

B
def
= 〈χ| B̂ |ψ〉 (128)

for some operator B̂. Then the infinitesimal current reads

δJB = δJ0 + δt
d

dt

(

〈χ| B̂ |ψ〉
)

+ 〈χ| B̂
(
δ |ψ〉

)
+
(
δ 〈χ|

)
B̂ |ψ〉 . (129)

with

δJ0 = δt 〈χ|

(
d

dt
+

i

~
Ĥ

)

|ψ〉+ 〈χ|
(
δ |ψ〉

)
. (130)

The action of (118) on 〈χ| and on |ψ〉 leads to

δ 〈χ| = −
iǫ

~
〈χ| Ĝ ; δ |ψ〉 =

iǫ

~
Ĝ |ψ〉 . (131)

Thus,

δJB = δt 〈χ|

(
d

dt
+

i

~
Ĥ

)

|ψ〉+
iǫ

~
〈χ|
(

Ĝ+ [B̂, Ĝ]
)

|ψ〉+ δt
d

dt

(

〈χ| B̂ |ψ〉
)

(132)

The transformed boundary operator is defined to be such that

T〈χ| B̂T(tT) |ψ〉
T
= 〈χ| B̂(t) |ψ〉 (133)

for any 〈χ| and |ψ〉, that is, by using (113),

B̂T(tT) = Û B̂(t)Û∗ . (134)

This identity can also be recovered from (14) by using the complex canon-
ical formalism of the previous section. The traduction of the invariance is
simply B̂T(tT) = B̂(tT) and then, for an infinitesimal transformation charac-
terized by δt = tT − t and ǫ, we get

δt
dB̂

dt
+

iǫ

~
[B̂, Ĝ] = 0 . (135)

If we choose all the operators in the Heisenberg picture, this identity leads to

δt
dB̂

dt
+ δt

i

~
[Ĥ, B̂] +

iǫ

~
[B̂, Ĝ] = 0 . (136)
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where all the operators are now considered in the Schrodinger picture18. When
both |ψ〉 and 〈χ| satisfy the Schrödinger equation let us show how the infinites-
imal current (132) simplifies. The first term in the right-hand side vanishes and
the last term is given by

δt
d

dt

(

〈χ| B̂ |ψ〉
)

= δt 〈χ|

(

dB̂

dt
+

i

~
[Ĥ, B̂]

)

|ψ〉 = −
iǫ

~
〈χ| [B̂, Ĝ] |ψ〉 (139)

where (136) has been used for the second equality. Eventually we obtain

δJB =
iǫ

~
〈χ| Ĝ |ψ〉 (140)

and the conservation law dδJB/dt = 0 is exactly equivalent to

d

dt

(

〈χ| Ĝ |ψ〉
)

= 0 (141)

from which we already derived (122) for a model invariant under time-trans-
lations and (125) for a model invariant under a time-independent transforma-
tions.

In passing we note that the Noether constant associated with the invariance
of SB under a global change of phase T〈χ| = 〈χ| e−iθ together with |ψ〉

T
=

e−iθ |ψ〉 for any constant θ corresponds to Ĝ = 1 and therefore is given by the
scalar product 〈χ|ψ〉 which is indeed conserved by any unitary evolution.

7 Conclusion

Unlike what occurs generically in the Lagrangian context where one remains
in the configuration space, the Hamiltonian variational principle cannot be
formulated with keeping fixed all the dynamical variables at the boundaries
in phase-space. Nevertheless, with the use of a boundary function that helps
to manage the issues of boundary conditions, we have shown how Noether’s
seminal work [28] does cover the Hamiltonian variational principle and how the
constant generators of the canonical—classical or quantum—transformations
are indeed the corresponding Noether constants.

18 By using a label to distinguish the two pictures, for any operator Ô we have the con-
nection

Ô(H)(t) = Û (S)(t0, t) Ô
(S)(t)Û (S)(t, t0) (137)

where t0 denotes the time where the two pictures coincide and Û (S)(t, t0) is the evolution
operator between t0 and t in the Schrödinger picture. Therefore we have

dÔ(H)(t)

dt
=

i

~
[Ĥ(H)(t), Ô(H)(t)] +

(

dÔ(S)(t)

dt

)(H)

. (138)
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