Université de Tours "François Rabelais" Faculté de Sciences et Techniques DEUG MIAS 2ème Niveau 2002–2003 Electromagnétisme et Relativité Restreinte

TD10: Le champ électrique des charges en mouvement uniforme

On veut explorer les conséquences de l'invariance relativiste de la charge électrique, exprimée par la loi de Gauss

$$\oint_{S(t)} \mathbf{E} \cdot d\mathbf{a} = \oint_{S'(t')} \mathbf{E}' \cdot d\mathbf{a}'$$

- 1. Soient deux plans chargés (densité de charge $\pm \sigma$), espacés de d, au repos dans le référentiel R, parallels au plan Oxy. Les plans sont des carrés de côté b >> d, de façon à pouvoir considérer le champ électrique entre eux comme uniforme et orienté le long la direction Oz.
 - On considère, maintenant, un référentiel R', qui bouge avec vitesse $-V_x < 0$ par rapport au référentiel R. Trouver la densité σ' dans le référentiel R'.
 - Appliquer la loi de Gauss et trouver la composante E'_z du champ électrique dans le référentiel R' en fonction de la composante E_z .
 - On cosnidère, maintenant, les plans chargés orientés parallels au plan Ozy. Déduire de nouveau la densité de charge σ' et la composante E'_x en fonction des quantités dans le référentiel R.
- 2. On considère, maintenant, une charge ponctuelle au repos dans le référentiel R et un référentiel R' en mouvement avec vitesse uniforme $-V_x < 0$. Calculer les composantes parallèle et perpendiculaire dans les deux référentiels.

Faire un développement en puissances de V_x/c et expliciter la première correction à la loi de Coulomb.

FACULTATIF: Calculer l'intégrale du champ électrique, dans le référentiel R', autour d'une courbe fermée. Est-elle nulle? Qu'en déduisez-vous?