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CHAPTER 1

Black Holes — an Introduction
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This chapter is an introduction to the mathematical aspects of the theory
of black holes, solutions of vacuum Einstein equations, possibly with a
cosmological constant, in arbitrary dimensions.

1. Stationary black holes

Stationary solutions are of interest for a variety of reasons. As models for
compact objects at rest, or in steady rotation, they play a key role in as-
trophysics. They are easier to study than non-stationary systems because
stationary solutions are governed by elliptic rather than hyperbolic equa-
tions. Further, like in any field theory, one expects that large classes of
dynamical solutions approach a stationary state in the final stages of their
evolution. Last but not least, explicit stationary solutions are easier to come
by than dynamical ones.

1.1. Asymptotically flat examples

The simplest stationary solutions describing compact isolated objects are
the spherically symmetric ones. A theorem due to Birkhoff shows that in the
vacuum region any spherically symmetric metric, even without assuming
stationarity, belongs to the family of Schwarzschild metrics, parameterized
by a positive mass parameter m:

g=—V2dt? + V=2dr? + r2dQ? , (1.1)
VZ=1-22_ teR, re(2m,00). (1.2)
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Here dQ)? denotes the metric of the standard 2-sphere. Since the metric
(1.1) seems to be singular as r = 2m is approached, there arises the need
to understand the geometry of the metric (1.1) there. The simplest way to
do that, for metrics of the form (1.1) is to replace t by a new coordinate v
defined as

v=t+f(r), f=5 (1.3)
leading to
v=t+7r+2mln(r —2m).

This brings ¢ to the form

g=—( )dv® + 2dvdr + r2dQ? . (1.4)

2
L, _2m
T
We have det g = —r?*sin? 0, with all coefficients of g smooth, which shows
that ¢ is a well defined Lorentzian metric on the set

veR, re(0,00). (1.5)

More precisely, (1.4)-(1.5) is an analytic extension of the original space-
time® (1.1).

Tt is easily seen that the region {r < 2m} for the metric (1.4) is a black
hole region, in the sense that

observers, or signals, can enter this region, but can never leave it. (1.6)

In order to see that, recall that observers in general relativity always move
on future directed timelike curves, that is, curves with timelike future di-
rected tangent vector. For signals the curves are causal future directed, these
are curves with timelike or null future directed tangent vector. Let, then,
v(s) = (v(s),7(s),0(s),¢(s)) be such a timelike curve, for the metric (1.4)
the timelikeness condition g(%,) < 0 reads

2 )
—(1 = 202 4 207 + r2(6% + sin2 042) < 0.
T

This implies

@(—(1—27m)1>+2f) <0.

2The term space—time denotes a smooth, paracompact, connected, orientable and time—
orientable Lorentzian manifold.
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It follows that © does not change sign on a timelike curve. The usual choice
of time orientation corresponds to © > 0 on future directed curves, leading
to

2
-+ 2 <0
T

For r < 2m the first term is non-negative, which enforces 7 < 0 on all
future directed timelike curves in that region. Thus, r is a strictly decreas-
ing function along such curves, which implies that future directed timelike
curves can cross the event horizon {r = 2m} only if coming from the region
{r > 2m}. The same conclusion applies for causal curves, by approximation.

Note that we could have chosen a time orientation in which future di-
rected causal curves satisfy ¥ < 0. The resulting space-time is then called
a white hole space-time, with {r = 2m} being a white hole event horizon,
which can only be crossed by those future directed causal curves which
originate in the region {r < 2m}.

The transition from (1.1) to (1.4) is not the end of the story, as fur-
ther extensions are possible. For the metric (1.1) a maximal analytic ex-
tension has been found independently by Kruskal, Szekeres, and Fronsdal,
see Ref. 73 for details. This extension is visualised® in Figure 1. The re-
gion I there corresponds to the space-time (1.1), while the extension just
constructed corresponds to the regions I and I1.

A discussion of causal geodesics in the Schwarzschild geometry can be
found in R. Price’s contribution to this volume.

Higher dimensional counterparts of metrics (1.1) have been found by
Tangherlini. In space-time dimension n + 1, the metrics take the form (1.1)
with

proqo2m (1.7)

pn—2"

and with d2? — the unit round metric on S”~!. The parameter m is the
Arnowitt-Deser-Misner mass in space-time dimension four, and is propor-
tional to that mass in higher dimensions. Assuming again m > 0, a maximal
analytic extension can be constructed using a method of Walker®? (which
applies to all spherically symmetric space-times),® leading to a space-time
with global structure identical to that of Figure 1 (except for the replace-
ment 2M — (2M)'/("=2) there). Global coordinate systems for the stan-

b am grateful to J.-P. Nicolas for allowing me to use his electronic figure.”®

€A generalisation of the Walker extension technique to arbitrary Killing horizons can be
found in Ref. 85.



April 10, 2005 20:48 WSPC/Trim Size: 9in x 6in for Review Volume AshBH

4 P.T. Chrusciel

r = constant < 2M Singularity (r = 0)
r=2M r=2M

t = constant

Singularity (r = 0) r = constant < 2M

t = constant

Fig. 1. The Carter-Penrose diagram for the Kruskal-Szekeres space-time with mass M.
There are actually two asymptotically flat regions, with corresponding event horizons
defined with respect to the second region. Each point in this diagram represents a two-
dimensional sphere, and coordinates are chosen so that light-cones have slopes plus minus
one.

dard maximal analytic extensions can be found in Ref. 67. The isometric
embedding, into six-dimensional Euclidean space, of the ¢ = 0 slice in a
(5 + 1)—dimensional Tangherlini solution is visualised in Figure 2.

One of the features of the metric (1.1) is its stationarity, with Killing
vector field X = 0;. A Killing field, by definition, is a vector field the local
flow of which preserves the metric. A space—time is called stationary if there
exists a Killing vector field X which approaches 0; in the asymptotically flat
region (where r goes to 0o, see below for precise definitions) and generates
a one parameter groups of isometries. A space—time is called static if it is
stationary and if the stationary Killing vector X is hypersurface-orthogonal,
ie. X? AdX’ =0, where

X’ = Xudz! = g, XV dz! .

A space—time is called azisymmetric if there exists a Killing vector field Y,
which generates a one parameter group of isometries, and which behaves like
a rotation: this property is captured by requiring that all orbits 27 periodic,
and that the set {Y = 0}, called the azis of rotation, is non-empty. Killing
vector fields which are a non-trivial linear combination of a time translation
and of a rotation in the asymptotically flat region are called stationary-
rotating, or helical. Note that those definitions require completeness of orbits
of all Killing vector fields (this means that the equation & = X has a global
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Fig. 2. Isometric embedding of the space-geometry of a (5 + 1)-dimensional
Schwarzschild black hole into six-dimensional Euclidean space, near the throat of the
Einstein-Rosen bridge r = (2m)!/3, with 2m = 2. The variable along the vertical axis
asymptotes to &~ £3.06 as r tends to infinity. The right picture is a zoom to the centre of
the throat. The corresponding embedding in (3 4 1)-dimensions is known as the Flamm
paraboloid.

solution for all initial values), see Refs. 22 and 51 for some results concerning
this question.

In the extended Schwarzschild space-time the set {r = 2m} is a null
hypersurface &, the Schwarzschild event horizon. The stationary Killing
vector X = 0; extends to a Killing vector X in the extended spacetime
which becomes tangent to and null on &, except at the ”bifurcation sphere”
right in the middle of Figure 1, where X vanishes. The global properties of
the Kruskal-Szekeres extension of the exterior Schwarzschild? spacetime,
make this space-time a natural model for a non-rotating black hole.

There is a rotating generalisation of the Schwarzschild metric, also dis-
cussed in the chapter by R. Price in this volume, namely the two parameter
family of exterior Kerr metrics, which in Boyer-Lindquist coordinates take

dThe exterior Schwarzschild space-time (1.1) admits an infinite number of non-isometric
vacuum extensions, even in the class of maximal, analytic, simply connected ones. The
Kruskal-Szekeres extension is singled out by the properties that it is maximal, vacuum,
analytic, simply connected, with all maximally extended geodesics «y either complete, or
with the curvature scalar RQB%RO‘BV‘s diverging along ~ in finite affine time.
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the form

A — a?sin? 6 2asin? 0(r? 4+ a® — A)

=— dt* — dtd
g 5 5 Y+
2 2\2 _ A 2 12 0 N
(4 a’)” — AdTsin'0 g + S 4 wde? . (1.8)
b)) A
Here
Y =72+acos?0, A=r2+a®>-2mr=r—r )(r—r_),

and r4 < r < oo, where
1
re =m=+(m?—a®)z .

The metric satisfies the vacuum Einstein equations for any real values of
the parameters ¢ and m, but we will only discuss the range 0 < a < m.
When a = 0, the Kerr metric reduces to the Schwarzschild metric. The
Kerr metric is again a vacuum solution, and it is stationary with X = 0
the asymptotic time translation, as well as axisymmetric with ¥ = 9, the
generator of rotations. Similarly to the Schwarzschild case, it turns out that
the metric can be smoothly extended across r = ry, with {r = r;.} being
a smooth null hypersurface & in the extension. The simplest extension is
obtained when t is replaced by a new coordinate

T2 2
v:t—i—/r rz“ dr (1.9)
+
with a further replacement of ¢ by
¢ = +/T3dr (1.10)
= LA .

It is convenient to use the symbol § for the metric g in the new coordinate
system, obtaining

2
§=— (1 - %)dqﬂ + 2drdv + £d6? — 2a sin® 0dpdr

(r? +a?)? — a®sin® A 4amr sin® 0

by s
In order to see that (1.11) provides a smooth Lorentzian metric for v € R
and r € (0,00), note first that the coordinate transformation (1.9)-(1.10)
has been tailored to remove the 1/A singularity in (1.8), so that all coeffi-
cients are now analytic functions on R x (0,00) x S2. A direct calculation

sin? 0d¢? —

dpdv . (1.11)

of the determinant of § is somewhat painful, a simpler way is to proceed
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as follows: first, the calculation of the determinant of the metric (1.8) re-
duces to that of a two-by-two determinant in the (¢, ) variables, leading
to detg = —sin?6¥2. Next, it is very easy to check that the determi-
nant of the Jacobi matrix d(v,r,0,9)/0(t,r,0,p) is one. It follows that
det § = —sin? @2 for r > r,. Analyticity implies that this equation holds
globally, which (since ¥ has no zeros) establishes the Lorentzian signature
of g for all positive r.

Let us show that the region r < 7 is a black hole region, in the sense of
(1.6). We start by noting that Vr is a causal vector for r_ < r < ry, where
r— =m—+vm?+ a2 A direct calculation using (1.11) is again somewhat
lengthy, instead we use (1.8) in the region r > r to obtain there

1 A (r—=ry)r—r2)

G(VrVn) =g(Vr V) =g" = — =5 =G a g - 112

But the left-hand-side of this equation is an analytic function throughout
the extended manifold R x (0, 00) x 2, and uniqueness of analytic extensions
implies that §(Vr, Vr) equals the expression at the extreme right of (1.12).
(The intermediate equalities are of course valid only for » > r;.) Thus Vr
is spacelike if r < r_ or r > r4, null on the “Killing horizons” {r = r1},
and timelike in the region {r_ < r < r;}. We choose a time orientation so
that Vr is future pointing there.
Consider, now, a future directed causal curve (s). Along v we have

dr i o .
25 = Vi = giy Vir=g(¥,Vr) <0

in the region {r_ < r < r;}, because the scalar product of two future
directed causal vectors is always negative. This implies that r is strictly
decreasing along future directed causal curves in the region {r_ <r <ri},
so that such curves can only leave this region through the set {r =r_}. In
other words, no causal communication is possible from the region {r < ry}
to the “exterior world” {r > ry}.

The Schwarzschild metric has the property that the set g(X, X) = 0,
where X is the “static Killing vector” 0y, coincides with the event horizon
r = 2m. This is not the case any more for the Kerr metric, where we have

g(ataat) = g(amav) = gvv = _(1 - d%) )

and the equation §(9,,0,) = 0 defines a set called the ergosphere:
m?2 — a2 cos? 0

see Figures 3 and 4. The ergosphere touches the horizons at the axes of
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Fig. 3. A coordinate representation8! of the outer ergosphere r = 74, the event horizon
r = r4, the Cauchy horizon r = r_, and the inner ergosphere r = 7_ with the singular
ring in Kerr space-time. Computer graphics by Kayll Lake.5¢

symmetry cosf = +1. Note that 07y /00 # 0 at those axes, so the er-
gosphere has a cusp there. The region bounded by the outermost horizon
r = ry and the outermost ergosphere r = 7, is called the ergoregion, with
X spacelike in its interior. We refer the reader to Refs. 15 and 79 for an
exhaustive analysis of the geometry of the Kerr space-time.

Fig. 4. Isometric embedding in Euclidean three space of the ergosphere (the outer hull),
and part of the event horizon, for a rapidly rotating Kerr solution. The hole arises due to
the fact that there is no global isometric embedding possible for the event horizon when
a/m > v/3/2.8" Somewhat surprisingly, the embedding fails to represent accurately the
fact that the cusps at the rotation axis are pointing inwards, and not outwards. Computer
graphics by Kayll Lake.66

The hypersurfaces {r = r1} provide examples of null acausal bound-
aries. Causality theory shows that such hypersurfaces are threaded by a
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family of null geodesics, called generators. One checks that the stationary-
rotating Killing field X + wY', where w = ﬁ, is null on {r > r;}, and
hence tangent to the generators of the horizon. Thus, the generators are
rotating with respect to the frame defined by the stationary Killing vector
field X. This property is at the origin of the definition of w as the angular
velocity of the event horizon.

Higher dimensional generalisations of the Kerr metric have been con-
structed by Myers and Perry.”®

In the examples discussed so far the black hole event horizon is a con-
nected hypersurface in space-time. In fact,'® 2% there are no static vacuum
solutions with several black holes, consistently with the intuition that grav-
ity is an attractive force. However, static multi black holes become possible
in presence of electric fields. The list of known examples is exhausted by
the Majumdar-Papapetrou black holes, in which the metric g and the elec-
tromagnetic potential A take the form

g = —u"2dt? + u*(dz? + dy?® + dz?), (1.13)
A=wuldt, (1.14)
with some nowhere vanishing function u. Einstein—-Maxwell equations read
then
ou 0u  0%u  9*u
=0 s T T 1.15
o= o2 o 0 (1.15)

Standard MP black holes are obtained if the coordinates z# of (1.13)—(1.14)
cover the range R x (R?\ {@;}) for a finite set of points @; € R®,i =1,...,1,
and if the function u has the form

m;
u:HZIf Ak (1.16)

for some positive constants m;. It has been shown by Hartle and Hawk-
ing® that every standard MP space-time can be analytically extended to
an electro—vacuum space-time with a non-empty black hole region. Higher-
dimensional generalisations of the MP black holes, with very similar prop-
erties, have been found by Myers.”

1.2. A#0

So far we have assumed a vanishing cosmological constant A. However,
there is interest in solutions with A # 0: Indeed, there is strong evidence
that we live in a universe with A > 0. On the other hand, space-times
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with a negative cosmological constant appear naturally in many models of
theoretical physics, e.g. in string theory.

In space-time dimension four, examples are given by the generalised
Kottler and the generalised Nariai solutions

2m A dr?

2 2 2 2 2
ds :_(’“_T‘?" )at +k—2%—ér2+rd9k’ k=041,

3
(1.17)
dr?

ds® = —()\ — Ar2>dt2 + A2

+ AT, k=41, EA>0,A€R
(1.18)

where dQF denotes a metric of constant Gauss curvature k on a two-
dimensional compact manifold 2M. These are static solutions of the vacuum
Einstein equation with a cosmological constant A. The parameter m € R is
related to the Gibbons-Hawking mass of the foliation ¢ = const, r = const.
As an example of the analysis in this context, consider the metrics (1.17)

with £k =0 and A = —3:
d 2

2m T
2 _ 2 2
dS ——(T —7>dt +m

. +r2(dp? + dip?) | (1.19)

-
with ¢ and ¢ parameterising S*. If m > 0 there is a coordinate singularity
at r = (2m)'/3; an extension can be constructed as in (1.3) by replacing
the coordinate ¢ with

1

This leads to a smooth Lorentzian metric for all » > 0,
2
ds* = — (r2 - —m>dv2 + 2dvdr + 2 (dp? + dy?) . (1.21)
r

We have now an exterior region 7 > (2m)'/3, a black hole event horizon at

r = (2m)'/3, and a black hole region for < (2m)/3.

Similarly when AA > 0 the metrics (1.18) have an exterior region defined
by the condition r > 1/A/A. A procedure similar to the above leads to an
extension across an event horizon r = /A\/A. Note that the asymptotic
behavior of metrics (1.18) is rather different from that of metrics (1.17).

The Kottler examples can be generalised to higher dimensions as fol-
lows:19 Let M =R x (rg,00) x N*~1, with N := N"~! compact, and with
metric of form:

Gm = —Vdt* + V7 dr? +rgn , (1.22)
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where gy is any Einstein metric, Ricy, = Agn, with gy scaled so that
A==£(n—2) or 0. Then for V = V(r) given by

V=c+r?—(2m)/r"?, (1.23)

with ¢ = £1 or 0 respectively, g, is a static solution of the vacuum KEin-
stein equations, with Ricy, = —ng.,. When appropriately extended, the
resulting space-times possess an event horizon at the largest positive root
ro of V(r).

It turns out that the collection of static vacuum black holes with a
negative cosmological constant is much richer than the one with A = 0. This
is due to rather different asymptotic behavior of the solutions. An elegant
way of capturing this asymptotic behavior, due to Penrose,? proceeds as
follows (for notational simplicity we assume that A < 0 has been scaled
as in (1.23)): Replacing in (1.22) the coordinate r by x = 1/r one obtains
Gm = 22§, where

dz?

P 2 n 2
gm——(l—FC.Z‘ —2mzx )dt +m

+gn - (1.24)

We are interested in the metric g,, for r > ry with some large ry, this
corresponds to x small, 0 < x < xg := 1/rg. The surprising fact is that

gm extends by continuity to a smooth Lorentzian metric on the set
S [0, IL’()].

It is then natural to look for static vacuum metrics of the form x72g,
with § smoothly extending to the conformal boundary at infinity {x = 0}.
Such metrics will be called conformally compactifiable. In Refs. 2 and 3 the
following is shown: write §|,—o as —a?dt? + gy, where gy is a Riemannian
metric on N, with 0;a = 0;gny = 0. Then:

(1) Let gy be a Riemannian metric, with sectional curvatures equal to mi-
nus one, on the compact manifold N. Then for all t-independent («, gn)
close enough to (1, gy) there exists an associated static, vacuum, con-
formally compactifiable black hole metric.

(2) In space-time dimension n+1 = 4, for all compact N the set of («, gn)
corresponding to conformally compactifiable static vacuum black holes
contains an infinite dimensional manifold.

All metrics presented so far in this section were static. A family of
rotating stationary solutions, generalising the Myers-Perry solutions to A #
0, can be found in Ref. 53.
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Rather surprisingly, when A < 0 there exist static vacuum black holes
in space-time dimension three,® discovered by Banados, Teitelboim and
Zanelli.> The static, circularly symmetric, vacuum solutions take the form

2 r? 2 r? 2 200
ds® = —(72 — m)dt + (FQ — m) dr® +r<de” , (1.25)
where m is related to the total mass and £2 = —1/A. For m > 0, this can be

extended, as in (1.3) with V2 = 72/¢2 —m, to a black hole space-time with
event horizon located at gy = £v/m. There also exist rotating counterparts
of (1.25), discussed in the reference just given.

1.3. Black strings and branes

Consider any vacuum black hole solution (.#,g), and let (IV,h) be a Rie-
mannian manifold with a Ricci flat metric, Ric(h) = 0. Then the space-time
(M x N,g@h) is again a vacuum space-time, containing a black hole region
in the sense used so far. (Similarly if Ric(g) = og and Ric(h) = oh then
Ric(g @ h) = og @ h.) Objects of this type are called black strings when
dim N =1, and black branes in general. Due to lack of space they will not
be discussed here, see Refs. 70, 80 and references therein.

2. Model independent concepts

We now describe a general framework for the notions used in the previous
sections. The mathematical notion of black hole is meant to capture the
idea of a region of space-time which cannot be seen by “outside observers”.
Thus, at the outset, one assumes that there exists a family of physically
preferred observers in the space-time under consideration. When consider-
ing isolated physical systems, it is natural to define the “exterior observers”
as observers which are “very far” away from the system under considera-
tion. The standard way of making this mathematically precise is by using
conformal completions, already mentioned above: A pair (.Z, §) is called a
conformal completion at infinity, or simply conformal completion, of (M, g)
if .4 is a manifold with boundary such that:

(1) . is the interior of .7,

(2) there exists a function 2, with the property that the metric g, defined
as 0%g on ., extends by continuity to the boundary of M , with the
extended metric remaining of Lorentzian signature,

¢There are no such vacuum black holes with A > 0, or with A = 0 and degenerate
horizons.?8
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(3) Q is positive on ., differentiable on M , vanishes on the boundary
I =M\ M,
with dQ2 nowhere vanishing on .&.

(In the example (1.24) we have Q = z, and .# = {x = 0}.) The boundary
S of M is called Scri, a phonic shortcut for “script I”. The idea here is the
following: forcing €2 to vanish on .# ensures that .# lies infinitely far away
from any physical object — a mathematical way of capturing the notion
“very far away”. The condition that d) does not vanish is a convenient
technical condition which ensures that .# is a smooth three-dimensional
hypersurface, instead of some, say, one- or two-dimensional object, or of a
set with singularities here and there. Thus, .# is an idealised description of
a family of observers at infinity.f
To distinguish between various points of .# one sets

#* = {points in .# which are to the future of the physical space-time} ,
#~ = {points in .# which are to the past of the physical space-time} .

(Recall that a point p is to the future, respectively to the past, of ¢ if there
exists a future directed, respectively past directed, causal curve from ¢ to
p. Causal curves are curves y such that their tangent vector + is causal
everywhere, g(¥,7) < 0.) One then defines the black hole region % as

2 := {the set of points in .# from which

no future directed causal curve in .# meets .# t1.(2.1)

By definition, points in the black hole region cannot thus send information
to £ T; equivalently, observers on .7 cannot see points in %. The white
hole region # is defined by changing the time orientation in (2.1).

In order to obtain a meaningful definition of black hole, one needs to
assume further that .#+ satisfies a few regularity conditions. For example,
if we consider the standard conformal completion of Minkowski space-time,
then of course #Z will be empty. However, one can remove points from that
completion, obtaining sometimes a new completion with a non-empty black
hole region. (Think of a family of observers who stop to exist at time ¢t = 0,
they will never be able to see any event with ¢ > 0, leading to a black hole
region with respect to this family.) We shall return to this question shortly.

fWe note that the behavior of the metric in the asymptotic region for the black strings
and branes of Section 1.3 is not compatible with this framework.
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A key notion related to the concept of a black hole is that of future (&)
and past (€~ ) event horizons,

ET=0B, E =W . (2.2)

Under mild assumptions, event horizons in stationary space-times with mat-
ter satisfying the null energy condition,

T 0"¢” >0 for all null vectors ¢#, (2.3)

are smooth null hypersurfaces, analytic if the metric is analytic.?® This is,
however, not the case in the non-stationary case: roughly speaking, event
horizons are non-differentiable at end points of their generators. In Ref. 29
a horizon has been constructed which is non-differentiable on a dense set.
The best one can say in general is that event horizons are Lipschitz,®3
semi-convex?® topological hypersurfaces.

In order to develop a reasonable theory one also needs a regularity
condition for the interior of space-time. This has to be a condition which
does not exclude singularities (otherwise the Schwarzschild and Kerr black
holes would be excluded), but which nevertheless guarantees a well-behaved
exterior region. One such condition, assumed in all the results described
below, is the existence in .# of an asymptotically flat space-like hyper-
surface . with compact interior region. This means that .% is the union
of a finite number® of asymptotically flat ends Sopt, each diffeomorphic
to R™\ B(0,R), and of a compact region .%,;. Further, either . has no
boundary, or the boundary of . lies on & U &~. To make things precise,
for any spacelike hypersurface let g;; be the induced metric, and let K;; de-
note its extrinsic curvature. A space-like hypersurface .7 diffeomorphic
to R™ minus a ball will be called an a-asymptotically flat end, for some
a > 0, if the fields (g,;, K;;) satisfy the fall-off conditions

1935 —6ij |4+ 475100, o, 95 |+ K|+ 4750y g Kij| < Cr7*, (2.4)

for some constants C, k > 1. The fall-off rate is typically determined either
by requiring that the leading deviations from flatness are identical to those
in the Tangherlini solution (1.1) with V' given by (1.7), or that the fall-off
rate be the same as in (1.7) (which leads to o« = n — 2), or by requiring a
well-defined ADM mass (which leads to oo > (n — 2)/2).

&There is no loss of generality in assuming that there is only one such region, if . is
allowed to have a trapped or marginally trapped boundary. However, it is often more
convenient to work with hypersurfaces without boundary.
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In dimension 3 + 1 there exists a canonical way of constructing a con-
formal completion with good global properties for stationary space-times
which are asymptotically flat in the sense of (2.4) for some a > 0, and
which are vacuum sufficiently far out in the asymptotic region, as follows:
Equation (2.4) and the stationary Einstein equations can be used® to prove
a complete asymptotic expansion of the metric in terms of powers of 1/ r.b
The analysis in Refs. 37 and 40 shows then the existence of a smooth con-
formal completion at null infinity. This conformal completion is referred to
as the standard completion and will be assumed from now on. It coincides
with the completion constructed in the last section for the metrics (1.22).

As already pointed out, an analysis along the lines of Beig and Simon?
has only been performed so far in dimension 3 4 1, and it is not clear
what happens in general, because the proofs use an identity which is wrong
in other dimensions. On one hand there sometimes exist smooth confor-
mal completions — we have just constructed some in the previous section.
On the other hand, it is known that the hypothesis of smoothness of the
conformal completion is overly restrictive in odd space-time dimensions in
general', though it could conceivably be justifiable for stationary solutions.
Whatever the case, we shall follow the .# approach here, and we refer the
reader to Ref. 19 for a discussion of further drawbacks of this approach,
and for alternative proposals.

Returning to the event horizon & = &+ U &, it is not very difficult to
show that every Killing vector field X is necessarily tangent to &: indeed,
since .# is invariant under the flow of X, so is .# T, and therefore also
I=(#1), and therefore also its boundary &t = 9I~(#1). Similarly for
&~ . Hence X is tangent to &. the Since both &% are null hypersurfaces, it
follows that X is either null or spacelike on & . This leads to a preferred class
of event horizons, called Killing horizons. By definition, a Killing horizon
associated with a Killing vector K is a null hypersurface which coincides
with a connected component of the set

H(K) :={pe A : g(K,K)(p)=0, K(p) #0} . (2.5)

hIn higher dimensions it is straightforward to prove an asymptotic expansion of station-
ary vacuum solutions in terms of In’ r/r%.

iIn even space-time dimension smoothness of .# might fail because of logarithmic terms
in the expansion.?1 %% In odd space-time dimensions the situation is (seemingly) even
worse, because of half-integer powers of 1/r°7
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A simple example is provided by the “boost Killing vector field” K =
20 + t0, in Minkowski space-time: H(K') has four connected components

Hes :={t=e€z,0t >0}, ¢€de{£l}.

The closure H of H is the set {|¢t| = ||}, which is not a manifold, because of
the crossing of the null hyperplanes {t = £z} at ¢t = z = 0. Horizons of this
type are referred to as bifurcate Killing horizons, with the set {K(p) = 0}
being called the bifurcation surface of H(K). The bifurcate horizon struc-
ture in the Kruskal-Szekeres-Schwarzschild space-time can be clearly seen
in Figure 1.

The Vishveshwara-Carter lemma shows that if a Killing vector K in
an (n+1)-dimensional space-time is hypersurface-orthogonal, K’ AdK® = 0,
then the set H(K) defined in (2.5) is a union of smooth null hypersur-
faces, with K being tangent to the null geodesics threading H, and so is
indeed a union of Killing horizons. It has been shown by Carter' that
the same conclusion can be reached in asymptotically flat, vacuum, four-
dimensional space-times if the hypothesis of hypersurface-orthogonality
is replaced by that of existence of two linearly independent Killing vec-
tor fields. The proof proceeds via an analysis of the orbits of the isome-
try group in four-dimensional asymptotically flat manifolds, together with
Papapetrou’s orthogonal-transitivity theorem, and does not generalise to
higher dimensions without further hypotheses.

In stationary-axisymmetric space-times a Killing vector K tangent to the
generators of a Killing horizon H can be normalised so that K = X +wY,

16,90

where X is the Killing vector field which asymptotes to a time translation
in the asymptotic region, and Y is the Killing vector field which generates
rotations in the asymptotic region. The constant w is called the angular
velocity of the Killing horizon H.

On a Killing horizon H(K) one necessarily has

VHKYK,) = —2kK". (2.6)

Assuming that the horizon is bifurcate (Ref. 61, p. 59), or that the so-
called dominant energy condition holds (this means that 7}, X*X” > 0
for all timelike vector fields X) (Ref. 56, Theorem 7.1), it can be shown
that s is constant (recall that Killing horizons are always connected in
our terminology), it is called the surface gravity of H. A Killing horizon is
called degenerate when k = 0, and non-degenerate otherwise; by an abuse
of terminology one similarly talks of degenerate black holes, etc. In Kerr
space-times we have x = 0 if and only if m = a. All horizons in the multi-
black hole Majumdar-Papapetrou solutions (1.13)-(1.16) are degenerate.
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A fundamental theorem of Boyer shows that degenerate horizons are
closed. This implies that a horizon H(K) such that K has zeros in H is
non-degenerate, and is of bifurcate type, as described above. Further, a
non-degenerate Killing horizon with complete geodesic generators always
contains zeros of K in its closure. However, it is not true that existence of
a non-degenerate horizon implies that of zeros of K: take the Killing vector
field 20; +t0, in Minkowski space-time from which the 2-plane {z =t = 0}
has been removed. The universal cover of that last space-time provides a
space-time in which one cannot restore the points which have been artifi-
cially removed, without violating the manifold property.

The domain of outer communications (d.o.c.) of a black hole space-time
is defined as

(t)y = \{BUWY . (2.7)

Thus, ((.#)) is the region lying outside of the white hole region and outside
of the black hole region; it is the region which can both be seen by the
outside observers and influenced by those.

The subset of ({.#)) where X is spacelike is called the ergoregion. In the
Schwarzschild space-time w = 0 and the ergoregion is empty, but neither of
these is true in Kerr with a # 0.

A very convenient method for visualising the global structure of space-
times is provided by the Carter-Penrose diagrams. An example of such a
diagram is presented in Figure 1.

A corollary of the topological censorship theorem of Friedman, Schleich
and Witt4346:47 i that d.o.c.’s of regular black hole space-times satisfying
the dominant energy condition are simply connected.*®°° This implies that
connected components of event horizons in stationary, asymptotically flat,
four-dimensional space-times have R x $2 topology.'?3% The restrictions in
higher dimension are less stringent,'®® in particular in space-time dimen-
sion five an R x S? x S! topology is allowed. A vacuum solution with this
horizon topology has been indeed found by Emparan and Reall.*2

Space-times with good causality properties can be sliced by families of
spacelike surfaces .%;, this provides an associated slicing &; = ., N & of the
event horizon. It can be shown that the area of the &,’s is well defined,?® this
is not a completely trivial statement in view of the poor differentiability
properties of &. A key theorem of Hawking®® (compare Ref. 28) shows
that, in suitably regular asymptotically flat space-times, the area of &;’s is
a monotonous function of ¢. This property carries over to black-hole regions
associated to null-convex families of observers, as in Ref. 19.
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Vacuum or electrovacuum regions with a timelike Killing vector can be
endowed with an analytic chart in which the metric is analytic. This result
has often been misinterpreted as holding up-to-the horizon. However, rather
mild global conditions forbid timelike Killing vectors on event horizons. The
Curzon metric, studied by Scott and Szekeres®® provides an example of
failure of analyticity at degenerate horizons. One-sided analyticity at static
non-degenerate vacuum horizons has been proved recently.?6 It is expected
that the result remains true for stationary Killing horizons, but the proof
does not generalise in any obvious way.

3. Classification of asymptotically flat stationary black
holes (“No hair theorems”)

We confine attention to the “outside region” of black holes, the do-
main of outer communications (2.7). For reasons of space we only con-
sider vacuum solutions; there is a similar theory for electro-vacuum black
holes.17:18:23:24,95 There also exists a somewhat less developed theory for
black hole spacetimes in the presence of nonabelian gauge fields.”!

Based on the facts below, it is expected that the d.o.c.’s of appropriately
regular, stationary, asymptotically flat four-dimensional vacuum black holes
are isometrically diffeomorphic to those of Kerr black holes.

(1) The rigidity theorem (Hawking®*55): event horizons in regular, non—
degenerate, stationary, analytic, four-dimensional vacuum black holes
are either Killing horizons for X, or there exists a second Killing vector
in ((.#)). The proof does not seem to generalise to higher dimensions
without further assumptions.

(2) The Killing horizons theorem (Sudarsky-Wald®®): non-degenerate sta-
tionary vacuum black holes such that the event horizon is the union of
Killing horizons of X are static. Both the proof in Ref. 89, and that
of existence of maximal hypersurfaces needed there,?* are valid in any
space dimensions n > 3.

(3) The Schwarzschild black holes exhaust the family of static regular vac-
uum black holes (Israel,®® Bunting — Masood-ul-Alam,'3 Chrusciel??).
The proof in Ref. 25 carries over immediately to all space dimensions
n > 3 (compare Refs. 52, 87), with the proviso of validity of the rigidity
part of the Riemannian positive energy theorem.)

IThe proofs of this last theorem, known at the time of writing of this work, require the
existence of a spin structure in space dimensions larger than eleven,*! though the result
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(4) The Kerr black holes satisfying

m? > a? (3.1)
exhaust the family of non—degenerate, stationary—axisymmetric, vac-
uum, connected, four-dimensional black holes. Here m is the total ADM
mass, while the product am is the total ADM angular momentum. The
framework for the proof has been set-up by Carter, and the statement
above is due to Robinson.®¢® The Emparan-Reall metrics*? show that
there is no uniqueness in higher dimensions, even if three commuting
Killing vectors are assumed; see, however, Ref. 74.

The above results are collectively known under the name of no hair
theorems, and they have not provided the final answer to the problem so far
even in four dimensions: First, there are no a priori reasons known for the
analyticity hypothesis in the rigidity theorem. Next, degenerate horizons
have been completely understood in the static case only.

In all results above it has been assumed that the metric approaches
the Minkowski one in the asymptotic region. Anderson' has shown that,
under natural regularity hypothesis, the only alternative concerning the
asymptotic behavior for static (3 + 1)-dimensional vacuum black holes are
“small ends”, as defined in his work. Solutions with this last behavior have
been constructed by Korotkin and Nicolai,®® and it would be of interest
to prove that there are no others. In higher dimension other asymptotic
behaviors are possible, examples are given by the metrics (1.22) with V =
c—(2m)/r"=2, and gy as described there.

Yet another key open question is that of existence of non-connected
regular stationary-axisymmetric vacuum black holes. The following result
is due to Weinstein:? Let 0.%,, @ = 1,..., N be the connected components
of 0.7. Let X° = guvXPdx¥, where X# is the Killing vector field which
asymptotically approaches the unit normal to .%.;. Similarly set Y? =
guYHdx¥, Y being the Killing vector field associated with rotations. On
each 0.7, there exists a constant w, such that the vector X +w,Y is tangent
to the generators of the Killing horizon intersecting 9.7,. The constant w,
is called the angular velocity of the associated Killing horizon. Define

My = —5= [55 ¥dX" (3.2)
Lo = =1 [y *dY" . (3.3)

is expected to hold without any restrictions.
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Such integrals are called Komar integrals. One usually thinks of L, as the
angular momentum of each connected component of the black hole. Set

fa = Mg — 2w Lg . (3.4)

Weinstein shows that one necessarily has p, > 0. The problem at hand
can be reduced to a harmonic map equation, also known as the Ernst
equation, involving a singular map from R? with Euclidean metric § to the
two-dimensional hyperbolic space. Let r, > 0, a = 1,..., N — 1, be the
distance in R? along the axis between neighboring black holes as measured
with respect to the (unphysical) metric §. Weinstein proves that for non-
degenerate regular black holes the inequality (3.1) holds, and that the metric
on ({#)) is determined up to isometry by the 3N — 1 parameters

(/1,1,...,/,LN,Ll,...,LN,Tl,...,’I“N_l) (35)

just described, with 74, g > 0. These results by Weinstein contain the
no-hair theorem of Carter and Robinson as a special case. Weinstein also
shows that for every N > 2 and for every set of parameters (3.5) with
La>Ta > 0, there exists a solution of the problem at hand. It is known that
for some sets of parameters (3.5) the solutions will have “strut singularities”

69,71,77,94 hyt the existence

between some pairs of neighboring black holes,
of the “struts” for all sets of parameters as above is not known, and is one of
the main open problems in our understanding of stationary—axisymmetric
electro—vacuum black holes. The existence and uniqueness results of Wein-
stein remain valid when strut singularities are allowed in the metric at the
outset, though such solutions do not fall into the category of regular black
holes discussed so far.

Some of the results above have been generalised to A # 0.4 11,33,49,84

4. Dynamical black holes: Robinson-Trautman metrics

The only known family of vacuum, singularity-free (in the sense described in
the previous section), dynamical black holes, with exhaustive understanding
of the global structure to the future of a Cauchy surface, is provided by the
Robinson-Trautman (RT) metrics.

By definition, the Robinson—Trautman space—times can be foliated by
a null, hypersurface orthogonal, shear free, expanding geodesic congruence.
It has been shown by Robinson and Trautman that in such a space-time
there always exists a coordinate system in which the metric takes the form

ds? = —® du? — 2dudr + r?e* o, dz® dzb, 2% €M, = AMu, %),
(4.1)
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Gab = Gap(2®), D= g + ﬁAgR - 27”‘ R = R(gay) = R(€*jup),
m is a constant which is related to the total Bondi mass of the metric, R
is the Ricci scalar of the metric ga, = €**jap, and (2M, G43) is a smooth
Riemannian manifold which we shall assume to be a two-dimensional sphere
(other topologies are considered in Ref. 21).

For metrics of the form (4.1), the Einstein vacuum equations reduce
to a single parabolic evolution equation for the two-dimensional metric
g= gabdxadxb:

AR

-1, 4.2
oY (4.2)

Oug
This is equivalent to a non-linear fourth order parabolic equation for the
conformal factor A. The Schwarzschild metric provides an example of a
time-independent solution.

The Cauchy data for an RT metric consist of Ag(z®) = A(u = ug, z%).
Equivalently, one prescribes a metric g, of the form (4.1) on the null
hypersurface {u = ug,x® € 2M, r € (0,00)}. Note that this hypersurface
extends up to a curvature singularity at » = 0, where the scalar I-Bagmgl’?o‘ﬂ'y‘s
diverges as 7~%. This is a ‘white hole singularity”, familiar from all known
black hole spaces-times.

It is proved in Ref. 20 that, for m > 0, every such initial \g leads
to a black hole space-time. More precisely, one has the following: For
any \g € C°(S?) there exists a Robinson-Trautman space-time (.Z, g)
with a “half-complete” ZT, the global structure of which is shown in Fig-
ure 5. Moreover, there exist an infinite number of non-isometric vacuum

r=20

Fig. 5. The global structure of RT space-times with m > 0 and spherical topology.
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Robinson-Trautman C® extensions* of (.#, g) through ¥, which are ob-
tained by gluing to (., g) any other Robinson—Trautman spacetime with
the same mass parameter m, as shown in Figure 6. Each such extension
leads to a black-hole space-time, in which %" becomes a black hole event
horizon. (There also exist an infinite number of C1!7 vacuum RT extensions
of (#,g) through T — one such extension can be obtained by gluing
a copy of (#,g) to itself. Somewhat surprisingly, no extensions of €23
differentiability class exist in general.)

r=20
e (A, 9)
r=20

Fig. 6. Vacuum RT extensions beyond H+

5. Initial data sets containing trapped, or marginally
trapped, surfaces

Let 7 be a compact, (n—1)-dimensional, spacelike submanifold in a (n+1)—
dimensional space-time (.#, g). We assume that there is a continuous choice
£ of a field of future directed null normals to .7, which will be referred to
as the outer one. Let ¢;, 1 = 1,--- ,n — 1 be a local ON frame on .7, one
sets

n—1

0y = Zg(veif, €;) .

i=1
Then 7 will be called future outer trapped if 6+ > 0, and marginally
future outer trapped if 04 = 0. A marginally trapped surface lying within a
spacelike hypersurface is often referred to as an apparent horizon.

kBy this we mean that the metric can be C°® extended beyond #1; the extension can
actually be chosen to be of C5: differentiability class, for any a < 1.
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It is a folklore theorem in general relativity that, under appropriate
global conditions, existence of a future outer trapped or marginally trapped
surface implies that of a non-empty black hole region. So one strategy in
constructing black hole space-times is to find initial data which will contain
trapped, or marginally trapped, surfaces® 8 38 39,68,72

It is useful to recall how apparent horizons are detected using initial
data: let (%, g, K) be an initial data set, and let S C . be a compact
embedded two-dimensional two-sided submanifold in .. If n? is the field
of outer normals to S and H is the outer mean extrinsic curvature' of S
within . then, in a convenient normalisation, the divergence 6, of future
directed null geodesics normal to S is given by

0y = H + K;;j(g" —n'n?) . (5.1)

In the time-symmetric case 6 reduces thus to H, and S is trapped if and
only if H < 0, marginally trapped if and only if H = 0. Thus, in this case
apparent horizons correspond to compact minimal surfaces within .%.

It should be emphasised that the existence of disconnected apparent
horizons within an initial data set does not guarantee, as of the time of
writing this work, a multi-black-hole spacetime, because our understanding
of the long time behavior of solutions of Einstein equations is way too poor.
Some very partial results concerning such questions can be found in Ref. 32.

5.1. Brill-Lindquist initial data

Probably the simplest examples are the time-symmetric initial data of Brill
and Lindquist. Here the space-metric at time t = 0 takes the form

g = (=2 ((dx1)2 Fot (dxn)Q) : (5.2)

with

—1+Z2|x_4|n S

The positions of the poles &; € R™ and the values of the mass parameters
m; € R are arbitrary. If all the m; are positive and sufficiently small, then
for each 4 there exists a small minimal surface with the topology of a sphere
which encloses Z;.32 From Ref. 62, in dimension 3+1 the associated maximal

'We use the definition that gives H = 2/r for round spheres of radius r in three-
dimensional Euclidean space.
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globally hyperbolic development possesses a .# 1+ which is complete to the
past. However .#* cannot be smooth,%* and it is not known how large it is
to the future. One expects that the intersection of the event horizon with
the initial data surface will have more than one connected component for
sufficiently small values of m;/|Z} — Z;|, but this is not known.

5.2. The “many Schwarzschild” initial data

There is a well-known special case of (5.2), which is the space-part of the
Schwarzschild metric centred at ¥y with mass m :

4/(n—2)
g= (1 + m) 5, (5.3)

207 — Fol" 2
where § is the Euclidean metric. Abusing terminology in a standard way, we
call (5.3) simply the Schwarzschild metric. The sphere |Z—Zo| = m/2 is min-
imal, and the region |Z — Zy| < m/2 corresponds to the second asymptotic
region. This feature of the geometry, as connecting two asymptotic regions,
is sometimes referred to as the Finstein-Rosen bridge, see Figure 2.

Now fix the radii 0 < 4R; < Ry < oo. Denoting by B(d, R) the open
coordinate ball centred at @ with radius R, choose points

B(07R2) \B(0,4R1) , R >0

Z; €ET9(4R1, Ro) :=
o(4Rs, Ro) {B(QRQ)’ .o

and radii r;, i = 1,...,2N, so that the closed balls B(Z;,4r;) are all con-
tained in I'g(4R;, R2) and are pairwise disjoint. Set

Q:=To(Ry, Ro) \ (uiB(@,n)) . (5.4)

We assume that the Z; and r; are chosen so that €2 is invariant with respect
to the reflection ¥ — —Z. Now consider a collection of nonnegative mass
parameters, arranged into a vector as

M: (mam07m1a"'7m2N)a

where 0 < 2m; < r;, ¢ > 1, and in addition with 2mg < Ry if Ry > 0 but
mo = 0 if Ry = 0. We assume that the mass parameters associated to the
points Z; and —Z; are the same. The remaining entry m is explained below.
Given this data, it follows from the work in Refs.2”3% that there exists
a d > 0 such that if
2N

> mil <6, (5.5)

i=0
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Fig. 7. ”Many Schwarzschild” initial data with four black holes. The initial data are
exactly Schwarzschild within the four innermost circles and outside the outermost one.
The free parameters are R, (Z1,r1,m1), and (&3, 73, m3), with sufficiently small mg’s.
We impose ma = m1, rg =11, mg = m3 and r4 = r3.

then there exists a number

2N
m = Z m; + 0(52)
i=0
and a C°° metric §,; which is a solution of the time-symmetric vacuum
constraint equation

such that:

(1) On the punctured balls B(&;, 2r;) \ {#;}, ¢ > 1, g,; is the Schwarzschild
metric, centred at r;, with mass m;;

(2) OnR™\ B(0,2R2), §,; agrees with the Schwarzschild metric centred at
0, with mass m;

(3) If Ry > 0, then g,; agrees on B(0,2R;) \ {0} with the Schwarzschild
metric centred at 0, with mass mg.

By point (1) above each of the spheres |Z — &;| = m;/2 is an apparent
horizon.

A key feature of those initial data is that we have complete control of the
space-time metric within the domains of dependence of B(Z;, 2r;)\{Z;} and
of R™\ B(0,2R;), where the space-time metric is a Schwarzschild metric.
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Because of the high symmetry, one expects that “all black holes will
eventually merge”, so that the event horizon will be a connected hypersur-
face in space-time.

5.3. Black holes and gluing methods

A recent alternate technique for gluing initial data sets is given in Refs. 59.
In this approach, general initial data sets on compact manifolds or with
asymptotically Euclidean or hyperboloidal ends are glued together to pro-
duce solutions of the constraint equations on the connected sum manifolds.
Only very mild restrictions on the original initial data are needed. The neck
regions produced by this construction are again of Schwarzschild type. The
overall strategy of the construction is similar to that used in many previous
gluing constructions in geometry. Namely, one takes a family of approxi-
mate solutions to the constraint equations and then attempts to perturb
the members of this family to exact solutions. There is a parameter 1 which
measures the size of the neck, or gluing region; the main difficulty is caused
by the tension between the competing demands that the approximate solu-
tions become more nearly exact as 7 — 0 while the underlying geometry and
analysis become more singular. In this approach, the conformal method of
solving the constraints is used, and the solution involves a conformal factor
which is exponentially close to one (as a function of ) away from the neck
region. It has been shown?° that the deformation can actually be localised
near the neck in generic situations.

Consider, now, an asymptotically flat time-symmetric initial data set,
to which several other time-symmetric initial data sets have been glued by
this method. If the gluing regions are made small enough, the existence
of a non-trivial minimal surface, hence of an apparent horizon, follows by
standard results. This implies the existence of a black hole region in the
maximal globally hyperbolic development of the data.

It is shown in Ref. 32 that the intersection of the event horizon with the
initial data hypersurface will have more than one connected component for
several families of glued initial data sets.
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