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1. Introduction

In any physical theory one of the fundamental notions is that of energy of
the objects at hand: in mechanics one considers the energy of, say, moving
masses; in field theories one is interested in the energy of field configurations.
A unified treatment of this question, which applies both to mechanics and
to field theory, proceeds through a Hamiltonian formalism. We will shortly
review below how such a procedure is carried out in the theory of scalar fields
on Minkowski space-time; let us, at this stage, mention that an important
issue, often ignored in the textbooks, is that of the boundary conditions sat-
isfied by the set of fields under consideration. While this issue can be safely
ignored — for many purposes — when considering the usual field theories,
such as scalar fields or electromagnetism, on the {t = const} hypersurfaces,
where t is a Minkowski-time, it sometimes plays a critical role when other
classes of hypersurfaces are considered. In the case of gravity the situation is
worse: even for {t = const} asymptotically Minkowskian slices the boundary
terms are crucial. (This is one of the main differences between the Arnowitt-
Deser-Misner (ADM) mass for gravity (cf. Section 5.4 below), which is given
by a boundary integral, and the usual energy expression for field theories in
Minkowski space-time, where the Hamiltonian is usually a volume integral.)
Now, in field theory the energy plays its most important role in the radiation
regime, where it can be radiated away by the field. This leads one to the
need of considering hypersurfaces which extend to the radiation zone; this
requirement is made precise by considering hypersurface which asymptote to
null hypersurfaces in an appropriate way. (Technically, this will correspond
to hypersurfaces with specific boundary behaviour in a conformal compactifi-
cation of Minkowski space-time. In such compactifications the radiation zone
becomes a neighbourhood of a conformal boundary I .) The aim of this work
is to analyse the issues which arise when attempting to obtain a Hamiltonian
description of radiating fields, with emphasis on the geometric character of
the objects involved. More precisely, we develop a geometric Hamiltonian for-
malism adequate for a canonical description of field theories in the radiation
regime, extending previous work of Kijowski and Tulczyjew [85]. While our
main objective here is the radiation zone, we note that several aspects of our
construction are new even in more standard contexts. The formalism is first
applied in detail to the toy model of a massless scalar field in Minkowski
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space-time at null infinity. This has some interest of its own; more impor-
tantly, it allows us also to adress the difficulties which arise in a simpler
setting. Our real interest is the gravitational field, and we apply, next, our
formalism to general relativity at null infinity. In particular we derive Hamil-
tonian formulae for energy, momentum, angular-momentum, as well as for
the Hamiltonians for boosts and “supertranslations”. Now, the — generally
accepted — notion of energy in general relativity appropriate in the radiation
regime is the one which has been introduced by Trautman [108], and further
studied by Bondi [24]; we will refer to this mass as the Trautman–Bondi
mass; the original motivation for this work was to show how this quantity
arises in a Hamiltonian framework. One of the main results of the work here
is a natural Hamiltonian definition of global Lorentz charges — that is, an-
gular momentum and boost integrals — for cuts of I , which is free from the
“supertranslation ambiguities”.

We shall now expand the quick overview, just given, of our work here. Let
us start with a brief review of the Hamiltonian description of the dynamics
of the massless scalar wave equation on Minkowski space-time,

2φ = 0 . (1.1)

Consider the collection of solutions of (3.1) with initial data which are, say,
smooth and compactly1 supported on the hypersurface S0 = {x0 = 0} ⊂
R

1,3, where R
1,3 stands for the four dimensional Minkowski space-time. As is

well known (and discussed in more detail below), this theory can be described
as a dynamical system by considering the restrictions (φt, πt) of (φ, ∂φ/∂t)
to the hypersurfaces St = {x0 = t}. In this approach the family (φt, πt),
t ∈ R, can be thought of as a smooth curve in the set C∞

0 (R3) ⊕ C∞
0 (R3)

of smooth compactly supported functions on R
3. The associated dynamical

system is Hamiltonian, and in the standard formulation all the Hamiltonians
generating the equations of motion are of the form

H =
1

2

∫

R3

(π2 + |∇φ|2)d3x+ C . (1.2)

This follows from the facts that: 1) H given by (3.2) is differentiable and
satisfies the appropriate generating equations (cf. Chapter 4.1 below); 2) the
difference of any two Hamiltonians has vanishing differential, and therefore
must be a constant because the space of field configurations is path connected.

The constant in (3.2) can be gotten rid of by requiring that the energy
vanishes for the trivial configuration φ = π = 0. This requirement leads
then to a uniquely defined quantity, usually identified with the total energy
contained in a field configuration.

1 The condition of smooth compactly supported initial data is made only for sim-
plicity, and can be considerably relaxed. In particular, later on in this work, we
shall consider field configurations which do not satisfy this hypothesis.
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When one attempts to replace the hypersurfaces St above with hyper-
surfaces which extend to null infinity, various difficulties arise (they will be
presented and adressed in the work below). In this context some Hamiltonian
formulations of the dynamics have been presented [8, 11, 12, 68, 75], and in all
those formulations the Hamiltonian turns out to be the energy calculated
“at spatial infinity”. More precisely, in the above mentioned descriptions of
a scalar field in Minkowski space-time the Hamiltonian is, essentially2, the
energy calculated on hypersurfaces {x0 = const} as in Equation (3.2), where
x0 refers to the Minkowskian time coordinate. (Similarly, in the analysis of
the gravitational field in [8, 11, 12, 68, 75] the Hamiltonian is, essentially, the
ADM mass.) Now we are interested in a definition of the energy in the ra-
diating regime, where one expects that the correct energy should not be
given by the integrals of the energy-momentum tensor on the level sets of the
Minkowskian time, but on hypersurfaces extending into the radiation zone;
this would be the scalar field equivalent of the Trautman–Bondi mass in gen-
eral relativity [24, 108], and we will use those names when refering to that
mass. It has been argued [113] that no such formulation is possible, because
in a Hamiltonian system the energy is conserved, while the Trautman–Bondi
mass is not. We shall show that the argument of [113] does not apply when
things are suitably formulated, and that there exists a Hamiltonian descrip-
tion of the dynamics of the scalar field in the radiating regime in which the
Hamiltonian is the Trautman–Bondi mass; see Sections 4.4 and 4.5 for a
simple exposition of these ideas.

Recall, next, that in a manner rather analogous to the scalar field on
Minkowski space-time, the Einstein equations induce a dynamical system on
the phase space of those gravitational initial data which are asymptotically
flat in spacelike directions; this is discussed in more detail in Section 5.4
below. In this case all the Hamiltonians corresponding to space-time motions
which reduce to unit time translations to the future in the asymptotically
flat regions, are of the form

H = MADM + C ,

MADM =
1

16π

∫

S∞

(gij,j − gjj,i)dSi (1.3)

(the integral over the union “S∞” of all the “spheres at infinity” is understood
as a limit as R tends to infinity of integrals over the union of spheres of radius
R in all the asymptotically flat regions), with the constant C usually set to

2 The qualification ”essentially” here is due to the fact that the equality of the
Hamiltonian with the energy of Minkowskian-time slices {x0 = const} is correct
for smooth compactly supported initial data, and is expected to be true for the
more general data considered in those works. However, no such rigourous results
are known even in the case of the scalar field on Minkowski space-time. A similar
comment applies to the gravitational field.
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zero3. Here gij denotes the metric on the “t = 0 hypersurface”, with indices
i, j in (3.3) running from 1 to 3, and being summed over.

In complete analogy to the scalar field case the situation in the radia-
tion regime is much less satisfactory. Here one expects the Trautman–Bondi
energy [24, 98, 107, 108] to be the physically relevant measure of the total
energy contained in a hypersurface S that intersects I + in an appropri-
ate way. To our knowledge no satisfactory theoretical justification of such a
statement has been given so far, though some partial results can be found
in [23, 41, 113]. The strongest hint in this direction seems to be given by the
uniqueness theorem of [41], which asserts that the Trautman–Bondi energy
is the unique functional, up to a multiplicative constant, in an appropriate
class of functionals, which is monotonic in time under time translations of
S . While monotonicity is certainly a reasonable condition, it is not clear to
us that the requirement of monotonicity is a sufficient criterion for exclud-
ing all other possibilities. We emphasize that this problem has nothing to do
with the gravitational field, as it occurs already for a massless scalar field in
Minkowski space-time.

The purpose of this monograph is to show that there exists a Hamiltonian
description of dynamics of a massless scalar field, as well as of the dynam-
ics of the gravitational field, in the radiation regime. We construct such a
framework, and exhibit two different ways in which the Trautman–Bondi en-
ergy arises. The first such occurrence is by taking an appropriate limit of the
Hamiltonians on the phase space P̂ [−1,0] of Sections 6.5 or 5.9 below. This
gives a unique result, up to one normalization constant, on each connected
component of the phase space. Next, we show that the Trautman–Bondi en-
ergy is one of the Hamiltonians on yet another phase space (the phase space
P[−1,0] of Sections 6.4 or 5.8). For reasons which we discuss in detail be-
low the freedom of adding a constant to any Hamiltonian leads to essential
ambiguities, related to the nature of P[−1,0], which we describe in an exhaus-
tive way. While those ambiguities are somewhat reminiscent of the ones that
arise in the “Noether charge” approach (cf., e.g., [28, 41]), the arbitrariness
left turns out to be considerably smaller. We are unaware of any natural pre-
scription which would remove that arbitrariness. We give arguments, parallel
to those in [41], which indicate that the requirement of monotonicity with
respect to time translations to the future singles out a unique Hamiltonian —
the Trautman–Bondi energy. The analysis here is similar to, but not identical
with the one in [41], because we work in the class of smoothly conformally
compactifiable space-times which have complete spacelike hypersurfaces. We
note that the class of functionals, which are Hamiltonians, is considerably

3 While the choice C = 0 is rather reasonable, it is not clear whether this is the
best one in all situations: the topology of the initial surface can be varied at
will, so that the space of initial data is certainly not connected in any reasonable
topology, and one is free to choose different values of C on different connected
components of the phase space. This freedom could have some physical signifi-
cance, e.g. when a path integral is performed.
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smaller than the class of the functionals considered in [41], but the problem
here is more constrained in view of the global conditions imposed.

It should be pointed out that some of our constructions are somewhat
related to those of [8]. Those authors consider fields which, when extended
to I +, are defined on the semi-global sets I

+
(−∞,τ), cf. Equation (6.20) be-

low. As already pointed out, in the approach of [8] the dynamics is (up to
severe mathematical difficulties) Hamiltonian, with the Hamiltonian equal
to (again ignoring some mathematical problems) the ADM mass, and not

the Trautman–Bondi mass. Moreover, our approach allows us to avoid alto-
gether those difficulties [8], which are related to global existence questions for
the general relativistic Cauchy problem, as well as to convergence of various
integrals on I

+
(−∞,τ).

This work is organized as follows: In Chapter 4 we start by recalling some
elementary facts concerning Hamiltonian dynamical systems, and we give
some toy examples illustrating some of the ideas developed in the remainder
of this work. In Chapter 5 we describe our geometric Hamiltonian framework,
adequate both to the usual asymptotically-flat-at-spatial-infinity regime and
to the radiation regime, which generalizes the framework of [85]. We note
that our framework clarifies some questions which arise already in standard
contexts, in particular the question of interpretation of general relativistic
initial data sets with vanishing lapse function. As far as the radiation zone is
concerned, it turns out that the case of the massless scalar field on Minkowski
space-time already exhibits several essential features of the problems that
arise there, while avoiding various technicalities which occur when one wishes
to describe the Einstein gravity. Therefore we continue, in Chapter 6, with
a detailed description of the application of our formalism to the case of the
massless scalar field. The formalism of Chapter 5 is applied to the case of
Einstein gravity in Chapters 5 and 6. The inspection of the table of contents
should give the reader a faithful impression of the contents of the various
sections.

Acknowledgements JJ wishes to thank the Région Centre for financial
support, and the Department of Mathematics of the Tours University for hos-
pitality during part of work on this paper. We are grateful to M. MacCallum
for help with a symbolic algebra calculation.





2. Preliminaries

2.1 Hamiltonian dynamics

There exist different approaches to the definition of a Hamiltonian system
(cf., e.g., [2, 30, 85, 88]). An exhaustive treatment in the infinite dimensional
case would involve delicate considerations concerning the manifold structure
of the spaces at hand; in particular, one would have to introduce the notion
of tangent vectors, differential forms, as well as an appropriate notion of non-
degeneracy and closedness of the symplectic form. We do not wish to enter
into such questions, and the purpose of this chapter is to present a simple
minded approach which avoids all those issues. We shall show in the following
chapters that the dynamics of the massless scalar field in the radiation regime,
as well as that of the gravitational field in the radiation regime, satisfies the
requirements of the definitions given in this chapter.

We begin with the definition of an autonomous Hamiltonian system,
where both the dynamics and the associated Hamiltonian function H are
time-independent. Consider a vector space P in which the notion of a dif-
ferentiable curve can be defined. (In this work, unless indicated otherwise,
when P is a space of differentiable functions on a set O , then we will say
that a curve fλ ∈ P , λ ∈ R, is differentiable if the family of functions fλ

is jointly differentiable in λ ∈ R and x ∈ O .) Recall that a family of maps
Tλ : P → P , λ ∈ R, is called a differentiable dynamical system on P if

1. T0 = id, the identity map on P , if
2. Ta ◦ Tb = Ta+b, and if
3. for every p ∈ P the orbit of Tλ defined as the map λ → Tλ(p) ∈ P is a

differentiable curve on P .

We set

X(p) =
dTλ(p)

dλ

∣∣∣
λ=0

. (2.1)

We will call X a vector field generating the dynamics; by this we only mean
that Equation (4.1) holds. In particular, no hypotheses are made about the
possibility of recovering Tλ from X — here the fundamental object is Tλ.

Let Ω be a bilinear antisymmetric map on P with values in R; the Ω’s
we will consider will satisfy some non-degeneracy conditions but we do not
need to make those precise here. We shall say that the dynamical system is
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Hamiltonian if there exists a function H on P such that for all differentiable
curves pσ on P we have

dH(pσ)

dσ

∣∣∣
σ=0

= −Ω

(
X,
dpσ

dσ

∣∣∣
σ=0

)
. (2.2)

(We note that this definition implicitly requires H(pσ) to be differentiable at
σ = 0 whenever pσ is.) The function H will be called a Hamiltonian for the
dynamical system (P , Tλ).

As an illustration, let P = C∞
0 (R3) ⊕ C∞

0 (R3) be the space of pairs of
smooth compactly supported functions on R

3. Let f be a solution of the
massless scalar field equation on Minkowski space-time,

2f = 0 ,

satisfying

f(t = 0) = ϕ ,
∂f

∂t
(t = 0) = π , (ϕ, π) ∈ P ,

and set

P 3 (ϕ, π) → Tλ(ϕ, π) =
(
f(t = λ),

∂f

∂t
(t = λ)

)
∈ P .

Here t is a Minkowskian time coordinate in Minkowski space-time. If we equip
P with the standard (“symplectic”) form,

Ω((ϕ1, π1), (ϕ2, π2)) =

∫

R3

(ϕ1π2 − ϕ2π1)d
3x ,

then the dynamical system (P, Tλ) is Hamiltonian in the above sense, with

H(ϕ, π) =
1

2

∫

R3

(|Dϕ|2 + π2) d3x . (2.3)

Here |Dϕ| denotes the length of the space-gradient of ϕ.
It turns out that even for the massless scalar field we need to generalize

the set-up above, allowing non-autonomous (time-dependent) Hamiltonian
systems. More precisely,

1. it will be necessary to consider a dynamical system generated (in the
sense of Equation (4.5) below) by a time-dependent “vector field” Xt,

2. with the corresponding time-dependent flow Tt,s only locally defined.

More precisely, we will consider a family Tt,s of maps

R × R × P ⊃ U 3 (t, s, p) → Tt,s(p) ∈ P , (2.4)

defined on an open connected subset U of R×R×P . Those maps describe
where a trajectory of the dynamical systems passing through a point p at
time s will arrive at time t. We shall further require:
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1. For all p ∈ P the maps Tt,s are defined on an open set of t’s and s’s,
containing zero: U ⊃ {0} × {0} × P .

2. The composition formula

Tt3,t2 ◦ Tt2,t1 = Tt3,t1

holds whenever all the objects in the above equation are simultaneously
defined.

3. For all (t, p) ∈ R×P the curves s→ Tt+s,t(p) are differentiable at s = 0.

We set

Xt(p) =
dTt+s,t

ds

∣∣∣
s=0

. (2.5)

We mention that in one of the cases considered below for the massless scalar
field (the phase space P̂ [−1,0] of Section 6.5) the set U will be of the form

U = {t ∈ (−1,∞), s ∈ (−1,∞), p ∈ P} . (2.6)

In the scalar field case the restrictions on t and s that follow from (4.6)
arise because we will mainly be interested in those solutions of the massless
scalar field equation which are defined to the future of a given hyperboloid
in Minkowski space-time. In the gravitational field case there is a further
fundamental reason for allowing a U not necessarily equal to R × R × P ,
related to the blow up in finite time of solutions of the Einstein equations.

The equivalent of (4.2) reads

dH(t, pσ)

dσ

∣∣∣
σ=0

= −Ω
(
Xt,

dpσ

dσ

∣∣∣
σ=0

)
, (2.7)

for all curves pσ differentiable at σ = 0, and for those t for which (t, 0, p =
p0) ∈ U (so that Xt is defined). Equation (4.7) is the desired generalization
of the notion of a Hamiltonian dynamical system to the time-dependent case,
with the Hamiltonian H being defined on an appropriate subset of R × P .

Recall that there is another standard way of dealing with time-dependent
Hamiltonians [88, Chapter V, p. 328], which consists in enlarging the phase
space by adding to it t and its conjugate variable p0. While this can be done
in our case, we have found the approach above to be simpler.

The global time-independent formulation is a special case of the local
time-dependent one if one sets Tt,s ≡ Tt−s, U ≡ R × R × P .

Let us close this section with the simple observation, that functionals
satisfying Equation (4.7) are unique up to a constant when the phase space

P is connected, and locally path connected via differentiable paths. Indeed, if
H1 and H2 satisfy Equation (4.7) then H1−H2 has vanishing derivative along
any one-differentiable one-parameter family of fields, so thatH1−H2 is locally
constant by local path connectedness, hence constant by connectedness of P .
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2.2 The role of boundary conditions in Hamiltonian

field theory

In this section we want to give a short and informal overview of the ideas,
which we later use to describe radiation phenomena in the Hamiltonian field
theory. Let us analyse more in detail the definition of the Hamiltonian flow,
given by formula (4.7), in the case of the scalar wave equation. We introduce
the following notation: whenever we have a differentiable family of functions
f(x;σ), where the variables x describe the position of a point in the physical
space, or in space-time, and σ is an abstract parameter, then the derivative
of this family with respect to the parameter, calculated at σ = 0 will be
denoted by δ:

δf(x) :=
∂f(x;σ)

∂σ

∣∣∣
σ=0

. (2.8)

This notation is standard in the calculus of variation. In functional spaces
considered in this monograph (as, e.g., in the space P = {(ϕ, π)} of Cauchy
data for the wave equation, considered in the previous section), differentiable

curves are simply differentiable one-parameter families of functions. When-
ever we meet a “variation of a function”, we understand that a one-parameter
family f(x;σ) of functions over physical space (or space-time) has been cho-
sen and the derivative (4.8) has been calculated. In this notation, the left
hand sides of (4.2) or (4.7) become simply δH .

Another derivative, which we shall often use in our work, is the Lie deriva-
tive LX or (in the case of field theories which are more general than the scalar
field theory) the covariant derivative DX , along a space-time vector field X
defining the evolution which we want to describe. It is sometimes convenient
to use coordinates adapted to this vector field so that we have X = ∂0, and
the corresponding Lie derivative reduces to the time derivative. Whenever it
does not lead to any misunderstanding, we shall denote it by a “dot”. As will
be seen in the next Chapter, the use of adapted coordinates may be avoided
and the entire Hamiltonian field theory formulated in geometric terms, both
for flows of vector fields and for motions of hypersurfaces.

In adapted coordinates used in the previous section, the components of
the vector (4.5), defined on the space of Cauchy data P = {(ϕ, π)} for the
scalar field theory are simply denoted by (LXϕ,LXπ) = (ϕ̇, π̇), where a
dot denotes now the usual derivative with respect to the Minkowskian time
coordinate, in a Minkowskian coordinate system. The field equation

2f = ∆f − f̈ = 0 ,

expressed in terms of Cauchy data (ϕ, π), gives the following system of equa-
tions:

ϕ̇ = π , (2.9)

π̇ = ∆ϕ . (2.10)
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Using the definition of the form Ω in space P , given in the previous section,
we may rewrite the Equation (4.7) for the scalar field in the following way:

−δH =

∫

R3

(π̇δϕ− ϕ̇δπ)d3x

=

∫

R3

((LXπ)δϕ− (LXϕ)δπ)d3x . (2.11)

Let us analyse in more detail the mechanism which leads to this equation.
For this purpose we calculate explicitly the variation of the Hamiltonian
(4.3). Because derivatives with respect to the parameter σ commute with
derivatives with respect to space variables, we have:

−δH(ϕ, π) = −δ

{
1

2

∫

R3

(|Dϕ|2 + π2) d3x

}

= −

∫

R3

(Dϕ ·Dδϕ+ πδπ) d3x

=

∫

R3

(∆ϕδϕ− πδπ) d3x−

∫

R3

D(Dϕδϕ) d3x . (2.12)

Hence, equation (4.12) is equivalent to (4.11) if and only if the last integral
vanishes. Due to the Stokes theorem, it may be converted into a “surface
integral at infinity” of the vector field −(Dϕ)δϕ. It vanishes if sufficiently
fast fall-off conditions are imposed on the field f ; for definiteness, as in the
previous section we assume that f is compactly supported on each hypersur-
face of constant Minkowskian time, but much weaker asymptotic conditions
are of course sufficient.

Now, consider the evolution of the same scalar field f but in a finite
volume V ⊂ R

3, with non-empty boundary. Let HV be the total amount of
the usual field energy contained in V :

HV (ϕ, π) =
1

2

∫

V

(|Dϕ|2 + π2) d3x . (2.13)

Similar calculations as above lead to the following result:

−δHV (ϕ, π) =

∫

V

(∆ϕδϕ− πδπ) d3x+

∫

∂V

(πaδϕ) dσa , (2.14)

where we have introduced the notation

πa := −Daϕ , (2.15)

and used the Stokes theorem to convert the last integral into a surface in-
tegral. To recover the definition of a Hamiltonian (4.7) — or, equivalently,
Equation (4.11) — we must annihilate the surface integral by imposing some
boundary conditions on the elements of our phase space P = {(ϕ, π)}. It
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should be stressed that the need for imposing boundary conditions does not
arise only because we wish to have a formula such as (4.7); without boundary
conditions the time evolution does not define a dynamical system, since then
the initial value problem is not well posed: the scalar field f in the future
may be changed due to incoming or outgoing radiation, even if the Cauchy
data at t = 0 remain the same. Boundary conditions are necessary to obtain
a deterministic system. Physically, they can be thought of as our control of
the radiation passing through the boundary ∂V of the region V , in which we
perform experiments.

In the example just given the boundary of the space-time region R × V
is a timelike hypersurface. In such situations a simple way to annihilate the
surface integral in (4.14) is to choose some function ψ : R × ∂V → R and to
impose on the scalar field f the Dirichlet boundary condition

f
∣∣
R×∂V

= ψ , (2.16)

for all functions used in the sequel1. This implies

ϕ
∣∣
∂V

≡ f
∣∣
{0}×∂V

= ψ
∣∣
{0}×∂V

=⇒ δϕ
∣∣
∂V

= 0 , (2.17)

within the class of functions satisfying condition (4.16). If ψ is time-independent,
we obtain in this way a well defined, autonomous Hamiltonian system. For
a time-dependent boundary condition one could think, at a first glance, that
the very notion of a phase-space Pt = {(ϕ, π) : ϕ

∣∣
∂V

= ψ(t, ·)} does depend
upon time and, therefore, no Hamiltonian description is possible. The rem-
edy to this difficulty is, however, straightforward: choose any time-dependent
function φ = φ(t, x), which satisfies the boundary condition (4.16), and pa-
rameterize the data (ϕ, π) by the following functions:

ϕ̃ := ϕ− φ , π̃ := π − φ̇ . (2.18)

The new variables fulfill a homogeneous, time independent, boundary condi-
tion

ϕ̃
∣∣
∂V

= 0 , (2.19)

and Equations (4.18) provide an identification of all the phase spaces Pt with

the time-independent phase space P̃ = {(ϕ̃, π̃) : ϕ̃
∣∣
∂V

= 0}. The Hamiltonian
description of the field theory is, therefore, applicable (i.e., formula (4.11)
remains valid) also in case of time-dependent boundary data. The only price
we pay for this is an explicit time-dependence of the Hamiltonian, arising
from the (given a priori) “reference function” φ and its derivatives, when

1 In the case of null boundaries, or for the description of radiation, this method
does not apply; a simple example illustrating this will be given in Section 4.4
below. The point of the examples in this section is not to show in a simple case
how we handle the radiation problem, but to give an indication of the kind of
problems that arise when domains with boundary are considered.
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we substitute ϕ := ϕ̃ + φ and π := π̃ + φ̇ in formula (4.13). Physically, the
non-autonomous properties of the field dynamics within V is due to time-
dependent external forces, applied on the boundary ∂V , in order to control
the boundary data of the field in a prescribed way.

Imposing Dirichlet boundary conditions is by no means a unique way to
annihilate the surface integral in (4.14), obtaining thus a Hamiltonian dy-
namical system. A frequently used alternative consists in imposing Neumann
conditions, i.e., prescribing the value of πa dσa on the boundary. For this
purpose we write

πaδϕ = δ(πaδϕ) − ϕδπa ,

and transfer the first term to the left-hand side of (4.14). (The manipula-
tions involved are somewhat reminiscent of those which arise when Legendre
transformations are carried on.) This leads us to the formula

−δH̃V (ϕ, π) =

∫

V

(∆ϕδϕ− πδπ) d3x−

∫

∂V

(ϕδπa) dσa , (2.20)

where the new Hamiltonian, describing the mixed Cauchy–Neumann evolu-
tion equals:

H̃V (ϕ, π) := HV (ϕ, π) +

∫

∂V

(πaϕ) dσa = HV (ϕ, π) +

∫

V

Da(πaϕ) d3x .

(2.21)
Equation (4.20) leads to the formula (4.11) for the Hamiltonian evolution
of the Cauchy data, because the Neumann boundary condition on πadσa

implies:
δ(πa dσa)

∣∣
∂V

≡ 0 ,

within the class of functions allowed by the condition and, therefore, the
surface integral vanishes.

These issues will be discussed in following chapters under more general
circumstances, and the mathematical structures associated with the above
formulae will be described. One of the points of the examples given was to
stress that in some situations there might be many ways to translate the
field evolution into the language of Hamiltonian dynamics. Different physical
situations lead to different boundary conditions. For the gravitational field,
governed by Einstein equations, possible choices of boundary conditions on
bounded domains with boundary have been discussed in [83], [82] and [84]
from a symplectic point of view. It is expected that those considerations
might shed some light on the associated analytic problem; see [60] for some
rigorous analytic results that do not involve symplectic considerations.

2.3 Tangential translations as a Hamiltonian system

In the usual treatment of relativistic field theories on Minkowski space-time
the field energy provides the Hamiltonian for the time evolution; here the
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dynamics is associated with the space-time vector field X = ∂t, which is
transversal to the Cauchy surfaces. Under some circumstances one might be
interested in evolution of the fields under motions associated with vector fields
tangent to the Cauchy surface; we will encounter such situations throughout
this monograph. Again in textbook treatments, the “generator of tangential
space translations” is the momentum of the field configuration. Let us analyse
more carefully such a “dynamics” for motions of the massless scalar field
under the group Tλ of space translations, generated by the field X = ∂a:

P 3 (ϕ, π) → Tλ(ϕ, π) := (Tλ(ϕ), Tλ(π)) ∈ P , (2.22)

where

Tλ(ϕ)(x) := ϕ(x+ λea) , (2.23)

Tλ(π)(x) := π(x+ λea) , (2.24)

and ea denotes the versor of a-th axis in R
3. The vector field (4.5), corre-

sponding to this evolution, equals:

(LXϕ,LXπ) = (∂aϕ, ∂aπ) .

Let us check that the a-th component of the field momentum,

Pa(ϕ, π) =

∫

R3

(π∂aϕ) d3x , (2.25)

provides indeed a Hamiltonian for the dynamics, by calculating its variation:

−δPa(ϕ, π) = −

∫

R3

(π∂aδϕ+ (∂aϕ)δπ) d3x (2.26)

=

∫

R3

((∂aπ)δϕ− (∂aϕ)δπ) d3x−

∫

R3

∂a(πδϕ) d3x (2.27)

=

∫

R3

((LXπ)δϕ − (LXϕ)δπ)d3x . (2.28)

The last equation is satisfied, because the integral of a total divergence van-
ishes when sufficiently fast asymptotic fall-of conditions are imposed on ϕ;
recall that we are assuming that ϕ is compactly supported. In the case of a
bounded domain V , the resulting boundary integral

I∂V =

∫

∂V

(πδϕ) dσa ,

provides in general an obstruction to the Hamiltonian character of the asso-
ciated dynamics.

Replacing ∂a by an an arbitrary complete vector field X = Xa∂a, tangent
to the Cauchy space R

3, and the group of rigid space translations by the one-
parameter group of diffeomorphisms G X generated by X , we may generalize
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the above example. A “time evolution” associated with G X can be defined
by Lie transporting both ϕ and π along the flow of the field X ; we stress that
the “time” involved has nothing to do with the physical time, and is simply
a parameter along the integral curve of X . With this definition the vector
tangent to the evolution curve is given by the Lie derivative of both objects
with respect to X :

(LXϕ,LXπ) = (Xa∂aϕ, ∂a(Xaπ)) . (2.29)

(The last expression for the Lie derivative of π is due to the fact that the
momentum is not a scalar function but a scalar density. This is discussed in
more detail in the next chapter.)

Let PV be given by the formula

PX
V (ϕ, π) :=

∫

V

(πXa∂aϕ) d3x ; (2.30)

calculating its variation we obtain:

−δPX
V (ϕ, π) =

∫

V

((LXπ)δϕ− (LXϕ)δπ)d3x+

∫

∂V

(πaδϕ) dσa ,(2.31)

where we have set
πa := −Xaπ . (2.32)

The dynamics associated with the dragging of the scalar field along a vector
field X is, again, Hamiltonian if the surface integral vanishes. This occurs
without the need of imposing any boundary conditions on the initial data
when X is tangent to the boundary ∂V : in such a case the surface integral
vanishes identically and PX

V becomes a Hamiltonian. This holds e.g., for the
one-parameter group of rotations, whenever they leave V invariant. In that
case, PX

V is usually identified with the total amount of angular momentum
carried by the field within V .

2.4 The Hamiltonian description of a mixed Cauchy –

characteristic initial value problem

The main purpose of this monograph is to give a description of radiation
phenomena in terms of Hamiltonian dynamics. Those phenomena are best
captured by adding to space-time a conformal boundary, called Scri, and
denoted by the symbol I = I +∪I −; outgoing radiation can then be studied
in a neighbourhood of I +, while ingoing radiation is related to the behaviour
of the fields in a neighbourhood of I −. I + is a null-like, three-dimensional
manifold, with structure similar to that of a light cone. To illustrate methods
which will be used to describe field dynamics on I +, let us consider a toy
example, in which the “asymptotic light cone I +” is replaced by a standard,
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finite light cone. Now, a Hamiltonian description of the field dynamics within
the future-oriented light cone

C
+ = {(t, x) : ‖x‖ < t}

must take into account the incoming radiation, which enters C + through
its boundary. In this monograph we have concentrated on a description of
the outgoing radiation. Hence, we use the past oriented cone C − = {(t, x) :
‖x‖ < −t}, to make our toy model better adapted to this purpose. Both
cases are, however, symmetric: replacing t with −t one obtains a toy model
for outgoing radiation from the incoming radiation one, and vice versa.

To eliminate technicalities and make the model as simple as possible, let
us restrict ourselves to the two-dimensional Minkowski space. This means
that space is one dimensional: x ∈ R

1. We consider again a massless scalar
field, solving the wave equation. We want to describe its Cauchy data on the
surfaces {t = const} in the interior of the cone C −. To be able to identify these
surfaces for different times, let us introduce new coordinates (ξµ) = (τ, ξ)
(where µ = 0, 1), related to the Minkowskian coordinates (xµ) = (t, x) in the
following way:

t = −e−τ , (2.33)

x = ξe−τ , (2.34)

where τ ∈ R
1 and |ξ| ≤ 1. Within this range, the new coordinates parame-

terize the entire cone C −. To derive the Hamiltonian description of the wave
equation in these coordinates, we use the textbook procedure, based on the
standard, relativistic-invariant Lagrangian

L = L d2x , (2.35)

where

L = −
1

2
gµν(∂µf)(∂νf) =

1

2

{
(∂tf)2 − (∂xf)2

}
. (2.36)

We rewrite this Lagrangian in the coordinates (τ, ξ), using the following for-
mulae which may be easily derived from (4.33) and (4.34):

∂t = eτ (∂τ + ξ∂ξ) ,

∂x = eτ∂ξ .

Moreover, we have

d2x = dtdx = e−2τdτdξ = e−2τd2ξ .

Expressing the Lagrangian (4.35) in terms of new coordinates we thus obtain:

L = L d2ξ , (2.37)
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where

L =
1

2

{
(∂τf + ξ∂ξf)2 − (∂ξf)2

}
. (2.38)

The standard procedure, valid for an arbitrary Lagrangian density L =
L (f, fµ, ξ

µ), where fµ := ∂µf , proceeds as follows: We introduce generalized
momenta:

πµ :=
∂L

∂fµ

, (2.39)

and calculate the variation of the Lagrangian:

δL =
∂L

∂f
δf + πµδfµ = ∂µ (πµδf) +

(
∂L

∂f
− ∂µπ

µ

)
δf . (2.40)

The field equation 2f = 0 is equivalent to the vanishing of the Euler–
Lagrange term in (4.40):

∂L

∂f
− ∂µπ

µ = 0 , (2.41)

and, therefore, is equivalent to the following equation which must be fulfilled
by the variation of L :

δL = ∂µ (πµδf) = (πδϕ)· + ∂ξ

(
π1δϕ

)
, (2.42)

where we have denoted by ϕ the restriction of the field f to the Cauchy surface
Σ = {τ = const.} and by a dot — the derivative with respect to the new
time variable τ . Moreover, we have introduced the momentum π := π0, which
provides the remaining piece of Cauchy data on the surface2. Integrating the
field equation (4.42) over a volume V in the Cauchy surface Σ = {τ =const.},
we obtain the following identity, valid for fields satisfying the wave equation:

δ

∫

V

L dξ =

∫

V

(πδϕ)
·
dξ +

∫

∂V

(
π1δϕ

)
dσ1

=

∫

V

(π̇δϕ− ϕ̇δπ + δ(πϕ̇)) dξ +
[
π1δϕ

]
∂V

, (2.43)

where the integral over the 0-dimensional boundary ∂V is equal to the dif-
ference of values of the integrand between the two ends of ∂V . This identity
is equivalent to the following formula:

−δHV (ϕ, π) =

∫

V

(π̇δϕ− ϕ̇δπ) dξ +
[
π1δϕ

]
∂V

=

∫

V

((LXπ)δϕ− (LXϕ)δπ) +
[
π1δϕ

]
∂V

, (2.44)

2 Actually, πdξ is a pull-back of a differential odd-form πµ∂µcdξ0 ∧ dξ1 to the
surface τ = const. This proves that it does not depend upon the choice of the
coordinate x0, but only upon the choice of the Cauchy surface Σ. The structure
of the canonical field momentum πµ is discussed in the next chapter.
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where

HV (ϕ, π) :=

∫

V

(πϕ̇− L ) . (2.45)

The procedure used applies to an arbitrary Lagrangian. Its geometric context,
together with the structure of the momentum πµ will be discussed thoroughly
in the next chapter. Here, we perform calculations for the specific Lagrangian
(4.37) and obtain:

π = π0 =
∂L

∂f0
= ∂τf + ξ

∂f

∂ξ
= ϕ̇+ ξ∂ξϕ , (2.46)

π1 =
∂L

∂f1
= ξ

(
∂τf + ξ

∂f

∂ξ

)
−
∂f

∂ξ
= ξϕ̇− (1 − ξ2)∂ξϕ . (2.47)

These equations imply, according to (4.41), the following field dynamics:

ϕ̇ = π − ξ∂ξϕ , (2.48)

π̇ = ∂ξ

(
ξϕ̇− (1 − ξ2)∂ξϕ

)
= ∂ξ(ξπ) − ∂2

ξϕ . (2.49)

Using (4.48), the Hamiltonian (4.45) may by written explicitely in terms of
Cauchy data:

HV (ϕ, π) :=

∫

V

{π(π − ξ∂ξϕ) − L } dξ

=
1

2

∫

V

{
π2 − 2πξ∂ξϕ+ (∂ξϕ)2

}
dξ

=
1

2

∫

V

{
(π − ξ∂ξϕ)2 + (1 − ξ2)(∂ξϕ)2

}
dξ . (2.50)

The main lesson stemming from the above formulae is the following: Consider,
first, a domain V that lies strictly inside the interior of the cone, i.e., V =
[a, b], with −1 < a, b < 1. Then R×∂V is timelike and the situation is similar
to the one described in Section 4.2: boundary conditions on ∂V have to be
added and the mixed Cauchy- (on V ) and boundary- (on ∂V ) problem is well
posed. Restricting the class of admissible functions to those fulfilling Dirichlet
condition (4.16), we obtain (4.17) and, therefore, the boundary term in (4.44)
vanishes. This implies the Hamiltonian form of the field evolution within the
cone. A treatment similar to the one used in Section 4.2 is also applicable in
the space of functions fulfilling Neumann conditions on ∂V .

The situation changes drastically if we pass to sections of the light cone,
setting V = [−1, 1]. Having chosen Cauchy data (ϕ, π) on V at a given instant
of time, say τ0, we still have the freedom to chose boundary data on ∂V , i.e.,
the values ϕ(τ,−1) and ϕ(τ, 1), but only for τ ≤ τ0. Indeed, with this whole
set of Cauchy and boundary data, the scalar field f is uniquely determined
within the entire light cone C −. Consequently, the values ϕ(τ,−1) and ϕ(τ, 1)
for τ > τ0 are uniquely determined by the Cauchy data and cannot be chosen
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freely. Even if we take trivial boundary data in the past, the boundary term
in (4.43) might cease to vanish at an instant of time τ0 + ε, and things can be
arranged so that this happens arbitrarily close to τ0. At a first glance there
is no way to obtain a Hamiltonian evolution of Cauchy data in this case.

The remedy for these difficulties consists in treating the data on the
boundary of the light cone not as boundary data, but as a further piece
of Cauchy data. For this purpose, we extend the parameterization Equa-
tions (4.33)-(4.34) to |ξ| > 1 setting:

t = −x := −e−τ+ξ−1 for ξ > 1 , (2.51)

t = x := −e−(τ+ξ−1) for ξ < −1 , (2.52)

and we consider the data (ϕ, π) on the entire surface Σ = {ξ ∈ R
1}. Within

the interior of the light cone, i.e., for |ξ| < 1, the dynamics is governed by
the Hamiltonian (4.50):

H[−1,1](ϕ, π) =
1

2

∫ 1

−1

{
(π − ξ∂ξϕ)2 + (1 − ξ2)(∂ξϕ)2

}
dξ , (2.53)

which, as we have already seen, satisfies the correct Hamiltonian equation for
the wave equation, modulo the boundary term in (4.44) which will be taken
care of by the considerations that follow. Outside of the interval ξ ∈ [−1, 1],
the dynamics reduces to translations tangent to the hypersurface on which
the data are given, as discussed in the previous section. The only difference
here is that the relevant part of the phase spaces ”lives” on a null rather
than a spacelike hypersurface, which plays no role in the considerations of
Section 4.3. More precisely, equation (4.51) implies that we haveX = ∂τ = ∂ξ

for ξ < −1, whereas (4.52) implies: X = ∂τ = −∂ξ for ξ > 1. Consequently,
we have:

LXϕ = −∂ξϕ , LXπ = −∂ξπ for ξ > 1 , (2.54)

and
LXϕ = ∂ξϕ , LXπ = ∂ξπ , for ξ < −1 , (2.55)

which are special cases of the formula (4.29). According to the standard
procedure, described in the next chapter (see also footnote 2, page 39), the
momentum π on Σ is taken as the pull-back to the Cauchy surface, of the
differential (odd) form πµ∂µcdξ

0 ∧ dξ1, with πµ is given by formula (4.39).
According to (4.30), the contribution to the Hamiltonian of the field contained
in the region [1,∞) equals

H[1,∞)(ϕ, π) =

∫ ∞

1

(−π∂ξϕ) d3x , (2.56)

whereas the corresponding contribution from the region [1,∞) is equal to

H(−∞,−1](ϕ, π) =

∫ −1

−∞

(+π∂ξϕ) d3x . (2.57)
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Let us prove that the functional H , equal to the sum of these contributions,

H := H(−∞,−1] +H[−1,1] +H[1,∞) , (2.58)

satisfies the equation (4.2) defining a Hamiltonian for the joint dynamical
system, given by (4.55) for ξ < −1, by (4.54) for ξ > 1 and by Equa-
tions (4.48)-(4.49) for −1 < ξ < 1. Indeed, a variation of H gives us the
sum of two formulae of the type (4.31), for ξ < −1 and ξ > 1 respectively,
together with formula (4.44) for −1 < ξ < 1. This means that we have:

−δH(ϕ, π) =

∫

Σ

(LXπδϕ− LXϕδπ) dξ

+
[
π1δϕ

]−1

−∞
+

[
π1δϕ

]1

−1
+

[
π1δϕ

]∞
1
, (2.59)

with appropriate values for (LXϕ,LXπ) in the respective regions of Σ. But
the intermediate boundary terms at ξ = −1 and ξ = 1 cancel because of
the continuity of ξ and π1. Assuming sufficiently strong fall-of conditions for
the Cauchy data (e.g., assuming that they are compactly supported on Σ)
we also obtain a cancelation of the boundary terms at both infinities. What
remains is the desired Hamiltonian formula for the total dynamics on Σ:

−δH(ϕ, π) =

∫

Σ

(LXπδϕ− LXϕδπ) dξ . (2.60)

The continuity of π1, which if fundamental for the cancelation of the in-
termediate boundary terms in (4.59), may be roughly explained as follows:
π1 is a component of the vector density πµ, corresponding to the family of
hypersurfaces ξ1 = ξ = const. This vector density is defined, and continu-
ous, on the entire space-time (which in our case is the light cone C −). At
boundary points ξ = −1 and ξ = 1 there is no jump in the field of tangents
to the surfaces ξ = const. and, therefore, π1 is continuous as well. We note
that there are various delicate issues concerning the exterior orientation of
the hypersurfaces involved, which are discussed in the next chapter and in
Appendix A.

2.5 The Trautman–Bondi energy for the scalar field

Formula (4.60) enables us to describe the dynamics of a massless scalar field
within the light cone in terms of a Hamiltonian dynamical system in an
abstract space R

2, parameterized by the “generalized time parameter” τ and
the “generalized space parameter” ξ. Cauchy data are given on the Cauchy
surfaces Σ = {ξ0 = τ = const.}. The phase space P = {(ϕ, π)} is defined as
the collection of compactly supported fields on Σ. The function ϕ is supposed
to be continuous and piecewise smooth. On the other hand, the momentum
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π = π0 might fail to be continuous at boundary points ξ = −1 and ξ = 1,
because the Cauchy surfaces Σ = {ξ0 = τ = const} “change direction” in
a non-continuous way there. Consequently, we assume that π is piecewise
continuous in the three regions of Σ separately. Moreover, π0 ≡ π has to
fulfill the following constraint:

π = −ϕ̇ = ∂ξϕ for ξ < −1 , (2.61)

π = ϕ̇ = −∂ξϕ for ξ > 1 . (2.62)

This can be seen from Equation (4.47) and from the fact that π1 coincides
with π = π0 for |ξ| > 1; this last property holds because the hypersurfaces
{ξ1 = const} coincide with the hypersurfaces {ξ0 = const} there.

The above constraints imply the following formulae for the Hamiltonian
on the light cone:

H(−∞,−1] =

∫ −1

−∞

(∂ξϕ)2 d3x , (2.63)

and

H[1,∞) =

∫ ∞

1

(∂ξϕ)2 d3x . (2.64)

(The reader is referred to Equations (6.38)-(6.40) for an explicit calculation
of the associated variational formulae in a similar context.)

The evolution with respect to the field X = ∂τ is determined by the
Hamiltonian formula (4.60), where the Hamiltonian is defined by (4.58). The
Hamiltonian system obtained this way is autonomous, because the Hamilto-
nian does not depend explicitly on time. Hence, it is conserved during the
evolution. But formulae (4.63) and (4.64) prove that H(−∞,−1] and H[1,∞) are
monotonically increasing functions of time. Indeed, their values are equal to
the integral of a non-negative function (∂ξϕ)2 over a portion of the boundary
∂C− of the cone which grows when time increases. This implies that H[−1,1]

must be a monotonically decreasing function of time. We see that, due to
radiation, the energy is being transferred from the “Cauchy zone”: [−1, 1], to
the “radiation zone”: [−∞,−1] ∪ [1,∞].

The real radiation problem is obtained when the boundary ∂C − is moved
to infinity. By analogy with similar constructions done in general relativity,
in such a case the amount of energy H[−1,1] contained in the Cauchy zone will
be called the Trautman-Bondi energy of the scalar field. As we shall see in the
sequel, the properties of H[−1,1] are analogous to the decreasing properties
of the Trautman-Bondi mass in general relativity, irrespective of the limiting
transition mentioned.

It should be pointed out that in the simple model of this section we have
considered field configurations defined globally on C −. For various reasons,
discussed below, it is useful to consider situations in which this is not the
case. This introduces some supplementary complications, which are taken
care of in the remainder of this monograph.
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