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Chapter 1

The local evolution problem

1.1 The nature of the Einstein equations

The vacuum Einstein equations with cosmological constant Λ read

Gαβ + Λgαβ = 0 , (1.1.1)

where Gαβ is the Einstein tensor,

Gαβ := Rαβ −
1

2
Rgαβ , (1.1.2)

while Rαβ is the Ricci tensor of the Levi-Civita connection of g, and R the
scalar curvature. We will sometimes refer to those equations as the vacuum
Einstein equations, regardless of whether or not the cosmological constant van-
ishes. Taking the trace of (1.1.1) one obtains

R =
2(n + 1)

n− 1
Λ , (1.1.3)

where, as elsewhere, n + 1 is the dimension of spacetime. This leads to the
following equivalent version of (1.1.1):

Ric =
2Λ

n− 1
g . (1.1.4)

Thus the Ricci tensor of the metric is proportional to the metric. Pseudo-
Lorentzian manifolds the metric of which satisfies Equation (1.1.4) are called
Einstein manifolds in the mathematical literature; see, e.g., [59].

Given a manifold M , Equation (1.1.1) or, equivalently, Equation (1.1.4)
forms a system of partial differential equations for the metric. Indeed, recall
that for the Levi-Civita connection we have

Γαβγ = 1
2g
ασ(∂βgσγ + ∂γgσβ − ∂σgβγ) , (1.1.5)

Rαβγδ = ∂γΓ
α
βδ − ∂δΓαβγ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ , (1.1.6)

Rαβ = Rγαγβ . (1.1.7)

We see that the Ricci tensor is an object built out of the Christoffel symbols and
their first derivatives, while the Christoffel symbols are built out of the metric

3



4 CHAPTER 1. LOCAL EVOLUTION

and its first derivatives. These equations further show that the Ricci tensor
is linear in the second derivatives of the metric, with coefficients which are
rational functions of the gαβ ’s, and quadratic in the first derivatives of g, again
with coefficients rational in g. Equations linear in the highest order derivatives
are called quasi-linear, hence the vacuum Einstein equations constitute a second
order system of quasi-linear partial differential equations for the metric g.

In the discussion above we have assumed that the manifold M has been
given. Such a point of view might seem to be too restrictive, and sometimes it
is argued that the Einstein equations should be interpreted as equations both
for the metric and the manifold. The sense of such a statement is far from being
clear, one possibility of understanding that is that the manifold arises as a result
of the evolution of the metric g. We are going to discuss in detail the evolution
point of view below, let us, however, anticipate and mention the following:
there exists a natural class of spacetimes, called maximal globally hyperbolic (see
Appendix A.22, p. 233, for a definition), which are obtained by the vacuum
evolution of initial data, and which have topology R ×S , where S is the n-
dimensional manifold on which the initial data have been prescribed. Thus,
these spacetimes (as defined precisely in Theorem 2.1.1 below) have topology
and differentiable structure which are determined by the initial data. As will
be discussed in more detail in Chapter 2, the spacetimes so constructed are
sometimes extendible. Now, there do not seem to exist conditions which would
guarantee uniqueness of extensions of the maximal globally hyperbolic solutions,
while examples of non-unique extensions are known. Therefore it does not
seem useful to consider the Einstein equations as equations determining the
manifold beyond the maximal globally hyperbolic region. We conclude that in
the evolutionary point of view the manifold can be also thought as being given
a priori, namely M = R × S . We stress, however, that the decomposition
M = R ×S has no intrinsic meaning in general, in that there is no natural
time coordinate which can always be constructed by evolutionary methods and
which leads to such a decomposition.

Now, there exist standard classes of partial differential equations which are
known to have good properties. They are determined by looking at the algebraic
properties of those terms in the equations which contain derivatives of highest
order, in our case of order two. Inspection of (1.1.1) shows (see (1.1.22) below)
that this equation does not fall in any of the standard classes, such as hyperbolic,
parabolic, or elliptic. In retrospect this is not surprising, because equations in
those classes typically lead to unique solutions. On the other hand, given any
solution g of the Einstein equations (1.1.4) and any diffeomorphism Φ, the pull-
back metric Φ∗g is also a solution of (1.1.4), so whatever uniqueness there might
be will hold only up to diffeomorphisms. An alternative way of describing this,
often found in the physics literature, is the following: suppose that we have
a matrix gµν(x) of functions satisfying (1.1.1) in some coordinate system xµ.
If we perform a coordinate change xµ → yα(xµ), then the matrix of functions
ḡαβ(y) defined as

gµν(x)→ ḡαβ(y) = gµν(x(y))
∂xµ

∂yα
∂xν

∂yβ
(1.1.8)
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will also solve (1.1.1), if the x-derivatives there are replaced by y-derivatives.
This property is known under the name of diffeomorphism invariance, or co-
ordinate invariance, of the Einstein equations. Physicists say that “the diffeo-
morphism group is the gauge group of Einstein’s theory of gravitation”.

Somewhat surprisingly, Choquet-Bruhat [205] proved in 1952 that there
exists a set of hyperbolic equations underlying the Einstein equations. This
proceeds by the introduction of so-called wave coordinates, also called harmonic
coordinates, to which we turn our attention in the next section. Before doing
that, let us pass to the derivation of a somewhat more explicit and useful form
of the Einstein equations. In index notation, the definition of the Riemann
tensor takes the form

∇µ∇νXα −∇ν∇µXα = RαβµνX
β . (1.1.9)

A contraction over α and µ gives

∇α∇νXα −∇ν∇αXα = RβνX
β . (1.1.10)

Suppose that X is the gradient of a function φ, X = ∇φ, then we have

∇αXβ = ∇α∇βφ = ∇β∇αφ ,

because of the symmetry of second partial derivatives. Further

∇αXα = 2gφ ,

where we use the symbol
2g ≡ ∇µ∇µ

to denote the wave operator associated with a Lorentzian metric g; e.g., for a
scalar field we have

2gφ ≡ ∇µ∇µφ =
1√

− det gαβ
∂µ(
√
− det gρσg

µν∂νφ) . (1.1.11)

For gradient vector fields (1.1.10) can be rewritten as

∇α∇α∇νφ−∇ν∇α∇αφ = Rβν∇βφ ,

or, equivalently,
2gdφ− d(2gφ) = Ric(∇φ, ·) , (1.1.12)

where d denotes exterior differentiation. Consider Equation (1.1.12) with φ
replaced by yA, where yA is any collection of functions,

2gdy
A = dλA +Ric(∇yA, ·) , (1.1.13)

λA ≡ 2gy
A . (1.1.14)

(The yA’s will be shortly assumed to form a coordinate system satisfying some
convenient conditions, but this is irrelevant at this stage.) Set

gAB ≡ g(dyA, dyB) ; (1.1.15)
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this is consistent with the usual notation for the inverse metric when the yA’s
form a coordinate system. For simplicity we have written g instead of g♯ for
the metric on T ∗M . By the product rule we have

2gg
AB = ∇µ∇µ(g(dyA, dyB))

= ∇µ(g(∇µdyA, dyB) + g(dyA,∇µdyB))
= g(2gdy

A, dyB) + g(dyA,2gdy
B) + 2g(∇µdyA,∇µdyB)

= g(dλA, dyB) + g(dyA, dλB) + 2g(∇µdyA,∇µdyB)
+2Ric(∇yA,∇yB) . (1.1.16)

Let us suppose that the functions yA solve the homogeneous wave equation:

λA = 2gy
A = 0 . (1.1.17)

The Einstein equation (1.1.4) inserted in (1.1.16) implies then

EAB ≡ 2gg
AB − 2g(∇µdyA,∇µdyB)−

4Λ

n− 1
gAB (1.1.18a)

= 0 . (1.1.18b)

Now,

∇µ(dyA) = ∇µ(∂νyA dxν)
= (∂µ∂νy

A − Γσµν∂σy
A)dxν . (1.1.19)

Suppose that the dyA’s are linearly independent and form a basis of T ∗M , then
(1.1.18b) is equivalent to the vacuum Einstein equation. Further we can choose
the yA’s as coordinates, at least on some open subset of M ; in this case we
have

∂Ay
B = δBA , ∂A∂Cy

B = 0 ,

so that (1.1.19) reads

∇BdyA = −ΓABCdyC .

This, together with (1.1.18b), leads to

2gg
AB − 2gCDgEFΓACEΓ

B
DF −

4Λ

n− 1
gAB = 0 . (1.1.20)

Here the ΓABC ’s should be calculated in terms of the gAB ’s and their deriva-
tives as in the usual equation for the Christoffel symbols (1.1.5), and the wave
operator 2g is understood as acting on scalars. We have thus shown that in
“wave coordinates”, as defined by the condition λA = 0, the Einstein equation
forms a second-order quasi-linear wave-type system of equations (1.1.20) for the
metric functions gAB . This gives a strong hint that the Einstein equations pos-
sess a hyperbolic, evolutionary character; this fact will be fully justified in what
follows.
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Remark 1.1.1 Using the explicit formula for the Ricci tensor and the Christoffel
symbols, and without imposing any coordinate conditions, one has

Rνρ[g] =
1

2

{
∂

∂xδ

(
gδη

[
−∂gρν
∂xη

+
∂gνη
∂xρ

+
∂gρη
∂xν

])
− ∂

∂xρ

(
gδη

∂gδη
∂xν

)}

+
1

4

{
gλπ

(
∂gδπ
∂xλ

+
∂gλπ
∂xδ

− ∂gλδ
∂xπ

)
gδη
(
∂gνη
∂xρ

+
∂gρη
∂xν

− ∂gρν
∂xη

)

−gλη
(
∂gδη
∂xρ

+
∂gρη
∂xδ

− ∂gρδ
∂xη

)
gδπ

(
∂gνπ
∂xλ

+
∂gλπ
∂xν

− ∂gλν
∂xπ

)}
.

(1.1.21)

This is clearly not very enlightening, and fortunately almost never needed.
It should be kept in mind that the coefficients gδη of the matrix (gδη) inverse

to (gµν) take the form gδη = (det(gµν))
−1
pδη, with pδη’s being homogeneous poly-

nomials, of degree one less than the dimension of the manifold, in the gµν ’s. In
particular the Ricci tensor is an analytic function of the metric and its first and
second derivatives away from the set det(gµν) = 0.

Let us denote by

T ∗
M ⊗ S2

M ∋ (k, h) 7→ σ(k)µν [h] ∈ S2
M

the symbol of the Ricci tensor. Here the Ricci tensor is understood as a quasi-
linear PDE operator, and we denote by S2M the bundle of two-covariant symmetric
tensors. By definition, the map σ(k) is obtained by keeping in Rµν only those terms
which involve second derivatives of the metric, and replacing each term ∂α∂βgµν by

∂α∂βgµν → kαkβhµν ,

with h ∈ S2M : From (1.1.21) we find

σ(k)νρ[h] =
1

2

{
kδg

δη [−hρνkη + hνηkρ + hρηkν ]− kρgδηhδηkν
}
.(1.1.22)

Now, the type of a PDE operator is determined by the properties of the kernel of
the symbol. For example, one says that an operator is elliptic if for every k 6= 0
its symbol is invertible as a linear map. (See e.g. [166] for a definition of hyperbolic
linear operators in terms of the algebraic properties of the symbol.)

A calculation shows (cf., e.g., [215]):

1. For every covector η the tensor

hµν = kµην + ηµkν

is in the kernel of σ(k). Such tensors arise from covariance of the Ricci tensor
under diffeomorphisms, and exhaust the kernel when kαk

α 6= 0.

2. If k 6= 0 is null, in dimension (n+1) the kernel has dimension n(n+1)/2 and
is spanned by tensors of the form

hµν = ℓµν + kµην + ηµkν ,

with kµℓµν = 0 and gµνℓµν = 0.

It follows, e.g., that the equation Rµν = 0 is certainly not elliptic, whether g is
Riemannian, Lorentzian, or else. In fact, one also finds [215] that there is no known
notion of hyperbolicity which applies directly to the Ricci tensor. 2



8 CHAPTER 1. LOCAL EVOLUTION

Remark 1.1.2 Our derivation so far of the “harmonically reduced equations” has
the advantage of giving an explicit form of the lower order terms in the equation in
a compact form. An alternative, more standard, derivation of those equations starts
from (1.1.21) and proceeds as follows: The explicit formula for the “harmonicity
functions” λµ := 2xµ reads

λµ = 2gx
µ = gδη∇δ∂ηx

µ = gδη(∂δ∂ηx
µ − Γσ

δη∂σx
µ) = −gδηΓµ

δη

= −1

2
gδηgµσ(∂δgση + ∂ηgσδ − ∂σgδη)

= −gδηgµσ(∂δgση −
1

2
∂σgδη) . (1.1.23)

If we write “l.o.t.” for terms which do not contain second derivatives of the metric,
from (1.1.21) we find

Rνρ[g] =
1

2

{
− gδη ∂2gρν

∂xδ∂xη
+ gδη

∂2gνη
∂xδ∂xρ︸ ︷︷ ︸

−gνµ∂ρλµ+ 1
2
gδη

∂2gδη
∂xρ∂xν

+ gδη
∂2gρη
∂xδ∂xν︸ ︷︷ ︸

−gρµ∂νλµ+ 1
2
gδη

∂2gδη
∂xρ∂xν

−gδη ∂2gδη
∂xρ∂xν

}
+ l.o.t.

= −1

2
(2ggνρ + gνµ∂ρλ

µ + gρµ∂νλ
µ) + l.o.t. (1.1.24)

This can be seen to coincide with the principal part of (1.1.16).

It turns out that (1.1.18b) allows one also to construct solutions of Einstein
equations [205], this will be done in the following sections.

Incidentally: Before analyzing the existence question, it is natural to ask the
following: given a solution of the Einstein equations, can one always find local
coordinate systems yA satisfying the wave condition (1.1.17)? The answer is yes,
the standard way of obtaining such functions proceeds as follows: Let S be any
spacelike hypersurface in M ; by definition, the restriction of the metric g to TS is
positive non-degenerate. Let O ⊂ S be any open subset of S , and let X be any
smooth vector field on M , defined along O, which is transverse to S ; by definition,
this means that for each p ∈ O the tangent space TpM is the direct sum of TpS
and of the linear space RX(p) spanned by X(p). (Any timelike vector X would do
— e.g., the unit normal to S — but transversality is sufficient for our purposes
here.) The following result is well known (cf., e.g., [376, Theorem 8.6] or [321,
Theorem 7.2.2]):

Theorem 1.1.4 Let S be a smooth spacelike hypersurface in a smooth spacetime
(M , g). For any smooth functions f , h on O ⊂ S there exists a unique smooth
solution φ defined on D(O) of the problem

2gφ = 0 , φ|O = f , X(φ)|O = h .

Once a hypersurface S has been chosen, local wave coordinates adapted to S

may be constructed as follows: Let O be any coordinate patch on S with coordinate
functions xi, i = 1, . . . , n, and let e0 be the field of unit future pointing normals to
O. On D(O) define the yA’s to be the unique solutions of the problem

2gy
A = 0 ,

y0|O = 0 , e0(y0)|O = 1 , (1.1.25)

yi|O = xi , e0(yi)|O = 0 , i = 1, . . . , n . (1.1.26)
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It follows from (1.1.25)-(1.1.26) that ∂yA/∂xµ is nowhere vanishing on O. By
continuity, ∂yA/∂xµ will be non-zero in a neighborhood of the initial data surface,
and the inverse function theorem shows that there exists a neighborhood U ⊂ D(O)
of O which is coordinatized by the yA’s.

We note that there is a considerable freedom in the construction of the yi’s as
above because of the freedom of choice of the xi’s, but the function y0 is defined
uniquely by S and (1.1.25). 2

1.2 Linearised gravity

To get some insight into the problem at hand, we consider first the Einstein
equations linearised at Minkowski spacetime. Our presentation follows [45].

Consider a metric g which, in the natural coordinates on Rn+1, takes the
form

gµν = ηµν + hµν , (1.2.1)

where η denotes the Minkowski metric. Suppose that there exists a small con-
stant ǫ such that we have

|hµν | , |∂σhµν | , |∂σ∂ρhµν | = O(ǫ) . (1.2.2)

If we use the metric η to raise and lower indices one has

Rβδ =
1

2
[∂α{∂βhαδ + ∂δh

α
β − ∂αhβδ} − ∂δ∂βhαα] +O(ǫ2) . (1.2.3)

Coordinate transformations xµ 7→ xµ + ζµ, with

|ζµ| , |∂σζµ| , |∂σ∂ρζµ| , |∂σ∂ρ∂νζµ| = O(ǫ) , (1.2.4)

preserve (1.2.1)-(1.2.2), and lead to the “gauge-freedom”

hµν 7→ hµν + ∂µζν + ∂νζµ +O(ǫ2) . (1.2.5)

In what follows we ignore all O(ǫ2)-terms in the equations above. Then
vacuum linearised gravity becomes a theory of a tensor field hµν with the gauge-
freedom (1.2.5) and satisfying the equations

0 = ∂α{∂βhαδ + ∂δh
α
β − ∂αhβδ} − ∂δ∂βhαα . (1.2.6)

1.2.1 The Cauchy problem for linearised gravity

For definiteness we assume that the space-dimension n = 3, the general case
proceeds as below with only trivial modifications.

Solving the following wave equation

2ζα = −∂βhβα +
1

2
∂αh

β
β ,

where 2 ≡ 2η is the wave-operator of the Minkowski metric, and performing
(1.2.5) leads to a new tensor hµν , still denoted by the same symbol, such that

∂βh
β
α =

1

2
∂αh

β
β , (1.2.7)
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together with the usual wave equation for h:

2hβδ = 0 . (1.2.8)

Solutions of this last equation are in one-to-one correspondence with their
Cauchy data at t = 0. However, those data are not arbitrary, which can be
seen as follows: Equations (1.2.7)-(1.2.8) imply

2(∂βh
β
α −

1

2
∂αh

β
β) = 0 . (1.2.9)

This implies that (1.2.7) will hold if and only if

(
∂βh

β
α −

1

2
∂αh

β
β

) ∣∣∣
t=0

= 0 = ∂0

(
∂βh

β
α −

1

2
∂αh

β
β

) ∣∣∣
t=0

. (1.2.10)

Equivalently, taking (1.2.8) into account,

∂0(h00 + hii)|t=0 = 2∂ih
i
0|t=0 , (1.2.11)

∂0h0i|t=0 = (∂jh
j
i +

1
2∂i(h00 − hjj))|t=0 , (1.2.12)

∆hii|t=0 = ∂i∂jh
ij |t=0 , (1.2.13)

∂j(∂0h
j
i − ∂0hkkδji )|t=0 = (∆h0i − ∂i∂jhj0)|t=0 . (1.2.14)

The last two equations are the linearisations, at the Minkowski metric, of the
“scalar and vector constraint equations” that will be encountered in Section 1.4.

There remains the freedom of choosing ζα|t=0 and ∂tζα|t=0. It turns out to
be convenient to require

(∂0h
k
k − 2∂kh

k
0 − 2∆ζ0)|t=0 = 0 ,

(h00 + 2∂0ζ0)|t=0 = 0 ,

(h0i + ∂iζ0 + ∂0ζi)|t=0 = 0 ,

Di(h
i
j − 1

3h
k
kδ
i
j +Diζj +Djζ

i − 2
3D

kζkδ
i
j)|t=0 = 0 , (1.2.15)

where Di ≡ Di ≡ ∂i in background Cartesian coordinates. Indeed, given any
hµν and ∂0hµν |t=0, the first equation can be solved for ζ0|t=0 if one assumes
that

(∂0h
k
k − 2∂kh

k
0)|t=0 (1.2.16)

belongs to a suitable weighted Sobolev or Hölder space, the precise require-
ments being irrelevant for the conceptual overview here. The second equation
in (1.2.15) defines ∂0ζ0|t=0; the third defines ∂0ζi|t=0; finally, the last equation
is an elliptic equation for the vector field ζi|t=0 which can be solved [113] if one
again assumes that

∂i(h
i
j −

1

3
hkkδ

i
j)|t=0 (1.2.17)

belongs to a weighted Sobolev or Hölder space. (We note, however, that if some
components of hij behave as 1/r, then ζ will behave like ln r in general, which is
likely to introduce ln r/r terms in the gauge-transformed metric, a feature which
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one sometimes wishes to avoid.) After performing this gauge-transformation,
we end up with a tensor field hµν which satisfies

∂0h
k
k|t=0 = h00|t=0 = h0i|t=0 = ∂i(h

i
j −

1

3
hkkδ

i
j)|t=0 = 0 . (1.2.18)

Inserting this into (1.2.11)-(1.2.14) we find

∂0h00|t=0 = 0 , (1.2.19)

∂0h0i|t=0 = −1
6∂ih

j
j|t=0 , (1.2.20)

∆hii|t=0 = 0 , (1.2.21)

∂j(∂0h
j
i − ∂0hkkδji )|t=0 = 0 . (1.2.22)

Now, so far we have been considering vacuum fields with initial data on Rn.
However, any domain Ω ⊂ Rn would have worked provided that the Laplace
equation could be solved on Ω. On the other hand, the hypothesis that Ω =
Rn becomes important when considering (1.2.21). Indeed, in this case the
further requirement that hii goes to zero as r tends to infinity together with
the maximum principle gives

hii|t=0 = 0 . (1.2.23)

We conclude (compare [20]) that at any given time t = t0 every linearised
gravitational initial data set (hµν , ∂thµν)|t=t0 can be gauge-transformed to the
so-called TT -gauge. Here “TT” stands for “transverse traceless”. In this gauge,
using the notation

kij :=
1

2
∂0hij |t=t0 ,

it holds that

hkk|t=t0 = ∂ih
i
j|t=t0 = kkk = ∂ik

i
j = 0 . (1.2.24)

We say that both h and k are transverse and traceless. From what has been
said and from uniqueness of solutions of the wave equation we also see that in
this gauge we will have for all t

h00 = h0i = hkk = ∂ih
i
j = 0 , (1.2.25)

which further implies that (1.2.24) is preserved by evolution.

Summarising, we have proved:

Theorem 1.2.1 Linearised gravitational fields on R×Rn, with initial data tend-
ing to zero sufficiently fast as one recedes to infinity, can be gauge-transformed
to fields satisfying

2ηhij = 0 = ∂ih
i
j = hii = h00 = h0i . (1.2.26)

The initial data at {t = t0} are given by two symmetric tensor fields (hij(t0, ·), kij(·))
satisfying (1.2.24). These constraint equations are preserved by evolution.
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The situation is different if dealing with the linearised equations with sources
confined to a ball B(R). Then the fields are vacuum on the complement of B(R)
and we can repeat the construction above in the vacuum region. But (1.2.23)
will not hold in general, and the trace of hij might be non-trivial. Since hii is
harmonic on Rn \B(R), it will have an expansion in terms of inverse powers of
r, starting with 1/r-terms associated with the total mass of the configuration.
One can still shield the solutions inside cones using the methods of Carlotto and
Schoen [84], discussed in Section 3.6, but this requires much more sophisticated
techniques.

1.2.2 The Weyl tensor formulation

It can be shown that the vacuum Einstein equations imply the following equa-
tion for the Weyl tensor [218],

∇µCµαβγ = 0 . (1.2.27)

This equation implies a symmetrizable-hyperbolic system of equations in di-
mension 1 + 3 (cf., e.g., [208]), which can be used to obtain solutions of the
Einstein equations.

When linearised at the Minkowski metric (or, more generally, at a Weyl-
flat meric), the equations for the metric perturbations and for the Weyl tensor
perturbations decouple, so that one can consider (1.2.27) in its own, with ∇
the covariant-derivative operator of the Minkowski metric, as an equation for a
tensor field Cµαβγ with the algebraic symmetries of the Weyl tensor.

Let us show that a theory of such tensor fields on Minkowski spacetime is
equivalent to linearised gravity as formulated above. For this, we suppose first
that Rµνρσ is a tensor field on on a star-shaped subset of Rd, d > 2, having
the algebraic symmetries of the Riemann tensor and satisfying the (linearised)
Bianchi identity

∂[µRνρ]στ = 0 . (1.2.28)

(We will see shortly that what follows applies to Cµνρσ, which has the right
algebraic symmetries, and note that at this stage we are not assuming trace-
lessness, which holds for Cµνρσ but not necessarily for Rµνρσ.) We will construct
a tensor field hµν , defined up to the usual gauge transformations, such that

Rµνρσ = 2 ∂[µhν][ρ,σ] . (1.2.29)

This is precisely the condition that Rµνρσ equals to the linearisation, at the
Minkowski metric η, of the map which assigns to hαβ the Riemann tensor of the
metric gαβ = ηαβ+hαβ. Equivalently, the right-hand side of (1.2.29) multiplied
by ǫ is, up to O(ǫ2) terms, the Riemann tensor of the metric ηµν + ǫhµν . We
will say that Rµνρσ is the linearised Riemann tensor associated with hµν .

To prove (1.2.29), we start by noting that (1.2.28) implies

Rµνρσ = ∂[µFν]ρσ (1.2.30)

with Fµνρ = Fµ[νρ]. But, since R[µνρ]σ = 0, there exists a tensor field Hαβ such
that

F[µν]ρ = ∂[µHν]ρ . (1.2.31)
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Inserting the identity

Fνρσ = F[σν]ρ + F[σρ]ν − F[ρν]σ (1.2.32)

into (1.2.31), and the resulting equation into (1.2.30), we find indeed (1.2.29)
after setting

hµν = H(µν) .

The addition of a pure-trace tensor to hµν does not change the trace-free part
of Rµνρσ. So, for a tensor Cµνρσ with Weyl-symmetries satisfying ∂[µCνρ]στ = 0,
there exists a potential hµν as in (1.2.29), which is trace-free.

We continue with an analysis of the kernel of the map sending hµν into
Rµνρσ . Namely, when Rµνρσ = 0, from (1.2.29) we infer

hµ[ν,ρ] = ∂µAνρ , (1.2.33)

for some tensor field satisfying Aνρ = A[νρ]. But, since ∂[µAνρ] = 0,

Aµν = ∂[µBν] . (1.2.34)

Now defining kµν = hµν + ∂µBν , there results

kµ[ν,ρ] = hµ[ν,ρ] + ∂µ∂[ρBν] = 0 , (1.2.35)

so that kµν = ∂µEν , whence hµν = ∂µ(Eν − Bν). Finally, using the symmetry
of hµν , it follows that

hµν = ∂(µΛν) (1.2.36)

with Λµ = Eµ −Bµ.
We continue with the proof of equivalence of (1.2.27) to the equations arising

in the metric formulation of the theory. Here the key observation is that, in
spacetime dimension four, (1.2.30) is equivalent to [111, Proposition 4.3]

∂[αCβγ]µν = 0 . (1.2.37)

As just pointed out, this implies existence of a symmetric trace-free tensor field
hµν such that

Cµνρσ = 2 ∂[µhν][ρ,σ] . (1.2.38)

Now, the right-hand side of (1.2.38) is the linearised Riemann tensor associated
with the linearised metric perturbation hµν . Since the left-hand side of (1.2.38)
has vanishing traces, we conclude that the linearised Ricci tensor associated
with hµν vanishes. Equivalently, hµν satisfies the linearised Einstein equations.

Let Eij denote the “electric part” and Bij the “magnetic part” of the Weyl
tensor:

Eij := C0i0j , Bij := ⋆C0i0j , (1.2.39)

with

⋆Cαβγδ =
1

2
ǫαβ

µνCµνγδ .
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Then both Eij and Bij are symmetric and traceless. Indeed, symmetry and
tracelessness of Eij , as well as tracelessness of Bij are obvious from the sym-
metries of the Weyl tensor. The symmetry of Bij follows from the less-obvious
double-dual symmetry of the Weyl tensor (see (A.12.49), Appendix A.12.5)

ǫαβ
µνCµνγδ = ǫγδ

µνCµναβ .

Using this notation, and in spacetime dimension four, (1.2.30) split into two
evolution equations for Eij and Bij,

∂tEij = −ǫikℓ∂kBℓj , ∂tBij = ǫi
kℓ∂kEℓj , (1.2.40)

and two constraint equations

DiEij = 0 = DiBij . (1.2.41)

These equations are strongly reminiscent of the sourceless Maxwell equations.
The above structure remains true for the full non-linear equations, cf., e.g.,
[218].

It is of interest to enquire about the relation of the last constraints with the
ones satisfied by hµν . It turns out that the vanishing of the divergence of Eij
is closely related to the linearised scalar constraint equation (1.2.13), while the
symmetry of Bij relates to the vector constraint equation (1.2.14). This can be
seen as follows:

To understand the nature of the divergence constraint DiEij = 0, let us
denote by rijkl the linearised Riemann tensor of the three-dimensional metric
δij + hij , with the associated linearised Ricci tensor rij = rkikj. We have just
seen that Cαβγδ = Rαβγδ for solutions of ∂αC

α
βγδ = 0, which gives for such

solutions

0 = Rij = Rαiαj = Cαiαj = −C0i0j + rij = −Eij + rij . (1.2.42)

Here we have used the fact that the three-dimensional Riemann tensor differs
from the four-dimensional one by terms quadratic in the extrinsic curvature
(cf. (1.4.17) below), hence both tensors coincide when linearised at Minkowski
spacetime. The vanishing of the divergence of the Einstein tensor implies

Dirij =
1

2
Djr ,

which together with (1.2.42) shows that the constraint equation DiEij = 0 is,
for asymptotically flat solutions, equivalent to the linearised scalar constraint
r = 0.

Let us show that symmetry of Bij is equivalent to the vector constraint
equation. For this let

kij =
1

2
(∂0hij − ∂ih0j − ∂jh0i)

denote the linearised extrinsic curvature tensor of the slices t = const. By a
direct calculation, or by linearising the relevant embedding equations, we find

R0ijℓ = ∂ℓkij − ∂jkiℓ . (1.2.43)



1.3. LOCAL EXISTENCE 15

Again for solutions of ∂αC
α
βγδ = 0 it holds that

ǫnℓmBℓm =
1

2
ǫnℓmǫmrsC0ℓ

rs =
1

2
ǫnℓmǫmrsR0ℓ

rs = 2δ[nr δ
ℓ]
s D

skℓ
r

= Dℓ(kℓ
n − kmmδnℓ ) , (1.2.44)

which is the linearised version of the vector constraint equation, as claimed.

1.3 Existence local in time and space in wave coor-
dinates

Let us return to (1.1.16). Assume again that the yA’s form a local coordinate
system, but do not assume for the moment that the yA’s solve the wave equa-
tion. In that case (1.1.16) together with the definition (1.1.18a) of EAB lead
to

RAB =
1

2
(EAB − gAC∂CλB − gBC∂CλA) +

2Λ

n− 1
gAB . (1.3.1)

For the purpose of the calculations that follow, it turns out to be convenient
to treat the upper indices on the λ’s as vector indices, and change the partial
derivatives in (1.3.1) to vector-covariant ones:

EAB − gAC∂CλB − gBC∂CλA =

EAB + gACΓBCDλ
D + gBCΓACDλ

D

︸ ︷︷ ︸
=:ÊAB

−gAC(∂CλB + ΓBCDλ
D)− gBC(∂CλA + ΓACDλ

D) . (1.3.2)

One can then rewrite (1.3.1) as

RAB =
1

2
(ÊAB −∇AλB −∇BλA) + 2Λ

n− 1
gAB . (1.3.3)

The idea, due to Yvonne Choquet-Bruhat [205], is to use the hyperbolic char-
acter of the equation

ÊAB = 0 (1.3.4)

to construct a metric g. If we manage to make sure that λA vanishes as well, it
will then follow from (1.3.1) that g will also solve the Einstein equation.

In any case, we need the following result, which again is standard (cf.,
e.g., [242, 264, 306, 376, 399]; see Appendix A.22 for a short review of causality
theory, in particular for the definition of global hyperbolicity):

Theorem 1.3.1 For any initial data

gAB(yi, 0) ∈ Hk+1 , ∂0g
AB(yi, 0) ∈ Hk , k > n/2 , (1.3.5)

prescribed on an open subset O ⊂ {0} × Rn ⊂ R × Rn there exists an open
neighborhood U ⊂ R × Rn of O and a unique solution gAB of (1.3.4) defined
on U . The set U can be chosen so that (U , g) globally hyperbolic with Cauchy
surface O.
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Remark 1.3.2 On bounded sets, Ck functions belong to the Sobolev spaces Hk, so
the reader unfamiliar with Sobolev spaces can interpret this theorem as saying that
for Ck+1 × Ck initial data there exist local solutions of the equations. The results
in [272–275,398] and references therein allow one to reduce the differentiability
threshold above. 2

We note that U above is not uniquely defined without imposing further
conditions. Various further results and notions will be useful before we address
this issue in Chapter 2.

It remains to find out how to ensure the harmonicity conditions (1.1.17).
The key observation of Yvonne Choquet-Bruhat is that (1.3.4) and the Bianchi
identities imply a wave equation for λA’s. In order to see that, recall that
it follows from the Bianchi identities that the Ricci tensor of the metric g
necessarily satisfies a divergence identity:

∇A
(
RAB − R

2
gAB

)
= 0 .

Assuming that (1.3.4) holds, (1.3.3) implies the algebraic identity

R = −∇CλC + 2Λ
n+ 1

n− 1
.

Since the metric is covariantly constant, the divergence identity leads to

0 = −∇A
(
∇AλB +∇BλA −∇CλCgAB

)

= −
(
2λB +∇A∇BλA −∇B∇CλC

)

= −
(
2λB +RBAλ

A
)
. (1.3.6)

This shows that λA necessarily satisfies the second order hyperbolic system of
equations

2λB +RBAλ
A = 0 . (1.3.7)

Now, it is a standard fact in the theory of hyperbolic equations that we will
have

λA ≡ 0

on the domain of dependence D(O) provided that both λA and its derivatives
vanish at O.

Remark 1.3.3 Actually the vanishing of λ := (λA) as above is a completely stan-
dard result only if the metric is C1,1; this is proved by a simpler version of the
argument that we are about to present. But the result remains true under the
weaker conditions of Theorem 1.3.1, which can be seen as follows. Consider initial
data as in (1.3.5), with some k ∈ R satisfying k > n/2. Then the derivatives of the
metric are in L∞,

|∂g| ≤ C ,
for some constant C. In the argument below we will use the letter C for a generic
constant which might change from line to line. Let St be a foliation by spacelike
hypersurfaces of a conditionally compact domain of dependence D(S0), where S0
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is a subset of the initial data surface S . When λ vanishes at S0, a standard energy
calculation for (1.3.7) gives the inequality

‖λ‖2H1(St)
≤ C

∫ t

0

‖
(
(1 + |Ric|)|λ| + (1 + |∂g|)|∂λ|

)
|∂λ|‖L1(Ss)ds

≤ C

∫ t

0

(
‖(1 + |Ric|)λ‖L2(Ss)‖∂λ‖L2(Ss) + ‖λ‖2H1(St)

)
ds

≤ C

∫ t

0

(
‖(1 + |Ric|)λ‖L2(Ss)‖λ‖H1(Ss) + ‖λ‖2H1(Ss)

)
ds . (1.3.8)

We want to use this inequality to show that λ vanishes everywhere; the idea is to
estimate the integrand by a function of ‖λ‖2H1(Ss)

, the vanishing of λ will follow

then from the Gronwall lemma. Such an estimate is clear from (1.3.8) if |Ric| is
in L∞, which proves the claim for metrics in C1,1, but is not obviously apparent
for less regular metrics. Now, the construction of g in the course of the proof of
Theorem 1.3.1 provides a metric such that ∂g|Ss

∈ Hk and Ric|Ss
∈ Hk−1. By

Sobolev embedding for n > 2 we have [25]

‖λ‖Lp(Ss) ≤ C‖λ‖H1(Ss) ,

where p = 2n/(n− 2). We can thus use Hölder’s inequality to obtain

‖|Ric|λ‖L2(Ss) ≤ ‖Ric‖Ln(Ss)‖λ‖Lp(Ss) ≤ C‖Ric‖Ln(Ss)‖λ‖H1(Ss) .

Equation (1.3.8) gives thus

‖λ‖2H1(St)
≤ C

∫ t

0

(
1 + ‖Ric‖Ln(Ss)

)
‖λ‖2H1(Ss)

ds ,

which is the desired inequality provided that ‖Ric‖Ln(Ss) is finite. But, again by
Sobolev,

‖Ric‖Lp(Ss) ≤ C‖Ric‖Hk−1(Ss) provided that
1

p
≥ 1

2
− k − 1

n
,

and we see that Ric ∈ Ln(Ss) will hold for k > n/2, as assumed in Theorem 1.3.1.
2

Remark 1.3.4 There exists a simple generalization of the wave coordinates condi-
tion 2gx

µ = 0 to

2gy
A = λ̊A(yB, xµ, gαβ) . (1.3.9)

Instead of solving the equation ÊAB = 0 one then solves

ÊAB = ∇Aλ̊B +∇B λ̊A . (1.3.10)

There exists a variation of Theorem 1.3.1 that applies when (1.3.10) is used: Equa-
tion (1.3.3) can then be rewritten as

RAB =
1

2
(ÊAB −∇Aλ̊B −∇Bλ̊A︸ ︷︷ ︸

=0

)−∇A(λB − λ̊B)−∇B(λA − λ̊A) + 2Λ

n− 1
gAB .

(1.3.11)

This allows one to repeat the calculation (1.3.6), with λA there replaced by λA−λ̊A.
There remains the easy task to adapt the calculations that follow, done in the

case λ̊A = 0, to the modified condition (1.3.9), leading to initial data satisfying the
right conditions. 2



18 CHAPTER 1. LOCAL EVOLUTION

Remark 1.3.5 We can further generalize to include matter fields. Consider, for
example, a set of fields ψI , I = 1, . . . , N̊ , for some N̊ ∈ N, satisfying a system of
equations of the form

2gψ
I = F I(ψJ , ∂ψJ , g, ∂g) . (1.3.12)

We assume that there exists an associated energy-momentum tensor

Tµν(ψ
J , ∂ψJ , g, ∂g)

which is identically divergence-free when (1.3.12) hold:

∇µT
µν = 0 .

Allowing (1.3.9), instead of solving the equation ÊAB = 0 one solves

ÊAB = ∇Aλ̊B +∇B λ̊A + 16π
G

c4

(
TAB − 1

n− 1
gCDTCDg

AB
)
. (1.3.13)

Theorem 1.3.1 applies to this equation as well. Equation (1.3.3) can then be rewrit-
ten as

RAB =
1

2

(
ÊAB −∇Aλ̊B −∇Bλ̊A − 16π

G

c4

(
TAB − 1

n− 1
gCDTCDg

AB
)

︸ ︷︷ ︸
=0

)

−∇A(λB − λ̊B)−∇B(λA − λ̊A)

+
2Λ

n− 1
gAB + 8π

G

c4

(
TAB − 1

n− 1
gCDTCDg

AB

)
. (1.3.14)

When TAB has identically vanishing divergence, one can again repeat the calculation
(1.3.6), with λA there replaced by λA − λ̊A. As before, the right initial data will

lead to a solution with λA = λ̊A, and hence to the desired solution of the Einstein
equations with sources. 2

We return to the vanishing of λA and its derivatives on S . It is convenient
to assume that y0 is the coordinate along the R factor of R×Rn, so that set O

carrying the initial data is a subset of {y0 = 0}; this can always be done. We
have

2yA =
1√
|det g|

∂B

(√
|det g|gBC∂CyA

)

=
1√
|det g|

∂B

(√
|det g|gBA

)
.

So 2yA will vanish at the initial data surface if and only if certain time deriva-
tives of the metric are prescribed in terms of the space ones:

∂0

(√
|det g|g0A

)
= −∂i

(√
|det g|giA

)
. (1.3.15)

This implies that the initial data (1.3.5) for the equation (1.3.4) cannot be
chosen arbitrarily if we want both (1.3.4) and the Einstein equation to be si-
multaneously satisfied.

It should be emphasized that there is considerable freedom in choosing the
wave coordinates, which is reflected in the freedom to adjust the initial values
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of g0A’s. A popular choice is to require that on the initial hypersurface {y0 = 0}
we have

g00 = −1 , g0i = 0 , (1.3.16)

and this choice simplifies the algebra considerably.
We will show in Proposition 1.5.2 below that for any spacetime (M , g) and

for any spacelike hypersurface S one can find local coordinates so that (1.3.16)
holds. This makes precise the sense in which there is no loss of generality when
making this choice.

Equation (1.3.15) determines then the time derivatives ∂0g
0A|{y0=0} needed

in Theorem 1.3.1, once gij |{y0=0} and ∂0gij |{y0=0} are given. So, from this point
of view, the essential initial data for the evolution problem become the space
metric

h := gijdy
idyj ,

together with its time derivatives.

Incidentally: To show that the harmonic coordinates do not impose any restric-
tions on the metric functions gµν |t=0, we need to relax (1.3.16). For this it is conve-
nient to introduce the Arnowitt-Deser-Miser (ADM) notation (see Appendix A.19),

hij := gij , N−2 := −g00 , N i := − g
0i

g00
, (1.3.17)

hence

g0i = N−2N i , g0i = hijN
j , gij = hij −N−2N iN j , (1.3.18)

g = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (1.3.19)

g00 = −(N2 − hijN iN j) , det g = −N2 deth , (1.3.20)

where hij is the metric inverse to the Riemannian metric hij . So, using (1.3.15),
when all the functions gµν are prescribed at t = 0 we can calculate

∂t

(√
| det g|g00

)
= ∂t

(√
| deth|N−1

)
and ∂t

(√
| det g|g0i

)
= ∂t

(√
| deth|N−1N i

)

(1.3.21)
at t = 0 in terms of the gµν ’s and their space derivatives. We have already seen
how to determine ∂tgij = ∂thij at t = 0 in terms of Kij and the remaining metric
functions. One can then algebraically determine all the derivatives ∂tgµν |t=0 using
(1.3.21) and (1.3.15). 2

It turns out that further constraints arise from the requirement of the van-
ishing of the derivatives of λ. Supposing that (1.3.15) holds on {y0 = 0} —
equivalently, supposing that λ vanishes on {y0 = 0}, we then have

∂iλ
A = 0

on {y0 = 0}, where the index i is used to denote tangential derivatives. In order
that all derivatives vanish initially it remains to ensure that some transverse
derivative does. A transverse direction is provided by the fieldN of unit timelike
normals to {y0 = 0} and, as we are about to show, the vanishing of ∇Nλ can
be expressed as (

Gµν + Λgµν

)
Nµ = 0 . (1.3.22)
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For this, it is most convenient to use an ON frame ea = ea
µ∂µ, with e0 = N ,

so that gab := g(ea, eb) = ηab, where η is the Minkowski metric. It follows from
the equation EAB = 0 and (1.3.3) that

Gµν + Λgµν = −1

2

(
∇µλν +∇νλµ −∇αλαgµν

)
,

which gives, using frame components λa := gµνλ
µea

µ:

−2
(
Gµν + Λgµν

)
NµNν = 2∇0λ0 −∇αλα g00︸︷︷︸

=−1

= 2∇0λ0 + (−∇0λ0 +∇iλi︸︷︷︸
=0

)

= ∇0λ0 . (1.3.23)

Equation (1.3.23) shows that the vanishing of ∇0λ0 is equivalent to the vanish-
ing of the 0 frame-component of (1.3.22). Finally

−2
(
Gi0 + Λgi0

)
= ∇iλ0︸ ︷︷ ︸

=0

+∇0λi −∇αλα gi0︸︷︷︸
=0

= ∇0λi , (1.3.24)

as desired.
Equations (1.3.22) are called the general relativistic constraint equations.

We will shortly see that (1.3.15) has quite a different character from (1.3.22);
the former will be referred to as a gauge equation.

Summarizing, we have proved:

Theorem 1.3.7 Under the hypotheses of Theorem 1.3.1, suppose that the ini-
tial data (1.3.5) satisfy (1.3.15), (1.3.16) as well as the constraint equations
(1.3.22). Then the metric given by Theorem 1.3.1 on the globally hyperbolic set
U satisfies the vacuum Einstein equations.

In conclusion, in the wave gauge λA = 0 the Cauchy data for the vacuum
Einstein equations consist of

1. An open subset O of Rn,

2. together with matrix-valued functions gAB , ∂0g
AB prescribed there, so

that gAB is symmetric with signature (−,+, · · · ,+) at each point.

3. The constraint equations (1.3.22) hold, and

4. the algebraic gauge equation (1.3.15) holds.

Incidentally: Let us derive some alternative explicit forms of the Einstein equa-
tions. For once, so far we have been using the notation yA for the wave coordinates.
Let us revert to a standard notation, xµ, for the local coordinates. In this notation,
(1.1.20) can be rewritten as

Eαβ = 2gg
αβ − 2gγδgǫφΓα

γǫΓ
β
δφ −

4Λ

n− 1
gαβ (1.3.25)
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(recall that we want this to be zero in vacuum). Set

ϕ :=
√
| det gπρ| , g

αβ := ϕgαβ . (1.3.26)

In terms of g, the wave conditions take the particularly simple form

∂αg
αβ = 0 . (1.3.27)

It is therefore convenient to rewrite Einstein equations as a system of wave equations
for gαβ . In order to do that, we calculate as follows:

∂µϕ = ∂µ

(√
| det gαβ|

)
=

1

2

√
| det gπρ|gαβ∂µgαβ = −1

2

√
| det gπρ|gαβ∂µgαβ

= −1

2
ϕgαβ∂µg

αβ ,

2gϕ = ∇µ∂µϕ = −1

2
∇µ
(
ϕgαβ∂µg

αβ
)

= −1

2

(
∇µϕgαβ∂µg

αβ

︸ ︷︷ ︸
−2∂µϕ/ϕ

+ϕgµν∂νgαβ∂µg
αβ + ϕgαβ 2gg

αβ

︸ ︷︷ ︸
=Eαβ+...

)

= ϕ−1∇µϕ∂µϕ−
ϕ

2

(
gµν∂νgαβ∂µg

αβ + gαβ
(
Eαβ + 2gγδgǫφΓα

γǫΓ
β
δφ +

4Λ

n− 1
gαβ
))
,

2gg
αβ = ϕ2gg

αβ + 2∇µϕ∂µg
αβ + 2gϕg

αβ .

Thus, in harmonic coordinates,

2gg
αβ = ϕ

(
Eαβ + 2gγδgǫφΓα

γǫΓ
β
δφ +

4Λ

n− 1
gαβ
)
+ 2∇µϕ∂µg

αβ +

[
ϕ−1∇µϕ∂µϕ

−ϕ
2

(
gµν∂νgρσ∂µg

ρσ + gρσ
(
Eρσ + 2gγδgǫφΓρ

γǫΓ
σ
δφ +

4Λ

n− 1
gρσ
))]

gαβ ;

(1.3.28)

also note that the Λ terms can be grouped together to −2Λgαβ.
Next, it might be convenient instead to write directly equations for gµν rather

than gµν (compare (1.1.24)), or gµν . For this, we use again gαβg
βγ = δγα. Keeping

in mind that that 2g is understood as an operator on scalars, we obtain

∂σgαβ = −gαγgβδ∂σgγδ ,
gρσ∂ρ∂σgαβ = −gρσ

(
∂ρgαγgβδ∂σg

γδ + gαγ∂ρgβδ∂σg
γδ

+gαγgβδ∂ρ∂σg
γδ
)

= −gρσ
(
∂ρgαγgβδ∂σg

γδ + gαγ∂ρgβδ∂σg
γδ
)

−gαγgβδ gρσ∂ρ∂σg
γδ

︸ ︷︷ ︸
2ggγδ+gρσΓλ

ρσ∂λgγδ

2ggαβ = gρσ(∂ρ∂σgαβ − Γλ
ρσ∂λgαβ) .

One can use now the formula (1.3.25) expressing 2gg
γδ in terms of Eαβ to obtain

an expression for Rαβ . In particular one finds

Rαβ = −1

2
(2ggαβ + gαµ∇βλ

µ + gβµ∇αλ
µ) + . . . , (1.3.29)

where “. . .” stands for terms which do not involve second derivatives of the metric.
2
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1.4 The geometry of non-characteristic submanifolds

Let S be a hypersurface in a Lorentzian or Riemannian manifold (M , g), we
want to analyse the geometry of such hypersurfaces. Set

h := g|TS . (1.4.1)

More precisely,
∀ X,Y ∈ TS h(X,Y ) := g(X,Y ) .

The tensor field h is called the first fundamental form of S ; when non-degenerate,
it is also called the metric induced by g on S . If S is considered as an abstract
manifold with embedding i : S →M , then h is simply the pull-back i∗g.

A hypersurface S will be said to be spacelike at p ∈ S if h is Riemannian
at p, timelike at p if h is Lorentzian at p, and finally null or isotropic or lightlike
at p if h is degenerate at p. S will be called spacelike if it is spacelike at all
p ∈ S , etc. An example of null hypersurface is given by J̇(p) \ {p} for any
p ∈M , at least near p where J̇(p) \ {p} is differentiable.

When g is Riemannian, then h is always a Riemannian metric on S , and
then TS is in direct sum with (TS )⊥. Whatever the signature of g, in this
section we will always assume that this is the case:

TS ∩ (TS )⊥ = {0} =⇒ TM = TS ⊕ (TS )⊥ . (1.4.2)

Recall that (1.4.2) fails precisely at those points p ∈ S at which h is degener-
ate. Hence, in this section we consider hypersurfaces which are either timelike
throughout, or spacelike throughout. Depending upon the character of S we
will then have

ǫ := g(N,N) = ±1 , (1.4.3)

where N is the field of unit normals to S .
For p ∈ S let P : TpM → TpM be defined as

TpM ∋ X → P (X) = X − ǫg(X,N)N . (1.4.4)

We note the following properties of P :

• P annihilates N :

P (N) = N − ǫg(N,N)N = N − ǫ2N = 0 .

• P is a projection operator:

P (P (X)) = P (X − ǫg(X,N)N)

= P (X)− ǫg(X,N)P (N) = P (X) .

• P restricted to N⊥ is the identity:

g(X,N) = 0 =⇒ P (X) = X .
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• P is symmetric:

g(P (X), Y ) = g(X,Y )− ǫg(X,N)g(Y,N) = g(X,P (Y )) .

The Weingarten map B : TS → TS is defined by the equation

TS ∋ X → B(X) := P (∇XN) ∈ TS ⊂ TM . (1.4.5)

Here, and in other formulae involving differentiation, one should in principle
choose an extension of N off S ; however, (1.4.5) involves only derivatives in
directions tangent to S , so that the result will not depend upon that extension.

In fact, the projector P is not needed in (1.4.5):

P (∇XN) = ∇XN .

This follows from the calculation

0 = X(g(N,N)︸ ︷︷ ︸
±1

) = 2g(∇XN,N) ,

which shows that ∇XN is orthogonal to N , hence tangent to S .
The map B is closely related to the second fundamental form K of S , also

called the extrinsic curvature tensor in the physics literature:

TS ∋ X,Y → K(X,Y ) :=g(P (∇XN), Y ) (1.4.6a)

=g(∇XN,Y ) (1.4.6b)

=g(B(X), Y ) (1.4.6c)

=h(B(X), Y ) . (1.4.6d)

Example 1.4.1 As an example, consider a pseudo-Riemannian metric gijdx
idxj on

Rn with constant coefficients, let c ∈ R∗ and consider a hypersurface Sc defined as

Sc = {gijxixj = c} . (1.4.7)

Thus, Sc is a quadric, the nature of which depends upon the signature of g and the
sign of c. A vector field X is tangent to Sc if and only if

X(gijx
ixj) = 0 ,

Equivalently, gijx
iXj = 0 for all vectors tangent to Sc. Thus the one-form gijx

idxj

annihilates TSc. We conclude that

Ni = ±
1√
|c|
gijx

j ⇐⇒ N = ± 1√
|c|
xi∂i ,

where the choice of sign is a matter of convention. When g is Riemannian, then
the Sc’s are spheres, and the plus sign is the usual choice. When g has signature
(−,+, · · · ,+) and Sc is spacelike (which will be the case if and only if c < 0), one
usually requires N to be future-pointing, in which case the negative sign should be
chosen on that component of Sc on which x0 > 0.

Since the metric coefficients are constant, the Christoffel symbols vanish, and
so for any two vector fields X and Y we have ∇XY

i = X(Y i). In particular

∇XN = ± 1√
|c|
X(xi)∂i = ±

1√
|c|
X i∂i = ±

1√
|c|
X .
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From the expression (1.4.6b) of K we find

TS ∋ X,Y K(X,Y ) = g(∇XN, Y ) = ± 1√
|c|
g(X,Y ) = ± 1√

|c|
h(X,Y ) . (1.4.8)

Thus

K = ± 1√
|c|
h , (1.4.9)

with the plus sign for spheres in Euclidean space, and the minus sign for spacelike
hyperboloids in Minkowski spacetime lying in the future of the origin. 2

It is often convenient to have at our disposal formulae for the objects at
hand using the index formalism. For this purpose let us consider a local ON
frame {eµ} such that e0 = N along S . We then have

gµν = diag(−1,+1, . . . ,+1)

in the case of a spacelike hypersurface in a Lorentzian manifold.
Using the properties of P listed above,

Kij := K(ei, ej) = h(B(ei), ej) = h(Bk
iek, ej)

= hkjB
k
i , (1.4.10)

Bk
i := ϕk(B(ei)) , (1.4.11)

where {ϕk} is a basis of T ∗S dual to the basis {P (ei)} of TS . Equivalently,

Bk
i = hkjKji ,

and it is usual to write the right-hand side as Kk
i.

We continue by showing that K is symmetric: First, for X and Y tangent
to S ,

K(X,Y ) = g(∇XN,Y )

= X(g(N,Y )︸ ︷︷ ︸
=0

)− g(N,∇XY ) . (1.4.12)

Now, ∇ has no torsion, which implies

∇XY = ∇YX + [X,Y ] .

Further, the commutator of vector fields tangent to S is a vector field tangent
to S , which implies

∀ X,Y ∈ TS g(N, [X,Y ]) = 0 .

Returning to (1.4.12), it follows that

K(X,Y ) = −g(N,∇YX + [X,Y ]) = −g(N,∇YX) ,

and the equation
K(X,Y ) = K(Y,X)
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immediately follows from (1.4.12).

In adapted coordinates so that the vectors ∂i are tangent to S , from what
has been said we find

Kij =
1

2
(g(∇iN, ∂j) + g(∇jN, ∂i)) =

1

2
LNgij , (1.4.13)

where LN is the Lie derivative in the direction of N , see Appendix A.8. Formula
(1.4.13) is very convenient for calculating K explicitly if moreover N = ∂/∂x0,
since then LNgij = ∂0gij .

Example 1.4.2 First, if S = {t = 0} in Minkowski spacetime, then N = ∂t, the
metric functions are t-independent and thus K = 0.

Next, consider a sphere Sn−1 = {r = R} embedded in Euclidean Rn. In
spherical coordinates the Euclidean metric δ takes the form

δ = dr2 + r2dΩ2 =: dr2 + h ,

with ∂r(dΩ
2) = 0 and N = ∂r. The Lie derivative is again the coordinate derivative,

and (1.4.13) gives

K =
1

2
∂r(r

2dΩ2)|r=R =
1

R
h ,

as in (1.4.9). 2

To continue, when X,Y are sections of TS we set

DXY := P (∇XY ) . (1.4.14)

First, we claim that D is a connection: Linearity with respect to addition in all
variables, and with respect to multiplication of X by a function, is straightfor-
ward. It remains to check the Leibniz rule:

DX(αY ) = P (∇X(αY ))

= P (X(α)Y + α∇XY )

= X(α)P (Y ) + αP (∇XY )

= X(α)Y + αDXY .

It follows that all the axioms of a covariant derivative on vector fields are
fulfilled, as desired.

It turns out that D is actually the Levi-Civita connection of the metric h.
Recall that the Levi-Civita connection is determined uniquely by the require-
ment of vanishing torsion, and that of metric-compatibility. Both results are
straightforward:

DXY −DYX = P (∇XY −∇YX) = P ([X,Y ]) = [X,Y ] ; (1.4.15)

in the last step we have again used the fact that the commutator of two vector
fields tangent to S is a vector field tangent to S . Equation (1.4.15) is precisely
the condition for the vanishing of the torsion of D.
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In order to establish metric-compatibility, we calculate for all vector fields
X,Y,Z tangent to S :

X(h(Y,Z)) = X(g(Y,Z))

= g(∇XY,Z) + g(Y,∇XZ)
= g(∇XY, P (Z)︸ ︷︷ ︸

=Z

) + g(P (Y )︸ ︷︷ ︸
=Y

,∇XZ)

= g(P (∇XY ), Z) + g(Y, P (∇XZ))︸ ︷︷ ︸
P is symmetric

= g(DXY,Z) + g(Y,DXZ)

= h(DXY,Z) + h(Y,DXZ) ,

which is the condition for metric-compatibility of D.
Equation (1.4.14) turns out to be very convenient when trying to express

the curvature of h in terms of that of g. To distinguish between both curvatures
let us use the symbol ρ for the curvature tensor of h; by definition, for all vector
fields tangential to S ,

ρ(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z

= P
(
∇X(P (∇Y Z))−∇Y (P (∇XZ))−∇[X,Y ]Z

)
.

Now, for any vector field W (not necessarily tangent to S ) we have

P
(
∇X(P (W ))

)
= P

(
∇X(W − ǫg(N,W )N)

)

= P
(
∇XW − ǫX(g(N,W ))N︸ ︷︷ ︸

P (N)=0

−ǫg(N,W )∇XN
)

= P
(
∇XW

)
− ǫg(N,W )P

(
∇XN

)

= P
(
∇XW

)
− ǫg(N,W )B(X) .

Applying this equation to W = ∇Y Z we obtain

P
(
∇X(P (∇Y Z))

)
= P (∇X∇Y Z)− ǫg(N,∇Y Z)B(X)

= P (∇X∇Y Z) + ǫK(Y,Z)B(X) ,

and in the last step we have used (1.4.12). It now immediately follows that

ρ(X,Y )Z = P (R(X,Y )Z) + ǫ
(
K(Y,Z)B(X)−K(X,Z)B(Y )

)
, (1.4.16)

an equation sometimes known as Gauss’ equation.
In an adapted ON frame as discussed above, (1.4.16) reads

ρijkℓ = Rijkℓ + ǫ(Ki
kKjℓ −Ki

ℓKjk) . (1.4.17)

Here Ki
k is the tensor field Kij with an index raised using the contravariant

form h# of the metric h, compare (1.4.10).
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Equation (1.4.17) is known as the Gauss equation.
We are ready now to derive the general relativistic scalar constraint equation:

Let ρij denote the Ricci tensor of the metric h, we then have

ρjℓ := ρijiℓ

= Rijiℓ︸︷︷︸
=Rµ

jµℓ−R0
j0ℓ

+ǫ(Ki
iKjℓ −Ki

ℓKji)

= Rjℓ −R0
j0ℓ + ǫ(trhKKjℓ −Ki

ℓKji) .

Defining R(h) to be the scalar curvature of h, it follows that

R(h) = ρjj

= Rjj︸︷︷︸
=Rµ

µ−R0
0

− R0j
0j︸ ︷︷ ︸

=R0µ
0µ

+ǫ(trhKK
j
j −KijKji)

= R(g)− 2 R0
0︸︷︷︸

=ǫR00

+ǫ
(
(trhK)2 − |K|2h

)

= −16πǫT00 + 2Λ + ǫ
(
(trhK)2 − |K|2h

)
,

and we have used the Einstein equation,

Rµν −
1

2
Rgµν + Λgµν = 8π

G

c4
Tµν , (1.4.18)

with G = c = 1. Assuming that ǫ = −1 we obtain the desired scalar constraint:

R(h) = 16πTµνN
µNν + 2Λ + |K|2h − (trhK)2 . (1.4.19)

(We emphasise that this equation is valid whatever the dimension of S .) In
particular in vacuum, with Λ = 0, one obtains

R(h) = |K|2h − (trhK)2 . (1.4.20)

The vector constraint equation carries the remaining information contained
in the equation (Gµν + Λgµν)N

µ = 8πTµνN
µ. In order to understand that

equation, let Y be tangent to S , we then have

(Gµν + Λgµν)N
µY ν =

(
Rµν + (Λ− 1

2
R(g))gµν

)
NµY ν

= Ric(N,Y ) + (Λ− 1

2
R(g)) g(N,Y )︸ ︷︷ ︸

=0

= Ric(N,Y ) . (1.4.21)

We will relate this to some derivatives of K. By definition we have

(DZK)(X,Y ) = Z(K(X,Y ))−K(DZX,Y )−K(X,DZY ) .

Now,

Z(K(X,Y )) = Z(g(∇XN,Y )) = g(∇Z∇XN,Y ) + g(∇XN,∇ZY ) .
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Since ∇XN is tangential, and P is symmetric, the last term can be rewritten
as

g(∇XN,∇ZY ) = g(P (∇XN),∇ZY ) = g(∇XN,P (∇ZY ))

= K(X,P (∇ZY )) = K(X,DZY ) .

It follows that

(DZK)(X,Y )− (DXK)(Z, Y )

= g(∇Z∇XN,Y )− g(∇X∇ZN,Y ) +K(X,DZY )−K(Z,DXY )

−K(DZX,Y )−K(X,DZY ) +K(DXZ, Y ) +K(Z,DXY )

= g(R(Z,X)N,Y ) + g(∇[Z,X]N,Y )
︸ ︷︷ ︸

K([Z,X],Y )

−K(DZX −DXZ︸ ︷︷ ︸
[Z,X]

, Y )

= g(R(Z,X)N,Y ) .

Thus,

(DZK)(X,Y )− (DXK)(Z, Y ) = g(R(Z,X)N,Y ) . (1.4.22)

This equation is known as the Codazzi-Mainardi equation, though it was known
to Karl Mikhailovich Peterson before those authors.

In a frame in which the ei’s are tangent to the hypersurface S , (1.4.22) can
be rewritten as

DkKij −DiKkj = RjµkiN
µ . (1.4.23)

A contraction over i and j gives then

hij(DkKij −DiKkj) = hijRj0ki + ǫR00k0︸ ︷︷ ︸
0

= gµνRµ0kν = −Rk0 .

Using the Einstein equation (1.4.18) together with (1.4.21) we obtain the vector
constraint equation:

DjK
j
k −DkK

j
j = 8πTµνN

µhνk . (1.4.24)

Incidentally: It seems that the first author to recognize the special character of
the equations GµνN

ν = 0 was Darmois [185], see [93] for the history of the problem.

1.5 Cauchy data

Let us return to the discussion of the end of Section 1.1. It is appropriate to
adapt a more general point of view than that presented there, where we assumed
that the initial data were given on an open subset O of the zero-level set of the
function y0. A correct geometric picture is to start with an n-dimensional
hypersurface S , and prescribe initial data there; the case where S is O is thus
a special case of this construction. At this stage there are two attitudes one
may wish to adopt: the first is that S is a subset of the spacetime M — this
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is essentially what we assumed in Section 1.4. Another way of looking at this
is to consider S as a hypersurface of its own, equipped with an embedding

i : S →M .

The most convenient approach is to go back and forth between those points
of view, and we will do this without further notice whenever useful for the
discussion at hand.

A vacuum initial data set (S , h,K) is a triple where S is an n–dimensional
manifold, h is a Riemannian metric on S , and K is a symmetric two-covariant
tensor field on S . Further (h,K) are supposed to satisfy the vacuum constraint
equations (1.4.20) and (1.4.24), perhaps (but not necessarily so) with a non-zero
cosmological constant Λ.

It follows directly from its definition that the metric h is uniquely defined by
the spacetime metric g once that S ⊂M (or i(S ) ⊂M ) has been prescribed;
the same applies to the extrinsic curvature tensor K. So a hypersurface in a
vacuum spacetime defines a unique vacuum initial data set.

Let us show that specifyingK is equivalent to prescribing the “time-derivatives”
of the space-part gij of the resulting spacetime metric g. Suppose, indeed, that a
spacetime (M,g) has been constructed (not necessarily vacuum) such that K is
the extrinsic curvature tensor of S in (M , g). Consider any domain O ⊂ S of
coordinates yi, let y0 = 0 be a function vanishing on S with non-vanishing gra-
dient there, and construct coordinates (yµ) = (y0, yi) in some M –neighborhood
of U such that S ∩ U = O; those coordinates could be wave-coordinates, as
described at the end of Section 1.1, but this is not necessary at this stage.
Since y0 is constant on S the one-form dy0 annihilates TS , so does the one-
form g(N, ·), and since S has codimension one it follows that dy0 must be
proportional to g(N, ·):

Nαdy
α = N0dy

0

on O. The normalization −1 = g(N,N) = gµνNµNν = g00(N0)
2 gives

Nαdy
α =

1√
|g00|

dy0 .

Next,

Kij := g(∇iN, ∂j) = ∇iNj

= ∂iNj − ΓµjiNµ

= −Γ0
jiN0

= −1

2
g0σ
(
∂jgσi + ∂igσj − ∂σgij

)
N0 . (1.5.1)

This shows that to calculate Kij we need to know gµν and ∂0gij at y0 = 0.
Reciprocally, (1.5.1) can be rewritten as

∂0gij =
2

g00N0
Kij

+ terms determined by the gµν ’s and their space–derivatives ,
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so that the knowledge of the gµν ’s and of the Kij’s at y0 = 0 allows one to
calculate ∂0gij .

We conclude that Kij is the geometric counterpart of the ∂0gij’s.

Incidentally: It is sometimes said that the metric components g0α have a gauge
character. By this it is usually meant that the fields under consideration do not
have any intrinsic meaning, and their values can be changed using the action of
some family of transformations, relevant to the problem at hand, without changing
the geometric, or physical, information carried by those objects. In our case the
relevant transformations are the coordinate ones, and things are made precise by
the following proposition:

Proposition 1.5.2 Let gAB, g̃AB be two metrics such that

gij |{y0=0} = g̃ij |{y0=0} , Kij |{y0=0} = K̃ij |{y0=0} . (1.5.2)

Then there exists a coordinate transformation φ defined in a neighborhood of {y0 =
0} which preserves (1.5.2) such that

g0µ|{y0=0} = (φ∗g̃)0µ|{y0=0} . (1.5.3)

Furthermore, for any metric g there exist local coordinate systems {ȳµ} such that
{y0 = 0} = {ȳ0 = 0} and, if we write g = ḡµνdȳ

µdȳν etc. in the barred coordinate
system, then

gij |{y0=0} = ḡij |{ȳ0=0} , Kij |{y0=0} = K̄ij |{ȳ0=0} ,

ḡ00|{y0=0} = −1 , ḡ0i|{y0=0} = 0 . (1.5.4)

Remark 1.5.3 We can actually always achieve ḡ00 = −1, ḡ0i = 0 in a whole neigh-
borhood of S : this is done by shooting geodesics normally to S , choosing y0 to be
the affine parameter along those geodesics, and by transporting the coordinates yi

from S by requiring them to be constant along the normal geodesics. The coordi-
nate system will break down wherever the normal geodesics start intersecting, but
the implicit function theorem guarantees that there will exist a neighborhood of S

on which this does not happen. The resulting coordinates are called Gauss coordi-
nates. While Gauss coordinates are geometrically natural, in these coordinates the
Einstein equations do not appear to have good properties from the PDE point of
view.

Proof: It suffices to prove the second claim: for if φ̄ is the transformation that
brings g to the form (1.5.4), and φ̃ is the corresponding transformation for g̃, then
φ := φ̃ ◦ φ̄−1 will satisfy (1.5.3).

Let us start by calculating the change of the metric coefficients under a trans-
formation of the form

y0 = ϕȳ0 , yi = ȳi + ψiȳ0 . (1.5.5)

If ϕ > 0 then clearly
{y0 = 0} = {ȳ0 = 0} .

Further, one has

g
∣∣∣
{y0=0}

=
(
g00(dy

0)2 + 2g0idy
0dyi + gijdy

idyj
)∣∣∣

{y0=0}

=
(
g00(ȳ

0dϕ+ ϕdȳ0)2 + 2g0i(ȳ
0dϕ+ ϕdȳ0)(dȳi + ȳ0dψi + ψidȳ0)
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+gij(dȳ
i + ȳ0dψi + ψidȳ0)(dȳj + ȳ0dψj + ψjdȳ0)

)∣∣∣
{y0=0}

=
(
g00(ϕdȳ

0)2 + 2g0iϕdȳ
0(dȳi + ψidȳ0)

+gij(dȳ
i + ψidȳ0)(dȳj + ψjdȳ0)

)∣∣∣
{y0=0}

=
(
(g00ϕ

2 + 2g0iψ
i + gijψ

iψj)(dȳ0)2

+2(g0iϕ+ gijψ
j)dȳ0dȳi + gijdȳ

idȳj
)∣∣∣

{y0=0}

=: ḡµνdȳ
µdȳν .

We shall apply the above transformation twice: first we choose ϕ = 1 and

ψi = hijg0j ,

where hij is the matrix inverse to gij ; this leads to a metric with ḡ0i = 0. We then
apply, to the new metric, a second transformation of the form (1.5.5) with the new
ψi = 0, and with a ϕ chosen so that the final g00 equals minus one. 2

1.6 Solutions global in space

In order to globalize the existence Theorem 1.3.1 in space, we will show that

1. coordinate transformations of initial data extend to coordinate transfor-
mations of the spacetime metric, and that

2. two solutions differing only by the values g0α|{y0=0} are (locally) isometric.

The question, what is the right spacetime-existence-and-uniqueness state-
ment, deserves a chapter of its own, and will be addressed in Chapter 2.

For this, suppose that g and g̃ both solve the vacuum Einstein equations on
overlapping subsets of a globally hyperbolic region U , with the same Cauchy
data (h,K) on U ∩S . Here S is a spacelike hypersurface and we assume that
U ∩S is a Cauchy surface for U . We also assume that each metric is expressed
in a single coordinate system in its domain of definition, say coordinates {xµ}
for g and {x̃µ} for g̃, such that the initial data surface S is given by the equation
{x0 = 0} for g, and {x̃0 = 0} for g̃. The coordinates xµ and x̃µ are not assumed
to be harmonic in what follows.

Let the space-coordinates xi, associated with the metric g on S , be defined
on a subset O of S , and let the space-coordinates x̃i, likewise associated with
g̃, be defined on a subset Õ of S . Let Ṽ be the intersection

Ṽ = O ∩ Õ

(compare Figure 1.6.1).
By definition, “same Cauchy data” means that there exists a space-coordinate

transformation
(x0 = 0, xi) 7→ (x̃0 = 0, x̃i) , (1.6.1)

such that on the overlap region Ṽ it holds

hij =
∂x̃k

∂xi
∂x̃k

∂xj
h̃kℓ , Kij =

∂x̃k

∂xi
∂x̃k

∂xj
K̃kℓ , (1.6.2)
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Figure 1.6.1: Two overlapping coordinate patches on S . There exists a coor-
dinate transformation transforming the gαβ ’s into the g̃αβ ’s on the domain of

dependence D(Ṽ ) of Ṽ . Only the future of S is shown, the situation to the
past of S is completely analogous.

where hij = gij(x
0 = 0, ·), h̃ij = g̃ij(x̃

0 = 0, ·), similarly for the extrinsic
curvature tensor.

One can then introduce wave coordinates in a, perhaps small, neighborhood
of Ṽ , globally hyperbolic both for g and g̃, by solving

2gy
A = 0 , 2g̃ ỹ

A = 0 , (1.6.3)

using the same initial data for yA and ỹA. For definiteness, the owner of the
metric g can solve the first equation in (1.6.3) with initial data

y0|x0=0 = 0 , yi|x0=0 = xi . (1.6.4)

The initial derivatives ∂yA/∂x0|x0=0 can then be algebraically determined by
furthermore requiring (compare (1.3.16))

gαβ
∂y0

∂xα
∂y0

∂xβ

∣∣∣∣
x0=0

= −1 , gαβ
∂y0

∂xα
∂yi

∂xβ

∣∣∣∣
x0=0

= 0 . (1.6.5)

Equivalently,

g00
∂y0

∂x0
∂y0

∂x0

∣∣∣∣
x0=0

= −1 , g00
∂yi

∂x0

∣∣∣∣
x0=0

= −g0i
∣∣∣∣
x0=0

. (1.6.6)

These algebraic equations have smooth solutions when the initial data hyper-
surface {x0 = 0} is assumed to be spacelike everywhere, as then g00 has no
zeros there.

After inverting the map xα 7→ yA in a spacetime neighborhood of the coor-
dinate patch where the coordinates xi are defined, she can calculate the metric
coefficients in harmonic coordinates yA:

gAB(yC) =

(
gαβ

∂yA

∂xα
∂yA

∂xα

)(
xµ(yC)

)
. (1.6.7)

By passing to a further subset of U if necessary, while leaving U ∩S unaffected,
she can ensure that U is globally hyperbolic with Cauchy surface U ∩S .
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The owner of the metric g̃ will solve the second equation in (1.6.3) with
initial data on Ṽ given as

ỹ0|x̃0=0 = 0 , ỹi|x̃0=0 = xi , (1.6.8)

where the coordinates xi have to be expressed in terms of the coordinates x̃j

by inverting the map (1.6.1). The initial derivatives ∂ỹA/∂x̃0|x̃0=0 are then
algebraically determined from the tilde-version of (1.6.5),

−1 = g̃αβ
∂ỹ0

∂x̃α
∂ỹ0

∂x̃β

∣∣∣∣
x̃0=0

, 0 = g̃αβ
∂ỹ0

∂x̃α
∂ỹi

∂x̃β

∣∣∣∣
x̃0=0

; (1.6.9)

equivalently,

g̃00
∂ỹ0

∂x̃0
∂ỹ0

∂x̃0

∣∣∣∣
x̃0=0

= −1 , g̃00
∂ỹi

∂x̃0

∣∣∣∣
x0=0

= −g̃0j ∂x
i

∂x̃j

∣∣∣∣
x̃0=0

. (1.6.10)

Proceeding as before, he can calculate

g̃AB(ỹC) =

(
g̃αβ

∂ỹA

∂x̃α
∂ỹA

∂x̃α

)(
x̃µ(ỹC)

)
. (1.6.11)

In this way one obtains two solutions of the harmonically-reduced Einstein
equations (1.1.20) with the same initial data.

Suppose first, for simplicity, that all the fields involved are smooth. The
uniqueness part of Theorem 1.3.1 shows that

gAB(yC) ≡ g̃AB(yC)

on any globally hyperbolic subset of U on which the spacetime coordinates
xα(yA) and x̃α(ỹA) are simultaneously defined, with yA = ỹA. Composing the
maps

xα 7→ yα = ỹα 7→ x̃α

(where the middle map is the identity map yα 7→ ỹα = yα), it follows from
(1.6.7) and (1.6.11) that

g̃µν(xγ) =

(
g̃αβ

∂ỹA

∂x̃α
∂ỹA

∂x̃α

)
(x̃µ(xγ)) , (1.6.12)

on the globally hyperbolic subset of U as above. That is to say, the metric g
can be obtained from g̃ by a coordinate transformation there.

Patching together solutions defined in local coordinates using the procedure
above allows us to construct a solution of our equations on some globally hy-
perbolic neighborhood of any initial data hypersurface S . We emphasise that
no completeness, compactness, or asymptotic hypotheses are needed for this.

Summarising, we have proved:

Theorem 1.6.1 Any smooth vacuum initial data set (S , h,K) admits a globally
hyperbolic vacuum development.
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Remark 1.6.2 The solutions are locally unique, in a sense made clear by the
proof: given two solutions constructed as above, there exists a globally hyper-
bolic neighborhood of the initial data surface on which the solutions coincide.
Since there is a lot of arbitrariness in the construction above, related with the
choices of various coordinate patches, coordinate systems, their overlaps, it is far
from clear whether any kind of global uniqueness holds. As already mentioned,
we will return to this in Section 2.1.

When the initial data are not smooth, the question arises whether the met-
rics constructed in local harmonic coordinates as above will be sufficiently dif-
ferentiable to apply the uniqueness part of Theorem 1.3.1. Now, the metrics
obtained so far are in a space C1([0, T ],Hs), where the Sobolev space Hs is de-
fined using the space-derivatives of the metric. The initial data for the harmonic
coordinates yµ or ỹµ of (1.6.3) may be chosen to be in Hs+1 ×Hs. However,
a rough inspection of (1.6.3) shows that the resulting solutions yµ and ỹµ will
be only in C1([0, T ],Hs), because of the low regularity of the metric. But then
(1.1.8) implies that the components of the metrics in the yµ or ỹµ coordinates
will be in C1([0, T ],Hs−1). Uniqueness can only be guaranteed if s−1 > n/2+1,
which is one degree of differentiability more than needed for existence.

This was the state of affairs for some fifty-five years until the following
simple argument of Planchon and Rodnianski [350]: To make it clear that the
functions yµ are considered to be scalars in (1.6.3), let us write y for each of
the yµ’s. Commuting derivatives with 2g one finds, for metrics satisfying the
vacuum Einstein equations,

2g∇αy = ∇µ∇µ∇αy = [∇µ∇µ,∇α]y = Rσµαµ︸ ︷︷ ︸
=Rσ

α=0

∇σy = 0 .

Commuting once more one obtains an evolution equation for the field ψαβ :=
∇α∇βy:

2gψαβ +∇σRβλασ︸ ︷︷ ︸
=0

∇λy + 2Rβ
λ
α
σψσλ = 0 ,

where the underbraced term vanishes, for vacuum metrics, by a contracted
Bianchi identity. So the most offending term in this equation for ψαβ, involving
three derivatives of the metric, disappears when the metric is vacuum. Stan-
dard theory of hyperbolic PDEs shows now that the functions ∇α∇βy are in
C1([0, T ],Hs−1), hence y ∈ C1([0, T ],Hs+1), and the transformed metrics are
regular enough to invoke uniqueness without having to increase s.

Suppose, now, that an initial data set (S , h,K) as in Theorem 1.3.1 is given.
Covering S by coordinate neighborhoods Op, p ∈ S , one can use Theorem 1.3.1
to construct globally hyperbolic developments (Up, gp) of (Op, h,K). By the
arguments just given the metrics so obtained will coincide, after performing a
suitable coordinate transformation, on globally hyperbolic subsets of their joint
domains of definition. Thus, similarly to the smooth case, we can patch the
(Up, gp)’s together to a globally hyperbolic Lorentzian manifold with Cauchy
surface S , obtaining:
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Theorem 1.6.3 Any vacuum initial data set (S , h,K) of differentiability class
Hs+1 ×Hs, s > n/2, admits a globally hyperbolic development.

Remark 1.6.2 applies as is to the Hs+1 ×Hs setting.





Chapter 2

The global evolution problem

2.1 Maximal globally hyperbolic developments

In Theorem 1.6.3 we have established local existence of solutions of the Cauchy
problem for vacuum Einstein equations. There arises the question of global
existence and uniqueness of solutions.

Now, it is easy to see that there can be no uniqueness for the Cauchy
problem, unless some restrictions on the solution are imposed. Consider for
example the three manifolds (−∞, 1) × Rn, R × Rn and (R × Rn) \ {(1,~0)}
equipped with the obvious flat metric. All three spacetimes are solutions of
the vacuum Einstein equations with initial data ({0} ×Rn, δ, 0), where δ is the
Euclidean metric on Rn. The first two are globally hyperbolic developments of
the given initial data, but the third is not. And obviously no pair is isometric:
e.g,. the second is geodesically complete, while the other two are not. So, to
obtain uniqueness, some further conditions are needed.

A possible set of such conditions has been spelled-out in the celebrated
Choquet-Bruhat – Geroch theorem [97] (compare [384]), which asserts that
to every smooth vacuum general relativistic initial data set (M,h,K) one can
associate a smooth solution of the vacuum Einstein equations which is unique,
up to isometries, in the class of maximal globally hyperbolic spacetimes. The
corresponding result with Sobolev initial data (h,K) ∈ Hs ⊕ Hs−1, N ∋ s >
n/2 + 1 has been proved in [126] and reads:

Theorem 2.1.1 Consider a vacuum Cauchy data set (M,h,K), where M is
an n-dimensional manifold, h ∈ Hs

loc(M) is a Riemannian metric on M , and
K ∈ Hs−1

loc (M) is a symmetric two–tensor on M , satisfying the general rela-
tivistic vacuum constraint equations, where N ∋ s > n/2 + 1, n ≥ 3. Then
there exists a Lorentzian manifold (M , g) with a Hs

space,loc-metric, unique up
to isometries within the Hs

space,loc class, inextendible in the class of globally
hyperbolic spacetimes with a Hs

space,loc vacuum metric and with an embedding
i : M → M such that i∗g = h, and such that K corresponds to the extrinsic
curvature tensor of i(M) in M .

To avoid ambiguities, global hyperbolicity in Theorem 2.1.1 is meant as the
requirement that every inextendible causal curve in M meets i(M) precisely

37



38 CHAPTER 2. THE GLOBAL EVOLUTION PROBLEM

once; compare Appendix A.22, p. 233. A spacetime is said to be maximal
globally hyperbolic if it cannot be extended within the category of globally
hyperbolic spacetimes.

The manifold (M , g) of the theorem is called the maximal globally hyperbolic
vacuum development of (M,h,K); it is yet another classical result of Yvonne
Choquet-Bruhat that (M , g) is independent of s for s > n/2 + 1.

While Theorem 2.1.1 is highly satisfactory, it does not quite prove what one
wants, because uniqueness is obtained in the globally hyperbolic class only. A
striking example illustrating that there is a problem here is provided by the
following observation (see [124, 140, 324]), which summarises Theorem B.1.6,
p. 243 and Remark B.1.7 from Appendix B.1 :

Theorem 2.1.2 Consider the Taub spacetime (M(t− ,t+),g) of Appendix B.1.
Then

1. (M(t− ,t+),g) is maximal globally hyperbolic.

2. There exists an uncountable number of analytic, vacuum, simply con-
nected, non-isometric maximal extensions of (M(t− ,t+),g).

From the point of view of the Cauchy problem, the situation is thus the
following: Our world “today” is described by an initial data set for the Einstein
equations and possibly some further fields. The field equations can be used to
evolve the data, and hence predict the future. So while Theorem 2.1.1 shows
that the initial data predict only the maximal globally hyperbolic part of the
spacetime, Theorem 2.1.2 makes it clear that there is no uniqueness beyond.
Hence, Einstein equations fail to predict the future, at least if we start with
initial data for the Taub spacetime.

The question arises, whether or not some further conditions can be imposed
on the initial data to avoid this problem. For this it is instructive to discuss a
few examples.

2.2 Some examples

Example 2.2.1 Let (M,h,K) be Cauchy data for a cylindrically symmetric
polarized metric:

ds2 = e2(U−A)(−dt2 + dr2) + e−2Ur2dφ2 + e2Udz2 (2.2.1)

U = U(t, r) , A = A(t, r) ,

M = {t = 0} ≈ R3 .

For metrics of the form (2.2.1) vacuum Einstein equations reduce to a single
linear wave equation (in the flat Minkowski metric) for U ,

2U =

[
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2

]
U = 0 , (2.2.2)

x = r cosφ , y = r sinφ .
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More precisely, given any solution U of the wave equation (2.2.2), the function A
appearing in the metric can be found by elementary integration of the remaining
equations

∂tA = 2r∂tU∂rU , ∂rA = r((∂tU)2 + (∂rU)2) . (2.2.3)

Given Cauchy data (U0, U1) for U and a distribution ρ = ρ(t, r) ∈ D′(R3)
on R3 such that supp ρ ∩M = φ, where M = {(t, x, y) ∈ R3 : t = 0}, define Uρ
as the unique solution of the problem

2Uρ = ρ , (2.2.4)

Uρ(0, r) = U0(r) ,
∂Uρ
∂t

(0, r) = U1(r) .

The distribution Uρ will exist if e.g. ρ ∈ Hm(R
3), (U0, U1) ∈ Hk(M)⊕Hk−1(M),

for any m,k ∈ R. In particular if f ∈ C0(R), then the distribution ρ given by

ρ = f(t) δ0 ∈ Hm(R
3) , m < −3/2 (2.2.5)

is an allowed distribution.
Let Mρ be the interior of R4 \ {(t, x, y, z) : ρ(t, x, y) 6= 0}, let gρ be the

metric (2.2.1) with U = Uρ, and with a function A obtained by integrating
(2.2.3); here one might need to restrict oneself to a simply connected subset
of R4 \ {(t, x, y, z) : ρ(t, x, y) 6= 0} if needed. For any, say smooth, (U0, U1),
the resulting family (Mρ, gρ) of vacuum spacetimes is thus parametrized by the
set of distributions ρ ∈ D′(R3) subject to the restrictions above, each member
(Mρ, gρ) being a vacuum development of the same initial data. It is clear that
for different ρ’s one will in general obtain non–isometric spacetimes. 2

The rather trivial non-uniqueness just described arises from the fact that we
have pretended that the spacetime is vacuum by removing from our manifold the
regions where matter was present. The example shows that in order to achieve
any kind of uniqueness it is natural to consider only these developments (M , g)
which contain the maximal globally hyperbolic development (M0, g0) of the
data. In other words, there should exist an isometric embedding of (M0, γ0) into
(M , γ). This restriction, when imposed in the example above, would exclude
all the Mρ’s except for the spacetime obtained by solving (2.2.4) with ρ = 0.

The spacetimes (Mρ, gρ) obtained from ρ of the form (2.2.5) provide a fam-
ily of examples which suggest that non-uniqueness of solutions might arise in
spacetimes with naked singularities. In [120, Appendix E] it is shown that for
any smooth function f(t) such that 0 6∈ supp f , and for any smooth (U0, U1),
there exists a unique solution Uρ of (2.2.4) with ρ given by (2.2.5) which is
smooth on R3\supp ρ. If we set supp f to be, say, the interval [1,∞), and we
vary f , we obtain an infinite dimensional family of non-isometric spacetimes
with a “naked singularity sitting on the set” {t ∈ [1,∞), x = y = 0}. The arbi-
trariness of f represents an arbitrariness introduced by “the singularity”, thus
f can be thought of as a “boundary condition at the singularity”. As already
mentioned, these spacetimes are excluded by the criterion that we consider
only these developments which are “at least as large as the maximal globally
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Figure 2.2.1: A projection diagram for a Robinson-Trautman spacetime with
2M ≈ S2, m > 0.

hyperbolic development”. The examples seem, however, to indicate that the
occurrence of real singularities might lead to behaviour which is difficult to
control.

Example 2.2.2 Let (B(1), h,K) be the standard initial data for Minkowski
spacetime restricted to an open unit ball: B(1) ⊂ R3, hij = δij , Kij = 0. As
shown by Bartnik [35], (B(1), h,K) may be extended in an infinite number
of ways to distinct vacuum asymptotically flat Cauchy data sets (R3, h̃, K̃).
The maximal globally hyperbolic development (M , g0) of (M,h,K) is the set
{−1 < t < 1, 0 ≤ r < 1 − |t|} ⊂ R4 equipped with the Minkowski metric,
and any maximal globally hyperbolic development of (R3, h̃, K̃) will provide an
extension of (M , g0). 2

The last example shows that in any uniqueness theorem it is natural to
restrict attention to inextendible Cauchy data sets (M,h,K). This condition
would exclude the behaviour described there.

There are at least two ways for a Cauchy data set (M,h,K) to be inex-
tendible: one is to assume that (M,h) is complete, another possibility is the
occurrence of a singularity at “what would have been ∂M”. Let us first consider
an example of the latter behaviour:

Example 2.2.3 Consider a Robinson–Trautman spacetime obtained by pre-
scribing some smooth function λ0 ∈ C∞(S2) at u = u0 as in Appendix B.2,
p. 251). Fix u0 < u1 ≤ ∞, consider a smooth spacelike hypersurface M ⊂
[u0, u1) × R × S2, as shown in Figure 2.2.1, let (h,K) be the data induced on
M by the RT metric g (B.2.1). The hypersurface M is inextendible through
its “left corner” = 0 as in Figure 2.2.1 because of the singularity at r = 0 of
Robinson–Trautman metrics. In Robinson–Trautman coordinates (u, r, θ, ϕ),
the set (u0, u1) × R × S2 is the maximal globally hyperbolic development of
(M,h,K). If u1 < ∞ then there exists a neighbourhood of the hypersurface
{u = u1} in which the metric is uniquely defined in the vacuum Robinson–
Trautman class by (M,h,K). This fails, however, at the horizon H+ = {“u =
∞”}: Theorem B.2.2 shows that there exist infinitely many C117 extensions
across H+ of the maximal globally hyperbolic development of (M,h,K). 2



2.2. SOME EXAMPLES 41

ioio

i+

t = o
I

+
−I

+
−

I
+
+I

+
+

M

Figure 2.2.2: A “hyperboloidal” initial data surface.

The last example suggests that Cauchy data (M,h,K) which are inex-
tendible through “∂M” because of “singularities sitting on ∂M” lead to non-
uniqueness when attempting to go beyond the maximal globally hyperbolic de-
velopment. It should be, however, pointed out that although this behaviour is
generic in the class of Robinson–Trautman spacetimes, the Robinson–Trautman
spacetimes themselves are not generic, and it cannot be excluded that this kind
of non-uniqueness might be removed in generic situations by imposing some
conditions.

Example 2.2.4 Let (M,h,K) be “hyperboloidal initial data”, as described in
Section 3.2.4, p. 114, in particular (M,h) is a complete Riemannian manifold;
suppose moreover that (M,h,K) is “smoothly conformally compactifiable” and
that the hypotheses of Theorem 2.6.1, p. 52 below hold (cf. e.g. [12] or Sections
2.6.1 and 3.2.4 for more details). We can choose the time orientation in such
a way that the maximal vacuum globally hyperbolic development (M , γ) of
(M,h,K) contains at least “a piece” I

+
+ of I +, where I

+
+ is the part of I +

to the future ofM , cf. Figure 2.2.2 (cf. Theorem 2.6.1 and [209], compare [378–
380]). Using e.g. the techniques of [366] one can show [261] that supplementing
(M,h,K) by appropriate smooth data on I

+
− — the part of I + in the past of

M — one can find a vacuum metric on a neighbourhood O of M ∪I
+
− . There

is arbitrariness in the choice of the “missing data on I
+
− ”, and different data1

will lead to non-isometric extension of (M , γ) to the past of M . This example
shows that even the requirement of completeness of (M,h) is not sufficient for
inextendibility of maximal globally hyperbolic developments. 2

Summarising, it seems natural to require that:

• The space of Lorentzian manifolds of interest to physics should contain
only those developments (M , γ) of (M,h,K) which contain the unique
maximal globally hyperbolic development of (M,h,K);

• ifM is compact, then all the initial data metrics of physical interest should
be complete;

1By choosing (M,h,K) to be the data induced on the standard hyperboloid in Minkowski
spacetime one can by this method construct a curious spacetime which is the Minkowski
spacetime to the future of a hyperboloid, and not-Minkowski to its past.
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• for non-compact M , the allowed initial data metrics should be complete
and the initial data sets should be e.g. asymptotically flat in a well-
controlled sense.

2.3 Strong cosmic censorship

The examples just given show that there exist vacuum spacetimes with non-
unique extensions of a maximal globally hyperbolic region. In such examples the
spacetime (M ,g) of Theorem 2.1.1 is unique in the class of globally hyperbolic
spacetimes, but it can be extended in more than one way to strictly larger
vacuum solutions. In such cases the extension always takes places across a
Cauchy horizon (see Appendix A.22 for the definition).

So one cannot expect uniqueness in general. However, it has been sug-
gested by Penrose [345] that non-uniqueness happens only in very special cir-
cumstances. The following result of Isenberg and Moncrief [253, 331, 332] (com-
pare [236, 333]) indicates that this might indeed be the case:

Theorem 2.3.1 Let (M ,g) be an analytic spacetime containing an analytic
compact Cauchy horizon H . If the null geodesics threading H are closed, then
the Cauchy horizon is a Killing horizon; in particular the isometry group of
(M ,g) is at least one-dimensional.

The hypotheses of analyticity, compactness, and closed generators are of
course highly restrictive; partial results towards removing the closed-generators
hypothesis can be found in [333]. In any case it is conceivable that some kind of
local isometries need to occur in spacetimes with Cauchy horizons when those
conditions are not imposed; indeed, all known examples have this property.
But of course existence of local isometries is a highly non-generic property,
even when vacuum equations are imposed [46], so a version of Theorem 2.3.1
without those undesirable hypotheses would indeed establish SCC.

Whether or not Cauchy horizons require Killing vector fields, a loose mathe-
matical formulation of strong cosmic censorship, as formulated in [123] following
Moncrief and Eardley [330] and Penrose [345], is the following:

Conjecture 2.3.2 (Strong cosmic censorship conjecture) Consider the collec-
tion of initial data for, say, electro–vacuum or vacuum spacetimes, with the ini-
tial data surface S being compact, or with asymptotically flat initial data. For
generic such data the maximal globally hyperbolic development is inextendible.

Because of the difficulty of the strong cosmic censorship problem, a full un-
derstanding of the issues which arise in this context seems to be completely
out of reach at this stage. There is therefore some interest in trying to un-
derstand that question under various restrictive hypotheses, e.g., symmetry.
The simplest case, of spatially homogeneous spacetimes, has turned out to be
surprisingly difficult, because of the intricacies of the dynamics of some of the
Bianchi models which we are about to discuss, and has been settled in the
affirmative in [155] (compare Theorem 2.3.4 below).



2.3. STRONG COSMIC CENSORSHIP 43

2.3.1 Bianchi A metrics

An important example of the intricate dynamical behavior of solutions of the
Einstein equations is provided by the “Bianchi” vacuum metrics. The key
insight provided by these spacetimes is the supposedly chaotic behavior of large
families of metrics in this class when a singularity is approached. This dynamics
has been conjectured to be generic; we will return to this issue in Section 2.6.4.
In this section we concentrate on Bianchi A models, the reader is referred to
[234, 360, 361] for related results on Bianchi B models.

As will be seen shortly, in Bianchi A spacetimes the Einstein evolution equa-
tions reduce to a polynomial dynamical system on an algebraic four-dimensional
submanifold of R5. The spatial parts of the Bianchi geometries provide a real-
ization of six, out of eight, homogeneous geometries in three dimensions which
form the basis of Thurston’s geometrization program.

For our purposes here we define the Bianchi spacetimes as maximal globally
hyperbolic vacuum developments of initial data which are invariant under a
simply transitive group of isometries. Here the transitivity of the isometry
group is meant at the level of initial data, and not for the spacetime. The
name is a tribute to Bianchi, who gave the classification of three dimensional
Lie algebras which underline the geometry here. These metrics split into two
classes, Bianchi A and Bianchi B, as follows: Let G be a 3-dimensional Lie
group, and let Zi, i = 1, 2, 3 denote a basis of left-invariant vector fields on G.
Define the structure constants γkij by the formula

[Zi, Zj ] = γij
kZk .

The Lie algebra and Lie group are said to be of class A if γik
k = 0; class

B are the remaining ones. The classes A and B correspond in mathematical
terminology to the unimodular and non-unimodular Lie algebras. A convenient
parameterization of the structure constants is provided by the symmetric matrix
nij defined as

nij =
1

2
γkl

(iǫj)kl. (2.3.1)

This implies γij
k = ǫijmn

km. The Bianchi A metrics are then divided into six
classes, according to the eigenvalues of the matrix nij, as described in Table 2.1.
For the Bianchi IX metrics, of particular interest to us here, the group G is

Table 2.1: Lie groups of Bianchi class A.
Bianchi type n1 n2 n3 Simply connected group

I 0 0 0 Abelian R3

II + 0 0 Heisenberg
VI0 0 + − Sol (isometries of the Minkowski plane R1,1)
VII0 0 + + universal cover of Euclid (isometries of R2)
VIII − + + universal cover of SL(2,R)
IX + + + SU(2)

SU(2). Thus, the Taub metrics discussed in Appendix B.1, p. 235 are members
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of the Bianchi IX family, distinguished by the existence of a further U(1) factor
in the isometry group.

Let G be any three-dimensional Lie group, the Lie algebra of which belongs
to the Bianchi A class. (As already mentioned, the G’s are closely related to
the Thurston geometries, see Table 2.1; compare [7, Table 2]). Denote by {σi}
the basis dual to {Zi}. It is not too difficult to show that both A and B Bianchi
metrics can be globally written as

g = −dt2 + gij(t)σ
iσj , t ∈ I , (2.3.2)

with a maximal time interval I.
There are various ways to write the Einstein equations for a metric of the

form (2.3.2). We use the formalism introduced by Wainwright and Hsu [407],
which has proven to be most useful for analytical purposes [368, 373, 374]. We
follow the presentation in [373].

Let

σij = Kij −
1

3
trgKgij , θ := trgK ,

be the trace-free part of the extrinsic curvature tensor of the level sets of t.
Away from the (isolated) points at which θ vanishes, one can introduce

Σij = σij/θ ,

Nij = nij/θ ,

Bij = 2N k
i Nkj −Nk

kNij ,

Sij = Bij −
1

3
Bk

kδij .

Set Sp =
3
2(Σ22+Σ33) and Σ− =

√
3(Σ22−Σ33)/2. If we letNi be the eigenvalues

of Nij , the vacuum Einstein equations (a detailed derivation of which can be
found in [373]) lead to the following autonomous, polynomial dynamical system

N ′
1 = (q − 4Sp)N1 ,

N ′
2 = (q + 2Sp + 2

√
3Σ−)N2 ,

N ′
3 = (q + 2Sp − 2

√
3Σ−)N3 , (2.3.3)

S′
p = −(2− q)Sp − 3S+ ,

Σ′
− = −(2− q)Σ− − 3S− ,

where a prime denotes derivation with respect to a new time coordinate τ
defined by

dt

dτ
=

3

θ
. (2.3.4)

Further,

q = 2(S2
p +Σ2

−) ,

S+ =
1

2
[(N2 −N3)

2 −N1(2N1 −N2 −N3)] , (2.3.5)

S− =

√
3

2
(N3 −N2)(N1 −N2 −N3) .
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The vacuum constraint equations reduce to one equation,

S2
p +Σ2

− +
3

4
[N2

1 +N2
2 +N2

3 − 2(N1N2 +N2N3 +N3N1)] = 1 . (2.3.6)

The points (N1, N2, N3, Sp,Σ−) can be classified according to the values of
N1, N2, N3 in the same way as the ni’s in Table 2.1. The sets Ni > 0, Ni < 0
and Ni = 0 are invariant under the flow determined by (2.3.3), and one can
therefore classify solutions to (2.3.3)-(2.3.6) accordingly. Bianchi IX solutions
correspond, up to symmetries of the system, to points with all Ni’s positive,
while for Bianchi V III solutions one can assume that two Ni’s are positive and
the third is negative.

Points with N1 = N2 = N3 = 0 correspond to Bianchi I models. The
associated vacuum metrics were first derived by Kasner, and take the form

ds2 = −dt2 +
3∑

i=1

t2pidxi ⊗ dxi , p1 + p2 + p3 = p21 + p22 + p23 = 1 . (2.3.7)

An important role in the analysis of (2.3.3) is played by the Kasner circle,
defined as the set {q = 2}. These points belong to the configuration space,
as determined by (2.3.6), for Bianchi I models, but the equation q = 2 is
incompatible with (2.3.6) for Bianchi IX metrics. Nevertheless, we shall see
shortly that the Kasner circle plays an essential role in the analysis of the
Bianchi IX dynamics.

The set Σ− = 0, N2 = N3, together with its permutations, is invariant under
the flow of (2.3.3)-(2.3.6). In the Bianchi IX case these are the Taub solutions.
In the Bianchi V III case the corresponding explicit solutions, known as the
NUT metrics, have been found by Newman, Tamburino and Unti [336], and
they exhibit properties similar to the Bianchi IX Taub solutions.

The ω-limit of an orbit γ of a dynamical system is defined as the set of
accumulation points of that orbit. In [373, 374], Ringström proves the following:

Theorem 2.3.3 The ω-limit set of each non-NUT Bianchi V III orbit contains
at least two distinct points on the Kasner circle. Similarly, non-Taub–NUT
Bianchi IX orbits have at least three distinct ω-limit points on the Kasner circle.

The picture which emerges from a numerical analysis of (2.3.3) (see [54, 159]
and references therein) is the following: Every non-Taub–NUT Bianchi IX orbit
approaches some point on the Kasner circle; there it performs a “bounce”,
after which it eventually approaches another point on the Kasner circle, and
so on. Theorem 2.3.3 establishes the validity of this picture. The numerical
analysis further suggests that generic orbits will have a dense ω-limit set on the
Kasner circle; this is compatible with, but does not follow from, Ringström’s
analysis. It has been argued that the map which associates to each bounce
the nearest point on the Kasner circle possesses chaotic features; this is at the
origin of the “mixmaster behavior” terminology, sometimes used in this context.
Major progress concerning this issue has been achieved in [41, 292, 364], where
existence of orbits exhibiting the above behaviour has been established, but the
question of what happens for all, or for generic orbits remains open.
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Figure 2.3.1: A few “bounces” in a typical Bianchi IX orbit; figures and nu-
merics by Woei-Chet Lim. The vertical axis represents N1 (red), N2 (green),
N3 (blue), with only the biggest of the Ni’s plotted. The Kasner circle and the
triangle for the Kasner billiard in the (Σ+,Σ−)–plane are shown. The projected
trajectories can be seen to approach the billiard ones.

The following result of Ringström [373] provides further insight into the
geometry of Bianchi IX spacetimes:

Theorem 2.3.4 In all maximal globally hyperbolic developments (M ,g) of non-
Taub–NUT Bianchi IX vacuum initial data or of non-NUT Bianchi V III vac-
uum initial data the Kretschmann scalar

RαβγδR
αβγδ

is unbounded along inextendible causal geodesics.

Note that the observation of curvature blow-up provides a proof, alternative
to that of [155], of the non-existence of Cauchy horizons in generic Bianchi IX
models.

2.3.2 Gowdy toroidal metrics

The next simplest case, after the Bianchi models, is that of Gowdy metrics on
T3 := S1 × S1 × S1:

g = e(τ−λ)/2(−e−2τdτ2 + dθ2) + e−τ [eP dσ2 + 2ePQdσdδ + (ePQ2 + e−P )dδ2],
(2.3.8)

where τ ∈ R and (θ, σ, δ) are coordinates on T3, with the functions P,Q and λ
depending only on τ and θ. This form of the metric can always be attained [119]
when considering maximal globally hyperbolic U(1)×U(1)–symmetric vacuum
spacetimes with T3–Cauchy surfaces and with vanishing twist constants:

ca = ǫαβγδX
α
1X

β
2∇γXδ

a , a = 1, 2 , (2.3.9)

where the Xa’s are the Killing vectors generating the U(1) × U(1) action by
isometries. The condition c1 = c2 = 0 is equivalent to the requirement that the
family of planes span{X1,X2}⊥ is integrable.
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For metrics of the form (2.3.8), the Einstein vacuum equations become a
set of wave-map equations

Pττ − e−2τPθθ − e2P (Q2
τ − e−2τQ2

θ) = 0, (2.3.10)

Qττ − e−2τQθθ + 2(PτQτ − e−2τPθQθ) = 0, (2.3.11)

which are supplemented by ODE’s for the function λ:

λτ = P 2
τ + e−2τP 2

θ + e2P (Q2
τ + e−2τQ2

θ), (2.3.12)

λθ = 2(PθPτ + e2PQθQτ ). (2.3.13)

Here we write Pτ for ∂τP , etc.
In order to solve these equations, one starts with initial data for P and Q

such that ∫

S1

(PθPτ + e2PQθQτ )dθ = 0, (2.3.14)

this last condition being an integral consequence of (2.3.13) in view of the θ-
periodicity imposed. One then solves (2.3.10)-(2.3.11) in order to obtain P and
Q. Finally, λ is obtained by integrating (2.3.12)-(2.3.13). Global existence of
solutions to (2.3.10)-(2.3.11) was proved in [328] when the initial data are given
on a hypersurface {τ = const}, and in [119] for general U(1)×U(1)–symmetric
Cauchy surfaces.

The question of SCC in this class of metrics has been settled by Ringström,
who proved that the set of smooth initial data for Gowdy models on T3 that
do not lead to the formation of Cauchy horizons contains a set which is open
and dense within the set of all smooth initial data. More precisely, Ringström’s
main result (see [375, 377] and references therein) is the following:

Theorem 2.3.5 Let τ0 ∈ R and let S = {(Q(τ0), P (τ0), Qτ (τ0), Pτ (τ0))} be the
set of smooth initial data for (2.3.10)-(2.3.11) satisfying (2.3.14). There is a
subset G of S which is open with respect to the C2 × C1 topology, and dense
with respect to the C∞ topology, such that the spacetimes of the form (2.3.8)
corresponding to initial data in G are causally geodesically complete in one time
direction, incomplete in the other time direction, and the Kretschmann scalar,
RαβγδR

αβγδ, becomes unbounded in the incomplete direction of causal geodesics.

This result does indeed establish SCC in this class of metrics: to see that the
resulting spacetimes are inextendible in the category of C3 manifolds with C2

Lorentzian metrics, note that the existence of any such extension would imply
existence of geodesics which are incomplete in the original spacetime, and along
which every curvature scalar is bounded.

Theorem 2.3.5 is complemented by the results in [86, 141, 329], where infinite
dimensional families of (nongeneric) solutions which are extendible across a
Cauchy horizons are constructed.

The key to the understanding of the global structure of the Gowdy space-
times is the analysis of the behavior of the functions P and Q as τ → ±∞. The
asymptotic behavior of those functions, established by Ringström, can then be
translated into statements about the behavior of the spacetime geometry as
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those limits are approached. A central element of the proof is the existence of
a velocity function

v(θ) := lim
τ→∞

√
P 2
τ + e2PQ2

τ .

Essential steps in Ringström’s analysis are provided by the work on Fuchsian
PDEs of Kichenassamy and Rendall [266, 370], as well as the study of the ac-
tion of Geroch transformations by Rendall and Weaver [371] (compare [86]).
See also [146] for the related problem of an exhaustive description of Cauchy
horizons in those models.

2.3.3 Other U(1)× U(1) symmetric models

The existence of two Killing vectors is also compatible with S3, L(p, q) (“lens”
spaces), and S1 × S2 topologies. Thus, to achieve a complete understanding
of the set of spatially compact initial data with precisely two Killing vectors
one needs to extend Ringström’s analysis to those cases. There is an ad-
ditional difficulty that arises because of the occurrence of axes of symmetry,
where the (1+ 1)–reduced equations have the usual singularity associated with
polar coordinates. Nevertheless, in view of the analysis by Christodoulou and
Tahvildar-Zadeh [114, 115] (see also [119]), the global geometry of generic max-
imal globally hyperbolic solutions with those topologies is reasonably well un-
derstood. This leads one to expect that one should be able to achieve a proof
of SCC in those models using simple abstract arguments, but this remains to
be seen.

Recall, finally, that general models with two Killing vectors X1 and X2 on
T3 have non-vanishing twist constants (2.3.9). The Gowdy metrics are actually
“zero measure” in the set of all U(1) × U(1) symmetric metrics on T3 because
ca ≡ 0 for the Gowdy models. The equations for the resulting metrics are
considerably more complicated when the ca’s do not vanish, and only scant
rigorous information is available on the global properties of the associated so-
lutions [52, 256, 367]. It seems urgent to study the dynamics of those models,
as they are expected to display [53] “oscillatory behavior” as the singularity
is approached, in the sense of Section 2.6.4. Thus, they should provide the
simplest model in which to study this behavior.

2.3.4 Spherical symmetry

One could think that the simplest possible asymptotically flat model for study-
ing the dynamics of the gravitational field will be obtained by requiring spheri-
cal symmetry, since then the equations should reduce to wave equations in only
two variables, t and r. Unfortunately, for vacuum spacetimes this turns out
to be useless for this purpose because of the Jebsen-Birkhoff theorem [65, 257],
which asserts that spherically symmetric vacuum metrics are static. So, if one
wishes to maintain spherical symmetry, supplementary fields are needed. The
case of a scalar field was studied in a series of intricate papers over thirteen
years by Christodoulou, beginning with [107] and culminating in [109] with
the verification of the strong cosmic censorship conjecture within the model.
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Christodoulou further established “weak cosmic censorship” in this class, an is-
sue to which we return in the next section, and exhibited non-generic examples
for which the conclusions of these conjectures fail [108].

The situation changes when electromagnetic fields are introduced. The
analysis by Dafermos [168, 169] of the spherically symmetric Einstein-Maxwell-
scalar field equations yields a detailed picture of the interior of the black hole
for this model, in terms of initial data specified on the event horizon and on
an ingoing null hypersurface. When combined with the work by Dafermos and
Rodnianski [174] on Price’s law, one obtains the following global picture: initial
data with a compactly supported scalar field, and containing a trapped surface
(see Definition ??, p. ??), lead to spacetimes which either contain a degenerate
(extremal) black hole, or develop a Cauchy horizon, with a spacetime metric
that can be continued past this horizon in a C0, but not C1 manner. It seems
that not much is known about the properties of the degenerate solutions, which
are presumably non-generic; it would be of interest to clarify that. In any case,
the work shows that strong cosmic censorship holds within the class of nonde-
generate solutions with trapped surfaces, at the C1 level, leaving behind the
perplexing possibility of continuous extendability of the metric.

The reader is referred to [7, 123, 369] and references therein for further read-
ing on SCC.

2.4 Weak cosmic censorship

The strong cosmic censorship conjecture is an attempt to salvage predictability
of Einstein’s theory of gravitation. There exists a variant thereof which ad-
dresses the fact that we do not seem to observe any of the singularities that are
believed to accompany gravitational collapse. The hope is then that, generically,
in asymptotically flat spacetimes, any singular behavior that might form as a
result of gravitational collapse, such as causality violations, lack of predictabil-
ity, or curvature singularities, will be clothed by an event horizon. For this,
one introduces the notion of future null infinity, which is an idealized boundary
attached to spacetime that represents, loosely speaking, the end points of null
geodesics escaping to infinity. The black hole event horizon is then the bound-
ary of the past of null infinity. One then wishes the part of the spacetime that
lies outside the black hole region to be well-behaved and “sufficiently large”.
This is the content of the weak cosmic censorship conjecture, originally due
to Penrose [345], as made precise by Christodoulou [110]: for generic asymp-
totically flat initial data, the maximal globally hyperbolic development has a
complete future null infinity. Heuristically this means that, disregarding excep-
tional sets of initial data, no singularities are observed at large distances, even
when the observations are continued indefinitely. One should remark that, de-
spite the names, the strong and weak cosmic censorship conjectures are logically
independent; neither follows from the other. Note also that some predictability
of Einstein’s theory would be salvaged if strong cosmic censorship failed with
weak cosmic censorship being verified, since then the failure of predictability
would be invisible to outside observers.
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Figure 2.4.1: Light-cones in the Oppenheimer-Snyder collapse. I am grateful
to C. Williams for providing the figure.

Both cosmic censorship conjectures are intimately related to the issue of
gravitational collapse, the dynamical formation of black holes and singularities,
first observed for a homogeneous dust model by Oppenheimer and Snyder in
1939 [340], visualized in Figure 2.4.1.

So far the only complete analysis of weak cosmic censorship in a field theo-
retical model is that of the spherically symmetric scalar field model studied by
Christodoulou [108, 109], already mentioned in Section 2.3.4.

Incidentally: The situation in higher dimensions appears to be more complex.
On the positive side, Dafermos and Holzegel [170] have proved non-linear stability
for a restricted class of perturbations of the five dimensional Schwarzschild met-
ric. On the other hand, numerical work in [200] suggests failure of weak cosmic
censorship near six-dimensional Myers-Perry black holes.

2.5 Stability of vacuum cosmological models

Not being able to understand the dynamics of all solutions, one can ask whether
some features of certain particularly important solutions persist under small
perturbations of initial data. For example, will geodesic completeness still hold
for spacetimes arising from small perturbations of Minkowskian initial data?
Or, will a global, all encompassing, singularity persist under perturbations of
Bianchi IX initial data? Such questions are the object of stability studies.

2.5.1 U(1) symmetry

Our understanding of models with exactly one Killing vector is dramatically
poorer than that of U(1) × U(1) symmetric spacetimes. Here one only has
stability results, for small perturbations within the U(1) isometry class, in the
expanding direction (“away from the singularity”): In [91] Choquet-Bruhat
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considers U(1) symmetric initial data (h,K) for the vacuum Einstein equations
on a manifold of the form S ×S1, where S is a compact surface of genus g > 1.
It is assumed that trhK is constant, and that (h,K) are sufficiently close to
(h0,K0), where h0 is a product metric

h0 = γ + dx2 ,

with γ being a metric of constant Gauss curvature on S , and with K0 propor-
tional to h0. The sign of the trace of K0 determines an expanding time direction
and a contracting one. Under those conditions, Choquet-Bruhat proves that the
solution exists for an infinite proper time in the expanding direction. The anal-
ysis builds upon previous work by Choquet-Bruhat and Moncrief [103], where
a supplementary polarization condition has been imposed. Not much is known
in the contracting direction in those models (see [252]), where “mixmaster be-
havior”2 is expected [50, 55]; compare [56].

2.5.2 Future stability of hyperbolic models

The proof of the above result bears some similarity to the future stability theo-
rem of Andersson and Moncrief [16], as generalized in [14], for spatially compact
hyperbolic models without any symmetries. Those authors consider initial data
near a negatively curved compact space form, with the extrinsic curvature being
close to a multiple of the metric, obtaining future geodesic completeness in the
expanding direction. The control of the solution is obtained by studying the
Bel-Robinson tensor, and its higher-derivatives analogues. A striking ingredient
of the proof is an elliptic-hyperbolic system of equations, used to obtain local
existence in time [15].

2.6 Stability of Minkowski spacetime

The idea of stability results is to fix some spacetime (M,γ0), maximal glob-
ally hyperbolic development of some data (S , h0,K0), and try to prove that
for (h,K) sufficiently close to (h0,K0) in some norm the global properties of
maximal developments (M,γ) of the (S , h,K)’s will mimic those of (M,γ0).

The first natural question is to enquire about stability of Minkowski space-
time.

2.6.1 Friedrich’s stability theorem

The first results of this type have been proved by Friedrich [210], with or with-
out a cosmological constant, and also for the Einstein–Yang–Mills system [211];
here we shall review the vacuum case with zero cosmological constant only.
Friedrich’s approach takes advantage of the fact that conformal transformations
can map infinite domains into finite ones, reducing in this way the global-in-time
stability problem to a much simpler short=time stability problem for confor-
mally rescaled fields. Suppose thus that a (spatially non–compact) spacetime

2See the discussion after Theorem 2.3.3, and Section 2.6.4.
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(M,γ) can be conformally mapped into a spatially compact spacetime (M̃, γ̃)
(this can be done e.g. for the Minkowski spacetime, with (M̃, γ̃) — the ”Einstein
cylinder”, M̃ ≈ R × S3, see Appendix ??. After such an infinite compression
the conformal factor which relates the physical metric γ to the “unphysical”
metric γ̃, γµν = Ω−2γ̃µν , will vanish on the boundary ∂M ≡ I of M in M̃ ,
which introduces singular terms when one naively rewrites Einstein equations
for γ in terms of γ̃ and Ω. Friedrich has observed that one can derive a well
posed system of equations for the conformally rescaled fields which is regular
even at points at which Ω vanishes, and which is equivalent to vacuum Ein-
stein equations on the set Ω > 0 (cf. also [96, 104] for a different “conformally
regular” system of equations), which leads to the following [210, 211]:

Theorem 2.6.1 (Future stability of the “hyperboloidal initial value problem”)
Let (g0,K0) be the data induced on the unit hyperboloid

S = {(t, x, y, z) ∈ R4 : t =
√

1 + x2 + y2 + z2} ≈ R3

from the flat metric of Minkowski spacetime. Consider the space X of Cauchy
data (h,K) such that

1. (h,K) are smoothly conformally compactifiable3, i.e. there exist a smooth
compact Riemannian manifold (S̃ , g̃) with boundary, with Int(S̃ ) ≈ S ,
where Int(·) is the interior of ·, and a smooth (up to boundary) non–
negative function Ω on S̃ , vanishing only on ∂S̃ , with dΩ(p) 6= 0 for
p ∈ ∂S̃ , such that we have

hij = Ω−2h̃ij ,

and the fields

L̃ij ≡ Ω−3(hikhjℓKkℓ −
1

3
hℓmKℓmh

ij) , K̃ ≡ ΩhijKij

are smooth (up to boundary) on S̃ ;

2. the Weyl tensor Cαβγδ of the four–dimensional metric, formally calculated
from (h,K) using vacuum Einstein equations, vanishes at the conformal
boundary ∂S̃ ;

3. there exist fields Ωn and Ωnn, smooth (up to boundary) on S̃ , which
we identify with tetrad components in the directions normal to S̃ of the
gradient, respectively the Hessian, of Ω, such that

(Ω2
n − h̃ijΩiΩj)|∂S̃

= 0 ,

and the tensor field

eαβ = ∇α∇βΩ−
1

4
γ̃µν∇µ∇νΩ γ̃αβ

vanishes at ∂S̃ .
3In [210] one assumes, roughly speaking, that (Ω, g̃, L̃, K̃) ∈ Hk(S̃ )⊕Hk(S̃ )⊕Hk−1(S̃ )⊕

Hk−1(S̃ ), (Ωn, d
α
βγδ, fαβ) ∈ Hk−1(S̃ )⊕Hk−2(S̃ )⊕Hk−2(S̃ ), k ≥ 6; it is rather clear that by

not too difficult technical improvements of the existence theorems used in [210] this threshold
can be relaxed to k ≥ 5 and probably even to k ≥ 4.
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Set dαβγδ ≡ Ω−1Cαβγδ, fαβ = Ω−1eαβ . There exists ǫ > 0 such that for all
(g,K) ∈ X satisfying

‖ Ω−Ω0 ‖H6(S̃ ) + ‖ h̃ij − h̃0 ij||H6(S̃ )+ ‖ L̃ij − L̃0 ij ‖H5(S̃ ) + ‖ K̃− K̃0 ‖H5(S̃ )

+ ‖ dαβγδ ‖H4(S̃ ) + ‖ Ωn − Ω0n ‖H5(S̃ ) + ‖ fαβ − f0αβ ‖H4(S̃ )< ǫ

(where Hℓ(S̃ ) is the Sobolev space of tensors on S̃ which are square integrable
together with all the derivatives up to order ℓ on S̃ with respect to the Rieman-
nian measure dµg̃ of the metric g̃, and Ω0, h̃0 ij, etc., denote the corresponding
quantities for Minkowski spacetime), the maximal globally hyperbolic develop-
ment (M,γ) is future null and timelike geodesically complete, hence (M,γ) is
strongly maximal to the future.

By the very nature of Friedrich’s construction (cf. the discussion of Example
4 in Section 2.2, p. 38) the above theorem guarantees global uniqueness to the
future of S only, and no rigorous results are available about the possibility of
supplementing the Cauchy data on S by Cauchy data on the part of I which
lies to the past of S to obtain global uniqueness to the past. Moreover, the
following features of this theorem deserve further investigation:

1. the rather high differentiability conditions needed for stability,

2. the hypothesis of the vanishing of the Weyl curvature on the conformal
boundary ∂S̃ — the so called Weyl tensor condition,

3. the hypothesis of the vanishing of eαβ at the conformal boundary,

4. the independence of the various hypotheses above.

Let us recall that the Weyl tensor condition has been shown by Penrose [344]
to be necessary for Ck, k ≥ 3, differentiability of the conformally rescaled
fields at the conformal boundary of a spacetime, but the stability results of
Christodoulou and Klainerman [112] suggest that the Weyl tensor condition
needs not to hold in generic spacetimes obtained by evolution from asymptot-
ically flat (at spacelike infinity) initial data (thus generic I ’s obtained in this
way will probably not be C3). As discussed in detail in Section 3.2.4, p. 114,
the Cauchy data sets satisfying the Weyl tensor condition also turn out to be
non generic in the space of solutions of the constraint equations which can be
constructed by the conformal method. These drawbacks of Friedrich’s theorem
are more than compensated by the (relative) simplicity of the method. It has
been shown in [12] that the vanishing of the space components eij of eαβ at ∂S̃

and smoothness of h̃ij imply the vanishing of the Weyl tensor at ∂S̃ , under the
supplementary hypotheses that the extrinsic curvature of S̃ is pure trace on
∂S̃ (L̃ij |∂S̃

= 0), and the Cauchy surface S has constant extrinsic curvature
(hijKij =const).



54 CHAPTER 2. THE GLOBAL EVOLUTION PROBLEM

2.6.2 The Christodoulou-Klainerman proof

One of the flagship results in mathematical general relativity is nonlinear stabil-
ity of Minkowski spacetime, first proved by Christodoulou and Klainerman [112].
One starts with an asymptotically flat vacuum initial data set (h,K) on R3.
Under standard asymptotic flatness conditions, for (h,K) sufficiently close to
Minkowskian data, the maximal globally hyperbolic development (M ,g) of the
data contains a maximal hypersurface, i.e., a hypersurface satisfying trhK = 0;
this follows from the results in [30, 37, 113]. So without loss of generality one
can, in the small data context, assume that the initial data set is maximal.

The precise notion of smallness needed for the Christodoulou-Klainerman
theorem is defined as follows: For p ∈ Σ ≈ R3, a > 0, consider the quantity

Q(a, p) = a−1

∫

Σ
{

1∑

ℓ=0

(d2p + a2)ℓ+1|∇ℓRic|2 +
2∑

ℓ=1

(d2p + a2)ℓ|∇ℓK|2}dµg , (2.6.1)

where dp is the geodesic distance function from p, Ric is the Ricci tensor of
the metric g, dµg is the Riemannian measure of the metric g and ∇ is the
Riemannian connection of g. Let

Q∗ = inf
a>0, p∈Σ

Q(a, p) .

Christodoulou and Klainerman prove causal geodesic completeness of (M ,g)
provided that Q∗ is sufficiently small. The proof proceeds via an extremely
involved bootstrap argument involving a foliation by maximal hypersurfaces
Σt, together with an analysis of the properties of an optical function u. In the
context here this is a solution of the eikonal equation

gαβ∂au∂βu = 0 ,

the level sets Cu of which intersect Σt in spheres that expand as t increases.
We have:

Theorem 2.6.2 (Global Stability of Minkowski spacetime) Assume that (S , h,K)
is maximal, with4

hij = δij + o3(r
−1/2), Kij = o2(r

−3/2) . (2.6.2)

There is an ǫ > 0 such that if Q∗ < ǫ, then the maximal globally hyperbolic
development (M ,g) of (S , h,K) is geodesically complete. Furthermore, M

contains a maximal foliation St given by the level hypersurfaces of a time func-
tion t, and a null foliation Cu given by the level hypersurfaces of an outgoing
optical function u, such that relative to an adapted null frame e4 = L, e3 = L
and (ea)a=1,2 we have, along the null hypersurfaces Cu the weak peeling decay,

αab := R(L, ea, L, eb) = O(r−7/2), 2βa := R(L,L,L, ea) = O(r−7/2)

4ρ := R(L,L,L,L) = O(r−3), 4σ :=∗ R(L,L,L,L) = O(r−7/2)

2β
a

:= R(L,L,L, ea) = O(r−2), αab := R(L, ea , L, eb) = O(r−1)

4A function f on S is ok(r
−λ) if |rλ+i∇if |g → 0 as r → ∞ for all i = 0, . . . k.
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as r →∞ with 4πr2 =Area(St ∩ Cu). Finally, ρ− ρ̄ = O(r−7/2), with ρ̄ being
the average of ρ over the compact 2-surfaces St ∩Cu.

The above version of Theorem 2.6.2 is due to Bieri [61, 62]. The original
formulation in [112] assumes moreover that

h = (1 + 2M/r)δ + o4(r
−3/2), K = o3(r

−5/2) , (2.6.3)

and in the definition (2.6.1) a term involving K with ℓ = 0 is added.
By definition, asymptotically flat initial data sets approach the Minkowskian

ones as one recedes to infinity. One therefore expects that at sufficiently large
distances one should obtain “global existence”, in the sense that the maxi-
mal globally hyperbolic development contains complete outgoing null geodesics.
This question has been addressed by Klainerman and Nicolò [269–271]; the
reader is referred to those references for precise statements of the hypotheses
made:

Theorem 2.6.3 Consider an asymptotically flat initial data set (S , h,K), with
maximal globally hyperbolic development (M ,g). Let Ωr denote a conditionally
compact domain bounded by a coordinate sphere Sr ⊂ Sext. There exists R > 0
such that for all r ≥ R the generators of the boundary ∂J+(Ωr) of the domain
of influence J+(Ωr) of Ωr are future-complete.

Both in [112] and in [270] one can find detailed information concerning the
behavior of null hypersurfaces as well as the rate at which various components of
the Riemann curvature tensor approach zero along timelike and null geodesics.

2.6.3 The Lindblad-Rodnianski proof

A completely new proof of stability of Minkowski spacetime has been given by
Lindblad and Rodnianski [296, 297]. The method provides less detailed asymp-
totic information than [112] and [270] on various quantities of interest, but is
much simpler. The argument is flexible enough to allow the inclusion of a scalar
field, or of a Maxwell field [302, 303] (compare [418] for an analysis along the
lines of the Christodoulou-Klainerman approach), and generalizes to higher di-
mensions [95]. Further it allows the following, rather weak, asymptotic behavior
of the initial data:

h = (1 + 2m/r)δ +O(r−1−α) , K = O(r−2−α) . (2.6.4)

The decay conditions (2.6.4) are weaker than those in [112, 270], but stronger
than those in [63].

The analysis of Lindblad and Rodnianski, in the Einstein-Maxwell-scalar
field case, proceeds as follows: Consider the Einstein-Maxwell equations with a
neutral scalar field:

Rµν −
R

2
gµν = Tµν + T̂µν , (2.6.5)

with

T̂µν = ∂µψ ∂νψ −
1

2
gµν(g

αβ∂αψ ∂βψ) , Tµν = 2(FµλF
λ
ν −

1

4
gµνF

λρFλρ) .
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We assume that we are on Rn+1, so that the Maxwell field F has a global
potential A, Fµν = ∂µAν − ∂νAµ. The matter field equations read

DµF
µν = 0 , 2gψ = 0 . (2.6.6)

The initial data, denoted by (̊h, K̊, Å, E̊, ψ0, ψ1), are assumed to satisfy the
following asymptotic conditions, for r = |x| → ∞, with some α > 0:

Å = O(r
1−n
2

−α) , K̊ij = O(r−
n+1
2

−α) , E̊ = O(r−
n+1
2

−α) ,

ψ0 := ψ|t=0 = O(r
1−n
2

−α) , ψ1 := ∂tψ|t=0 = O(r−
n+1
2

−α)
(2.6.7)

One also supposes that the relevant constraint equations hold initially:





R̊ = K̊ijK̊ij − K̊i
iK̊j

j + 2E̊iE̊
i + F̊ijF̊

ij + |∇ψ0|2 + |ψ1|2 ,
∇jK̊ij −∇iK̊j

j = F̊0j F̊i
j +∇iψ0 ψ1 ,

∇iF̊ 0i = 0 ,

(2.6.8)

where R̊ is the scalar curvature of the metric h̊.

The strategy is to impose globally the wave coordinates condition

∂µ

(
gµν
√
|det g|

)
= 0 ∀ν = 0, ..., n, (2.6.9)

as well as the Lorenz gauge,

∂µ

(√
|det g|Aµ

)
= 0 . (2.6.10)

Writing 2g = gαβ∂α∂β, the dynamical equations are rewritten as

2̃g




h1µν
Aσ
ψ


 =




Sµν − 2∂µψ∂νψ
Sσ
0


−




2̃gh
0
µν

0
0


 , (2.6.11)

where the source terms Sµν and Sσ are bilinear in the derivatives of the fields,
with coefficients depending upon the metric. Furthermore,

h1µν = hµν − h0µν , with h0µν(t) =
{
χ(r/t)χ(r)2mr δµν , n = 3;
0, n ≥ 4,

(2.6.12)

where χ ∈ C∞ is any function such that χ(s) equals 1 for s ≥ 3/4 and 0 for
s ≤ 1/2. The proof relies heavily on the structure of the nonlinear terms in
wave coordinates.

Recall that there exists an extensive literature on wave equations in 3 + 1
dimensions with nonlinearities satisfying the null condition [267, 268], but the
above nonlinearities do not satisfy that condition. The argument works only
because one can treat on a different footing different components of h. Indeed,
for solutions of the wave equation on Minkowski spacetime, the derivatives in
directions tangent to the light cones decay faster than the transverse ones. But
the wave coordinate condition can be used to express the transverse derivatives
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of some components of gµν in terms of tangential derivatives of the remaining
ones. This gives one supplementary control of the nonlinearities.

Recall also that global existence on Rn+1 with n ≥ 4, for small initial
data, of solutions of quasi-linear wave equations, under structure conditions
compatible with the above, has been proved in [241, 290]5, see also [106] for odd
n ≥ 5, but the analysis there assumes fall-off of initial data near spatial infinity
incompatible with the Einstein constraints6.

We have:

Theorem 2.6.4 Consider smooth initial data (̊h, K̊, Å, E̊, ψ0, ψ1) on Rn, n ≥ 3,
satisfying (2.6.7) and (2.6.8). Let N ∈ N, suppose that Nn := N + [n+2

2 ]− 2 ≥
6 + 2[n+2

2 ], and set

ENn,γ(0) =
∑

0≤i≤Nn

(∣∣∣∣(1 + r)1/2+γ+|I|∇∇Ih10
∣∣∣∣2
L2 +

∣∣∣
∣∣∣(1 + r)1/2+γ+|I|∇IK̊

∣∣∣
∣∣∣
2

L2
(2.6.13)

+
∣∣∣
∣∣∣(1 + r)1/2+γ+|I|∇∇IÅ

∣∣∣
∣∣∣
2

L2
+
∣∣∣
∣∣∣(1 + r)1/2+γ+|I|∇IE̊

∣∣∣
∣∣∣
2

L2

+‖(1 + r)1/2+γ+|I|∇∇Iψ0‖L2 + ‖(1 + r)1/2+γ+|I|∇Iψ1‖L2

)
.

There exist constants ε0 > 0 and γ0(ε0), with γ0(ε0) → 0 as ε0 → 0, such that
if √

ENn,γ(0) +m ≤ ε0, (2.6.14)

for some γ > γ0, then the maximal globally hyperbolic development of the initial
data is geodesically complete.

The proof by Lindblad and Rodnianski is an ingenious and intricate analysis
of the coupling between the wave-coordinates gauge and the evolution equa-
tions. One makes a clever guess of how the fields decay in space and time,
encoded in the following weighted energy functional,

E
Matter
Nn

(t) = sup
0≤τ≤t

∑

Z∈Z ,|I|≤Nn∫
∑

τ

(∣∣∂ZIh1
∣∣2 +

∣∣∂ZIA
∣∣2 +

∣∣∂ZIψ
∣∣2
)
w(q) dnx , (2.6.15)

where

w(q) =

{
1 + (1 + |q|)1+2γ , q > 0;
1 + (1 + |q|)−2µ, q < 0,

(2.6.16)

with q = r−t , µ > 0 and 0 < γ < 1 . Here the Z’s are the following generators
of the conformal Lorentz group, first used to study the decay of solutions of the
Minkowski wave equation by Klainerman [267]

∂α, xα
∂

∂xβ
− xβ

∂

∂xα
, xα

∂

∂xα
, (2.6.17)

5Those works build upon [267, 268]; however the structure conditions in [267, 268] are not
compatible with the Einstein equations.

6In [241, 290] compactly supported data are considered. In the theorem for general quasi-
linear systems given in [106] the initial data are in a Sobolev space which requires fall-off at
infinity faster than r−n−3/2. This should be compared with a fall-off of gµν − ηµν not faster

than r−n+2 required by the positive energy theorem.
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One argues by continuity: one chooses 0 < δ < 1
4 , and one considers the

maximal time T so that the inequality

E Matter
Nn

(t) ≤ 2CNnε
2(1 + t)2δ (2.6.18)

holds for 0 ≤ t ≤ T . A sophisticated method, using the Klainerman-Sobolev
inequalities [267], together with a new weighted energy inequality, allows one
to show that (2.6.18) then holds for 0 ≤ t ≤ T with a smaller constant on
the right-hand-side, contradicting maximality of T , and thus proving global
existence.

A long standing question in the study of asymptotically flat spacetimes is
that of the existence of an asymptotic expansion of the metric as one recedes
to infinity along outgoing null cones, see [209, 212, 344]. Neither the analysis
of [296, 297], nor that in [112, 270], provides sufficient information. A break-
through result is due to Hintz and Vasy [235], who prove that initial data which
are polyhomogeneous at spatial infinity lead to spacetimes which are polyho-
mogeneous at null infinity. Their proof provides in fact yet another proof of
stability of Minkowski spacetime. A precise relation between the logarithmic
terms at null infinity with the asymptotic behaviour of data at spatial infinity
remains lacking, it would be of interest to settle this.

2.6.4 The mixmaster conjecture

The most important question in the study of the Cauchy problem is that of
the global properties of the resulting spacetimes. So far we have seen exam-
ples of geodesically complete solutions (e.g., small perturbations of Minkowski
spacetime), or all-encompassing singularities (e.g., generic Bianchi models), or
of Cauchy horizons (e.g., Taub–NUT metrics). The geodesically complete solu-
tions are satisfying but dynamically uninteresting, while the strong cosmic cen-
sorship conjecture expresses the hope that Cauchy horizons will almost never
occur. So it appears essential to have a good understanding of the remaining
cases, presumably corresponding to singularities. Belinski, Khalatnikov and Lif-
schitz [50] suggested that, near singularities, at each space point the dynamics
of the gravitational field resembles that of generic Bianchi metrics, as described
in Section 2.3.1. Whether or not this is true, and in which sense, remains to
be seen; in any case the idea, known as the BKL conjecture, provided guidance
— and still does — to a significant body of research on general relativistic sin-
gularities; see [29, 182, 183, 196] and references therein. This then leads to the
mathematical challenge of making sense of the widely abused soundbite:

the singularity in generic gravitational collapse is
spacelike, local, and oscillatory.

Here

1. spacelike is supposed to mean that strong cosmic censorship holds.

The term
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2. local refers to the idea that, near generic singularities, there should exist
coordinate systems in which the metric asymptotes to a solution of equa-
tions in which spatial derivatives of appropriately chosen fields have been
neglected.7

Finally,

3. oscillatory is supposed to convey the idea that the approximate solutions
will actually be provided by the Bianchi IX metrics.

While BKL put emphasis on Bianchi IX models, some other authors seem
to favor Bianchi VI−1/9, or not-necessarily Bianchi, oscillations [50, 55, 183, 232,
405]. This line of thinking can be summarised in the following, somewhat loose,
conjecture:

Conjecture 2.6.5 (Mixmaster conjecture) Let n+ 1 ≤ 10. There exist open
sets of maximal globally hyperbolic vacuum metrics for which some natural geo-
metric variables undergo oscillations of increasing complexity along incomplete
inextendible geodesics.

The BKL conjecture would be a more precise version of the above, claim-
ing moreover genericity of the behavior, and pointing out to the Bianchi IX
dynamics as the right model. Those properties are even more speculative, and
have therefore been ignored in Conjecture 2.6.5.

The only examples so far of oscillatory singularities which are not spatially
homogeneous are due to Berger and Moncrief [56]. In that work a solution-
generating transformation has been applied to Bianchi IX metrics, resulting
in non-homogeneous solutions governed by the “oscillatory” functions arising
from a non-Taub Bianchi IX metric. The resulting metrics are parameterised
by a finite number of parameters and have at least one but no more than two
Killing vectors. The analysis complements the numerical evidence for oscillatory
behavior in U(1) symmetric models presented in [57].

How this scenario is affected by the occurrence of “spikes” observed in some
models [158, 293–295, 371, 383], or by the “weak-null” singularities [173] pre-
dicted in the “mass inflation” scenario of Israel and Poisson [352], remains
to be seen. It has been suggested that the oscillatory behavior disappears
in spacetime-dimensions higher than ten [183, 191], and large families of non-
oscillatory solutions with singularities have indeed been constructed in [184].

The main rigorous evidence for a relatively large class of vacuum8 spacetimes
with singularities which are spacelike and local in the sense above is Ringström’s

7The resulting truncated equations should then presumably resemble the equations satisfied
by spatially homogeneous metrics. However, different choices of quantities which are expected
to be time-independent will lead to different choices of the associated notion of homogeneity;
for instance, in [50] the types Bianchi VIII and IX are singled out; the notion of genericity of
those types within the Bianchi A class is read from Table 2.1 as follows: “something that can
be non-zero is more generic than something that is”. On the other hand, the analysis in [232]
seems to single out Bianchi VI−1/9 metrics.

8See, however, [17, 184] for a class of spacetimes with sources; [184] also covers vacuum in
space dimensions n ≥ 10.
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Theorem 2.3.5, p. 47, describing generic Gowdy metrics, but the resulting singu-
larities are not oscillatory. A large class of metrics with a similar non-oscillatory
behaviour and without any isometries has been constructed in [145, 277]. This
is not in contradiction with the conjecture, since neither the Gowdy metrics nor
the metrics in [145, 277] arise from generic initial data. As such, the numerical
studies of [53] suggest that the switching-on of the twist constants in Gowdy
metrics will indeed generically lead to some kind of oscillatory behavior.



Chapter 3

The constraint equations

A set (M,g,K), where (M,g) is a Riemannian manifold, and K is a symmetric
tensor field on M , is called a vacuum initial data set if the vacuum constraint
equations (1.4.19) and (1.4.24) hold:

DjK
j
k = DkK

j
j , (3.0.1a)

R(g) = 2Λ + |K|2g − (trgK)2 . (3.0.1b)

Here, as before, Λ is the cosmological constant.
Note that we have been writing h for the initial data metric in Chapter 1,

but we will use the symbol g for this metric throughout the current chapter.

3.1 The conformal method

The object of this section is to present the conformal method for constructing
solutions of (3.0.1). This method works best when trgK is constant throughout
M , which is assumed to be connected:

∂i(trgK) = 0 . (3.1.1)

(We shall see shortly that (3.1.1) leads to a decoupling of the equations (3.0.1),
in a sense which will be made precise.) Hypersurfaces M in a spacetimes M

satisfying (3.1.1) are known as constant mean curvature (CMC) surfaces. Equa-
tion (3.1.1) is sometimes viewed as a “gauge condition”, in the following sense:
if we require (3.1.1) to hold on all hypersurfaces Mτ within a family of hyper-
surfaces in the spacetime, then this condition restricts the freedom of choice of
the associated time function t which labels those hypersurfaces. Unfortunately
there exist spacetimes in which no CMC hypersurfaces exist [33, 249]. Now,
the conformal method is the only method known which produces all solutions
satisfying a reasonably mild “gauge condition”, it is therefore regrettable that
condition (3.1.1) is a restrictive one.

Incidentally: The conformal method seems to go back to Lichnerowicz [291]
(see [93] for the history of the problem), except that Lichnerowicz proposes a differ-
ent treatment of the vector constraint equation there. The associated analytical as-
pects have been implemented in various contexts: asymptotically flat [113], asymp-
totically hyperbolic [9, 11, 12], or spatially compact [243]; see also [39, 105, 244, 416].

61
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There exist a few other methods for constructing solutions of the constraint equa-
tions which do not require constant mean curvature: the “thin sandwich approach”
of Baierlain, Sharp and Wheeler [27], further studied in [38, 49]; the gluing meth-
ods of Corvino and Schoen [84, 130, 132, 144, 161, 386] presented in Section 3.5; the
conformal gluing technique of Joyce [260], as extended by Isenberg, Mazzeo and Pol-
lack [247, 249]; the quasi-spherical construction of Bartnik [35, 393] and its extension
due to Smith and Weinstein [396, 397]. One can also use the implicit function the-
orem, or variations thereof [102, 250, 255], to construct solutions of the constraint
equations for which (3.1.1) does not necessarily hold. In [39] the reader will find a
presentation of alternative approaches to constructing solutions of the constraints,
covering work done up to 2003. 2

3.1.1 The Yamabe problem

At the heart of the conformal method lies the Yamabe problem. From the
general relativistic point of view, this correspond to special initial data where
K vanishes; such initial data are called time symmetric. For such data (3.0.1b)
becomes

R(g) = 2Λ . (3.1.2)

In other words, g is a metric of constant scalar curvature.
There is a classical method, usually attributed to Yamabe [415], which al-

lows one to construct metrics satisfying (3.1.2) by conformal deformation: given
a metric g̃ one sets

gij = φ
4

n−2 g̃ij , (3.1.3)

then (3.1.2) becomes

∆g̃φ−
n− 2

4(n − 1)
R̃φ = − n− 2

2(n− 1)
Λφ

n+2
n−2 . (3.1.4)

One thus obtains a metric of constant scalar curvature 2Λ when a strictly
positive solution φ can be found.

Equation 3.1.4 is known as the Yamabe equation, and the problem of finding
positive solutions of this equation on compact manifolds is known as the Yamabe
problem. The final solution, that such deformations always exist when Λ is
suitably restricted (we will return to this issue shortly), has been given by
Schoen [387]. Previous key contributions include [23, 404], and a comprehensive
review of the problem can be found in [287]. A completely different solution has
been devised by Bahri [26]. A surprising development is the proof of existence
of a dimensional-threshold for compactness of the set of solutions of the Yamabe
equation on compact manifolds carrying positive scalar curvature [75, 76, 265]:
compactness holds if and only if n ≤ 24.

The idea is then to do something similar in general relativity, exploiting the
fact that the Yamabe problem has already been solved. For this we need, first,
to understand the behaviour of the vector constraint equation under conformal
transformations.

Incidentally: Regardless of whether the manifold is compact or not, the Yamabe
number of a metric is defined as

Y (M, g) = inf
u∈C∞

c , u6≡0

∫
M (4(n−1)

n−2 |du|2g +Ru2)dµg

( ∫
M u

2n
n−2 dµg

)(n−2)/n
. (3.1.5)
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where C∞
c denotes the space of compactly supported smooth functions. The number

Y (M, g) depends only upon the conformal class of g: Indeed, if g̃ij = u4/(n−2)gij ,
then on the set where u > 0 we have dµg̃ = u2n/(n−2)dµg, and (C.2.16), p. 268,
gives

∫

u>0

R̃ dµg̃ =

∫

u>0

(
Ru2 − 4(n− 1)

n− 2
u∆gu

)
dµg

=

∫

u>0

(
Ru2 +

4(n− 1)

n− 2
|du|2g

)
dµg . (3.1.6)

The conformal invariance of Y (M, g) readily follows.

If Y (M, g) > 0 we say that g is in the positive Yamabe class, etc.

WhenM is compact, one can show that there exists a conformal rescaling so that
R̃ is strictly positive [287] if and only if g is in the positive Yamabe class, similarly
for the zero and negative Yamabe class cases. We note that non-existence of positive
conformal factors relating two metrics whose scalar curvatures are constant but have
different signs follows immediately by integrating equation (3.1.4) over M .)

Note that Y (M, g) is positive if and only if we have a Sobolev-type inequality:
for all functions with compact support,

‖u‖2
L

2n
n−2

≤ C
∫

M

(
4(n− 1)

n− 2
|Du|2 +Ru2

)
, (3.1.7)

and the optimal constant is then C = (Y (M, g))−1. See also [3]. 2

3.1.2 The vector constraint equation

As is made clear by the name, the conformal method exploits the properties of
(3.0.1) under conformal transformations: consider a metric g̃ related to g by a
conformal rescaling:

g̃ij = φℓgij ⇐⇒ g̃ij = φ−ℓgij . (3.1.8)

This implies

Γ̃ijk =
1

2
g̃im(∂j g̃km + ∂kg̃jm − ∂mg̃jk)

=
1

2
φ−ℓgim(∂j(φ

ℓgkm) + ∂k(φ
ℓgjm)− ∂m(φℓgjk))

= Γijk +
ℓ

2φ
(δik∂jφ+ δij∂kφ− gjkDiφ) , (3.1.9)

where, as before, D denotes the covariant derivative of g.

We start by analysing what happens with (3.0.1a). The idea is to gain
insight into this equation by decomposing K in its trace-free part and a trace
part. For this, let D̃ denote the covariant derivative operator of the metric g̃,
and consider any trace-free symmetric tensor field L̃ij, we have

D̃iL̃
ij = ∂iL̃

ij + Γ̃iikL̃
kj + Γ̃j ikL̃

ik

= DiL̃
ij + (Γ̃iik − Γiik)L̃

kj + (Γ̃j ik − Γj ik)L̃
ik .
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Now, from (3.1.9) we obtain

Γ̃iik = Γiik +
ℓ

2φ
(δik∂iφ+ δii∂kφ− gikDiφ)

= Γiik +
nℓ

2φ
∂kφ , (3.1.10)

and we are assuming that we are in dimension n. As L̃ is traceless we obtain

D̃iL̃
ij = DiL̃

ij +
nℓ

2φ
∂kφL̃

kj +
ℓ

2φ
(δjk∂iφ+ δji ∂kφ− gikDjφ)L̃ik︸ ︷︷ ︸

∼gikL̃ik=0

= DiL̃
ij +

(n + 2)ℓ

2φ
∂kφL̃

kj

= φ−
(n+2)ℓ

2 Di(φ
(n+2)ℓ

2 L̃ij) . (3.1.11)

It follows that
D̃iL̃

ij = 0 ⇐⇒ Di(φ
(n+2)ℓ

2 L̃ij) = 0 . (3.1.12)

This observation leads to the following:
Suppose that the CMC condition (3.1.1) holds, set

Lij := Kij − trgK

n
gij . (3.1.13)

Then Lij is symmetric and trace-free whenever Kij satisfies the vector con-
straint equation (3.0.1a).

On the other hand, let τ be a constant, and let L̃ij be symmetric, trace-free,
and g̃–divergence free: by definition, this means that

D̃iL̃
ij = 0 .

Setting

Lij := φ
(n+2)ℓ

2 L̃ij (3.1.14a)

Kij := Lij +
τ

n
gij , (3.1.14b)

the tensor field Kij satisfies (3.0.1a). (A convenient choice of ℓ is given in
(3.1.16) below).

More generally, assuming neither vacuum nor d(trgK) = 0, with the rescal-
ing g̃ij = φℓgij and with the definitions (3.1.14) we will have

8πJ j := Di(K
ij − trgKg

ij)

= Di(φ
(n+2)ℓ

2 L̃ij)− n− 1

n
Djτ

= φ
(n+2)ℓ

2 D̃iL̃
ij − n− 1

n
φ−ℓD̃jτ . (3.1.15)

With the choice

ℓ = − 4

n− 2
, (3.1.16)

motivated by (3.1.3), this can also be written as the following equation for L̃
when τ and J i have been prescribed:

D̃iL̃
ij = 8πφ

2(n+2)
n−2 J i +

n− 1

n
φ

2n
n−2 D̃jτ . (3.1.17)
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3.1.3 The scalar constraint equation

To analyse the scalar constraint equation (3.0.1b) we shall use the formula
(C.2.14) of Appendix C 1

R(g)φ−ℓ = R̃+
(n− 1)ℓ

φ
∆g̃φ−

(n− 1)ℓ{(n − 2)ℓ+ 4}
4φ2

|dφ|2g̃ , (3.1.18)

where R̃ is the scalar curvature of g̃. Clearly it is convenient to choose

ℓ = − 4

n− 2
, (3.1.19)

as then the last term in (3.1.18) drops out. In order to continue we use (3.1.14)
to calculate

|K|2g − (trgK)2 = gikgjlK
ijKkl − τ2

= gikgjl(L
ij +

τ

n
gij)(Lkl +

τ

n
gkl)− τ2

= gik︸︷︷︸
=φ−ℓg̃ik

gjl Lij︸︷︷︸
=φ(n/2+1)ℓL̃ij

Lkl − τ2(1− 1

n
)

= φnℓg̃ikg̃jlL̃
ijL̃kl − τ2(1− 1

n
) ,

giving thus

|K|2g − (trgK)2 = φnℓ|L̃|2g̃ −
n− 1

n
τ2 . (3.1.20)

Equations (3.0.1b), (3.1.9) and (3.1.20) with ℓ given by (3.1.19) finally yield

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ̃2φ

2−3n
n−2 + βφ

n+2
n−2 , (3.1.21)

where

σ̃2 :=
n− 2

4(n− 1)
|L̃|2g̃ , β :=

[
n− 2

4n
τ2 − n− 2

2(n − 1)
Λ

]
. (3.1.22)

In dimension n = 3 this equation is known as the Lichnerowicz equation:

∆g̃φ− R̃
8 φ = −σ̃2φ−7 + βφ5 . (3.1.23)

We note that σ̃2 is positive, as the notation suggests, while β is a constant,
non-negative if Λ = 0, or in fact if Λ ≤ 0.

The strategy is now the following: let g̃ be a given Riemannian metric on
M , and let L̃ij be any symmetric transverse g̃-divergence free tensor field. We

1Note that the relationship between g and g̃ in Appendix C is formally identical to the one
here, namely (3.1.8), but in (C.2.14) the Ricci scalar R̃ is calculated in terms of ∆gφ. Here

we need R in terms of ∆g̃φ. For this we write gij = φℓ̃g̃ij , and use (C.2.14) with g there
interchanged with g̃ and ℓ there replaced by ℓ̃. This gives (3.1.18), keeping in mind that ℓ̃ is
the negative of ℓ in the current section.
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then solve (if possible) (3.1.21) for φ, and obtain a vacuum initial data set by
calculating g using (3.1.8), and by calculating K using (3.1.14).

More generally, the energy density of matter fields is related to the geometry
through the formula

16πµ := R(g)− |K|2g + (trgK)2 − 2Λ . (3.1.24)

If µ has been prescribed, this becomes an equation for φ

∆g̃φ−
n− 2

4(n − 1)
R̃φ = −σ̃2φ

2−3n
n−2 + βφ

n+2
n−2 − 4π(n − 2)

(n− 1)
φ

n+2
n−2µ . (3.1.25)

See Section 3.1.9, p. 101 for comments on the powers of φ arising in (3.1.25).

3.1.4 The vector constraint equation on compact manifolds

In order to solve the Lichnerowicz equations we need the transverse-traceless
tensor (TT tensor) field L̃, and so to obtain an exhaustive construction of CMC
initial data sets we have to give a prescription for constructing such tensors. It
is a non-trivial fact [72] (compare [188]) that the space of TT tensors is always
infinite dimensional in dimension larger than two.

Example 3.1.3 An ad hoc example of TT tensor field on three-dimensional non-
conformally flat manifolds is provided by the Bach tensor, see Appendix C.5. An-
other one is provided by the Ricci tensor on manifolds with constant scalar curva-
ture.

Further examples are provided by metrics with symmetries, as observed by
Bobby Beig (private communication): Suppose that X and Y are orthogonal Killing
vectors, then the tensor field

Kij = X(iYj) (3.1.26)

is readily seen to be transverse (DiK
i
j = 0) and traceless.

A systematic prescription how to construct TT tensors has been given by
York: here one starts with an arbitrary symmetric traceless tensor field B̃ij,
which will be referred to as the seed field. One then writes

L̃ij = B̃ij + C̃(Y )ij , (3.1.27)

where C̃(Y ) is the conformal Killing operator :

C̃(Y )ij := D̃iY j + D̃jY i − 2

n
D̃kY

kg̃ij . (3.1.28)

The requirement that L̃ij be divergence free becomes then an equation for the
vector field Y :

D̃iL̃
ij = 0 ⇐⇒ L̃(Y )j := D̃i(D̃

iY j + D̃jY i − 2

n
D̃kY

kg̃ij) = −D̃iB̃
ij .

(3.1.29)
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Incidentally: While (3.1.29) looks complicated at first sight, it is rather natural:
we want to produce transverse traceless tensors by solving an elliptic differential
equation. Since the condition of being divergence-free is already a first order equa-
tion, and it is not elliptic, then the lowest possible order of such an equation will be
two. Now, the divergence operation turns two-contravariant tensor fields to vector
fields, so the most straightforward way of ensuring ellipticity is to seek an equation
for a vector field. The simplest object that we obtain by differentiating a vector
field is the tensor field D̃iY j ; in order to achieve the desired symmetries we need
to symmetrise and remove the trace, which leads to the conformal Killing operator
(3.1.28). 2

The operator L defined in (3.1.29) is known as the conformal vector Lapla-
cian. Equation (3.1.29) is a second order linear partial differential equation
for Y , the solvability of which can be easily analysed. In this section we shall
consider spatially compact manifolds M . We will give an existence proof for
(3.1.29):

Theorem 3.1.5 For any smooth symmetric traceless tensor field B̃ij there ex-
ists a smooth vector field Y such that (3.1.29) holds.

Proof: We provide a sketch of the proof here; a more detailed exposition can be
found in the next section. Recall that a conformal Killing vector for the metric
g̃ is a nontrivial solution of the equation C̃(Y ) = 0. When (M, g̃) does not
admit any conformal Killing vectors, Theorem 3.1.5 follows immediately from
Theorem 3.1.11 below, together with (3.1.39) and (3.1.41). Indeed, surjectivity
means precisely that the equation

L̃(Y ) = Z

has a solution for any Z.

Let Hk be as defined at the beginning of Section 3.1.5, see (3.1.31) below,
When conformal Killing vectors exist, then for any k ≥ 0 the image of

L̃ : Hk+2 → Hk

is the L2-orthogonal of the kernel of L̃∗. Indeed, let Z be orthogonal to that
image. We have

∫

M
ZiD̃jB̃

ij = −
∫

M
D̃jZiB̃

ij

= −1

2

∫

M
(D̃jZi + D̃iZj)B̃

ij (B̃ is symmetric)

= −1

2

∫

M
(D̃jZi + D̃iZj −

2

n
D̃kZ

kg̃ij
︸ ︷︷ ︸

)B̃ij (B̃ is trace-free) .

(3.1.30)

This will vanish for all symmetric trace-free tensor fields B̃ if and only if the
underbraced term vanishes; this is to say, if Z is a conformal Killing vector
field.
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Since L̃ is formally self-adjoint (see (3.1.38) below), we conclude that the
kernel of L̃∗ = L̃ is the space of conformal Killing vectors, and thus the image of
L̃ is exactly the subspace of those vector fields in Hk which are L2-orthogonal
to the space of conformal Killing vectors.

It also follows from (3.1.30) that right-hand side of (3.1.29) is orthogonal
to the space of Killing vectors. We conclude that −D̃jB̃

ij lies in the image

of L̃, and so there exist solutions of (3.1.29). These solutions are not unique
since conformal Killing vectors are in the kernel of the operator L̃, but the
non-uniqueness does not change the tensor field L̃ij defined in (3.1.27). 2

A property essentially equivalent to Theorem 3.1.5 is the existence of the
York splitting, also known in the mathematical literature as the Berger-Ebin
splitting :

Theorem 3.1.6 On any compact Riemannian manifold (M,g) the space of
symmetric tensors, say ΓS2M , splits L2-orthogonally as

ΓS2M = C∞g ⊕ TT ⊕ ImC ,

where C∞g are tensors proportional to the metric, TT denotes the space of
transverse traceless tensors, and ImC is the image of the conformal Killing
operator defined in (3.1.28).

Proof: : Given any symmetric two-covariant tensor field A let ψ denote the
trace of A divided by n, set

Bij = Aij − ψgij .

Then Bij is symmetric and traceless. Similarly to (3.1.29), we let Y be any
solution of the equation

L(Y )i = DjB̃
ij .

Here, of course, C(Y )ij := DiY j +DjY i − 2
nDkY

kgij and L(Y )i = DiC(Y )ij .
Then Bij − C(Y )ij is transverse and traceless, and we have indeed

Aij = ψgij︸︷︷︸
∈C∞×g

+Bij − C(Y )ij︸ ︷︷ ︸
∈TT

+C(Y )ij︸ ︷︷ ︸
∈ImC

.

The L2-orthogonality of the factors is easily verified; compare (3.1.30). 2

3.1.5 Some linear elliptic theory

The main ingredients of the existence proof which we will present shortly are
the following:

1. Function spaces: one uses the spaces Hk, k ∈ N, defined as the completion
of the space of smooth tensor fields on M with respect to the norm

‖u‖k :=

√ ∑

0≤ℓ≤k

∫

M
|Dℓu|2dµ , (3.1.31)
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where Dℓu is the tensor of ℓ-th covariant derivatives of u with respect
to some covariant derivative operator D. For compact manifolds2 this
space is identical with that of fields in L2 such that their distributional
derivatives of order less than or equal to k are also in L2. Again for
compact manifolds, different choices of measure dµ (as long as it remains
absolutely continuous with respect to the coordinate one), of the tensor
norm | · |, or of the connection D, lead to the same space, with equivalent
norm.

Incidentally: Recall that if u ∈ L2 then ∂iu = ρi in a distributional sense
if for every smooth compactly supported vector field we have

∫

M

X iρi = −
∫

M

DiX
iu .

More generally, let L be a linear differential operator of order m and let L∗

be its formal L2 adjoint, which is the operator obtained after differentiating
by parts: ∫

M

〈u, L∗v〉 :=
∫

M

〈Lu, v〉 , ∀u, v ∈ Cm
c ;

here Cm
c is the space of Cm compactly supported fields. (Incidentally, the

reader will note by comparing the last two equations that the formal adjoint
of the derivative operator is the negative of the divergence operator.) Then,
for u ∈ L1

loc (this is the space of measurable fields u which are Lebesgue-
integrable on any compact subset of the manifold), the distributional equation
Lu = ρ is said to hold if for all smooth compactly supported v’s we have

∫

M

〈u, L∗v〉 =
∫

M

〈ρ, v〉 .

One sometimes talks about weak solutions rather than distributional ones. 2

The spaces Hk are Hilbert spaces with the obvious scalar product:

〈u, v〉k =
∑

0≤ℓ≤k

∫

M
〈Dℓu,Dℓv〉dµ .

The Sobolev embedding theorem [25] asserts that Hk functions are, lo-
cally, of Ck

′
differentiability class, where k′ is the largest integer satisfying

k′ < k − n/2 . (3.1.32)

On a compact manifold the result is true globally,

Hk ⊂ Ck
′
, (3.1.33)

with the inclusion map being continuous:

‖u‖Ck′ ≤ C‖u‖Hk
. (3.1.34)

2For non-compact manifolds this is not always the case, compare [24].
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2. Orthogonal complements in Hilbert spaces: Let H be a Hilbert space, and
let E be a closed linear subspace of H. Then (see, e.g., [410]) we have the
direct sum

H = E ⊕ E⊥ . (3.1.35)

This result is sometimes called the projection theorem.

3. Rellich-Kondrashov compactness: we have the obvious inclusion

Hk ⊆ Hk′ if k > k′ .

The Rellich-Kondrashov theorem (see, e.g., [1, 25, 220, 278]) asserts that,
on compact manifolds, this inclusion is compact. Equivalently,3 if un is
any sequence satisfying ‖un‖k ≤ C, and if k′ < k, then there exists a
subsequence uni and u∞ ∈ Hk such that uni converges to u∞ in Hk′

topology as i tends to infinity.

4. Elliptic regularity: If Y ∈ L2 satisfies LY ∈ Hk in a distributional sense,
with L — an elliptic operator of order m with smooth coefficients, then
Y ∈ Hk+m, and Y satisfies the equation in the classical sense. Further,
on compact manifolds for every k there exists a constant Ck such that

‖Y ‖k+m ≤ Ck(‖LY ‖k + ‖Y ‖0) . (3.1.36)

Our aim is to show that solvability of (3.1.29) can be easily studied using the
above basic facts. We start by verifying ellipticity of L. Recall that the symbol
σ of a linear partial differential operator L of the form

L =
∑

0≤ℓ≤m
ai1...iℓDi1 . . . Diℓ ,

where the ai1...iℓ ’s are linear maps from fibers of a bundle E to fibers of a bundle
F , is defined as the map

T ∗M ∋ p 7→ σ(p) := ai1...impi1 . . . pim .

Thus, every derivative Di is replaced by pi, and all terms other than the top
order ones are ignored. An operator is said to be elliptic4 if the symbol is an
isomorphism of fibers for all p 6= 0. In our case (3.1.29) the operator L acts on
vector fields and produces vector fields, with

TM ∋ Y → σ(p)(Y ) = pi(p
iY j + pjY i − 2

n
pkY

kg̃ij)∂j ∈ TM . (3.1.37)

(The indices on pi have been raised with the metric g̃.) To prove bijectivity
of σ(p), p 6= 0, it suffices to verify that σ(p) has trivial kernel. Assuming
σ(p)(Y ) = 0, a contraction with pj gives

pjpi(p
iY j + pjY i − 2

n
pkY

kg̃ij) = |p|2pjY j(2− 2

n
) = 0 ,

3In this statement we have also made use of the Tichonov-Alaoglu theorem, which asserts
that bounded sets in Hilbert spaces are weakly compact; cf., e.g. [410].

4See [2, 334] for more general notions of ellipticity.
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hence pjY
j = 0 for n > 1 since p 6= 0. Contracting instead with Yj and using

the last equality we obtain

Yjpi(p
iY j + pjY i − 2

n
pkY

kg̃ij) = |p|2|Y |2 = 0 ,

and σ(p) has no kernel, as desired.
Recall that the formal adjoint L∗ of L is defined by integration by parts:

∫
〈u,Lv〉 =

∫
〈L∗u, v〉

for all smooth compactly supported fields u, v. (Note that the definition of a
self-adjoint operator further requires an equality of domains, an issue which is,
fortunately, completely ignored in the formal definition.)

Our next step is to show that the conformal vector Laplacian L is formally
self-adjoint. For this, we continue by the calculation of L∗: So, let X and Y be
smooth, or C2, we have
∫

M
XiL(Y )idµg =

∫

M
XiDj(D

iY j +DjY i − 2

n
gijDkY

k) dµg

= −
∫

M
DjXi(D

iY j +DjY i − 2

n
gijDkY

k) dµg

= −1

2

∫

M
(DjXi +DjXi) (D

iY j +DjY i − 2

n
gijDkY

k)
︸ ︷︷ ︸

symmetric in i and j

dµg

= −1

2

∫

M
(DjXi +DjXi −

2

n
DkX

kgij) (D
iY j +DjY i − 2

n
gijDkY

k)
︸ ︷︷ ︸

trace free

dµg

= −
∫

M
(DjXi +DjXi −

2

n
DkX

kgij)D
iY j dµg

=

∫

M
Di(DjXi +DjXi −

2

n
DkX

kgij)Y
j dµg

=

∫

M
L(X)jYj dµg . (3.1.38)

We have thus shown that the conformal vector Laplacian is formally self adjoint,
as claimed:

L∗ = L . (3.1.39)

We further note that the fourth line in (3.1.38) implies
∫

M
YiL(Y )i = −1

2

∫

M
|C(Y )|2 , (3.1.40)

in particular if Y is C2 then

L(Y ) = 0 ⇐⇒ C(Y ) = 0 . (3.1.41)

But most Riemannian manifolds have no conformal Killing vector fields [44].
We thus see that Riemannian manifolds for which L has a non-trivial kernel
are very special.
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Remark 3.1.8 The existence of non-trivial conformal Killing vectors implies the
existence of conformal isometries of (M, g). A famous theorem of Lelong-Ferrand –
Obata [288, 339] (compare [282]) shows that, on compact manifolds in dimensions
greater than or equal to three, there exists a conformal rescaling such that Y is a
Killing vector, except if (M, g) is conformally isometric to Sn with a round met-
ric. In the former case (the conformally rescaled) (M, g) has a non-trivial isometry
group, which imposes restrictions on the topology of M , and forces g to be very
special. For instance, the existence of non-trivial Lie group of isometries of a com-
pact manifold implies that M admits an S1 action, which is a serious topological
restriction, and in fact is not possible for “most” topologies (see, e.g., [201, 202], and
also [203] and references therein for an analysis in dimension four). It is also true
that even ifM admits S1 actions, then there exists an open and dense set of metrics,
in a Ck(n) topology, or in a Hk′(n) topology, with appropriate k(n), k′(n) [44], for
which no nontrivial solutions of the over-determined system of equations C(Y ) = 0
exist. 2

In order to continue we shall need a somewhat stronger version of (3.1.36):

Proposition 3.1.9 Let L be an elliptic operator of order m on a compact man-
ifold. If there are no non-trivial smooth solutions of the equation L(Y ) = 0,
then (3.1.36) can be strengthened to

‖Y ‖k+m ≤ C ′
k‖L(Y )‖k . (3.1.42)

Remark 3.1.10 Equation (3.1.42) implies that L has trivial kernel, which shows
that the condition on the kernel is necessary.

Proof: Suppose that the result does not hold, then for every n ∈ N there exists
Yn ∈ Hk+m such that

‖Yn‖k+m ≥ n‖L(Yn)‖k . (3.1.43)

Multiplying Yn by an appropriate constant if necessary we can suppose that

‖Yn‖L2 = 1 . (3.1.44)

The basic elliptic inequality (3.1.36) gives

‖Yn‖k+m ≤ C2(‖L(Yn)‖k + ‖Yn‖0) ≤
C2

n
‖Yn‖k+m + C2 ,

so that for n such that C2/n ≤ 1/2 we obtain

‖Yn‖k+m ≤ 2C2 .

It follows that Yn is bounded in Hk+m; further (3.1.43) gives

‖L(Yn)‖k ≤
2C2

n
. (3.1.45)

By the Rellich-Kondrashov compactness we can extract a subsequence, still
denoted by Yn, such that Yn converges in L2 to some vector field Y∗ ∈ Hk+m.
Continuity of the norm together with L2 convergence implies that

‖Y∗‖L2 = 1 , (3.1.46)
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so that Y∗ 6= 0. One would like to conclude from (3.1.45) that L(Y∗) = 0, but
that is not completely clear because we do not know whether or not

L(Y∗) = lim
n→∞

L(Yn) .

Instead we write the distributional equation: for every smooth X we have
∫

M
〈L(Yn),X〉 =

∫

M
〈Yn, L∗(X)〉 .

Now, L(Yn) tends to zero in L2 by (3.1.45), and Yn tends to Y∗ in L2, so that
passing to the limit we obtain

0 =

∫

M
〈Y∗, L∗(X)〉 .

It follows that Y∗ satisfies L(Y∗) = 0 in a distributional sense. Elliptic regularity
implies that Y∗ is a smooth solution of L(Y∗) = 0, it is non-trivial by (3.1.46),
a contradiction. 2

We are ready to prove now:

Theorem 3.1.11 Let L be an elliptic partial differential operator of order m on
a compact manifold and suppose that the equations L(u) = 0, L∗(v) = 0 have
no non-trivial smooth solutions, where L∗ is the formal adjoint of L. Then for
any k ≥ 0 the map

L : Hk+m → Hk

is an isomorphism.

Proof: An element of the kernel is necessarily smooth by elliptic regularity, it
remains thus to show surjectivity. We start by showing that the image of L is
closed: let Zn be a Cauchy sequence in ImL, then there exists Z∞ ∈ L2 and
Yn ∈ Hk+m such that

L(Yn) = Zn
L2

→ Z∞ .

Applying (3.1.42) to Yn − Yℓ we find that Yn is Cauchy in Hk+m, therefore
converges in Hk+m to some element Y∞ ∈ Hk+m. By continuity of L the
sequence L(Yn) converges to LC(Y∞) in L2, hence Z∞ = LY∞, as desired.

Consider, first, the case k = 0. By the orthogonal decomposition theorem
we have now

L2 = ImL⊕ (ImL)⊥ ,

and if we show that (ImL)⊥ = {0} we are done. Let, thus, Z ∈ (ImL)⊥, this
means that ∫

M
〈Z,L(Y )〉 = 0 (3.1.47)

for all Y ∈ Hm+2. In particular (3.1.47) holds for all smooth Y , which implies
that L∗(Z) = 0 in a distributional sense. Now, the symbol of L∗ is the transpose
of the symbol of L, which shows that L∗ is also elliptic. We can thus use elliptic
regularity to conclude that Z is smooth, and Z = 0 follows.

The result in L2 together with elliptic regularity immediately imply the
result in Hk. 2
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3.1.6 The scalar constraint equation on compact manifolds, τ 2 ≥
2n

(n−1)
Λ

Theorem 3.1.11, together with Equation (3.1.41) and Remark 3.1.8, gives a
reasonably complete description of the solvability of (3.1.29). We simply note
that if B̃ij there is smooth, then the associated solution will be smooth by
elliptic regularity. To finish the presentation of the conformal method we need
to address the question of existence of solutions of the Lichnerowicz equation
(3.1.21).

A complete description can be obtained when the constant β defined in
(3.1.22) satisfies

β ≡
[
n− 2

4n
τ2 − n− 2

2(n− 1)
Λ

]
≥ 0 , (3.1.48)

this will certainly be the case if Λ ≤ 0. In this case, to emphasise positivity we
will write

n− 2

4n
τ2Λ

for β, thus rewriting (3.1.21) as

∆g̃φ−
n− 2

4(n − 1)
R̃φ = −σ̃2φ 2−3n

n−2 +
n− 2

4n
τ2Λφ

n+2
n−2 . (3.1.49)

As already pointed out in Section 3.1.1, the case σ = 0 corresponds to the
so-called Yamabe equation; in this case solutions of (3.1.49) produce metrics
with constant scalar curvature −(n− 1)τ2Λ. We will take it for granted that one
can first deform the metric conformally so that

R̃ is constant,

and we will assume that this has been done. It should be recognised that
making use of the solution of the Yamabe problem sweeps the real difficulties
under the carpet. Nevertheless, there remains some work to do even after the
Yamabe part of the problem has been solved.

In what follows we will assume smoothness of all objects involved. More
recently, these equations have been studied with metrics of low differentiabil-
ity [90, 308]; this was motivated in part by work on the evolution problem for
“rough initial data” [272–274, 398]. Boundary value problems for the constraint
equations, with nonlinear boundary conditions motivated by black holes, were
considered in [178, 309].

In order to provide a complete answer to the question of solvability of
(3.1.49), as first done by Isenberg [243], we start by showing that (3.1.49) has
no solutions in several cases: For this, suppose that there exists a solution, and
integrate (3.1.49) over M :

∫

M

(
n− 2

4(n− 1)
R̃φ− σ̃2φ

2−3n
n−2 +

n− 2

4n
τ2Λφ

n+2
n−2

)
= 0 .

Since we want φ to be positive, there are obvious obstructions for this equation
to hold, and hence for existence of positive solutions: for example, if σ̃2 ≡ 0 and
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τ2Λ = 0 then there can be a positive solution only if R̃ vanishes (and then φ is
necessarily constant, e.g. by an appropriate version of the maximum principle).
Analysing similarly other possibilities one finds:

Proposition 3.1.12 Suppose that either

1. σ̃2 ≡ 0, τ2Λ = 0, but R̃ 6= 0; or

2. σ̃2 ≡ 0, τ2Λ 6= 0 but R̃ ≥ 0; or

3. τ2Λ = 0, σ̃2 6≡ 0, but R̃ ≤ 0.

Then (3.1.49) has no positive solutions.

We emphasize that the non-existence result is not a failure of the conformal
method to produce solutions, but a no-go result; we will return to this issue in
Proposition 3.1.25 below.

It turns out that there exist positive solutions for all other cases. This will
be proved using the monotone iteration scheme, which we are going to describe
now. For completeness we start by proving a simple version of the maximum
principle:

Proposition 3.1.13 Let (M,g) be compact, let C0(M) ∋ c < 0 and let u ∈
C2(M). If

∆u+ cu ≥ 0 , (3.1.50)

then u ≤ 0. If equality in (3.1.50) holds at some point, then u ≡ 0.

Proof: Suppose that u has a strictly positive maximum at p. In local coordi-
nates around p we then have

gij∂i∂ju− gijΓkij∂ku ≥ −cu .

The second term on the left-hand side vanishes at p because ∂u vanishes at
p, the first term is non-positive because at a maximum the matrix of second
partial derivatives is non-positive definite. On the other hand the right-hand
side is strictly positive, which gives a contradiction. If equality holds in (3.1.50)
then both u and minus u are non-positive, hence the result. 2

We note without proof the following [220, Theorem 8.19]:

Proposition 3.1.14 Under the remaining hypotheses of Proposition 3.1.13, its
conclusions remain true if c ≤ 0 and c 6≡ 0. 2

Consider, now, the operator

L = ∆g̃ + c

for some function c < 0. The symbol of L reads

σL(p) = gijpipj 6= 0 if p 6= 0 ,
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which shows that L is elliptic. It is well-known that ∆g̃ is formally self-adjoint
(with respect to the measure dµg̃), and Proposition 3.1.13 allows us to apply
Theorem 3.1.11 to conclude existence of Hk+2 solutions of the equation

Lu = ρ (3.1.51)

for any ρ ∈ Hk; u is smooth if ρ and the metric are.
Returning to the Lichnerowicz equation (3.1.49), let us rewrite this equation

in the form
∆g̃φ = F (φ, x) . (3.1.52)

A C2 function φ+ is called a super-solution of (3.1.52) if

∆g̃φ+ ≤ F (φ+, x) . (3.1.53)

Similarly a C2 function φ− is called a sub-solution of (3.1.52) if

∆g̃φ− ≥ F (φ−, x) . (3.1.54)

A solution is both a sub-solution and a super-solution. This shows that a
necessary condition for existence of solutions is the existence of sub- and super-
solutions. It turns out that this condition is also sufficient, modulo an obvious
inequality between φ− and φ+:

Theorem 3.1.15 Suppose that (3.1.52) admits a sub-solution φ− and a super-
solution φ+ satisfying

φ− ≤ φ+ .
If ∂φF is continuous, then there exists a C2 solution φ of (3.1.52) such that

φ− ≤ φ ≤ φ+ .

(φ is smooth if F is.)

Remark 3.1.16 The proof here uses compactness ofM in an essential way. Per-
haps somewhat surprisingly, the monotone iteration scheme works without any
compactness, completeness, or other global conditions on (M,g), and requires
only existence of continuous sub- and supersolutions satisfying the required
inequalities in a weak sense, see Section 3.2.2, p. 106. 2

Proof: The argument is known as the monotone iteration scheme, or the
method of sub- and super-solutions. We set

φ0 = φ+ ,

and our aim is to construct a sequence of functions such that

φ− ≤ φn ≤ φ+ , (3.1.55a)

φn+1 ≤ φn . (3.1.55b)

We start by chosing c to be a positive constant large enough so that the function

φ→ Fc(φ, x) := F (φ, x)− cφ
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is monotone decreasing for φ− ≤ φ ≤ φ+. This can clearly be done on a compact
manifold. By what has been said we can solve the equation

(∆g̃ − c)φn+1 = Fc(φn, x) .

Clearly (3.1.55a) holds with n = 0. Suppose that (3.1.55a) holds for some n,
then

(∆g̃ − c)(φn+1 − φ+) = Fc(φn, x)− ∆g̃φ+︸ ︷︷ ︸
≤F (φ+,x)

+cφ+

≥ Fc(φn, x)− Fc(φ+, x) ≥ 0 , (3.1.56)

by monotonicity of Fc. The maximum principle (the reader is warned that c in
(3.1.56) is opposite in sign to the c in Proposition 3.1.13) gives

φn+1 ≤ φ+ ,

and induction establishes the second inequality in (3.1.55a). Similarly we have

(∆g̃ − c)(φ− − φn+1) = ∆g̃φ−︸ ︷︷ ︸
≥F (φ−,x)

−cφ− − Fc(φn, x)

≥ Fc(φ−, x)− Fc(φn, x) ≥ 0 ,

and (3.1.55a) is established. Next, we note that (3.1.55a) implies (3.1.55b) with
n = 0. To continue the induction, suppose that (3.1.55b) holds for some n ≥ 0,
then

(∆g̃ − c)(φn+2 − φn+1) = Fc(φn+1, x)− Fc(φn, x) ≥ 0 ,

again by monotonicity of Fc, and (3.1.55b) is proved.
Since φn is monotone decreasing and bounded there exists φ such that φn

tends pointwise to φ as n tends to infinity. Continuity of F gives

Fn := F (φn, x)→ F∞ = F (φ, x) ,

again pointwise. By the Lebesgue dominated theorem Fn converges to F∞ in
L2. The elliptic inequality (3.1.36) gives

‖φn − φm‖H2 ≤ C2(‖(∆g̃ − c)(φn − φm)‖L2 + ‖φn − φm‖L2)

= C2(‖Fc(φn−1, ·)− Fc(φm−1, ·)‖L2 + ‖φn − φm‖L2) .

which implies that the sequence (φn)n∈N is Cauchy in H2. Completeness of
H2 implies that there exists φ∞ ∈ H2 such that φn → φ∞ in H2. Recall that
from any sequence converging in L2 we can extract a subsequence, say (φni)i∈N,
converging pointwise almost everywhere. Thus φni converges pointwise to φ,
and pointwise almost everywhere to φ∞, which implies that φ = φ∞ almost
everywhere. Redefining φ on a zero-measure set if necessary, we conclude that
φ ∈ H2.

Continuity of ∆g̃ − c on H2 shows that

(∆g̃ − c)φ = lim
n→∞

(∆g̃ − c)φn = Fc(φ, x) = F (φ, x) − cφ ,
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so that φ satisfies the equation, as desired. The remaining claims follow from
elliptic regularity theory. 2

In order to apply Theorem 3.1.15 to the Lichnerowicz equation (3.1.49)
we need appropriate sub- and super-solutions. The simplest guess is to use
constants, and we start by exploring this possibility. Setting φ− = ǫ for some
small constant ǫ > 0, we need

0 = ∆g̃ǫ ≥ F (ǫ, x) ≡
n− 2

4(n− 1)
R̃ǫ− σ̃2ǫ

2−3n
n−2 +

n− 2

4n
τ2Λǫ

n+2
n−2 (3.1.57)

for ǫ small enough. Since 2−3n is negative and n+2
n−2 is larger than one, we find:

Lemma 3.1.17 A sufficiently small positive constant is a subsolution of (3.1.49)
if

1. R̃ < 0, or if

2. σ̃2 > 0.

Next, we set φ+ =M , with M a large constant, and we need to check that

0 ≤ n− 2

4(n − 1)
R̃M − σ̃2M 2−3n

n−2 +
n− 2

4n
τ2ΛM

n+2
n−2 . (3.1.58)

We see that:

Lemma 3.1.18 A sufficiently large positive constant is a supersolution of (3.1.49)
if

1. R̃ > 0, or if

2. τ2Λ > 0.

As an immediate Corollary of the two Lemmata and of Theorem 3.1.15 one
has:

Corollary 3.1.19 The Lichnerowicz equation can always be solved if R̃ is
strictly negative and τΛ 6= 0.

Before proceeding further it is convenient to classify the metrics on M as
follows: we shall say that g ∈ Y + if g can be conformally deformed to achieve
positive scalar curvature. We shall say that g ∈ Y 0 if g can be conformally
rescaled to achieve zero scalar curvature but g 6∈ Y +. Finally, we let Y − be the
collection of the remaining metrics. It is known that all classes are non-empty,
and that every metric belongs to precisely one of the classes.

One then has the following result:

Theorem 3.1.20 (Isenberg [243]) The following table summarizes whether or
not the Lichnerowicz equation (3.1.49) admits a positive solution:
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σ̃2 ≡ 0, τΛ = 0 σ̃2 ≡ 0, τΛ 6= 0 σ̃2 6≡ 0, τΛ = 0 σ̃2 6≡ 0, τΛ 6= 0

g̃ ∈ Y + no no yes yes

g̃ ∈ Y 0 yes no no yes

g̃ ∈ Y − no yes no yes

For initial data in the class (Y 0, σ ≡ 0, τΛ = 0) all solutions are constants, and
any positive constant is a solution. In all other cases the solutions are unique.

Proof: All the “no” entries are covered by Proposition 3.1.12. The “yes” in
the first column follows from the fact that constants are (the only) solutions in
this case.

To cover the remaining “yes” entries, let us number the rows and columns
of the table as in a matrix Tij . Then T32 and T34 are the contents of Corol-
lary 3.1.19.

In the positive Yamabe class, Lemma 3.1.18 shows that a sufficiently large
constant provides a supersolution. A small constant provides a subsolution if
σ̃2 has no zeros; this establishes T13 and T14 for strictly positive σ̃2. However, it
could happen that σ̃2 has zeros. To cover this case, as well as the zero-Yamabe-
class case T24, we use a mixture of an unpublished argument of E. Hebey [230]
and of that in [310]. Similarly to several claims above, this applies to the
following general setting: Let h, a, and f be smooth functions on a compact
Riemannian manifold M , with h ≥ 0, a ≥ 0 and f ≥ 0. Consider the equation

∆g̃u− hu = fuα − au−β , (3.1.59)

with α > 1 and β > 0. We further require f + h 6≡ 0 and a 6≡ 0. (All those
hypotheses are satisfied in T13, T14, and T24.) Then there exists a function u1
such that

∆g̃u1 − (h+ f)u1 = −a .

The function u1 is strictly positive by the maximum principle. For t > 0
sufficiently small the function ut = tu1 is a subsolution of (3.1.59): indeed,

from ta ≤ at−βu−β1 and ftu1 ≥ ftαuα1 for t small enough we conclude that

∆g̃ut − hut = −ta+ tu1f ≥ −at−βu−β1 + ftαuα1 .

The existence of a solution follows again from Theorem 3.1.15.
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Uniqueness in all R̃ ≥ 0 cases, except T21, follows from the fact that the
function φ 7→ F (φ, x), defined in (3.1.57), is monotonously increasing for non-
negative R̃: indeed, let φ1 and φ2 be two solutions of (3.1.52), then

∆g̃(φ2 − φ1) + (−
∫ φ2

φ1

∂φF (φ, x)dφ

︸ ︷︷ ︸
=:c

)(φ2 − φ1) = 0 .

It follows from the monotonicity properties of F that c ≤ 0. The maximum
principle, Proposition 3.1.14, gives φ1 = φ2 whenever the function c is not
identically zero.

To prove uniqueness when R̃ < 0, suppose that there exist two distinct
solutions φa, a = 1, 2; exchanging the φa’s if necessary we can without loss of
generality assume that the set where φ2 > φ1 is non-empty. By construction,

the scalar curvature R of the metric g := φ
4

n−2

2 g̃ satisfies

n− 2

4(n− 1)
R = σ̃2 − n− 2

4n
τ2Λ . (3.1.60)

Because the whole construction is conformally covariant, the function

φ :=
φ1
φ2

satisfies again (3.1.49) with respect to the metric g:

∆gφ−
n− 2

4(n − 1)
Rφ = −σ̃2φ

2−3n
n−2 +

n− 2

4n
τ2Λφ

n+2
n−2 . (3.1.61)

In view of (3.1.60), this can be rewritten as

∆gφ = −σ̃2(φ
2−3n
n−2 − φ) + n− 2

4n
τ2Λ(φ

n+2
n−2 − φ) . (3.1.62)

By choice, the minimum value of φ, say a, is strictly smaller than one. At the
point where the minimum is attained we obtain

0 ≤ ∆gφ = −σ̃2(a−
3n−2
n−2 − a)︸ ︷︷ ︸
I

+
n− 2

4n
τ2Λ(a

n+2
n−2 − a)

︸ ︷︷ ︸
II

. (3.1.63)

But both I and II are strictly negative for a < 1, which gives a contradiction,
and establishes uniqueness. 2

Remark 3.1.21 The conformal covariance properties of the conformal method,
already used in the proof above, are significant enough to warrant emphasising.
Consider, thus, a set (g̃, L̃, φ, β), where L̃ is a g̃-TT tensor, and φ solves the
Lichnerowicz equation in the metric g̃:

∆g̃φ−
n− 2

4(n− 1)
R̃φ = − n− 2

4(n− 1)
|L̃|2g̃φ

2−3n
n−2 + βφ

n+2
n−2 . (3.1.64)
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Here β is a function which might or might not be given by (3.1.22). Let ψ be
a strictly positive function, then L̂ab := ψ−2L̃ab is a TT tensor for the metric

ĝ := ψ
4

n−2 g̃, and the function φ̂ := ψ−1φ is a solution of the Lichnerowicz
equation in the metric ĝ:

∆ĝφ̂−
n− 2

4(n− 1)
R̂φ̂ = − n− 2

4(n− 1)
|L̂|2ĝφ̂

2−3n
n−2 + βφ̂

n+2
n−2 , (3.1.65)

where R̂ is the curvature scalar of the metric ĝ.

To prove (3.1.65), the following formula is useful:

∆ĝφ̂−
n− 2

4(n− 1)
R̂φ̂ = ψ−n+2

n−2

(
∆g̃(ψφ̂)−

n− 2

4(n − 1)
R̃ψφ̂

)
. (3.1.66)

Incidentally: The calculation leading to (3.1.66) proceeds as follows:

g̃ab = ψ− 4
n−2 ĝab ,√

det g̃ = ψ− 2n
n−2

√
det ĝ ,

g̃ab = ψ
4

n−2 ĝab ,

∆g̃(ψφ̂) = φ̂∆g̃ψ + ψ∆g̃φ̂+ 2g̃ab∂aψ∂bφ̂

= φ̂∆g̃ψ + ψ∆g̃φ̂+ 2ψ
4

n−2 ĝab∂aψ∂bφ̂ ,

∆g̃φ̂ =
1√
det g̃

∂a(
√

det g̃g̃ab∂bφ̂)

=
ψ

2n
n−2

√
det ĝ

∂a(ψ
− 2n

n−2

√
det ĝψ

4
n−2 ĝab∂bφ̂)

=
ψ

2n
n−2

√
det ĝ

∂a(ψ
−2
√
det ĝĝab∂bφ̂)

= ψ
4

n−2

(
∆ĝφ̂−

2

ψ
ĝab∂aψ∂bφ̂

)
,

∆g̃(ψφ̂) = φ̂∆g̃ψ + ψ
n+2

n−2∆ĝφ̂ .

To finish the calculation one uses the transformation formula (C.2.16):

R̂ = ψ− n+2

n−2

(
−4(n− 1)

n− 2
∆g̃ψ + R̃ψ

)
. (3.1.67)

2

Remark 3.1.23 The question of stability of solutions of the Lichnerowicz equation
with Λ > (n − 1)τ2/2n (so that β < 0) has been addressed in [194, 195, 355]. Sur-
prisingly enough, in [194] stability is established in dimensions n ≤ 5, but examples
are constructed where stability fails when n ≥ 6; see also [?]. 2

As a Corollary of Theorem 3.1.20 one obtains:

Theorem 3.1.24 Any compact Riemannian manifold (M,g) carries some vac-
uum initial data set.
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Proof: We can construct non-trivial solutions of the vector constraint equation
using the method of Section 3.1.4, which takes us to the last two columns of
the table of Theorem 3.1.20. Choosing some τ2Λ > 0 we can then solve the
Lichnerowicz equation whatever the Yamabe type of g by the last column in
that table. 2

As already pointed out, we have the following trivial observation which
highlights the importance of Isenberg’s Theorem 3.1.20:

Proposition 3.1.25 All solutions of the vacuum constraint equation can be
constructed by the conformal method.

Proof: If (M,g,K) is a CMC vacuum initial data set, the result is established

by setting Y = 0, φ = 1, L̃ij = Kij − trK
n gij . 2

Incidentally: A natural question is whether the set of solutions to the constraint
equations forms a manifold. This was first considered by Fischer and Marsden [204],
who identified an obstruction arising from symmetries (compare [18, 19, 327]) and
provided a Fréchet manifold structure away from a singular set. Banach manifold
structures have been constructed in [133], and a Hilbert manifold structure for
asymptotically flat or asymptotically hyperbolic initial data sets in [36, 189, 316,
317]. Note that the constructions in the last references clearly generalise to more
general classes of data. 2

3.1.7 The scalar constraint equation on compact manifolds, τ 2 <
2n

(n−1)
Λ

Theorem 3.1.20 gives an exhaustive and rather simple picture of CMC initial
data on compact manifolds when 2n

(n−1)Λ ≤ τ2. The situation for Λ’s exceeding
this bound is rather different, with several questions remaining open.

It follows immediately from the scalar constraint equation that when τ =
0 = σ2 but Λ > 0, then we are in the positive case of the Yamabe problem. More
generally, a necessary condition for existence of solutions of the Lichnerowicz
equation in the current case is that g be of positive Yamabe type. Indeed, sup-
posing that a solution φ exists, we can always make a conformal transformation
of the metric so that φ ≡ 1. But then the Lichnerowicz equation (3.1.21) gives

n− 2

4(n − 1)
R̃ = σ̃2 − β > 0 ,

since β < 0, whence the result.

It follows in particular that it is always possible to conformally rescale the
seed data so that, say,

R̃ = n(n− 1) , (3.1.68)

and we will often use this normalisation in what follows.

Obvious examples of three dimensional compact manifolds carrying a metric
with positive scalar curvature are given by

S3/Γ , S2 × S1 , (3.1.69)
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where Γ is a discrete subgroup of O(3) without fixed points. The quotient
manifolds S3/Γ are called spherical manifolds, see [21] for a complete list.

It turns out that a complete description of the possible topologies of three
dimensional compact manifolds carrying metrics with positive scalar curvature
can be given using the connected sum construction, which proceeds as follows:
consider any two manifolds Ma, a = 1, 2. Consider two sets Ba ⊂ Ma, each
diffeomorphic to a ball in Rn. One then defines the manifold M1#M2, called
the connected sum of M1 and M2, as the set

(M1 \B1) ∪ ([0, 1] × Sn−1) ∪ (M2 \B2)

in which the sphere ∂B1 is identified in the obvious way with {0} × Sn−1, and
the sphere ∂B2 is identified with {1}×Sn−1. In other words, one removes balls
from the Ma’s and connects the resulting spherical boundaries with a “neck”
[0, 1] × Sn−1.

Consider, then, two manifolds (Ma, ga) with positive scalar curvature. Gro-
mov and Lawson [224] have shown how to construct a metric of positive scalar
curvature onM1#M2. This implies that any compact, orientable three-manifold
which is a connected sum of spherical manifolds and of copies of S2×S1 carries
a metric of positive scalar curvature. The resolution of the Poincaré conjec-
ture by Perelman [346–348] completes previous work of Schoen-Yau [390] and
Gromov-Lawson [225] on this topic, and proves the converse: these are the only
compact three-manifolds with positive scalar curvature.

Under the current conditions, a pointwise obstruction to existence of solu-
tions of the Lichnerowicz equation can be derived as follows [231]: Let p0 be a
point where the minimum of φ is attained, set ǫ := φ(p0). To emphasize the
current sign, we define

Λτ :=

[
−n− 2

4n
τ2 +

n− 2

2(n− 1)
Λ

]
≥ 0 . (3.1.70)

This coincides with −β as defined in (3.1.22), p. 65.
At the minimum the Laplacian of φ is non-negative, and there the Lich-

nerowicz equation gives

0 ≤ ∆g̃φ
∣∣∣
p0

=
n− 2

4(n − 1)
R̃ǫ− σ2ǫ(2−3n)/(n−2) − Λτ ǫ

(n+2)/(n−2) . (3.1.71)

But the right-hand side is negative since Λτ ≥ 0 if σ2 is sufficiently large, which
gives an obstruction to existence. Setting a := ǫ4/(n−2), (3.1.71) becomes

0 ≤ n− 2

4(n − 1)
R̃− σ2ǫ−4(n−1)/(n−2) − Λτ ǫ

4/(n−2)

=
n− 2

4(n − 1)
R̃− σ2a−(n−1) − Λτa =: G(a) .

Hence, the function G so defined needs to be positive at a. In particular the
maximum of G must be positive. To determine this maximum, we note that
the condition of the vanishing of G′ gives

(n− 1)σ2a−n = Λτ .
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Inserting into G, we find that the maximum of G will be non-positive if

Λτσ
2/(n−1) ≥ (n− 1)1/(n−1)

(
n− 2

4n(n− 1)
R̃+

)n/(n−1)

, (3.1.72)

where R̃+ is the positive part of R̃, holds everywhere. We conclude that:

Proposition 3.1.27 There cannot be a positive minimum of φ, and hence a
positive solution, if (3.1.72) holds everywhere.

In other words, violation of (3.1.72) somewhere is a necessary condition for
existence of strictly positive solutions.

Note that the above calculation can be used to obtain a lower bound on φ
when σ2 has no zeros or when R̃ is strictly positive.

One can also obtain integral, instead of pointwise, conditions for non-existence
of solutions, see [231, Theorems 2.1 and 2.2] for details.

After a conformal rescaling of the metric so that R̃ is (a positive) constant,
the operator appearing at the left-hand side of (3.1.21), p. 65 is obviously
coercive. This allows us to apply to the problem at hand some key results
from [195, 355] and obtain:

Theorem 3.1.28 (Premoselli [355]) Let Λτ > 0, and let M be a compact man-
ifold of dimension n ∈ {3, 4, 5} and constant positive scalar curvature.

1. For every seed data set (g̃, L̃) with L̃ 6≡ 0 there exists θ∗ ∈ R+ such that
the Lichnerowicz equation with seed data (g̃, θL̃), θ ∈ R+, has

(a) no solution for θ ≥ θ∗;
(b) exactly one solution when θ = θ∗;

(c) at least two solutions for θ < θ∗.

2. For every set S of, say smooth, seed data satisfying (3.1.68) such that
infS supM σ̃2 > 0, the associated collection of solutions of the constraint
equations is compact.

Proof: Point 1. is a special case of [355, Theorem 2.1]. Concerning point
2.,5 the argument for sequences σ̃2k in [195] generalises immediately to the
current setting, including perturbations gk of the metric. Indeed, that last
generalisation requires only uniform bounds on the geometry of the manifold
and on the Green functions, which hold in the current setting. 2

Remark 3.1.29 Premoselli’s theorem above builds upon, and extends, previous
work of Hebey, Pacard and Pollack [231]. In [231, Corollaries 3.1 and 3.2]
the reader will find several criteria for existence, essentially amounting to the
requirement that σ2 be small and without zeros. For example, on compact

5We are grateful to Bruno Premoselli for useful comments concerning this point.
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manifolds such that R̃ ≥ 0 but not identically zero, there exists a constant C
depending upon g̃ and n such that, if Λτ > 0 and σ2 > 0 and

Λn−1
τ

∫

M
σ2 ≤ C ,

then a solution exists. This is proved using the Mountain Pass Lemma [359].
2

A non-trivial example of the behaviour described by Theorem 3.1.28 is pre-
sented in Section 3.1.8 below.

Delaunay metrics

An interesting class of metrics on S1 × Sn−1 with positive scalar curvature is
provided by the Delaunay metrics which, for n ≥ 3, take the form

g = u4/(n−2)(dy2 + g̊n−1) , (3.1.73)

with u = u(y) and where, as before, g̊n−1 is the unit round metric on Sn−1
p . The

metrics are spherically symmetric, hence conformally flat. It is shown in [389]
that the solutions of the Yamabe equation are spherically symmetric as well,
so that the constant scalar curvature condition R(g) = n(n− 1) reduces to an
ODE for u:

u′′ − (n− 2)2

4
u+

n(n− 2)

4
u

n+2
n−2 = 0. (3.1.74)

Solutions are determined by two parameters which correspond respectively to
a minimum value ε for u, with

0 ≤ ε ≤ ε̄ = (
n − 2

n
)
n−2
4 , (3.1.75)

called the Delaunay parameter or neck size, and a translation parameter along
the cylinder. An ODE analysis [315] shows that all positive solutions are peri-
odic. The degenerate solution with ε = 0 corresponds to the round metric on a
sphere from which two antipodal points have been removed. The solution with
ε = ε̄ corresponds to the rescaling of the cylindrical metric so that the scalar
curvature has the desired value.

The Delaunay metrics provide an example of countable non-uniqueness of
solutions of the Yamabe equation on S1×Sn−1: for any T > 0 and ℓ ∈ N∗ there
exists a solution uℓ of (3.1.74) with period T/ℓ. Each such function uℓ provides
a metric with constant scalar curvature n(n− 1) on the manifold on which the
coordinate y of (3.1.73) is T -periodic.

Incidentally: The ODE (3.1.74) was first studied by Fowler [206, 207], however
the name arises from an analogy with the Delaunay surfaces, which are complete,
periodic CMC surfaces of revolution in R3 [186].

One can view the Delaunay metrics as singular solutions of the Yamabe equation
on (Sn

p , g0). There exists a number of uniqueness results in this context: it is known
that no solution with a single singular point exists, and that any solution with
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exactly two isolated singular points must be conformally equivalent to a Delaunay
metric.

It is also known that conformally flat metrics, with constant positive scalar
curvature, and with an isolated singularity of the conformal factor are necessarily
asymptotic to a Delaunay metric; in fact, in dimensions n = 3, 4, 5 the conformal
flatness condition is not needed [307]. Specifically, in spherical coordinates about an
isolated singularity of the conformal factor, there is a half-Delaunay metric which
g converges to, exponentially fast in r, along with all of its derivatives. This fact is
used in [312, 314, 315, 353, 362] where complete, constant scalar curvature metrics,
conformal to the round metric on Sp \ {p1, . . . , pk} were studied and constructed.
This is one instance of the more general “singular Yamabe problem”. 2

Incidentally: The time-evolution of time-symmetric Delaunay data leads to the
Kottler–Schwarzschild–de Sitter metrics of Section B.3, p. 262 in n+1 dimensions,
with cosmological constant Λ > 0 and mass m ∈ R:

ds2 = −V dt2 + V −1dr2 + r2g̊n−1, where V = V (r) = 1− 2m

rn−2
− r2

ℓ2
, (3.1.76)

where ℓ > 0 is related to the cosmological constant Λ by the formula 2Λ = n(n −
1)/ℓ2. Comparing (3.1.76) and (3.1.73) we find

r = u
2

n−2 , r
dy

dr
= V −1/2 , (3.1.77)

which allows us to determine y as a function of r on any interval of r’s on which V
has no zeros.

To avoid a singularity lying at finite distance on the level sets of t one needs
m > 0. Equation (3.1.76) provides then a spacetime metric satisfying the Einstein
equations with cosmological constant Λ > 0 and with well behaved spacelike hyper-
surfaces when one restricts the coordinate r to an interval (rb, rc) on which V (r) is
positive; such an interval exists if and only if

(
2

(n− 1)(n− 2)

)n−2

Λn−2m2n2 < 1 . (3.1.78)

When n = 3 this translates to the condition that 9m2Λ < 1. 2

3.1.8 Bifurcating solutions of the constraint equations

The question arises, what more can be said about the structure of the set
of solutions as in Premoselli’s Theorem 3.1.28. In this section we present a
toy model where a complete description can be carried out. The setting is
that of all U(1)× SO(3) general relativistic initial data on S1 × S2, which is a
direct generalisation of the Delaunay metrics by including a non-trivial extrinsic
curvature tensor, first discussed in [149]. We follow the presentation in [138].
See [69] for a numerical analysis of a related model.

Thus, we choose the initial data metrics

g = φ4g̊ (3.1.79)

to be conformal to

g̊ ≡ gT̊ ,R̊ :=

(
T̊

2π

)2

dψ2 +
2

R̊
dΩ2 , (3.1.80)
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where ψ is a 2π-periodic coordinate on S1, T̊ and R̊ are positive constants,
while dΩ2 is the unit round metric on S2. The metric gT̊ ,R̊ has scalar curvature

R̊. A constant rescaling of gT̊ ,R̊ can be absorbed in a redefinition of T̊ and R̊

which leaves invariant the product T̊ 2R̊. We will write g̊ instead of gT̊ ,R̊ when

the explicit values of T̊ and R̊ are not essential.

Following [149], the extrinsic curvature tensor K will be taken of the form

K =
2αφ−2

√
6



(
T̊

2π

)2

dψ2 − 1

R̊
dΩ2


+

τ

3
g =: φ−2L̊+

τ

3
g , (3.1.81)

where α > 0 and τ are non-negative constants. This is the general form for a
U(1)×SO(3)-invariant two-covariant symmetric tensor, except for the condition

α > 0

which has been made to exclude the Delaunay metrics. Note that the “seed
tensor field” L̊ is g̊-transverse and traceless. The multiplicative normalisation
factor in L̊ has been chosen so that |L̊|̊g = |α|.

The general relativistic constraint equations will be satisfied by (g,K), with
g = φ4g̊, if and only if

∆g̊φ−
R̊

8
φ = −λτ

8
φ5 − α2

8
φ−7 , (3.1.82)

keeping in mind our hypothesis that

λτ
8

:=
Λ

4
− τ2

12
> 0 . (3.1.83)

Recall that when λτ is negative and α2 6= 0 the solutions are unique by
Isenberg’s Theorem 3.1.20. This implies that φ inherits then the symmetries
of the metric g̊, and hence is constant. We will see that this is not the case
anymore when λτ is positive.

We note the following, where we allow R̊, α and λτ not to be constant:

Proposition 3.1.32 Consider (3.1.82) on a compact Riemannian manifold with
continuous functions R̊, α and λτ satisfying λτ > 0. If

minα2 minλ2τ ≥
4

33
max R̊3 , (3.1.84)

then (3.1.82) has no positive solutions unless R̊, α2 and λτ are all positive
constants and the inequality in (3.1.84) is an equality, in which case there is a
unique positive solution, which is constant:

φ =

(
2R̊

3λτ

)1/4

.
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Proof: Write (3.1.82) as ∆φ = F . A simple analysis of the polynomial φ 7→
α2 − R̊φ8 + λτφ

12 gives F ≥ 0 when (3.1.84) holds. Multiplying the equation
by φ and integrating by parts gives φ = φ0 = const, F (φ0) ≡ 0, and the result
readily follows. 2

The key observation for the further analysis of the problem at hand is that
the conformal factor φ depends only upon the coordinate ψ running around the
S1 factor of M = S1 × S2. This follows from the difficult results of [258] on
uniqueness and non-uniqueness of solutions of classes of semilinear equations
on S3 with isolated singularities on the north and south pole:

Theorem 3.1.33 Positive solutions φ of (3.1.82) depend at most upon ψ.

Because of the conformal covariance of the problem, we can always rescale
g̊ so that a constant solution of the Lichnerowicz equation, whenever one exists,
equals one. After such a rescaling we will obtain

R̊ = λτ + α2 . (3.1.85)

This normalisation will be often used in what follows.
Assuming (3.1.85), Theorem 3.1.33 reduces the problem to finding all 2π-

periodic solutions φ = φ(ψ) of the Lichnerowicz equation:

(2π)2

T̊ 2

d2φ

dψ2
= −1

8
(− (α2 + λτ )φ+ λτφ

5 + α2φ−7)

= − 1

8φ7
(φ4 − 1)(λτφ

8 − α2(1 + φ4)) =: −dV
dφ

(φ) . (3.1.86)

In order to account for the invariance of the problem under rigid rotations
of S1 we will require

∂ψφ(0) = 0 , (3.1.87)

which can always be fulfilled by an adequate choice of the origin on the circle.
With this normalisation each family of solutions differing from each other by
a rotation of S1 appears either as one solution, when φ is constant, or as two
solutions, one where 0 is a local maximum of φ and one where 0 is a local
minimum of φ.

The conserved energy for (3.1.86) reads

H(φ, φ̇) =
1

2
φ̇2 − α2 + λτ

16
φ2 +

λτ
48
φ6 − α2

48
φ−6 =:

1

2
φ̇2 + V (φ) , (3.1.88)

where a dot denotes a derivatives with respect to

t :=
T̊

2π
ψ . (3.1.89)

Keeping in mind our assumptions φ > 0, α2 6= 0 and λτ > 0, the equation
dV/dφ = 0 can be written as

(y − 1)(x2 + x2y − 2y2) = 0 , where y = φ4 , (3.1.90)
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and where we set

x :=

√
2|α|√
λτ

> 0 . (3.1.91)

The positive solutions are y = 1 and y = x
4 (x+

√
x2 + 8), distinct unless x = 1.

Representative plots of V can be found in Figure 3.1.1.
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Figure 3.1.1: Typical form of the potential V (φ) with |α| <
√
λτ/2 (left),

|α| =
√
λτ/2 (middle) and |α| >

√
λτ/2 (right).

When |α| =
√
λτ/2 the only solution which remains bounded away from

zero for all times is φ ≡ 1. This case corresponds precisely to that already
covered in Proposition 3.1.32, and thus from now on we assume that

|α| 6=
√
λτ/2 or, equivalently, x 6= 1 .

It is convenient, first, to drop the requirement of periodicity of φ. For
this consider (3.1.86), where the ψ-derivatives are replaced by derivatives with
respect to the parameter t ∈ R of (3.1.89). The nature of the solutions

R ∋ t 7→ φ(t)

can easily be understood by inspection of the potentials in Figure 3.1.1, or of
the phase portrait in the (φ, φ̇) plane of Figure ??. •3.1.1 It should be clear•3.1.1: two very large

figures commented out

because too long to

display and compile

from Figure 3.1.1 that the critical point (φ = 1, φ̇ = 0) is stable if and only if

|α| <
√
λτ/2 .

Subsequently, the analysis has to be carried-out separately according to whether
or not this inequality is satisfied.

The case |α| <
√
λτ/2:

The solution φ(ψ) ≡ 1 has energy

H1 = V (1) = − 1

24

(
2α2 + λτ

)
. (3.1.92)

The second critical point (φ = φ2 < 1, φ̇ = 0) has energy which we will denote
by H2 = H2(α, λτ ). An analytic expression for H2 can be obtained but is not
very enlightening:

H2 = −
λτ
√
x

48
× x4 + 6x2 + 16 + (x3 + 2x)

√
x2 + 8

(
x+
√
x2 + 8

)3/2 . (3.1.93)
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There is an orbit corresponding to a non-trivial homoclinic solution with
energy H(φ, φ̇) = H2 which asymptotes to φ2 as t tends both to plus and minus
infinity. On both pictures of Figure ??, the relevant orbit lies on the piece of
the red curve that closes up.

All orbits lying in the conditionally compact set, say Π ⊂ {(φ, φ̇) ∈ R2},
enclosed by this homoclinic orbit are periodic. These are the only orbits with
φ bounded and bounded away from zero, and hence the only ones of interest to
us as solutions of the Lichnerowicz equation on S1 × S2 leading to a spatially
compact vacuum data set with the same topology.

The periodic orbits oscillate between φmin (α, λτ , E) and φmax (α, λτ , E),
where

E := H(φ, φ̇)

denotes the energy of the solution. Figure ?? shows that the function

E 7→ φmin (α, λτ , E)

is monotonously decreasing to φmin (α, λτ ) = φ2, while E 7→ φmax (α, λτ , E) is
monotonously increasing to a value φmax (α, λτ ). There is a bound

φmax (α, λτ ) ≤
√
3

which is approached as α → 0. It is attained on the solution with α = 0
with energy E = H2, for which φ2 = 0; this solution closes-off R × S2 to a
smooth round S3. A plot of φmin (α, λτ ) can be found in Figure 3.1.2. We note
lim(|α|/λτ )→0 φmin = 0.
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Figure 3.1.2: φmin (α, λτ ) and φmax (α, λτ ) as functions of the scaled variable
x =
√
2|α|/

√
λτ .

The discussion so far applies to solutions on R × S2. Each such solution
with minimal period T leads to a solution of the Lichnerowicz equation on
S1 × S2 with metric gnT,R̊, for any integer n ≥ 1, by replacing the S1-factor
by its n-fold cover. The question that arises is then, which values of T are
realised by the solutions above. To answer this one needs to understand the
period function, defined as the function which to a periodic orbit with energy
E associates its minimal period T (α, λτ , E). For any such orbit with φ varying
between φmin(α, λτ , E) and φmax(α, λτ , E) the period equals

T =
√
2

∫ φmax(α,λτ ,E)

φmin(α,λτ ,E)

dφ√
E − V (φ)

, (3.1.94)
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where the turning points φmin(α, λτ , E) and φmax(α, λτ , E) are found by solving
the equations

V (φmin(α, λτ , E)) = E = V (φmax(α, λτ , E)) ,

with φmin(α, λτ , E)) ∈ [φ2(α, λτ ) , 1] and φmax(α, λτ , E)) ∈ [1,∞). Since in our
case V is a real analytic function of φ, the real analytic version of the implicit
function theorem shows that away from the critical level sets of H the functions
E 7→ φmin and E 7→ φmax are real analytic.

When E approaches the energy of the stable critical point, φs, where V
′′(φs) >

0, the period approaches that of linearized oscillations around φs:

T → 2π√
V ′′(φs)

. (3.1.95)

In particular, when |α| <
√
λτ/2 the stable critical point is φ1 = 1 and one has

T → T1(α, λτ ) =
2
√
2π√

λτ − 2α2
. (3.1.96)

Near to and away from the critical point φ = 1 the function T is differen-
tiable, with the sign of the derivative of T with respect to E determined by the
sign of the Chicone test function [89]

N = (G′)4
(

G

(G′)2

)′′
, (3.1.97)

where G(φ) = V (φ) − V (1) is the potential normalised so that G(1) = 0, on
the interval [φmin(α, λτ )) , φmin(α, λτ ))]. N can be computed and takes the
following form:

N =
λ3τ (φ

2 − 1)4

768φ22
P (φ) ,

where P is a polynomial of degree 28 in φ which is conveniently computed with
e.g. Mathematica, and which can be checked to be positive in the range of
variables of interest. Hence N is non-negative on the interval

[φmin(α, λτ )) , φmax(α, λτ ))] ,

thus proving that the period function is increasing with E.

When moving continuously amongst the solutions so that their energy E
tends to H2, the period of the solutions grows to infinity since the (bounded)
solution with E = H2 is a homoclinic orbit.

A plot of the period function E 7→ T (α, λτ , E) can be found in Figure 3.1.3
for α = 0.2 and λτ = 1.

The case |α| =
√
λτ/2

leads to only one periodic positive solution, namely the constant one.



92 CHAPTER 3. THE CONSTRAINT EQUATIONS

- 0.042 - 0.040 - 0.038

10

11

12

13

Figure 3.1.3: Values of the period of oscillation with α = 0.2 and λτ = 1. In
this case one has H1 ≃ −0.045 and H2 ≃ −0.0364.

The case |α| >
√
λτ/2:

The analysis is very similar to that of the case |α| <
√
λτ/2. We now have

x ∈ (1,∞). The stable point becomes φ2 and a calculation shows that

V ′′(φ2) =
λτ
8

√
x2 + 8

(
3x−

√
x2 + 8

)

which is clearly positive if and only if x ∈ (1,∞). When the energy of a
periodic solution approaches H2, its period approaches that of the solutions of
the linearized problem around φ2:

T → T2(α, λτ ) =
2π√
V ′′(φ2)

=
4
√
2π

√
λτ (x2 + 8)1/4

(
3x−

√
x2 + 8

)1/2 . (3.1.98)

As expected, the period of small oscillations goes to infinity as x tends to 1
since the critical points of V (namely 1 and φ2) merge to a single degenerate
critical point.

The proof of the monotonicity of the period function T (α, λτ , E) with re-
spect to the energy E of the solution translates without modifications: one
proves that the Chicone test function N of (3.1.97) is positive on the interval
[1,∞).

Similarly, the period T (α, λτ , E) goes to infinity as E → H1. An example
plot of T is given in Figure 3.1.4.

The bifurcation analysis

We are ready now to carry out a bifurcation analysis of solutions of the equation
(3.1.82). We fix g̊ (i.e. T̊ and R̊), λτ and let α be our varying bifurcation
parameter. In particular, we no longer assume the conformal gauge R̊ = α2+λτ .
From Theorem 3.1.33, φ depends at most on ψ, so (3.1.82) reduces to

(2π)2

T̊ 2

d2φ

dψ2
= −1

8

(
λτφ

5 + α2φ−7 − R̊φ
)
. (3.1.99)
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Figure 3.1.4: The minimal period as a function of the energy when α = 2 and
λτ = 1. Here H2 ≃ −0.4735 and H1 = −0.375.
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Figure 3.1.5: Example of a fold bifurcation in numerical solutions of constraint
equations in the conformal-thin-sandwich formulation, from [349]; ψ is the con-
formal factor.

As seen in Proposition 3.1.32, there is no solution to (3.1.99) if α2 > 4
27λ2τ

R̊3,

and a unique solution when α2 = α2
max := 4

27λ2τ
R̊3 which is constant:

φ ≡ φ0 =
(

2R̊

3λτ

)1/4

.

In accordance with the terminology of [354, Remark 2.3.2], the point φ ≡ φ0
is a subcritical fold bifurcation. For lower values of α, we get two branches of
constant solutions going down to α = 0:





φ ≡ φ+(α) =
(

R̊
3λτ

+ 1
3λτ

(
N(α)

21/3
+ 21/3R̊2

N(α)

))1/4
,

φ ≡ φ−(α) =
(

R̊
3λτ
− 1

3λτ

(
j̄ 2

1/3R̊2

N(α) + jN(α)

21/3

))1/4
,

where j = (−1 + i
√
3)/2 and N is given by

N(α) :=

(
2R̊3 − 27α2λ2τ + 3

√
3

√
−4R̊3α2λ2τ + 27α4λ4τ

)1/3

.
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Figure 3.1.6: A plot of φ+(α) (blue) and φ−(α) (red) with λτ = 1 and R̊ =(
27
4

)1/3
as a function of α.

Note that N has nonzero imaginary part. Nevertheless φ± are real with 0 <
φ− < φ+. A plot of these solutions is given in Figure 3.1.6. From the shape
of the potential, we see that φ− is unstable while φ+ is stable within the class
of solutions defined on intervals of R. To find potential bifurcation points, we
look for φ’s solving (3.1.99) such that the linearization of (3.1.99), namely

(2π)2

T̊ 2

d2ξ

dψ2
= −1

8

(
5λτφ

4 − 7α2φ−8 − R̊
)
ξ , (3.1.100)

admits a non-trivial solution ξ. We introduce the following function spaces:

Ckeven(S
1,R) := {ξ ∈ Ck(S1,R) , ξ is an even function of ψ} . (3.1.101)

These function spaces will be important to suppress the S1-translation-invariance
of the set of solutions. We assume first that φ is constant.

Proposition 3.1.34 Bifurcations on the curve φ ≡ φ+(α) occur for the follow-
ing values of α:

αk,± = ± 2

3
√
3λτ

(
R̊+

(
2π

T̊

)2

k2

)√
R̊− 2

(
2π

T̊

)2

k2 , (3.1.102)

where k ∈ N is such that
(
2π
T̊

)2
k2 < R̊

2 . The values α0,± = ±αmax correspond

to fold bifurcations described earlier, while αk with k > 1 correspond to pitchfork
bifurcations à la Crandall-Rabinowitz [167]. There are no bifurcations on the
curve φ ≡ φ−(α).

We note that the values αk,± can be rewritten as

αk,± = ± 2

3
√
3λτ

√
R̊3 − 2

(
2π

T̊

)6

k6 − 3R̊

(
2π

T̊

)4

k4 ,

from which it follows that all values αk,± lie in the range [−αmax, αmax].

Proof: Since φ is constant, the right hand side of (3.1.100) is constant. Since
ξ is 2π-periodic, this imposes the condition

1

8

(
5λτφ

4 − 7α2φ−8 − R̊
)
= k2

(2π)2

T̊ 2
, (3.1.103)



3.1. THE CONFORMAL METHOD 95

for some k ∈ N. The corresponding solution ξ is then, up to multiplication by
a constant,

ξ = cos (k(ψ − ψ0)) .

Values of α and φ for which (3.1.99) and (3.1.103) hold can be found as follows:
We introduce the polynomials

P (X) = −1
8

(
λτX

3 + α2 − R̊X2
)
,

Q(X) =
(
2π
T̊

)2
k2X2 + 1

8

(
R̊X2 + 7α2 − 5λτX

3
)
,

which are obtained, for P , by multiplying the right hand side of (3.1.99) by φ7

and setting X = φ4, and similarly for Q by multiplying (3.1.103) by φ8 and
setting X = φ4. The resultant of P and Q is given by

−α
4λτ

4096

(
8

(
2π

T̊

)6

k6 + 12

(
2π

T̊

)4

k4R̊− 4R̊3 + 27α2λ2τ

)
.

It is zero when α = 0 or when α = αk,± (see (3.1.102)). This means that when
α = αk,±, P and Q have a common root given by

Xk =
2

3λτ

(
R̊+

(
2π

T̊

)2

k2

)
. (3.1.104)

This value of X corresponds to φk := X
1/4
k = φ+(αk,±).

It can be checked that

V ′′(φk) =

(
2π

T̊

)2

k2 ,

so, for all values of k > 0, φk is a stable local minimum for V . This proves
that the bifurcation points along both branches φ±(α) of constant solutions are
located only on the curve φ ≡ φ+(α).

We now check that Proposition C.8.3, p. 274, applies in this case. To get
rid of the S1-invariance, we restrict the space of solutions to the Banach space
C2
even(S

1,R) of (3.1.101) and restrict ourselves to the study of solutions φ to
(3.1.99) belonging to this space. This restriction is actually not important
since any solution φ to (3.1.99) admits a point ψ0 where φ′(ψ0) = 0. It follows
from the Cauchy-Lipschitz theorem that φ(ψ0 + δψ) = φ(ψ0 − δψ), ∀δψ ∈ R.
Translating the solution, we can assume that φ ∈ C2

even(S
1,R).

We let

F : C2
even(S

1,R) ∩ {φ > 0} × R→ C0
even(S

1,R)

be the following operator:

F (φ, α) :=
(2π)2

T̊ 2

d2φ

dψ2
+

1

8

(
λτφ

5 + α2φ−7 − R̊φ
)
.
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At points (φk, αk,±), the linearization of F has a 2-dimensional kernel generated
by the following two vectors

v1 := (δφ1, δα1) = (−2αk,±φk, 5λτφ12k − R̊φ8k − 7α2
k,±) ,

v2 := (δφ2, δα2) = (cos(kψ) , 0) .

The derivative

DφF (φk, αk,±) =
(2π)2

T̊ 2

(
d2

dψ2
+ k2

)

has one-dimensional kernel generated by δφ2 = cos(kψ), and its image is the
kernel of the map

f 7→
∫

S1

f(ψ) cos(kψ)dψ.

This is the reason why we restrict to the space of even functions, otherwise the
kernel of DφF (φk, αk,±) would be two-dimensional, similarly for the cokernel,
thus failing to satisfy the assumptions of [167, Theorem 1]. The only condition
that remains to be verified is that

F ′′(φk, αk,±)(v1, v2) 6∈ R(F ′(φk, αk,±)).

This actually follows from a straightforward calculation:

F ′′(φk, αk,±)(v1, v2) =
αk,±

4

(
7R̊− 7α2

φ8k
− 55φ4kλτ

)
cos(kψ)

= −αk,±

16

(
142

(
2π
T̊

)2
k2 + 121R̊

)
cos(kψ) .

This finishes the proof of Proposition 3.1.34. 2

Our next step is to obtain a better understanding of the curves of non-
constant solutions. To label the branches solutions, we define the index of a so-
lution. Given a non-constant solution φ, we have, for all ψ ∈ S1, (φ(ψ) , φ̇(ψ)) 6=
(φ+(α) , 0). So a non-constant solution φ is a curve in R2 \ {(φ+(α) , 0)}. We
define its index as the class of φ in

π1(R
2 \ {(φ+(α) , 0)}) ≃ Z .

This index is constant along a curve of solutions, except at the bifurca-
tion points on the curve α 7→ φ+(α) where the index is not defined. Each
solution on the curve α 7→ φ−(α) has index zero while each bifurcation point
(αk,±, φ+(αk,±)) is the limit point of two curves of non-constant solutions with
index k:

Proposition 3.1.35 For all k ≥ 1 such that
(
2π
T̊

)2
k2 < R̊

2 there exist two
curves

(αk,−, αk,+) 7→ φk,±(α) ∈ C2
even(S

1, R̄)

of solutions to (3.1.99) of index k which are 2π/k-periodic. The curves are
obtained one from the other as follows:

φk,−(ψ) ≡ φk,+
(
ψ +

π

k

)
.
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No bifurcations occur on these curves except at the points αk,±. These solutions,
together with the solutions lying on the curves α 7→ φ±(α), exhaust the set of
solutions to (3.1.99).

Before proving this proposition, we need the following lemma:

Lemma 3.1.36 The period T (α,E) of the solutions to (3.1.99) with energy E de-
pends analytically on (α,E) for α ∈ (−αmax, αmax) and E ∈ (V (φ+(α)) , V (φ−(α))).

Proof: The proof is based on a rewriting of (3.1.94):

T (α,E) =
√
2

∫ φmax(α,E)

φmin(α,E)

dφ√
E − V (φ, α)

,

where φmin(α,E) < φmax(α,E) are the two solutions to V (φ, α) = E in the
range (φ−(α) ,∞). Note that since

∂V

∂φ
(φmin(α,E) , E) ,

∂V

∂φ
(φmax(α,E) , E) 6= 0 ,

the analytic implicit function theorem shows that φmin and φmax are analytic
functions in α and E. Given α0 and E0 satisfying the assumptions of the lemma,
we choose an arbitrary value φ0 ∈ (φmin(α0, E0) , φmax(α0, E0)). Given (α,E)
close to (α0, E0), we split (3.1.94) as follows:

T (α,E) =
√
2

[∫ φ0

φmin(α,E)

dφ√
E − V (φ, α)

+

∫ φmax(α,E)

φ0

dφ√
E − V (φ, α)

]
.

We show how to rewrite the first integral so that its analyticity in the vicinity
of (α0, E0) becomes apparent. Note that

E − V (φ, α) = V (φmin(α,E) , α) − V (φ, α)

= −(φ− φmin(α,E))
∫ 1
0
∂V
∂φ (λφ+ (1− λ)φmin(α,E))dλ

= −x2−
∫ 1
0
∂V
∂φ (λx

2
− + φmin(α,E) , α)dλ ,

where we set φ = x2− + φmin(α,E). So,

∫ φ0
φmin(α,E)

dφ√
E−V (φ,α)

= 2
∫√φ0−φmin(α,E)
0

dx−√
−

∫ 1
0

∂V
∂φ

(λx2−+φmin(α,E) ,α)dλ
.

A similar rewriting of the second integral yields

∫ φmax(α,E)
φ0

dφ√
E−V (φ,α)

= 2
∫√φmax(α,E)−φ0
0

dx+√∫ 1
0

∂V
∂φ

((1−λ)x2++φmax(α,E) ,α)dλ
,
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where φ = φmax(α,E) − x2+. The function

(E,α, x−) 7→ −
∫ 1

0

∂V

∂φ
(λx2− + φmin(α,E) , α)dλ

is clearly analytic and positive for all x+ ∈
[
0,
√
φmax(α,E) − φ0

]
since

∂V

∂φ
(φmin(α,E) , α) < 0 .

This is enough to conclude that

∫ φ0

φmin(α,E)

dφ√
E − V (φ, α)

= 2

∫ √φ0−φmin(α,E)

0

dx−√
−
∫ 1
0
∂V
∂φ (λx

2
− + φmin(α,E) , α)dλ

is analytic in (α,E) in a neighborhood of (α0, E0). Similar arguments apply for
the second integral. 2

Proof of Proposition 3.1.35. We first remark that since the energy H
defined in (3.1.88) is conserved, solutions φ(ψ) to (3.1.99) with index k are
actually periodic with minimal period 2π/k. We select a non-constant solution
(α0, φ0) with index k and energy Eα0 . Since the index is locally constant, all
solutions nearby, potentially with a different α, are 2π/k-periodic.

From our previous analysis, for α between ±αmax the period Tα,λτ ,R̊(E) of

a solution φ with energy E = H(φ, φ̇) is strictly increasing with respect to
E. Since we are restricting ourselves to solutions belonging to C2

even(S
1,R),

we have φ̇(0) = 0 so E = V (φ(0)). Note that since the derivative of T with
respect to E is strictly positive, for all α near α0 there exists a unique value
Eα ∈ (V (φ+(α)) , V (φ−(α))) of the energy so that the solution with energy Eα
has period 2π/k. Eα depends smoothly on α by Lemma 3.1.36. We let φ∗−(α)
denote the unique solution φ > φ+(α) to V (φ) = V (φ−(α)). From the shape of
the potential V , there exist exactly two values φmin(α, k), φmax(α, k) so that

φ−(α) < φmin(α, k) < φ+(α) < φmax(α, k) < φ∗−(α) ,

and
V (φmin(α, k)) = V (φmax(α, k)) = Eα .

These two values map smoothly to two solutions of (3.1.99). Thus we have
proven that near a value α0 for which there exists a solution φ0 with index k,
there exist two and only two distinct curves of solutions with index k.

Note that a 2π/k-periodic solution increases from φmin(α, k) to φmax(α, k) in
an interval of length π/k and then decreases from φmax(α, k) to φmin(α, k) in the
same amount of time. Hence, translating the solution φ with φ(0) = φmin(α, k)
by π/k we get the solution φ(0) = φmax(α, k) and vice versa.

Let
Ik ⊂ R
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denote the set of values for which there exists a pair of solutions of index k. The
previous analysis shows that Ik is an open subset. Assume that Ik contains a
boundary point α∞ which is not αk,±, Let αi ∈ Ik be such that αi → α∞. The
corresponding functions φi with period 2π/k all have φi(0) ∈ (φ−(αi) , φ∗−(αi)).
Without loss of generality, we can assume that φi(0) converges to some limit
φ∞(0) ∈ [φ−(α∞) , φ∗−(α∞)]. φ∞(0) cannot be φ−(α∞) nor φ∗−(α∞) since the
period of the functions φi’s would grow unbounded.

If φ∞(0) 6= φ+(α∞), by continuity of the period with respect to initial
data, the solution φ∞ to (3.1.99) is periodic with period 2π/k. The previous
argument shows that α∞ is an interior point of Ik, a contradiction. Thus the
only endpoints of Ik are on the curve φ ≡ φ+(α), this is to say bifurcation
points we found in Proposition 3.1.34.

The question now arises, whether new solutions occur with values of α larger

than αk, or smaller, or both. We will see that, for all k such that
(
2π
T̊

)2
k2 < R̊

2 ,

Ik contains an interval of the form (αk,+− ǫ, αk,+). Since (3.1.99) only depends
on α2, Ik also contains the interval (αk,−, αk,− + ǫ). We let

(−δ, δ) ∋ t 7→ (α(t) , φk(t))

denote a differentiable curve of non-constant solutions passing through (αk,+, φ̃k)
at the value t = 0 of parameter t, where

φ̃k :=

[
2

3λτ

(
R̊+

(
2π

T̊

)2

k2

)]1/4
,

compare (3.1.104). The existence of this curve has been established in Propo-
sition 3.1.34. We expand α and φk in terms of the parameter t as follows:

{
α(t) = αk,+ + tα̃1

k,+ + t2α̃2
k,+ + t3α̃3

k,+ +O(t4) ,

φk(t) = φ̃k + tφ̃1k + t2φ̃2k + t3φ̃3k +O(t4) ,
(3.1.105)

where φ̃1k = cos(kψ) and insert this development in (3.1.99). From the terms
linear in t in (3.1.99), it follows that α̃1

k,+ = 0. Looking at terms of order t2,

we find that φ̃2k = λ cos(2kψ) + ǫ cos(kψ) + µ, where

λ =
1

12k2

(
3λτ
2

)1/4 4
(
T̊
2π

)2
R̊− 3k2

((
2π
T̊

)2
k2 + R̊

)1/4
,

and

µ = −(6λτ )
1/4

8
×

(
4R̊− 3

(
2π
T̊

)2
k2
)√

2

√(
2π
T̊

)2
k2 + R̊+

√
λτ

√
R̊− 2

(
2π
T̊

)2
k2α̃2

k,+

((
2π
T̊

)2
k2 + R̊

)3/4 (
2π
T̊

)2
k2

.
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There is no loss of generality in assuming that ǫ = 0 since this can be reabsorbed
in the definition of t. More importantly, µ depends on α̃2

k,+, this is why we need

to consider terms cubic in t in (3.1.99). The expression for α̃2
k,+ is obtained by

setting to zero the coefficient of t3 cos(kψ) in (3.1.99):

α̃2
k,+ = −

√
2

3
√
λτ

10R̊2 − 9R̊
(
2π
T̊

)2
k2 − 12

(
2π
T̊

)4
k4

√(
R̊− 2

(
2π
T̊

)2
k2
)((

2π
T̊

)2
k2 + R̊

) .

The numerator of this expression is decreasing on [0,∞) when seen as a function

of k so it is bounded from below from the value it takes when
(
2π
T̊

)2
k2 = R̊

2 ,

which is 5R̊/2. Since we have α = αk,+ + α̃2
k,+t

2 + O(t3) with α̃2
k,+ < 0, we

deduce that α(t) < αk,+ for small values of the parameter t. This concludes
the proof of the claim.

Ik being connected with endpoints αk,±, we conclude that Ik = (αk,−, αk,+).
2

An illustration of the last two propositions is given in Figure 3.1.7.

2 4 6 8

0.5

1.0

1.5

2 4 6 8

0.5

1.0

1.5

7.80 7.85 7.90 8.00 8.05 8.10

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1.34

2 4 6 8

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

2 4 6 8

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

7.85 7.90 7.95 8.00 8.05 8.10

- 2.865

- 2.860

- 2.855

- 2.850

- 2.845

- 2.840

- 2.835

Figure 3.1.7: An illustration of Propositions 3.1.34 and 3.1.35 with T̊ = 2π,
R̊ = 33 and λτ = 9. On all plots α varies along the horizontal axis. On
the first line, the plot on the left shows the three curves of φ−(α) (magenta),
φ+(α) (marine blue) and φ∗−(α) (yellow). Dots indicate the position of the
bifurcation points. Where curves merge, there are actually two points which
almost coincide. One corresponds to the fold bifurcation while the second one is
a pitchfork bifurcation. All other points are pitchfork bifurcations. The second
plot shows the value at the origin of the solutions of index 1 (brown), 2 (red),
3 (green) and 4 (blue). And the third plot is a zoom of the second one near
αmax. The graphs on the second line show the energy H(φ, φ̇) of the solutions.

Summarising, we have proved:

Theorem 3.1.37 Let T̊ , R̊ ∈ R+, and let λτ > 0 be defined in (3.1.83). Con-
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sider a metric g̊ = gT̊ ,R̊, and define kmax to be the largest integer k such that

2

(
2π

T̊

)2

k2 < R̊ .

Depending on the value of α ∈ R, Equation (3.1.99) has, up to translation in
the S1-direction,

• no solutions if α 6∈ [−αmax, αmax], where αmax = 2
3
√
3λτ

R̊3/2,

• only one solution if α = ±αmax,

• two constant solutions and k non constant SO(3)-symmetric solutions of
index 1, ..., k when α ∈ (αk,−, αk+1,−] ∪ [αk+1,+, αk,+) if k < kmax or
when α ∈ (αk,−, αk,+) if k = kmax.

It follows from the (generalised) Birkhoff Theorem that the spacetimes ob-
tained by evolution of the current initial data are quotients of either the Nariai
spacetime or the Schwarzschild-de Sitter spacetime.

The set of solutions of the constraint equations just constructed shows ex-
plicitly that:

Proposition 3.1.38 There exist spatially compact CMC initial data sets at
which the set of solutions of the vacuum constraint equations is not a manifold.

It turns out that the bifurcation behaviour above will not occur in generic
situations, and is closely related to the fact that the initial data just constructed
have non-trivial KIDs (cf. Definition 3.5.8, p. 138 below). Indeed, the set of so-
lutions of vacuum constraint equations forms a manifold at initial data without
KIDs, as follows from the implicit function theorem, since the linearisation of
the constraint map is an invertible operator away from such data.

More information about the structure of the initial data set at data with
isometries can be found in [18, 19].

3.1.9 Matter fields

The conformal method easily extends to CMC constraint equations for some
non-vacuum initial data, e.g. the Einstein-Maxwell system [243] where one ob-
tains results very similar to those of Theorem 3.1.20. However, other important
examples, such as the Einstein-scalar field system [99–101, 231], require more
effort and are not as fully understood.

Recall that the energy density µ and the energy-momentum density J of
matter fields is related to the geometry through the formulae

16πµ := R(g) − |K|2g + (trgK)2 − 2Λ (3.1.106)

8πJ i := Di(K
ij − trgKg

ij) . (3.1.107)
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If µ and J have been prescribed, this becomes the system of equations (3.1.17)
and (3.1.25) for φ and L̃

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ2φ 2−3n

n−2 + βφ
n+2
n−2 − 4(n− 2)

(n− 1)
φ

n+2
n−2πµ , (3.1.108)

D̃iL̃
ij = 8πφ

2(n+2)
n−2 J i +

n− 1

n
φ

2n
n−2 D̃jτ . (3.1.109)

It is important to realize that the conformal method has no physical con-
tents, and is an ansatz for constructing solutions of the constraint equations.
The question of scaling properties of µ and J under conformal transformations
is thus largely a matter of convenience. For instance, when dτ = 0, a convenient
prescription for J is to set

J̃ i = φ
2(n+2)
n−2 J i , (3.1.110)

and to view J̃ as free data, for then (3.1.109) decouples from (3.1.108). There is
then a natural rescaling of µ which arises from the dominant energy condition

µ2 ≥ gijJ iJ j: since gij = φ
4

n−2 g̃ij , under (3.1.110) we have

gijJ
iJ j = φ

4
n−2

− 4(n+2)
n−2 g̃ij J̃

iJ̃ j = φ−
4(n+1)
n−2 g̃ij J̃

iJ̃ j ,

and so the dominant energy condition will be covariant under these rescalings
if we set

µ̃ = φ
2(n+1)
n−2 µ , (3.1.111)

viewing µ̃ as the free data, and µ as the derived ones. The scaling (3.1.110)-
(3.1.111) is known to us from [92], where it has been termed York scaling. With
those definitions (3.1.108)-(3.1.109) become

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ2φ

2−3n
n−2 + βφ

n+2
n−2

−4(n− 2)

(n− 1)
φ−

n
n−2πµ̃ . (3.1.112)

D̃iL̃
ij = 8πJ̃ i +

n− 1

n
φ

2n
n−2 D̃jτ . (3.1.113)

Maxwell fields

Let the (spacelike) initial data hypersurface S be given by the equation x0 = 0,
define

α :=
1√
−g00

, (3.1.114)

so that the future directed unit normal N to S has covariant components

Nµdx
µ = −αdx0 .

When constructing initial data involving Maxwell equations, one needs to keep
in mind that the Maxwell equations

∇µFµν = 4πJνM , ∇µ ⋆ Fµν = 0 , (3.1.115)
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where ⋆Fµν := 1
2ǫ
µνρσFρσ, and where JµM denotes the charge-current four-vector

density, imply constraints equations on the electric and magnetic fields Ei and
Bi :

Ei∂i := NµF
iµ∂i = αF 0i∂i , Bi∂i := α ⋆ F i0∂i . (3.1.116)

Indeed, we then have

DiE
i = 4παJ0

M , DiB
i = 0 . (3.1.117)

Since DiB
i = ∂i(

√
det gkℓB

i)/
√
det gkℓ, the second equation above is immedi-

ately covariant under conformal rescalings of the metric if Bi is taken of the
form

Bi := φ−
2n
n−2 B̃i , (3.1.118)

where B̃i is divergence-free in the metric g̃. Likewise the first equation in
(3.1.117) will be conformally covariant if

Ei := φ−
2n
n−2 Ẽi , αJ iM := φ−

2n
n−2 α̃J̃ iM , D̃iẼ

i = 4πα̃J̃0
M . (3.1.119)

The energy-density of the Maxwell fields is (keeping in mind that n = 3 here)

µ :=
1

8π

(
gijE

iEj + gijB
iBj
)

= φ−8 1

8π

(
g̃ijẼ

iẼj + g̃ijB̃
iB̃j
)

︸ ︷︷ ︸
=:µ̃

. (3.1.120)

This motivates the York scaling (3.1.111). One similarly checks the York-scaling
property for the energy-momentum three-vector J i.

3.2 Non-compact initial data sets: an overview

So far we have been considering initial data sets on compact manifolds. How-
ever, there exist noncompact classes of data which are of interest. Indeed, apart
from compact manifolds, several classes of general relativistic initial data sets
have been studied with various degrees of completeness, including:

1. manifolds with asymptotically flat ends,

2. manifolds with asymptotically hyperbolic ends,

3. manifolds with ends of cylindrical type,

4. manifolds with asymptotically periodic ends,

5. manifolds with cylindrically bounded ends,

6. manifolds with asymptotically conical ends.
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The aim of this section is to review those models.

Some reminders might be in order. A vacuum initial data set (M,g,K) is
a triple consisting of an n-dimensional manifold M , a Riemannian metric on
g, and a symmetric two-covariant tensor K. One moreover requires that the
vacuum constraint equations hold:

R(g) = 2Λ + |K|2g − (trgK)2 , (3.2.1)

DjK
j
k −DkK

j
j = 0 . (3.2.2)

The reader will note that we have allowed for a non-zero cosmological con-
stant Λ ∈ R. The hypothesis that Λ = 0 is adequate when describing isolated
gravitating systems such as the solar system; Λ > 0 seems to be needed in
cosmology in view of the observations of the rate of change of the Hubble con-
stant [372, 413]; finally, a negative cosmological constant appears naturally in
many models of theoretical physics, such as string theory or supergravity. For
those reasons it is of interest to consider all possible values of Λ.

A CMC initial data set is one where trgK is constant; data are called max-
imal if trgK is identically zero. A time-symmetric data set is one where K
vanishes identically. In this case (3.2.1)-(3.2.2) reduces to the requirement that
the scalar curvature of g be constant:

R(g) = 2Λ .

3.2.1 Non-compact manifolds with constant positive scalar cur-
vature

The topological classification of compact three-manifolds with positive scalar
curvature generalises to the following non-compact setting: One says that a Rie-
mannian metric g has bounded geometry if g has bounded sectional curvatures
and injectivity radius bounded away from zero. Using Ricci flow (the short-time
existence of which is guaranteed in the setting by the work of Shi [394]), one
has [60]:

Theorem 3.2.1 Let S be a connected, orientable three-manifold which car-
ries a complete Riemannian metric of bounded geometry and uniformly positive
scalar curvature. Then there is a finite collection F of spherical manifolds such
that S is an (infinite) connected sum of copies of S1 × S2 and members of F .

The cylinders (R×Sn−1, dx2+ g̊n−1) provide examples of non-compact man-
ifolds with positive scalar curvature. The underlying manifold can be viewed as
Sn from which the north and south poles have been removed. In Theorem 3.2.1
they are viewed as an infinite connected sum of S1 × S2.

Incidentally: Completing the initial data (R×S2, dx2+g̊2) with a suitable extrin-
sic curvature tensor, when Λ = 0 the corresponding evolution leads to the interior
Schwarzschild metric: for t < 2m

g = − 1
2m
t − 1

dt2 +

(
2m

t
− 1

)
dx2 + t2g̊2 . (3.2.3)
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When Λ > 0, vanishing extrinsic curvature leads to the Nariai metrics [335]:

g =
1

Λ

(
−dt2 + cosh2 t dρ2 + g̊2

)
(3.2.4)

(compare [73]). Further related examples are discussed in Section 3.1.8. 2

Another class of positive scalar constant curvature metrics on R × Sn−1 is
provided by the Delaunay metrics of Section 3.1.7, when the coordinate y of
(3.1.73) is not periodically identified, but runs over R.

Example 3.2.3 The Delaunay metrics provide an example of complete spherically
symmetric metrics with positive scalar curvature. Large classes of metrics with the
last set of properties can be constructed as follows: Recall that (see (C.2.14), p. 268,
with g and g̃ there interchanged)

gij = φ
4

n−2 g̃ij =⇒ R = φ−
4

n−2

(
R̃− 4(n− 1)

(n− 2)φ
∆g̃φ

)
. (3.2.5)

So if g̃ is the flat Euclidean metric δ, then g will have non-negative scalar curvature
if and only if

∆δφ ≤ 0 .

Smooth spherically symmetric solutions of this inequality which are regular at the
origin and which asymptote to one at infinity can be obtained by setting

φ = 1 +
1

rn−2

∫ r

0

f(s)sn−1ds+

∫ ∞

r

f(t)tdt , (3.2.6)

where f is any smooth positive function such that
∫∞

0
f(r)rn−1dr is finite. (The

solution will be be asymptotically flat in the usual sense if, e.g., f is compactly
supported.) Indeed, we have

φ′ = − (n− 2)

rn−1

∫ r

0

f(s)sn−1ds , (3.2.7)

hence
∆δφ = r−(n−1)∂r(r

n−1∂rφ) = −(n− 2)f ,

and so the sign of the scalar curvature of φ4/(n−2)δ is determined by that of −f .
In the region where f vanishes we have R = 0, which provides vacuum regions.

Connected regions of non-zero f can be thought of as a central star, or shells of
matter.

It is interesting to enquire about existence of spherically symmetric minimal
surfaces for such metrics. Now a strict definition of a minimal surface is the re-
quirement of minimum area amongst nearby competing surfaces, but any critical
point of the area functional is also often called “minimal”, and we will follow this
practice.

In the case under consideration, the area of spheres of constant radius is pro-
portional to (r2φ4/(n−2))(n−1)/2, and so the area will have vanishing derivative with
respect to r if and only if

(rφ2/(n−2))′ = 0 ⇐⇒ − 2rφ′

(n− 2)
= φ

⇐⇒ 1

rn−2

∫ r

0

f(s)sn−1ds

︸ ︷︷ ︸
=:h(r)

= 1 +

∫ ∞

r

f(t)tdt

︸ ︷︷ ︸
=:g(r)

. (3.2.8)
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This formula can be used to construct solutions containing minimal spheres as
follows: Suppose that the function f of (3.2.6) is constant, say f = f0 > 0, on an
interval [0, r1]. Then h(r) = f0r

2/n increases while g(r) = g(0)− f0r2/2 decreases,
so equality will be achieved precisely once somewhere before r1 if

f0r
2
1

n
> 1 +

∫ ∞

r1

f(r)rdr . (3.2.9)

The value of r ∈ [0, r1] at which the equality in (3.2.8) holds provides our first
“minimal” surface (which actually locally maximizes area). We then let f drop
smoothly to zero on [r1, r2], for some r2 > r1, and keep f equal to zero on [r2, r3),
with r3 possibly equal to ∞. On [r1, r2] the function h continues to increase while
the function g continues to decrease, so there cannot be any further minimal surfaces
in this interval. On [r2, r3) the function

h(r) = r−(n−2)

∫ r2

0

f(s)sn−1ds

decreases as r−(n−2) while g(r) remains constant, so equality in (3.2.8) will be
attained before r3 if

r
−(n−2)
3

∫ r2

0

f(s)sn−1ds < 1 +

∫ ∞

r3

f(r)r dr . (3.2.10)

Note that the choice of r3 does not affect (3.2.9) insofar as f vanishes on [r2, r3).
In particular if we choose r3 = ∞, we can first choose any central value f0,

and then choose r1 so that f0r
2
1/n > 2. Choosing the intermediate region [r1, r2]

small enough so that the integral at the right-hand side is smaller than one, it
follows from (3.2.9) that the resulting metric will have precise one locally maximal
sphere somewhere before r1. For r > r2 the metric is the (asymptotically flat)
space-Schwarzschild metric with a second minimal sphere somewhere in [r2,∞).

2

3.2.2 The barrier method on general manifolds

We show here, following [148], how to establish existence of solutions to certain
linear and semilinear elliptic equations which arise in various geometric settings
on non-compact manifolds.

Barrier functions

In order to construct solutions of the Lichnerowicz equation we will use the
monotone iteration scheme, as adapted to general manifolds in Theorem 3.2.7
below. This requires sub- and supersolutions of the equation, also referred to
as barriers, and the aim of this subsection is to show how to construct such
barriers in situations of interest.

It is convenient to start with some terminology. Let L be a partial differ-
ential operator with formal L2-adjoint L∗, and let φ be a continuous function.
We will say that

Lφ ≥ ψ in a weak sense,

or weakly, if for every compactly supported smooth function we have
∫

M
φL∗ϕ ≥

∫

M
ψϕ . (3.2.11)
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The simplest example of usefulness of continuous weak barriers is provided
by linear equations:

Proposition 3.2.4 Let (M, g̃) be a smooth Riemannian manifold, and h any
nonnegative smooth function on M . Suppose that f is smooth and there exist

two C0 functions φ̃ ≤ φ̃ which satisfy

(∆g̃ − h)φ̃ ≥ f, (∆g̃ − h)φ̃ ≤ f

in the weak sense. Then there exists a smooth function u such that

(∆g̃ − h)u = f and φ̃ ≤ u ≤ φ̃. (3.2.12)

Proof: Choose an exhaustion of M by a sequence of compact manifolds with
smooth boundary Mj . Because of the sign of h, the inhomogeneous Dirichlet
problem

(∆g̃ − h)uj = f, u|∂Mj
= φ̃

∣∣∣
∂Mj

is uniquely solvable for every j. By the standard (weak) comparison principle,
φ̃ ≤ uj ≤ φ̃ on Mj .

Letting j → ∞, we see that the sequence {uj} is uniformly bounded on
every compact set K ⊂M . Using local elliptic estimates and the Arzela-Ascoli
theorem on each Mi, a diagonalisation argument shows that some subsequence
uj′ converges in C∞ on every compact set. The limit function u satisfies the

correct equation and is sandwiched between the two barriers φ̃ and φ̃. 2

Note that there is no a priori reason for this solution to be unique, although
this may be true in certain circumstances.

A useful aspect of Proposition 3.2.4 is that the barriers need only be con-
tinuous rather than C2. The simplest situation in which such a more relaxed
hypothesis may arise is the following:

Lemma 3.2.5 Suppose that φ̃1 and φ̃2 are two subsolutions for the equation
(∆g̃ −h)u = f . Then φ̃ = max{φ̃1, φ̃2} is also a subsolution in the sense that if

u is a solution to this equation on a domain D and if u ≥ φ̃ on ∂D then u ≥ φ̃
on D. Similarly if φ̃1 and φ̃2 are supersolutions, then φ̃ = min{φ̃1, φ̃2} is also
a supersolution.

Proof: Observe that u ≥ φ̃ ≥ φ̃j on ∂D, hence u ≥ φ̃j on D. Since this is
true for j = 1, 2, we have u ≥ φ̃ on D too. 2

In many applications one of the subsolutions, say φ̃2, is typically only defined
on some open subset of M rather than on the whole space, so the argument
above does not quite work. We therefore need to formulate this result in a
slightly more general way.

As in the proof of Proposition 3.2.4, it suffices to consider barriers on a
compact manifold with boundary, since when M is noncompact we construct
solutions on a exhaustion of M by compact manifolds with boundary Mj , and
then extract a convergent sequence using Arzela-Ascoli.
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Thus let M be a compact manifold with boundary, and suppose that ∂M =
∂1M ∪ ∂2M is a union of two components (which may themselves decompose
further). Suppose that U is a relatively open set M containing ∂2M , but
which has closure disjoint from ∂1M . Let φ1 be a subsolution for the operator
L = ∆ − h which is defined on all of M , and φ2 a subsolution for L which is
only defined on U . We assume that φ1 and φ2 are continuous and subsolutions
in the weak sense.

Consider the open set V = {φ2 > φ1}, and let us suppose that

∂2M ⊂ V ⊂ V ⊂ U .

Define the function

ψ =

{
max{φ1, φ2} in U ,
φ1 in M \U .

Lemma 3.2.6 This function ψ is continuous and a weak global subsolution for
L on M .

Proof: The continuity of ψ is clear from the fact that φ1 > φ2 in a neigh-
bourhood of the ‘inner’ boundary of U , i.e. ∂U \ ∂2M .

Next, suppose that u is a solution defined on all of M and that u ≥ ψ on
∂M . Thus u ≥ φ1 on ∂1M and u ≥ φ2 on ∂2M . By asumption, φ2 ≥ φ1 on
∂2M so u ≥ φ1 on all of ∂M , hence since φ1 is a subsolution, u ≥ φ1 on all of
M . In particular, u ≥ φ1 on the set Y = {φ1 = φ2}.

The set Y is compactly contained in U , and furthermore, ∂V = Y ∪ ∂2M .
This means that u ≥ φ2 on ∂V , hence u ≥ φ2 on all of V . Putting these facts
together yields that u ≥ ψ on all of M . 2

Examples of barrier functions

Now, suppose that (M, g̃) is a complete manifold with a finite number of ends,
each of one of the six types listed on p. 103. We illustrate how the situation
above arises by describing standard types of sub- and supersolutions for the
problem

(∆g̃ − h)u = f (3.2.13)

on each of these types of ends. Here f is a C0,µ function which satisfies certain
weighted decay conditions which are implicit in each case. In each of these
geometries, the end E is a product R+ × N , where N is a compact manifold,
but there is a different asymptotic structure each time.

1. Asymptotically conic ends (this includes asymptotically Euclidean ends):
Here g̃ approaches the conic metric gc := dr2 + r2h for some metric h on
N in the following sense. Using a fixed coordinate system (y1, . . . , yn−1)
on N , augmented by r = y0 ≥ 1, we assume that

g̃ij − (gc)ij = o(1) , ∂k(g̃ij − (gc)ij) = o(r−1). (3.2.14)

Then
u± = ±C‖rα+2f‖L∞r−α
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are sub- and supersolutions of (3.2.13) when r ≥ r0 and C ≫ 0, provided
α ∈ (0, n − 2).

2. Conformally compact (asymptotically hyperbolic) ends: We now assume
that that x ∈ (0, x0] and that g = x2g̃ has components approaching those
of dx2 + g̊ as x → 0, where g̊ is a Riemannian metric on N , and that
the derivatives of the coordinate components of g are o(x−1). Now, if
ν ∈ (0, n − 1), the functions

u± = ±‖x−νf‖L∞xν

are sub- and supersolutions of (3.2.13) when x0 ≪ 1 and C is sufficiently
large.

3. Asymptotically cylindrical ends: Assume that on [x0,∞) ×N the metric
components of g̃ and their first coordinate derivatives approach those of
dx2 + g̊, where g̊ is a Riemannian metric on N . We emphasize that no
decay rate is required. Assume moreover that

h ≥ η2 > 0,

for some constant η. Then, if ν ∈ (−η, η), the functions

u± = ±C‖eνxf‖L∞e−νx

are sub- and supersolutions of (3.2.13) for x0 ≫ 1.

4. Cylindrically bounded ends (this includes asymptotically periodic ends):
Consider a metric g̃ on [x0,∞) × N . To obtain exponentially decaying
sub- and supersolutions we need to ensure that

(∆g̃ − h)e−νx ≤ −Ce−νx (3.2.15)

for some constant C. Now

(∆g̃ − h)e−νx = (−ν∆g̃x+ ν2|dx|g̃ − h)e−νx , (3.2.16)

and so (3.2.15) holds if

h ≥ C − ν∆g̃x+ ν2|dx|g̃ . (3.2.17)

For example, this holds when |ν| is small enough provided there exists a
constant ǫ > 0 such that

h ≥ ǫ , ∆g̃x ≤ ǫ−1 , |dx|g̃ ≤ ǫ−1 ,

In particular, this holds for any cylindrically bounded metric (includ-
ing conformally asymptotically cylindrical and conformally asymptoti-
cally periodic metrics) provided h ≥ η2 > 0.



110 CHAPTER 3. THE CONSTRAINT EQUATIONS

An alternative construction of barriers

All the above sub- and supersolutions take constant values at the boundary
{x0} × N of E, and have the extra property that the gradient of ∓u± points
into E at the boundary (in the cylindrical cases, one must assume that ν > 0
for this to hold). If this sort of normal derivative condition holds, then there is
an alternate proof that these can be used to construct weak barriers.

Suppose that (M, g̃) is the union of a smooth compact manifold with bound-
aryM0 with a finite number of ends Eℓ. Suppose too that on each end Eℓ there
are sub- and supersolutions uℓ,− < 0 < uℓ,+ of (3.2.13) which take constant
values on ∂M0, and such that ∓∇uℓ,± is nonvanishing along ∂Eℓ and points
into Eℓ. Possibly multiplying the uℓ,± by large constants, we assume that all
uℓ,± take the same constant value α± on ∂M0.

Let u0 be the solution of (3.2.13) on M0 with u0 = 0 on ∂M0. Choose a
large constant C so that |∇uℓ,±| ≥ C on ∂M0 gradient of each of the u± on
∂M0 is everywhere larger than sup∂M0

|∇u0|. Then the functions

φ± =

{
u0 + Cα± on M0

Cuℓ,± on Eℓ,
(3.2.18)

are weak sub- and supersolutions of (3.2.13) on the entire manifold M . Indeed,
the choice of C guarantees that the distributional second derivatives of φ± have
the appropriate signs at ∂M0.

The monotone iteration scheme on non-compact manifolds

Let us show how barrier functions can be used to solve semilinear elliptic equa-
tions without any compactness or asymptotic conditions on the manifold:

Theorem 3.2.7 (Monotone iteration scheme, version 2) Let (M, g̃) be a smooth
Riemannian manifold and F :M×R→ R a locally Lipschitz function. Suppose

that φ̃ ≤ φ̃ are continuous functions which satisfy

∆g̃φ̃ ≥ F (·, φ̃) , ∆g̃φ̃(z) ≤ F (·, φ̃)

weakly. Then there exists a smooth function φ̃ on M such that

∆g̃φ̃ = F (·, φ̃) , φ̃ ≤ φ̃ ≤ φ̃ .

As in the linear case, we do not assert that the solution is unique, and there
are examples which show that uniqueness may fail.

Proof: When M is compact, we proceed as follows. Let α = infM φ̃ and

α = supM φ̃. We continue as in the proof of Theorem 3.1.15, p. 76: Rewrite the
equation as

(∆g̃ −A2)φ̃ = FA(z, φ̃),

where

FA(z, φ̃) := F (z, φ̃)−A2φ̃.
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Choose A so large that the function FA satisfies ∂FA(z, µ)/∂φ̃ < 0 for almost
every µ ∈ [α,α].

Now set φ̃0 = φ̃, and define the sequence of functions φ̃j by

(∆g̃ −A2)φ̃j+1 = FA(z, φ̃j).

To see that this is well-defined for every j, note simply that ∆g̃−A2 is invertible
and furthermore, as in the proof of Theorem 3.1.15, by the maximum principle
and induction,

φ̃ = φ̃0 ≤ φ̃1 ≤ φ̃2 ≤ . . . < φ̃,

for all j, which implies that FA is monotone for the same constant A (which

depends only on φ̃ and φ̃). Even though φ̃0 is only continuous, standard elliptic

regularity shows that φ̃1 ∈ C0,α and that φ̃j ∈ C2,α for j ≥ 2.

We have produced a sequence which is monotone and uniformly bounded
away from 0 and ∞, so it is straightforward to extract a subsequence which
converges in C2,α for some 0 < α < 1. If F ∈ C∞, then the subsequence
converges in C∞ too.

All of this works equally well if M is a compact manifold with boundary.
To be concrete, we require at each stage that φ̃j = φ̃ on ∂M and we obtain a
solution in the limit which satisfies the same boundary conditions.

Now consider a general manifold (M, g̃). As in Lemma 3.2.5, choose an
exhaustion Mj of M by compact submanifolds with smooth boundary. For
each j, choose Aj so large that ∂F (z, µ)/∂φ̃ −A2

j < 0 on Mj for almost every

µ ∈ [inf
Mj

φ̃, sup
Mj

φ̃] .

We may as well assume that Aj is a nondecreasing sequence.

Using the first part of the proof, for each j we can solve the equation

(∆g̃ −A2
j )φ̃j = FAj (z, φ̃j), φ̃j

∣∣∣
∂Mj

= φ̃

Notice that by adding A2
j φ̃j to both sides, the functions φ̃j all satisfy the same

equation and are all trapped between the two fixed barrier functions φ̃ and φ̃,
albeit on an expanding sequence of domains. Elliptic estimates for the fixed
equation ∆φ̃ = F (z, φ̃) may now be used to obtain uniform a priori estimates for
derivatives of φ̃j on any fixed compact set. From this we can use Arzela-Ascoli
and a diagonalization argument to find a subsequence which converges in C2,α

(or C∞) on any compact set to a limit function which satisfies the equation and
which lies between the same two barrier functions. 2

3.2.3 Asymptotically flat manifolds

One of the most widely studied class of Lorentzian manifolds are the asymptot-
ically flat spacetimes which model isolated gravitational systems. Now, there
exist several ways of defining asymptotic flatness, all of them roughly equivalent
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in vacuum. In this section we describe the Cauchy data point of view, which
appears to be the least restrictive in any case.

So, a spacetime (M ,g) will be said to possess an asymptotically flat end if
M contains a spacelike hypersurface Sext diffeomorphic to Rn \ B(R), where
B(R) is a coordinate ball of radius R. An end comes thus equipped with
a set of Euclidean coordinates {xi, i = 1, . . . , n}, and one sets r = |x| :=(∑n

i=1(x
i)2
)1/2

. One then assumes that there exists a constant α > 0 such
that, in local coordinates on Sext obtained from Rn\B(R), the metric g induced
by g on Sext, and the second fundamental form K of Sext, satisfy the fall-off
conditions, for some k > 1,

gij − δij = Ok(r
−α) , Kij = Ok−1(r

−1−α) , (3.2.19)

where we write f = Ok(r
β) if f satisfies

∂k1 . . . ∂kℓf = O(rβ−ℓ) , 0 ≤ ℓ ≤ k . (3.2.20)

The PDE aspects of the problem require furthermore (g,K) to lie in certain
weighted Hölder or Sobolev spaces defined on S . More precisely, the above
decay conditions should be implemented by conditions on the Hölder continuity
of the fields; alternatively, the above equations should be understood in an
integral sense. The constraint equations can be conveniently treated in both
Hölder and Sobolev spaces, but one should keep in mind that L2-type Sobolev
spaces are better suited for solving the evolution equations.

Incidentally: The analysis of elliptic operators such as the Laplacian on weighted
functional spaces was initiated by Nirenberg and Walker [338]; see also [31, 94, 298–
301, 318–320,341] as well as [92]. 2

The conformal method works again very well for asymptotically flat ini-
tial data sets. The approach is very similar to the one for compact manifolds,
with two important distinctions: on non-compact manifolds the embeddings
Hk ⊂ Hm and Ck,α ⊂ Cm,α, for k ≥ m, are not compact anymore. Further-
more, to obtain good mapping properties for elliptic operators one needs to
introduce weighted Sobolev or Hölder spaces. The reader is referred to the
original references for details [81, 92, 94, 102, 105, 113, 309, 310].

CMC initial data can only be asymptotically flat if Λ = τ = 0. The Lich-
nerowicz equation simplifies then to

∆g̃φ−
n− 2

4(n − 1)
R̃φ = −σ2φ(2−3n)/(n−2) , (3.2.21)

where

σ2 :=
n− 2

4(n − 1)
|L̃|2g̃ . (3.2.22)

The treatment of TT tensors is essentially identical to that on compact
manifolds. In fact, the analysis is somewhat simpler because there are no con-
formal Killing vectors which decay to zero as one recedes to infinity [113, 310],
so the conformal vector Laplacian has no kernel on weighted Sobolev spaces
with decay.
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Concerning the Lichnerowicz equation (3.2.21), suppose that there exists
a positive solution of this equation, then the conformally rescaled metric g =
φ4/(n−2)g̃ has non-negative scalar curvature R = |L|2g, with L being an ap-

propriate rescaling of L̃. Thus, a necessary condition for existence of positive
solutions of (3.2.21) is that there exist metrics of non-negative scalar curvature
in the conformal class [g̃] of g̃. A conformally invariant criterion for this has
been proposed in [81] but, as emphasised e.g. in [214, 309], the statement in [81]
is inaccurate. In [214, 309] a corrected version has been provided, as follows:

Recall that the Yamabe number of a metric is defined by the equation

Y (M,g) = inf
u∈C∞

b , u 6≡0

∫
M (|Du|2 + n−2

4(n−1)Ru
2)

(
∫
M u2n/(n−2))(n−2)/n

. (3.2.23)

where C∞
b denotes the space of compactly supported smooth functions. As

shown in Section 3.1.1, p. 62, the number Y (M,g) depends only upon the
conformal class of g. We have the following key fact:

Theorem 3.2.9 (Maxwell, Friedrich [214, 309]) For asymptotically flat manifolds,
there exists a conformal rescaling so that R̃ is non-negative if and only if
Y (M,g) > 0.

In view of the above, any asymptotically flat manifold which carries a max-
imal initial data set has Y (M,g) > 0. In particular R3 with the flat metric is in
the positive Yamabe class. Examples with Y (M,g) ≤ 0 can be found in [214].

Suppose, then, that we can perform the conformal rescaling that makes
R̃ ≥ 0. Setting

φ = 1 + u ,

the requirement that g has vanishing scalar curvature translates into an equa-
tion for u:

∆g̃u−
n− 2

4(n − 1)
R̃u = − n− 2

4(n− 1)
R̃ . (3.2.24)

Because R̃ is non-negative now, there is no difficulty in finding a solution u
decaying to zero at infinity, with suitable weighted regularity. Note that u is
strictly positive by the maximum principle, in particular 1 + u has no zeros
and asymptotes to one. Replacing g̃ by (1 + u)4/(n−2)g̃, the new g̃ is again
asymptotically flat, and (3.2.21) simplifies to

∆g̃φ = −σ2φ(2−3n)/(n−2) . (3.2.25)

Since
0 = ∆g̃1 ≥ −σ2 = −σ21(2−3n)/(n−2) ,

the constant function
φ− := 1

provides a subsolution which asymptotes to one. To obtain a supersolution we
use a variation of Hebey’s trick, as used in our treatment of compact manifolds:
Let v be a solution approaching zero in the asymptotically flat regions of

∆g̃v = −σ2 . (3.2.26)
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Then v is strictly positive by the maximum principle. Let φ+ = 1 + v, then

∆g̃φ+ = −σ2 ≤ −σ2(1 + v)(2−3n)/(n−2) = −σ2φ(2−3n)/(n−2)
+ , (3.2.27)

so φ+ is indeed a supersolution. Since φ+ := 1 + v ≥ 1 =: φ−, we can use the
monotone iteration scheme of Theorem 3.2.7 to obtain a solution. Note that
φ− and φ+ both asymptote to one, so the solution also will.

This provides a complete description of vacuum, asymptotically flat, CMC
initial data.

3.2.4 Asymptotically hyperboloidal initial data

Asymptotically hyperboloidal initial data arise naturally when studying space-
times with a negative cosmological constant, in which case the asymptotic be-
haviour is modelled on that of a t = 0-slice of anti-de Sitter spacetime:

g →r→∞ b :=
dr2

r2

ℓ2 + 1
+ r2dΩ2 , K →r→∞ 0 , (3.2.28)

where ℓ > 0 is a constant related to the cosmological constant as

1

ℓ2
= − 2Λ

n(n− 1)
. (3.2.29)

Suitable rates have of course to be imposed, using weighted Hölder or weighted
Sobolev spaces.

Such data also arise on hypersurfaces extending to the radiation zone in
spacetimes with vanishing cosmological constant, in a way reminiscent of hy-
perboloids in Minkowski spacetime, cf. Example 1.4.1, p. 23. This justifies
considering initial data sets with

g →r→∞
dr2

r2 + 1
+ r2dΩ2 , K →r→∞ const 6= 0 . (3.2.30)

Incidentally: Existence and asymptotic properties of hyperboloidal initial data
sets have been exhaustively analysed in [9–12], we provide an overview below; see
also [5, 6]. An alternative elegant construction can be found in [219].

A Hilbert manifold structure on the set of solutions of asymptotically hyper-
boloidal initial data has been constructed in [189]; compare [133].

Gluing constructions involving asymptotically hyperboloidal initial data sets
can be found in [132, 134, 136, 245]

A dense set of hyperboloidal initial data with simplified asymptotic behaviour
has been exhibited in [177]. 2

Asymptotically hyperboloidal initial data sets can be conveniently described
within the conformal framework, as introduced by Penrose [344] to describe the
behaviour of physical fields at null or timelike infinity.

Given a, say vacuum, smooth “physical” spacetime (M̃ , γ̃), which we as-
sume here to be without boundary, one associates to it a smooth “unphysical
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spacetime” (M , γ) with boundary ∂M and a smooth function Ω on M , such
that M̃ is a subset of M and

Ω|
M̃

> 0 , γµν |M̃ = Ω2γ̃µν , (3.2.31)

Ω|∂M
= 0 , (3.2.32)

dΩ(p) 6= 0 for p ∈ ∂M . (3.2.33)

This is the same as Definition ??, p. ?? of Appendix ??; we have repeated
it here for the convenience of the reader because of a different notation for the
metric here and because, as opposed to there, in this section tilded quantities
denote the physical ones, while non-tilded quantities denote the unphysical,
conformally rescaled ones.

It is common usage in general relativity to use the symbol I for ∂M , and
we shall often do so. If S is a hypersurface in M , by I + we shall denote the
connected component of I which intersects the causal future of S .

The hypothesis of smoothness of (M , γ,Ω) and the fact that (M̃ , γ̃) is
vacuum imposes several restrictions on various fields. Indeed, let us define

Pµν = 1
2 (Rµν − 1

6 Rγµν) , (3.2.34)

with an analogous definition for the tilded quantities. In spacetime dimension
four, for metrics γ̃ satisfying the vacuum Einstein equations with cosmological
constant Λ one has

Λ

6
γ̃µν = P̃µν = Pµν − 1

Ω∇µ∇ν Ω+ 1
2Ω2 ∇αΩ∇α Ω γµν , (3.2.35)

where ∇µ is the covariant derivative of the metric γµν . Equations (3.2.32) and
(3.2.35) imply

∇αΩ∇αΩ|∂M
=

1

3
Λ , (3.2.36)

(∇µ∇ν Ω− 1
4 ∇α∇αΩ γµν)|∂M

= 0 . (3.2.37)

When Λ = 0, the tangential components of the tensor appearing in (3.2.37)
are known as the shear of the hypersurface {Ω = 0}. We have thus established
an observation due to Penrose:

Proposition 3.2.11 In vacuum, I := ∂M is




timelike, Λ < 0;
null, with vanishing shear, Λ = 0;
spacelike, Λ > 0.

(3.2.38)

Suppose that S ⊂M is a spacelike hypersurface in (M , γ), let

S̃ = S ∩ M̃ , ∂S = ∂S̃ = S ∩ ∂M ,

and let gij ,Kij , respectively g̃ij , K̃ij , be the induced metric and extrinsic cur-

vature of S in (M , γ), respectively S̃ in (M̃ , γ̃). If we denote by Lij and L̃ij

the traceless part of Kij = gikgjℓKkℓ, K̃
ij = g̃ikg̃jℓK̃kℓ,

Lij = Kij − 1
3 K gij , K = gij Kij ,
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L̃ij = K̃ij − 1
3 K̃ g̃ij , K̃ = g̃ij K̃ij , (3.2.39)

one finds

L̃ij = Ω3 Lij , |L̃|g̃ = Ω |L|g ,

K̃ = ΩK − 3nα Ω,α , (3.2.40)

where nα is the unit normal to S for the metric γ, and | · |h denotes the tensor
norm in a Riemannian metric h. Since nα is timelike and ∇Ω(p) is null for
p ∈ ∂S , the trace

K̃|∂S
= −3nα Ω,α|∂S

(3.2.41)

has constant sign, because the scalar product of two non–vanishing non–spacelike
vectors cannot change sign. From (3.2.32) we also have

gij |S̃ = Ω2 g̃ij .

In what follows we will assume that

Λ = 0 .

Then ∇Ω is null non–vanishing at ∂S by (3.2.36), and (3.2.40)–(3.2.41) imply

DiΩDi Ω|∂S
=

(
K̃

3

)2∣∣∣∣
∂S

> 0 , (3.2.42)

where Di is the Riemannian connection of the metric gij . To summarize, nec-

essary conditions for an initial data set (S̃ , g̃, K̃) to arise from an “extended
initial data set (S , g,K) intersecting a smooth I ” are

C1. There exists a Riemannian manifold (S , g) with boundary, with g ∈
Ck(S ), such that

S = S̃ ∪ ∂S .

Moreover there exists a function Ω ∈ Ck(S ) such that

gij|S̃ = Ω2 g̃ij , (3.2.43)

Ω|∂S
= 0 , |DΩ|

g|∂S
> 0 . (3.2.44)

C2. The symmetric tensor field K̃ij satisfies, for some K̃ ∈ Ck−1(S ), L̃ij ∈
Ck−1(S ),

K̃ij = L̃ij + 1
3 K̃ g̃ij , K̃ = g̃ij K̃

ij , (3.2.45)

K̃|∂S
is nowhere vanishing , (3.2.46)

|L̃|
g̃|∂S

= 0 . (3.2.47)
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The question arises, how to construct such data sets? This involves con-
structing solutions of the vacuum scalar constraint equation,

R̄(g̃) + K̃2 − K̃ij K̃
ij = 0 , (3.2.48)

where R̃(g̃) is the Ricci scalar of the metric g̃, and the vacuum vector constraint
equation,

D̃i(K̃
ij − K̃ g̃ij) = 0 , (3.2.49)

where D̃ is the Riemannian connection of the metric g̃, under appropriate
asymptotic conditions. We will apply the conformal method, after adding the
convenient assumption

C3.

D̃iK̃ ≡ 0 . (3.2.50)

Recall that under (3.2.50) the scalar and the vector constraint equations de-
couple, and the Choquet-Bruhat-Lichnerowicz-York conformal method allows
one to construct solutions of (3.2.48)–(3.2.49). An initial data set satisfying
C1–C3 will be called a Ck hyperboloidal initial data set (smooth if k = ∞),
while conditions C1– C2 will be called Penrose’s Ck conditions. Without loss
of generality we may normalize K̃ so that

K̃ = 3 , (3.2.51)

and (3.2.48)–(3.2.49) can be rewritten as

R̃(g̃) + 6 = L̃ij L̃
ij (3.2.52)

D̃i L̃
ij = 0 . (3.2.53)

To construct such data we start with a set of “seed fields” (gij , A
ij), where

gij is any smooth Riemannian metric on S̃ extending smoothly to ∂S̃ , and Aij

is any symmetric, traceless tensor field on S̃ extending smoothly to ∂S̃ , via
the following procedure: Let x be any defining function for ∂S̃ , i.e. a function
satisfying x ∈ C∞(S̃ ), x ≥ 0, x(p) = 0 ⇐⇒ p ∈ ∂S̃ , and dx 6= 0 at ∂S̃ . Let

Aij ∈ C∞(S̃ ) be symmetric traceless and let X be any solution of the equation

Di

[
x−3

(
DiXj +DjXi − 2

3
DkX

kgij
)]

= −Di

(
x−2Aij

)
,

define

Lij ≡ Ω2

x3

(
DiXj +DjXi − 2

3
DkX

kgij
)
+

Ω2

x2
Aij , (3.2.54)

where Ω is a solution of the equation

Ω∆gΩ−
3

2
|DΩ|2g +

1

4
Ω2(R(g) − |L|2g) +

3

2
= 0 , (3.2.55)
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satisfying Ω ≥ 0, with Ωx−1 approaching one as x → 0, and where |L|2g =

gijgklL
ikLjl. Setting

g̃ij = Ω−2gij ,

K̃ij = Ω3Lij + g̃ij ,

one obtains a CMC solution of the vacuum constraint equations satisfying
(3.2.51).

For simplicity we shall assume from now on that ∂S̃ ≈ S2 – the two di-
mensional sphere. In [11] the following has been shown:

1. For any (g,A) as above one can find a solution X to (3.2.54) such that

( x
Ω

)2
Lij = U ij + x2 log xU ijlog,

U ij, U ijlog ∈ C∞(S̃ ) .

Given any g there exists an open dense set (in the C∞(S̃ ) topology) of A’s
for which U ijlog|∂S̃

6≡ 0 (however, there exists an infinite dimensional closed

subspace of A’s for which U ijlog|∂S̃
≡ 0). If U ijlog|∂S̃

≡ 0, then U ijlog ≡ 0

and thus x2Ω−2Lij ∈ C∞(S̃ ). Let us also note that in an orthonormal

frame ei such that eA ‖ ∂S̃ , A = 2, 3, if we write, in a neighbourhood of

∂S̃ ,

Lij = Lij0 (v) + xLij1 (v) + · · · ,

where v denote coordinates on ∂S̃ , then we have L1i
0 ≡ 0, while both

LAB0 (v)− 1
2L

CD
0 hCDh

AB and LAB1 (v)− 1
2L

CD
1 hCDh

AB are freely specifiable

tensor fields on ∂S̃ . X is unique in an appropriate class of functions, cf.
[11] for details.

2. For any (g,A) as above one can find a solution Ω ∈ Aphg of equation
(3.2.55), where Aphg denotes the space of polyhomogeneous functions on

S̃ . This means that there exists a sequence {Nj}∞j=0 with N0 = N1 =

N2 = N3 = 0, N4 = 1 and functions Ωi,j ∈ C∞(M̄) such that

Ω ∼
∑

i≥0

Ni∑

j=0

Ωi,jx
i logj x , (3.2.56)

where “∼” means “asymptotic to”, in the sense that, for any desired
n, Ω minus a truncated sum of the form given by the right hand side of
(3.2.56) vanishes faster than xn, and that this property is preserved under
differentiation in the obvious way. According to standard terminology,
functions with these properties are called polyhomogeneous, cf. e.g. [240].
For an open dense set of (g,A)’s we have Ω4,1|∂S̃

6≡ 0. If Ω4,1|∂S̃
≡ 0,

then Ω ∈ C∞(S̃ ).
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Suppose now that one has initial data such that the log terms described
above do not vanish. In such a case the metric will immediately pick up log
terms when time–evolved with Einstein equations, so that at later times there
will be no decomposition of the three dimensional metric into a smooth up
to the boundary background and a conformal factor. This shows that it is
natural to consider the above construction under the condition that the seed
fields are polyhomogeneous rather than smooth. One can show [11] that for any

polyhomogeneous Riemannian metric g on S̃ and for any uniformly bounded
polyhomogeneous symmetric tensor field Aij on S̃ there exist solutions (X,Ω)
of (3.2.54) and (3.2.55) such that Lij given by (3.2.54) is polyhomogeneous and

uniformly bounded on S̃ , and Ω/x is polyhomogeneous, uniformly bounded,

and uniformly bounded away from zero on S̃ .

When Lij ≡ 0 and the seed metric is smooth up to the boundary, the
obstructions to smoothness of Ω have been analysed in detail in [12]. In that
reference it has been shown, in particular, that Ω4,1|∂S̃

vanishes if the Weyl
tensor of the unphysical (conformally rescaled) spacetime metric is bounded

near ∂S̃ . In [10] we have extended that analysis to the case Lij 6≡ 0. In order
to present our results it is useful to define two tensor fields σ± defined on the
conformal boundary ∂S̃ of the initial data surface:

σ±AB ≡
(
λAB −

hCDλCD
2

hAB

)
±
(
KAB −

hCDKCD

2
hAB

)∣∣∣∣
∂S̃

, (3.2.57)

which we shall call the shear tensors of ∂S̃ . Here hAB is the induced metric on
∂S̃ , λAB is the extrinsic curvature of ∂S̃ in (S̃ , g), while Kij can be thought

of as the extrinsic curvature of S̃ in the conformally rescaled, unphysical space-
time metric.

Let us say that a spacetime admits a polyhomogeneous I if the conformally
rescaled metric is polyhomogeneous at the conformal boundary; i.e., in local
coordinates the components of the conformally rescaled metric are bounded
and polyhomogeneous. In the case of Cauchy data constructed as described
above starting from smooth seed fields, the results of [10] linking the geometry
of the boundary of the initial data surface with the geometry of the resulting
spacetime can be summarized as follows:

1. Suppose that neither σ+ nor σ− vanishes. Then there exists no develop-
ment of the initial data with a smooth or polyhomogeneous I .

2. Suppose that σ+ ≡ 0 or σ− ≡ 0; changing the time orientation if necessary
we may without loss of generality assume that σ+ ≡ 0. Let K log

ij denote
“the logarithmic part” of Kij:

Kij = K̂ij + x2 log xK log
ij ,

K̂ij ∈ C∞(S̃ ), K log
ij ∈ C0(M̄ ) ∩ Aphg.

Then the following holds:
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(a) If K log
1A |∂S̃

6≡ 0, then if there exists a development with a polyhomo-
geneous I , it is essentially polyhomogeneous, i.e., no development
with a smooth I exists.

The vanishing of K log
1A |∂S̃

is actually equivalent (under the present
assumptions) to the vanishing at the conformal boundary of the Weyl
tensor of the conformally rescaled metric.

(b) Suppose instead that K log
1A |∂S̃

≡ 0 and K log
11 |∂S̃

≡ 0. Then there
exists a development which admits a smooth conformal boundary.

It should be stressed that the results linking the log terms with the non–
vanishing of theWeyl tensor proved in [10] show that the occurrence of shear and
of at least some of the log terms in asymptotic expansions of physical fields at I

is not an artefact of a bad choice of a conformal factor, or of a pathological choice
of the initial data hypersurface (within the class of uniformly bounded from
above and uniformly bounded away from zero, locally C2, conformal factors
and C1 deformations of the initial data hypersurface which fix ∂S̃ ): if I is
not shear–free (by which we mean that none of the shear tensors σ± vanish),
then no conformal transformation will make it shear free. Similarly if the Weyl
tensor does not vanish at ∂M , then no “gauge transformation” in the above
sense will make it vanish (cf. [10] for a more detailed discussion).

The conditions for smoothness–up–to–boundary of an initial data set can be
expressed as local conditions on the boundary on the seed fields (gij , A

ij). Let

(x, vA) be a Gauss coordinate system near ∂S̃ ; the interesting case is the one
in which one of the shear tensors of the conformal boundary vanishes, which
corresponds to the condition that, changing Aij to −Aij if necessary,

(
λAB −

λ

2
hAB

)∣∣∣∣
∂S̃

=

(
AAB −

1

2
hCDACDhAB

) ∣∣∣∣
∂S̃

. (3.2.58)

It can be shown that without loss of generality in the construction of the initial
data one can assume that

A1j

∣∣∣
∂S̃

= 0 ,

and in what follows we shall assume that this condition holds – the equations
below would have been somewhat more complicated without this condition.
Similarly, it is useful to choose a “conformal gauge” such that

λ ≡ hABλAB
∣∣∣∣
∂S̃

= 0 .

Then the conditions for smoothness up to the boundary of Ω and Lij reduce to

[
DADBλAB +RABλ

AB
] ∣∣∣
∂S̃

= 0 , (3.2.59)

where D is the covariant derivative operator of the metric h induced from g on
∂S̃ , Rij is the Ricci tensor of g, and

[
∂xAAB −

1

2
hCD∂xACDhAB

] ∣∣∣
∂S̃

= 0 . (3.2.60)
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Failure of (3.2.59) or (3.2.60) will lead to occurrence of some log terms in the
initial data set.

The overall picture that emerges from the results of [10, 112, 153, 235, 342,
411] and from the results described here is that the usual hypotheses of smooth-
ness of I are overly restrictive. These results make it clear that a possible
self–consistent setup for an analysis of the gravitational radiation is that of
polyhomogeneous rather than smooth functions on the conformally completed
manifold, i.e., functions that have asymptotic expansions in terms of powers
of x and log x rather than of x only. It should, however, be stressed that
even though the fact that the physical fields (g̃, K̃) satisfy the constraint equa-
tions guarantees the existence of some vacuum development (M , γ̃), it is by no
means obvious that in the case when e.g. σ+ ≡ 0, the existence of some kind
of compactification of (S̃ , g̃, K̃) implies the existence of some useful conformal
completion of (M , γ̃). Nevertheless we expect that the methods of [235] can
be used to show that polyhomogeneous initial data of the kind constructed in
[11], as described above, for which the shear of I vanishes will lead to space-
times with metrics which along lightlike directions admit expansions in terms
of r−j logi r, rather than in terms of r−j as postulated in [70, 382] (cf. [147] for
a more detailed discussion of that question).

The results presented here immediately lead to the following question: how
much physical generality does one lose by restricting oneself to Cauchy data
which satisfy the conditions (3.2.59)–(3.2.60)? These conditions are similar in
spirit to those of Bondi et al. [70], who impose conditions on the r−2 terms in
the “free part of the metric” at u = 0 to avoid the occurrence of r−j logi r terms
in the metric at later times. By doing so, or by imposing (3.2.59)–(3.2.60), one
gains the luxury of working with smooth conformal completions, avoiding all
the complications which arise due to the occurrence of log terms — but, then,
does one overlook some physically significant features of radiating gravitating
systems?

To obtain a real understanding of gravitational radiation, it is therefore nec-
essary to establish what asymptotic conditions are appropriate from a physical
point of view. The following are some criteria which might be considered as
physically desirable:

1. existence of a well defined notion of total energy;

2. existence of a well defined notion of angular momentum;

3. existence of a development (M , γ) of the initial data set which admits a
I with a reasonable regularity;

4. existence of a development of the data up to timelike infinity i+.

In some situations it might be appropriate to impose only part of the above
conditions. On the other hand it might perhaps be appropriate to add to the
above the requirement that the function spaces considered include those data
sets which arise by evolution from generic initial data which are asymptotically
flat at spatial infinity.
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We would like to emphasize that it is not known what regularity condi-
tions on the conformally compactified metric are necessary for any of the above
criteria to hold.

3.2.5 Asymptotically cylindrical initial data

One of the simplest solutions of the constraint equations is the cylinder R ×
Sn−1 with the standard product metric and with extrinsic curvature tensor
K proportional to the metric. The vacuum development of such data, when
the cosmological constant Λ is zero, is the interior Schwarzschild metric; when
Λ > 0, one is led to the Nariai metric. When Λ = 0, examples of vacuum
spacetimes containing asymptotically cylindrical ends are provided by the static
slices of extreme Kerr solutions or of the Majumdar-Papapetrou solutions (both
to be presented shortly), as well as those CMC slices in the Schwarzchild-
Kruskal-Szekeres spacetimes which are asymptotic to slices of constant area
radius r < 2m.

Initial data involving asymptotically cylindrical ends are used in numerical
studies of Einstein equations [40, 228, 229], where they are known as “trumpet
initial data”. Various constructions thereof have been given in in [157, 179,
180, 227, 408, 409], with a systematic PDE analysis in [149, 150]. Non-CMC
cylindrical ends have been constructed in [193, 286].

Incidentally: Studies of the Yamabe problem on manifolds with ends of cylindri-
cal type shows that it is natural, and indeed necessary, to consider not only initial
data sets where the metric is asymptotically cylindrical, but also metrics which are
asymptotically periodic in space. In fact, constant-scalar-curvature metrics which
are asymptotically cylindrical are more difficult to construct than the asymptotically
periodic ones.

For the constant scalar curvature problem, the asymptotically (space-)periodic
metrics are asymptotic to the Delaunay metrics, cf. [78, 152, 154, 279, 315]), which in
the relativistic setting are the metrics induced on the static slices of the maximally
extended Schwarzschild-de Sitter solutions. We refer also to [78, 79, 88, 152, 154,
279, 307, 312–315,353, 362, 388] for the construction, and properties, of complete
constant positive scalar curvature metrics with asymptotically Delaunay ends.

Exactly periodic, not necessarily time-symmetric, initial data can be obtained
by lifting solutions of the constraint equations from S1×N to the cyclic cover R×N ,
where N is any compact manifold. In particular, the lifts to R× S2 of initial data
sets for the Gowdy metrics [119, 221] on S1×S2 provide a large family of non-CMC
space-periodic solutions.

Further existence results for asymptotically space-periodic solutions of the con-
straint equations can be found in [149, 150, 160].

A simple example of a metric with two cylindrical ends with toroidal trans-
verse topology is provided by Bianchi I metrics in which two directions only
have been compactified, leading to a spatial topology R× T2.

Asymptotically cylindrical ends and degenerate Killing horizons

Asymptotically cylindrical ends, or cousins thereof, arise naturally in the pres-
ence of degenerate Killing horizons. We describe here some key examples.
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The flagship one is provided by the Majumdar-Papapetrou black holes, in
which the spacetime metric g and the electromagnetic potential A take the form

g = −u−2dt2 + u2(dx2 + dy2 + dz2) , (3.2.61)

A = u−1dt . (3.2.62)

The standard MP black holes are obtained if the coordinates xµ of (3.2.61)–
(3.2.62) cover the range R × (R3 \ {~ai}) for a finite set of points ~ai ∈ R3,
i = 1, . . . , I, with the function u taking the form

u = 1 +

I∑

i=1

mi

|~x− ~ai|
, (3.2.63)

for some strictly positive constants mi. Introducing radial coordinates centered
at a puncture ~ai, the metric g induced on the slices t = const by (3.2.61) is

g =
m2
i

r2
(1 +O(r))(dr2 + r2(dθ2 + sin2 θ dϕ2)) . (3.2.64)

The new coordinate x = − ln r leads to a manifestly asymptotically cylindrical
metric:

g = m2
i (1 +O(e−x))(dx2 + dθ2 + sin2 θ dϕ2

︸ ︷︷ ︸
=:h̆

) . (3.2.65)

In this example the slices t = const are totally geodesic, and it follows from
the scalar constraint equation (with Maxwell sources) that the scalar curvature
of g is positive everywhere. Furthermore the scalar curvature of the metric h̆
defined in (3.2.65) equals two, while R approaches 2/m2

i as one moves out along
the ith cylindrical end.

A very similar analysis applies on the slices of constant time in the Kastor-
Traschen metrics [263], solutions of the vacuum Einstein equations with positive
cosmological constant.

A slightly more general setting is that of metrics with ends which are con-
formal to asymptotically cylindrical ends. Such ends arise in extreme Kerr
metrics. Indeed, the extreme Kerr metrics in Boyer-Lindquist coordinates take
the form,

g = −dt2 + 2mr

r2 +m2 cos2 θ
(dt−m sin2 θdϕ)2 + (r2 +m2) sin2 θdϕ2

+
r2 +m2 cos2 θ

(r −m)2
dr2 + (r2 +m2 cos2 θ)dθ2 . (3.2.66)

The metric induced on the slices t = const reads, keeping in mind that r > m,

g =
r2 +m2 cos2 θ

(r −m)2
dr2 + (r2 +m2 cos2 θ)dθ2

+
(r2 +m2)2 − (r −m)2m2 sin2 θ

r2 +m2 cos2 θ
sin2 θdϕ2 . (3.2.67)
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Introducing a new variable x ∈ (−∞,∞) defined as

dx = − dr

r −m =⇒ x = − ln (r −m) ,

so that x tends to infinity as r approachesm from above, the metric g in (3.2.67)
exponentially approaches

m2(1 + cos2 θ)

(
dx2 + dθ2 +

4 sin2 θ

(1 + cos2 θ)2
dϕ2

︸ ︷︷ ︸
=:h̆

)
(3.2.68)

as x → ∞. We thus see that the degenerate Kerr spacetimes contain CMC
slices with asymptotically conformally cylindrical ends.

Incidentally: Recall that the scalar curvature K of a metric of the form dθ2 +
e2fdϕ2 equals

K = −2(f ′′ + (f ′)2) .

Hence the transverse part h̆ of the limiting conformal metric appearing in (3.2.68)
has scalar curvature

K = − 4 cos(2θ)

(cos2 θ + 1)
2 ,

which is negative on the northern hemisphere and positive on the southern one. 2

Incidentally: The metric induced on sections of the event horizon of the Kerr
metric reads

ds2 = (R2 + a2 cos2 θ) dθ2 +
(R2 + a2)2 sin2 θ

R2 + a2 cos2 θ
dϕ2 , (3.2.69)

where R = m±
√
m2 − a2.

Comparing with (3.2.68), we see that the limiting transverse metric, as one
recedes to infinity along the cylindrical end of the extreme Kerr metric, can be
obtained from (3.2.69) by setting a = m:

h̆ = m2

(
(1 + cos2 θ)dθ2 +

4 sin2 θ

1 + cos2 θ
dϕ2

)
. (3.2.70)

The scalar curvature of the metric (3.2.69) is [285]

(R2 + a2)(3a2 cos2 θ −R2)

(R2 + a2 cos2 θ)3
.

It follows that the metric (3.2.70) has scalar curvature

2(3 cos2 θ − 1)

m2(1 + cos2 θ)3
,

and the reader will note that K changes sign.
We note that the slices t = const are maximal, and the scalar constraint equation

shows that R ≥ 0. This example clearly exhibits the lack of correlation between the
sign of the limit limx→∞R and that of the scalar curvature of the transverse part
of the asymptotic metric, even when the constraint equations hold. 2
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3.3 TT tensors on locally conformally flat manifolds

3.3.1 Beig’s potentials

When the initial data metric is conformal to a flat metric, the problem of
constructing solutions of the vector constraint equations reduces to finding TT
tensors on Euclidean space. (Localised such tensors can then be carried over
to locally conformally flat manifolds.) In three space-dimensions, a complete
description of such tensor fields in terms of a third-order potential has been
provided by Beig [43]. Our presentation follows [45].

Let gij denote the Euclidean metric and Di the associated covariant deriva-
tive. Let hij be a symmetric, transverse and traceless tensor on a simply con-
nected region,

∂ih
i
j = 0 = hii . (3.3.1)

Beig shows that there exists a symmetric traceless “third-order potential” uij
such that

hmℓ = P (u)mℓ , (3.3.2)

where

P (u)mℓ :=
1

2
ǫm

ij∂i(∆ujℓ − 2∂(ℓD
nuj)n +

1

2
gjℓD

nDkunk) . (3.3.3)

The converse is also true: given any symmetric trace-free tensor uij, the
tensor field P (u) defined by (3.3.3) is symmetric, transverse and traceless. In-
deed, the last property and the vanishing of the divergence on the first index
are obvious. The symmetry requires some work, which we leave as an exercice
to the reader.

One way to see how (3.3.3) arises is to note that P (u) is, apart from a
numerical factor, the linearisation at the flat metric of the Cotton-York tensor
in the direction of the trace-free tensor u. See [216, 259] for another perspective
on this.

In order to prove the existence of a potential as in (3.3.3), let us define

τijk := ǫij
lhlk . (3.3.4)

Since D[iτjk]l =
1
3ǫijkDmh

m
l = 0, there exists a tensor field Uij such that

τijk := D[iUj]k . (3.3.5)

Symmetry of hij implies that all traces of τijk vanish, which implies in turn
that

D[lUi
[kδj]

l] = 0 . (3.3.6)

Hence there exists a tensor field Uijk, which can be chosen to be antisymmetric
in jk, so that

D[iUj]
kl + U[i

[kδj]
l] = 0 . (3.3.7)

From tracelessness of hij one finds τ[ijk] = 0, which shows that there exists a
vector field Vi such that

−1

3
U[jk] +D[jVk] = 0 . (3.3.8)
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Equations (3.3.7)-(3.3.8) together with some algebra give

D[l(2Uij]
k − 3Viδj]

k) = 0 , (3.3.9)

which implies existence of a potential Vij:

2

3
U[ij]

k − V[iδj]k +D[iVj]
k = 0 . (3.3.10)

Setting

uij := −3V(ij) + δijVk
k ,

a lengthy calculation shows that

Uij = 3DiVj +
1

2
gijD

kDlukl +∆uij

− 2DkD(iuj)k −DiDjVd
d . (3.3.11)

This shows that neither V[ij], nor Vi
i, nor Vi contribute to D[iUj]k and we finally

obtain (3.3.3).

Whenever hij is defined on star-shaped region containing the origin we can
set

σijk(~x) :=

∫ 1

0
ǫij

ℓhℓk(λ~x)λ(1− λ)2dλ . (3.3.12)

We then obtain the following explicit formula for u in terms of σ:

ujℓ = 2xmxnx(jσℓ)mn + r2xmσm(jℓ) . (3.3.13)

(We note that this is clearly symmetric, and tracelessness is not very difficult
to check.)

To prove (3.3.12), we have to successively write down expressions for (i)
Uij , (ii) (Uijk, Vi), and (iii) Vij , at each step using formula (3.3.4), and take the
symmetric, tracefree part of −3Vij at the end. In going from (i) to (ii) and (ii)
to (iii) one uses the identities

∫ 1

0

∫ 1

0
F (λλ′x)λλ′2dλdλ′ =

∫ 1

0
F (λx)λ(1 − λ)dλ , (3.3.14)

and

∫ 1

0

∫ 1

0
F (λλ′x)λ(1− λ)λ′3dλdλ′ =

∫ 1

0
F (λx)λ

(1− λ)2
2

dλ , (3.3.15)

respectively. The rest is index gymnastics.

By a straightforward analysis of (3.3.12) for σ ≥ −4, or by Propositions 3.3.2
and 3.3.3 below regardless of the value of σ ∈ R, we find that if hij = O(rσ)
for large r, then uij can be chosen to be O(rσ+3) when σ 6∈ {−4,−3,−2}, or
O(rσ+3 ln r) otherwise. Furthermore, if hij is compactly supported, then uij
can also be chosen to be compactly supported.
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Exercice 3.3.1 As an example, consider a tensor field hij describing a plane grav-

itational wave in TT-gauge propagating in direction ~k,

hij(~k) = ℜ
(
Hije

i~k·~x
)
, ∂ℓHij = 0 = Hi

i = Hijk
j , (3.3.16)

with possibly complex constant coefficients Hij , where ℜ denotes the real part.
Then

σijk = ℜ
(
ǫijℓH

ℓ
k

∫ 1

0

eiλ
~k·~x(λ− 2λ2 + λ3)dλ

)

= ℜ
(
WǫijℓH

ℓ
k

)
, where (3.3.17)

W (~x) =
2iei

~k·~x(~k · ~x+ 3i)− ~k · ~x(~k · ~x− 4i) + 6

(~k · ~x)4
(3.3.18)

(which tends to 1/12 when ~k · ~x tends to zero) ,

ujℓ = ℜ
(
W
(
2xmxix(jǫℓ)mkH

k
i − r2xiǫik(jHk

ℓ)

))
. (3.3.19)

2

Third-order potentials other than (3.3.12) are possible, differing by an el-
ement of the kernel of P , which we describe now. We again assume a simply
connected region in R3. We follow through the steps of the argument starting
from (3.3.5) with τijk = 0, which implies the existence of a potential Mi such
that

Uij = DiMj . (3.3.20)

Next, from (3.3.7), there exists an antisymmetric tensor field Mkl =M [kl] such
that

Uj
kl +M [kδj

l] = DjM
kl . (3.3.21)

Equation (3.3.8) implies the existence of a function φ such that

Vi −
1

3
Mi = Diφ . (3.3.22)

Inserting into (3.3.10) we find that the terms involving Mi cancel so that

D[i

(
2

3
Mj]

k + Vj]
k − φ δj]k)

)
= 0 . (3.3.23)

Consequently

Vij = −
2

3
Mij + φ δij +DiNj , (3.3.24)

so that

V(ij) −
1

3
Vk

k = D(iNj) −
1

3
DkN

k . (3.3.25)

Setting λi = −3Ni/2, we conclude that any tensor field satisfying P (u) = 0 on
a simply connected region can be written as

uij = Diλj +Djλi −
2

3
Dkλkgij . (3.3.26)
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As an application of this formula, consider the family of potentials

uij = ln(1 + r2)(Diλj +Djλi −
2

3
Dkλkgij) . (3.3.27)

We have just seen that tensors of the form (3.3.27) with the ln(1 + r2) term
removed form the kernel of P for any λi. This implies that if λ ∼ O(rσ) for
large r then we obtain a (non-trivial) family of hij ∼ O(rσ−4), for all σ ∈ R.

It is of interest to enquire about the asymptotics of the tensor field u in
general. The following result has obvious generalizations to p-forms on Rn

(n > 3) with 1 < p < n:

Proposition 3.3.2 Let ωij(x) = ω[ij](x) be a closed 2-form on R3 with ωij =
O(rσ), α ∈ R. Then there exists a 1-form ωi(x) with ∂[iωj] = ωij satisfying
ωi(x) = O(r1+σ) if σ 6= −2, ωi(x) = O(r−1 ln r) otherwise.

Proof: Consider first the case σ ≥ −2. Then

ωi(x) = 2xj
∫ 1

0
ωji(λx)λdλ = O(r1+α) when σ > −2 , (3.3.28)

and ωi(x) = O(r−1 ln r) when σ = −2. To see this, use spherical coordinates
(r, θ, ϕ) in the argument of ωij and substitute s/r for λ. When σ < −2, consider

µi(x) = −2xj
∫ ∞

1
ωji(λx)λdλ , (3.3.29)

which converges and has the right decay at infinity, but blows up at the origin.
The previous expression ωi is still defined and, in the annulus B(2, 0) \B(1, 0),
differs from µi by a closed 1-form. Since this set is simply connected, the
difference ∆i := ωi − µi satisfies ∆i = ∂if for some function f . Now extend f
smoothly to a function F on all of B(2, 0). Then the 1-form given by ωi + ∂iF
in the interior and by µi in the exterior satisfies our requirements. 2

An essentially identical argument shows the following result, which actually
also follows from standard results in algebraic topology [71, Corollary 4.7.1]):

Proposition 3.3.3 If ωij has compact support, then ωi can also be chosen with
compact support.

A construction of similar potentials for higher-spin constraint equations can
be found in [8, 259].

3.3.2 Bowen-York tensors

In numerical relativity, a rich class of initial data sets can be constructed by
choosing the initial data metric gij to be flat, adding a TT tensor Kij, and solv-
ing numerically the Lichnerowicz equation. Whence the usefulness of explicit
tensor field which are transverse and traceless with respect to a flat metric and
which display significant physical properties.
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One checks by a direct calculation that the following tensor fields on R3\{0},
essentially due to Bowen and York [74] (compare [47, 48]), are transverse and
traceless with respect to the Euclidean flat metric gij :

1kij(~P ) =
3

2r2
[Pinj + Pjni − (gij − ninj)(P, n)] , (3.3.30)

2kij(~S) =
3

r3
[ǫcdaS

kndnj + ǫcdbS
kndni , ] (3.3.31)

3kij(C) =
C

r3
[3ninj − gij ] , (3.3.32)

4kij( ~Q) =
3

2r4
[−Qinj −Qjni − (gij − 5ninj)(Q,n)] , (3.3.33)

where (~P , ~S,C, ~Q) are constant vectors, the xi’s are Cartesian coordinates, r2 :=
gijx

ixj ≡ (x, x), and ni := xi/r.

We can solve the Lichnerowicz equation with a linear combination of those
tensors, subject to the boundary conditions that the conformal factor φ goes
to one at infinity and blows up near the origin as 1/r. The resulting physical
initial-data set has then two asymptotically flat ends, one near infinity and
another one near r = 0. Such ends are necessarily separated by a marginally
outer trapped surface [197], which indicates the presence of black hole regions
in the resulting spacetime [137]. The origin of R3 is referred-to as a puncture
within this scheme.

The vector ~P coincides with the ADM momentum of the resulting initial
data, as measured in the large-r asymptotic-region. The vector ~S is the ADM
angular momentum in the large-r asymptotic region. Loosely speaking, the
tensor field (3.3.30) can be thought-of as describing a “source” at r = 0 with
linear momentum ~P and vanishing angular momentum, while the tensor field
(3.3.31) is associated with a source at r = 0 with zero ADM momentum and
angular momentum ~S.

The tensor 4kij of (3.3.33) is obtained by acting on 1kij by spherical inversion
at the sphere r = 1. One can check that, after solving the Lichnerowicz equation
using 4kij one obtains a linear momentum ~Q measured in the asymptotically
flat region near r = 0.

The remaining “C-quantity” of (3.3.32) does not seem to have a clear phys-
ical interpretation.

One can also take linear combinations of the above tensors with singular-
ities centered at distinct punctures, leading to initial data sets with several
asymptotically flat ends. Depending upon the parameters chosen, one may
obtain black hole solutions with event horizons which have several connected
components [148].

Incidentally: In [48] the reader will find a construction of large classes of TT
tensors on asymptotically flat Riemannian manifolds with leading-order behaviour
described by a linear combination of (3.3.30)-(3.3.33). 2
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3.3.3 Beig-Krammer tensors

Denote by

Lij = Rij −
1

4
gijR (3.3.34)

the Schouten tensor. Given a vector field ξ and a function ρ set

jj(ξ; ρ) = −Di(D[iξj]ρ))+
2

3
(Dj(Dξ))ρ+

2

3
DjDi(ξ

iρ)+
2

9
Dj((Dξ)ρ)+ 4Ljiξ

iρ .

(3.3.35)
Note that jj vanishes when ρ does.

We have:

Theorem 3.3.5 (Beig & Krammer [47]) Consider two vector fields ξ and E on
a three-dimensional locally conformally flat manifold, where ξ is a conformal
Killing vector field. Set

ρ := divE .

Then the symmetric, trace-free tensor field defined as

kij ≡ (BY )ij(ξ;E) := −ξkD(iDj)Ek − 2ξ(i∆Ej) + gijξ
k∆Ek + 2ξkD(iD

kEj) +

+ 2ξ(iDj)(DE)− 4

3
gijξ

kDk(DE) +
4

3
(Dξ)D(iEj) − 8Fc(iD

kEj) + 4F k (iDj)Ek −

− 4

9
gij(Dξ)(DE) + 4gijF

cdDkEd + 4E(iDj)Dξ −
4

3
gijE

kDk(Dξ) + 9ξkLc(iEj) +

+ ξ(iLj)kE
k + 4Lξ(iEj) − 2gij Lξ

kEk , (3.3.36)

where L = gijLij and Fij = D[iξj], satisfies

Dikij = jj(ξ; ρ) . (3.3.37)

From the perspective of vacuum initial data sets, the key point of The-
orem 3.3.5 is that every conformal Killing vector field ξ and divergence-free
vector field E (ρ = 0) provide a transverse-traceless tensor field (BY )ij(ξ;E).

It turns out that the Bowen-York tensors (3.3.30)-(3.3.33) fit nicely into the
Beig-Krammer scheme. Indeed, consider the following conformal Killing vector
fields on R3:

1ξi(~π) = πi , (3.3.38)
2ξi(~σ) = ǫi jkσ

jxk , (3.3.39)
3ξi(ζ) = ζxi , (3.3.40)
4ξi(~γ) = (x, x)γi − 2(x, γ)xi , (3.3.41)

where πi, σi, ζ, γi are constants. Let E be the Coulomb solution of divE = 4πδ0,
i.e.

Ei =
ni

r2
. (3.3.42)



3.4. NON-CMC DATA 131

Then [47]:

1k(~P ) = −1

2
BY (4ξ(~P ), E) , (3.3.43)

2k(~S) = −BY (2ξ(~S), E) , (3.3.44)
3k(C) = −BY (3ξ(C), E) , (3.3.45)

4k( ~Q) =
1

2
BY (1ξ( ~Q), E) . (3.3.46)

In particular the image of the map

(ξ,E) 7→ BY (ξ,E) ,

with E satisfying divE = 0, is not trivial.

3.4 Non-CMC data

One can consider the conformal method without assuming CMC data. As
before, the free conformal data consist of a manifoldM , a Riemannian metric g̃
on M , a trace-free symmetric tensor σ̃, and a mean curvature function τ . The
fields (g,K) defined as

g = φq g̃ , where q =
4

n− 2
, (3.4.1)

K = φ−2(σ̃ + C̃(Y )) +
τ

n
φqg , (3.4.2)

where φ is positive, will then solve the constraint equations with matter energy-
momentum density (µ, J) if and only if the function φ and the vector field Y
solve the equations

divg̃(C̃(Y ) + σ̃) =
n− 1

n
φq+2D̃τ + 8πφqJ J̃ , (3.4.3)

∆g̃φ−
1

q(n− 1)
R(g̃)φ+

1

q(n− 1)
|σ̃ + C̃(Y )|2g̃φ−q−3 − 1

qn
τ2φq+1 = 16πφqµ µ̃ .

(3.4.4)
Here qJ and qµ are exponents which can be chosen in a manner which is con-
venient for the problem at hand. A possible choice is obained by inserting the
York scaling given in (3.1.110)-(3.1.111) into (3.1.108)-(3.1.109); this is conve-
nient e.g. for the Einstein-Maxwell constraints in dimension n = 3. Finally,
the symbol D̃ denotes the covariant derivative of g̃, and C̃(Y ) is the conformal
Killing operator of g̃:

C̃(Y )ij = D̃iYj + D̃jYi −
2

n
g̃ijD̃kY

k . (3.4.5)

When dτ 6≡ 0, the vector constraint equation does not decouple from the scalar
one, and one needs to find simultaneously the solution (φ, Y ) to both equations
above.
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One can invoke the implicit function theorem to construct solutions of the
above when τ is bounded away from zero and dτ is sufficiently small, near a
solution at which the linearized operator is an isomorphism. Other techniques
have also been used in this context in [4, 98, 250, 251]. A non-existence theorem
for a class of near-CMC conformal data has been established in [254].

The first general result without assuming a small gradient is due to Holst,
Nagy, and Tsogtgerel [238, 239] who assumed non-vanishing matter source, µ̃ 6≡
0. Maxwell [311] has extended their argument to include the vacuum case,
leading to:

Theorem 3.4.1 (Holst, Nagy, Tsogtgerel [238, 239], Maxwell [311]) Let (M, g̃ij)
be a three dimensional, smooth, compact Riemannian manifold of positive Yam-
abe type without conformal Killing vectors, and let σ̃ij be a symmetric trans-
verse traceless tensorfield. If the seed tensor σ̃ij and the matter sources |J̃ |g̃ ≤ µ̃
are sufficiently small, then there exists a scalar field φ > 0 and a vector field Y
solving the system

∆g̃φ− 1
8 R̃φ = −1

8 |σ̃|2g̃φ−7 + 1
12τ

2φ5 − 2πµ̃φ−3 ,

D̃i(D̃
iY j + D̃jY i − 2

3D̃kY
kg̃ij) = 8πJ̃ j + 2

3φ
6D̃jτ , (3.4.6)

and hence providing a solution

(gij ,K
ij) = (φ4g̃ij , φ

−10(σ̃ij + D̃iY j + D̃jY i − 2

3
D̃kY

kg̃ij) +
τ

3
φ−4g̃ij)

of the constraint equations in vacuum (µ = 0 = J) or with sources

(µ, J i) = (φ−
2(n+1)
n−2 µ̃, φ−

2(n+2)
n−2 J̃ i)

(compare (3.1.111) and (3.1.110), p. 102).

The reader is referred to [311] for further general statements concerning the
problem at hand.

The Dahl-Gicquaud-Humbert obstruction equation

An important development for the constructions of non-CMC initial data is the
discovery of the obstruction equation by M. Dahl, R. Gicquaud, and E. Humbert
in [175]. The key observation in that work is the following: Let τ be a positive
function on M . Then, non-existence of solutions of the equation

Di(DiWj +DjWi −
2

n
DkWk gij) = κ |L(W )|g d ln τ (3.4.7)

for all
κ ∈ (0, 2

√
(n− 1)/n]

implies the existence of solutions of the constraint equations with

τ = traceg(K).

Assuming that (M,g) is compact, the authors of [175] further show the
following:
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1. Suppose that there exists a constant α > 0 such that the Ricci tensor of
g satisfies Rij ≤ −αgij in the sense of quadratic forms. Then there are
no solutions of (3.4.7) for functions τ such that

|d ln τ | ≤
√

n

2(n− 1)
α . (3.4.8)

Equivalently, for every smooth function τ satisfying (3.4.8) there exists a
solution of the constraint equations obtained using the conformal method.
Moreover, the set of such solutions is compact.

2. There exist manifolds (M,g), functions τ and real numbers κ ∈ (0, 2
√

(n− 1)/n]
for which a solution of the obstruction equation (3.4.7) exists.

See also [176] for a related non-existence result.

3.5 Gluing techniques

The gluing techniques can be regarded as a singular perturbation method. The
techniques are used to produce new solutions by gluing together old ones.

3.5.1 Linearised gravity

We start the presentation with an elementary gluing procedure for linearised
gravity on Minkowski spacetime, which can be carried-out using the potentials
of Section 3.3.1.

As seen in Section 1.2, for vacuum initial data defined globally on R3 we
can, and will, without loss of generality assume that we are in the transverse
traceless gauge,

Dihij = hii = 0 . (3.5.1)

We note that non-vacuum initial data, or vacuum initial data on e.g. R3 \
B(R) for some R > 0, can be brought to a gauge where the trace-free part of
hij is divergence-free, but where the trace does not necessarily vanish. As such,
the results below apply to general transverse traceless tensors on a Euclidean
background, and thus they apply in particular to the trace-free part of hij in
the transverse gauge; the analysis of the trace part of hij needs then separate
treatment.

As a first step towards gluing, we prove a shielding result, which shows that
transverse-traceless tensors can be deformed to zero on a set Ω̃ \ Ω, which can
be chosen as small as desired, while remaining unchanged in Ω:

Proposition 3.5.1 (Beig & Chruściel [45]) Let Ω, Ω̃ and Ω̂ be open subsets of
R3 such that

Ω ⊂ Ω̃ ⊂ Ω̂ , (3.5.2)

with Ω̂ simply connected. Every vacuum initial data set for the linearised gravi-
tational field (Ω̂, hij , kij) in the gauge (3.5.1) can be deformed to a new vacuum
initial data set (h̃ij , k̃ij) which coincides with (hij , kij) on Ω and vanishes out-
side of Ω̃.



134 CHAPTER 3. THE CONSTRAINT EQUATIONS

Proof: Let (uij , vij) denote the corresponding Beig potentials of Section 3.3.1,
thus

(hij , kij) = (P (u)ij , P (v)ij) , (3.5.3)

where P is the third-order differential operator of (3.3.3). Let χΩ be any smooth
function which is identically equal to one on Ω and which vanishes outside of
Ω̃. Then the initial data set

(h̃ij , k̃ij) = (P (χΩu)ij , P (χΩv)ij) (3.5.4)

satisfies the vacuum constraint equations everywhere, coincides with (hij , kij)

in Ω and vanishes outside of Ω̃. 2

When Ω is bounded, the new fields (h̃ij , k̃ij) can clearly be chosen to vanish
outside of a bounded set. For example, consider a plane wave solution as in
(3.3.16), p. 127. Multiplying the potentials (3.3.19) by a cut-off function χB(R1),
which equals one on B(R1) and vanishes outside of B(R2), provides compactly
supported gravitational data which coincide with the plane-wave ones in B(R1).
(Alternatively one can replace ~k · ~x in the first line of (3.3.17), or in (3.3.18)-
(3.3.19), by ~k · ~x χB(R1)(~x). This would lead to a tensor hij which is constant
outside of B(R2), and hence an initial data set which is flat outside of B(R2).)
In the limit ~k = 0, so that hij is constant on B(R1) and, e.g., kij = 0, one
obtains data which are Minkowskian both in B(R1) and outside of B(R2), and
describe a burst of gravitational radiation localised in a spherical annulus. Note
that the Minkowskian coordinates for the interior region are distinct from the
ones for the outside region. The closest full-theory configuration to this would
be Bartnik’s time symmetric initial data set [36] which are flat inside a ball of
radius R1, and which can be Corvino-Schoen deformed to be Schwarzschildean
outside of the ball of radius R2; here R2 will be much larger than R1 in general,
but can be made as close to R1 as desired by making the free data available in
Bartnik’s construction sufficiently small.

For Ω’s which are not bounded it is interesting to enquire about fall-off
properties of the shielded field. This will depend upon the geometry of Ω and
the fall-off of the initial field:

For cone-like geometries, as considered in [84, 135], and with hµν = O(1/r),
the gravitational field in the screening region will fall-off again as O(1/r). This
is rather surprising, as the gluing approach of [84] leads to a loss of decay even
for the linear problem. One should, however, keep in mind that the transition
to the TT-gauge for a linearised correction to the metric which falls-off as 1/r
is likely to introduce ln r/r terms in the transformed metric, which will then
propagate to the gluing region.

As another example, consider the set Ω = (a, b) × R2, which is not covered
by the methods of [84]. Our procedure in this case applies but if hµν = O(1/r),
and if the cut-off function is taken to depend only upon the first variable of the
product Ω = (a, b)×R2, one obtains a gravitational field h̃µν vanishing outside

a slab Ω̃ = (c, d) × R2, with [a, b] ⊂ (c, d), which might grow as r2 ln r when
receding to infinity within the slab.

Proposition 3.5.1provides a “shielding” result. This can, however, be used
to glue linearised field across a gluing region, as follows: Consider two linearised
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vacuum initial data sets (Ω̂1, h1, k1) and (Ω̂2, h2, k2) in the TT-gauge such that

Ω̂1 ∩ Ω̂2 6= ∅ .

For simplicity let us assume that both Ω̂i’s are simply connected, though of
course simple connectedness of suitable neighborhoods of the intersection region
would suffice. We can use use Proposition 3.5.1 to screen each of the fields to
zero across the gluing region. Adding the resulting new fields provides the
desired glued configuration.

3.5.2 Conformal gluings

From the point of view of general relativity, the gluing techniques seem to go
back to the work of Joyce [260], who used the space-Schwarzschild metric as a
building block for perfoming connected sums of constant scalar curvature to-
gether with the conformal method to correct for the error introduced. A version
of this procedure suitable for the whole set of general relativistic constraint
equations has been developed by Isenberg, Mazzeo and Pollack in [246, 248].
The construction of [248] allowed one to combine initial data sets by taking a
connected sum of their underlying manifolds, to add wormholes (by performing
codimension-three surgery on the underlying manifold) to a given initial data
set, and to replace arbitrary small neighborhoods of points in an initial data
set with asymptotically hyperbolic ends.

We have:

Theorem 3.5.2 (Isenberg, Mazzeo, Pollack [248, 249]) Let (M,g,K) be a smooth,
solution of the Einstein constraint equations, with constant mean curvature τ ,
where M is not necessarily connected. Furthermore, (M,g,K) may be either
compact, or contain a finite number of asymptotically Euclidean or asymptoti-
cally hyperbolic ends. Let p1, p2 ∈ M , and assume that (M,g,K) is nondegen-
erate in the sense that the linearisation of the conformal constraint equations
has no kernel, and that K 6≡ 0. Let M̂ be constructed from M by adding a neck
connecting the two points p1 and p2. Then there is a one-parameter family of
vacuum initial data (M̂, gT ,KT ) with constant mean curvature τ such that, for
any ǫ > 0, (gT ,KT ) approach (g,K), as T tends to infinity away from balls of
radius ǫ centered at the pi’s.

Remark 3.5.3 The hypothesis of non-degeneracy above requires non-existence
of conformal Killing vector fields, which is a generic condition by [68]. It further
requires triviality of the kernel of the linearisation of the Lichnerowicz equation,
which is expected to be satisfied in generic situations. We note that for time
symmetric initial data this question reduced to that of the triviality of the kernel
of the linearisation of the Yamabe equation, which has been shown to hold for
generic metrics on compact manifolds in [265].

In [249] this gluing construction was extended to only require that the mean
curvature be constant in a small neighborhood of the point about which one
wanted to perform a connected sum. This can be used to show the following:
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Theorem 3.5.4 (Isenberg, Mazzeo, Pollack [249]) LetM be any closed n-dimensional
manifold, and p ∈M . Then M \ {p} admits an asymptotically flat initial data
set satisfying the vacuum constraint equations.

A similar result, where the vacuum hypothesis is replaced by the dominant
energy condition, has been previously established in [412].

3.5.3 “PP ∗-gluings”

The drawback of the gluing constructions just described is that the conformal
method introduces a global deformation of the original initial data. A method
which avoids this problem has been devised by Justin Corvino in his thesis [161];
compare [165]; we return to this in Section 3.5.5. In these last two works, gluing
theorems across annuli are developed for asymptotically flat initial data.

Incidentally: The Corvino-Schoen gluing methods [161, 165] provide a powerful
tool for constructing new general relativistic initial data, with interesting properties,
out of old ones [132, 144, 152]. Key applications include the construction of vacuum
spacetimes with smooth asymptotic structure in lightlike directions [131, 162], the
construction of localised “spacetime bridges” and “wormholes” [143], and the con-
struction of many-body initial data sets [144]; see Section 3.5.6, p. 144.

The main usefulness of this alternative technique in general relativity lies in
the fact that, away from the small set about which one fuses the two solutions,
the new solution is identical to the original ones. This gives one control on the
physical properties of the glued initial data. Furthermore, because of the finite
speed of propagation of signals, the resulting solution coincides with the original
one in the domain of dependence of the regions where the metric remained
unchanged.

The basic setup is that of two initial data sets which are close to each other
on a domain Ω ⊂ S . One further assumes that Ω has exactly two boundary
components, with each component of Ω separating S into two. The reader
can think of Ω as an annulus in S = Rn, or the region between the cones in
Rn of Figure 3.6.1, p. 148 below. The basic idea is to use the inverse function
theorem to construct a new initial data set which will coincide with the first
initial data set near a component of the boundary, and with the second initial
data set near the other component of ∂Ω.

Let us denote by C the map which to a pair (K, g) assigns the right-hand
sides of the constraint equations:

C(g,K) :=

(
2(−∇jKij +∇i trK)
R(g)− |K|2 + (trK)2 − 2Λ

)
. (3.5.5)

We denote by P the linearisation of C. Setting h = δg and Q = δK, one has:

P (Q,h) =




−Kpq∇ihpq +Kq
i(2∇jhqj −∇qhll)

−2∇jQij + 2∇i trQ− 2(∇iKpq −∇qKp
i)hpq

−∆(trh) + div divh− 〈h,Ric (g)〉 + 2KplKq
lhpq

−2〈K,Q〉 + 2trK(−〈h,K〉+ trQ)



. (3.5.6)
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The order of the differential operators that appear in P is

(
1 1
0 2

)
,

which can be written in the Agmon-Douglis-Nirenberg form (cf., e.g. [334,
p. 210]) (

s1 + t1 s1 + t2
s2 + t1 s2 + t2

)
,

with s1 = −1, s2 = 0, t1 = t2 = 2; here it is understood that an operator of
order 0 is also an operator of order 2 with vanishing coefficients in front of the
first and second derivatives. It follows that the symbol P ′ of the principal part
of P in the sense of Agmon-Douglis-Nirenberg reads

P ′(x, ξ)(Q,h) =

(
2(−ξsδti + ξig

st) −Kpqξi + 2Kq
iξ
p −K l

iξlg
pq

0 −|ξ|2gpq + ξpξq

)(
Qst
hpq

)
.

The formal L2-adjoint of P takes the form

P ∗(Y,N) =




2(∇(iYj) −∇lYlgij −KijN + trK Ngij)

∇lYlKij − 2K l
(i∇j)Yl +Kq

l∇qY lgij −∆Ngij +∇i∇jN
+(∇pKlpgij −∇lKij)Y

l −NRic (g)ij + 2NK l
iKjl − 2N(tr K)Kij


 .

(3.5.7)
From (3.5.7) we obtain the Agmon-Douglis-Nirenberg symbol P ∗′ of the prin-
cipal part of P ∗,

P ∗′(x, ξ)(Y,N) =

(
2(ξ(iδ

l
j) − ξlgij) 0

Kijξ
l − 2K l

(iξj) +Kplξqgij ξiξj − |ξ|2gij

)(
Yl
N

)
.

(3.5.8)
We have the following key observation:

Proposition 3.5.6 The operator L := PP ∗ is elliptic in the sense of Agmon-
Douglis-Nirenberg (cf., e.g. [334, Definition 6.1.1, p. 210]).

For the proof we need the following:

Lemma 3.5.7 Suppose that dimM ≥ 2, then P ∗′(x, ξ) is injective for ξ 6= 0.

Proof: We define a linear map α from the space S2 of two-covariant symmetric
tensors into itself by the formula

α(S) = S − (trS)g . (3.5.9)

Let ξ 6= 0, if (Y,N) is in the kernel of P ∗′(x, ξ) then

α(ξ(iYj)) = 0 ,

so that ξ(iYj) = 0, and Y = 0. It follows that

α(ξiξj)N = 0 ,
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which implies N = 0. 2

Proof of Proposition 3.5.6: The differential order of the various entries of
L is (

2 3
3 4

)
=

(
s1 + t1 s1 + t2
s2 + t1 s2 + t2

)
,

with s1 = −1, s2 = 0, t1 = 3, t2 = 4. Now, P ′(x, ξ) is of the form

E :=

(
A B
0 D

)
,

while P ∗′(x, ξ) can be written as
(
−tA 0
−tB tD

)
,

where tX denotes the transpose of X. Let ξ 6= 0; by Lemma 3.5.7 tA and tD
are injective (hence A and D are surjective) , which implies that tE is injective
(hence E is surjective). This shows that E tE is bijective: indeed, E tEX = 0
implies tXE tEX = 0, which is the same as |tEX|2 = 0, hence X = 0. It
is straightforward to check that the Agmon-Douglis-Nirenberg symbol of PP ∗,
defined as the symbol built from those terms which are precisely of order si+tj,
equals

P ′(x, ξ)P ∗′(x, ξ) = E tE

(
−I 0
0 1

)
,

and its bijectivity for ξ 6= 0 follows. This is precisely the ellipticity condition of
Agmon, Douglis, and Nirenberg, whence the result. 2

To continue, we consider the linearised equation:

P (δK, δg) = (δJ, δρ) . (3.5.10)

Whenever PP ∗ is an isomorphism, solutions of (3.5.10) can be obtained by
solving the equation

PP ∗(Y,N) = (δJ, δρ) (3.5.11)

for a function N and a vector field Y , and setting

(δK, δg) = P ∗(Y,N) .

Since PP ∗ is elliptic, the only essential obstruction to solving (3.5.11) is the
kernel of PP ∗. Now, because of the form of the operator, the kernel of PP ∗

typically coincides with the kernel of P ∗, with the latter contained in KerPP ∗

in any case.
To continue, a definition will be useful:

Definition 3.5.8 Given an open set Ω, the set of vacuum Killing Initial Data
(KIDs) on Ω, denoted K (Ω), is the set of all solutions of the equation

P ∗
(g,K)|Ω(Y,N) = 0 . (3.5.12)

Static vacuum KIDs are defined to be those solutions of (3.5.12) for which
Y ≡ 0 ≡ K.



3.5. GLUING TECHNIQUES 139

In order to analyse the set of KIDs in an asymptotically hyperbolic setting,
it is convenient to rewrite the KID equation (3.5.12) as

∇(iYj) = KijN , (3.5.13)

∇i∇jN = (Ric (g)ij − 2K l
iKjl + trgKKij −KqlKqlgij)N +∆Ngij

−(∇pKlpgij −∇lKij)Y
l + 2K l

(i∇j)Yl . (3.5.14)

Taking traces, we obtain

∆N = − 1

n− 1

(
(R+(trgK)2−nKqlKql)N−(n∇pKlp−∇ltrgK)Y l

)
, (3.5.15)

which allows one to eliminate the second derivatives of N from the right-hand
side of (3.5.14), leading to

∇i∇jN =
(
Ric (g)ij − 2K l

iKjl + trgKKij +
1

1− n(R+ (trgK)2 −KqlKql)gij

)
N

+(∇lKij − (∇pKlp −∇ltrgK)gij)Y
l + 2K l

(i∇j)Yl . (3.5.16)

In the time-symmetric case with K ≡ 0, the KID equations decouple. The
key part of the equations is then an equation for N , called the static KID
equation,

∇i∇jN =
(
Ric(g)ij +

R

1− ngij
)
N . (3.5.17)

When K ≡ 0, (3.5.13) requires Y to be a (possibly trivial) Killing vector of g.

Remark 3.5.9 A non-trivial solution (N,Y ) of the KID equations generates a
spacetime Killing vector field in the domain of dependence of (Ω, g|Ω,K|Ω) [327].
Indeed, given a set (M,g,N, Y ) with N 6≡ 0, where (M,g) is a Riemannian
manifold, N is a function on M and Y is a vector field on M , we define the
Killing development of (M,g,N, Y ) as the spacetime

(M ,g) := (R×M,−N2dt2 + gij(dx
i + Y idt)(dxj + Y jdt)) . (3.5.18)

A calculation shows that the Killing development is vacuum if and only if (N,Y )
satisfies the vacuum KID equations.

Strictly speaking, to obtain a Lorentzian metric one should remove from M
the set of points where N vanishes. However, in many situations of interest
one can extend the metric smoothly across the set of zeros of N by passing to
a different coordinate system, in which case it is convenient not to remove the
zeros.

The vector field
X := ∂t

is a Killing vector for the metric g of (3.5.18). Note that the future-directed
unit normal to the level sets of t is

T := N−1(∂t − Y i∂i) , (3.5.19)
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so that X decomposes as
X = NT + Y . (3.5.20)

Thus N determines the component of X normal to the level sets St := {t}×M
of g within M , and Y the tangential part.

The Lie algebra structure on the set of Killing vectors induces a Lie algebra
structure on the set of KIDs; this is analysed in detail in [44, 305], where non-
vacuum spacetimes are also considered. 2

From a geometric point of view one expects that solutions with symmetries
should be rare. This was made rigorous in [46], where it is shown that the
generic behaviour among solutions of the constraint equations is the absence
of KIDs on any open set. On the other hand, one should note that essentially
every explicit solution has symmetries. In particular, both the flat initial data
for Minkowski space, and the initial data representing the constant time slices
of Schwarzschild have KIDs.

3.5.4 A toy model: divergenceless vector fields

To illustrate how this works in a simpler setting, consider the Maxwell constraint
equation for a source-free (that is to say, divergence-free) electric field E,

P (E) := divE = 0 . (3.5.21)

The formal adjoint of the divergence operator is the negative of the gradient,
so that the “Maxwell KID equation” in this case reads

P ∗(u) ≡ −∇u = 0 . (3.5.22)

The gradient operator has no kernel on a domain with smooth boundary if
u is required to vanish on ∂Ω; in fact, the vanishing at a single point of the
boundary would suffice. So the equation

divE = ρ (3.5.23)

can be solved by solving the Laplace equation for u,

PP ∗(u) ≡ −div∇u ≡ −∆u = ρ , (3.5.24)

with zero Dirichlet data.
Consider, then, the following toy problem:

Problem 3.5.10 Let Ei, i = 1, 2, be two source-free electric fields on Rn. Find
a source-free electric field E which coincides with E1 on a ball B(R1) of radius
R1 and coincides with E2 outside a ball of radius R2 > R1.

Note that if E2 ≡ 0, and if we can solve Problem 3.5.10, we will have screened
away the electric field E1 without introducing any charges in the system: this
is the screening of the electric field with an electric field. We will also have
constructed an infinite dimensional space of compactly supported divergence
free vector fields as E1 varies, with complete control of E in B(R1).
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As a first attempt to solve the problem, let χ be a radial cut-off function
which equals one near the sphere S(R1) and which equals zero near S(R2). Set

Eχ = χE1 + (1− χ)E2 .

Since both Ei are divergence-free we have

ρχ := divEχ = ∇χ · (E1 − E2) ,

and there is no reason for ρχ to vanish. However, if u solves the equation

PP ∗(u) ≡ −∆u = −ρχ (3.5.25)

with vanishing boundary data, then

E = Eχ + P ∗(u) (3.5.26)

will be divergence free:

divE = div(Eχ + P ∗(u)) = ρχ + PP ∗(u) = 0 .

Now, on S(Ri) we have
E|S(Ri) = Ei −∇u , (3.5.27)

and there is no reason why this should coincide with Ei. We conclude that this
approach fails to solve the problem.

Replacing Dirichlet data by Neumann data will only help if both Ei|S(Ri)

are purely radial, as suitable Neumann data will only guarantee continuity of
the normal components of E.

It turns out that there is trick to make this work in whole generality: mod-
ify (3.5.24) by introducing weight-functions ψ which vanish very fast at the
boundary. An example, which will lead to solutions on the annulus which can
be extended to the whole of Rn in a high-but-finite differentiability class, is
provided by the functions

ψ = (r −R1)
σ(R2 − r)σ , r ∈ (R1, R2) , (3.5.28)

with some large positive number σ. Another useful example, which will lead to
smoothly-extendable solutions, is

ψ = (r −R1)
α(r −R2)

α exp
(
− s

(r −R1)(R2 − r)
)
, r ∈ (R1, R2) , (3.5.29)

with α ∈ R and s > 0. (The prefactors involving α in (3.5.29) are useful
when constructing a consistent functional-analytic set-up, but are essentially
irrelevant as far as the blow-up rate of ψ near the S(Ri)’s is concerned.)

As such, instead of (3.5.24) consider the equation

P (ψ2P ∗(u)) ≡ −div(ψ2∇u) = −ρχ . (3.5.30)

Solutions of (3.5.30) could provide a solution of Problem 3.5.10 if one replaces
(3.5.26) by

E = Eχ + ψ2P ∗(u) = Eχ − ψ2∇u . (3.5.31)
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Now, solutions of (3.5.30) are, at least formally, minima of the functional

I =

∫

Ω

1

2
ψ2|∇u|2 + ρχu . (3.5.32)

Supposing that minimisation would work, one will then obtain a solution u so
that ψ∇u is in L2. Since ψ goes to zero at the boundary very fast, ∇u is likely
to blow up. In an ideal world, in which “L2” is the same as “bounded”, ∇u will
behave as ψ−1 near the boundary. The miracle is that (3.5.30) involves ψ2∇u,
with one power of ψ spare, and so the derivatives of u would indeed tend to
zero as ∂Ω is approached.

This naive analysis of the boundary behaviour turns out to be essentially
correct: choosing the exponential weights (3.5.29), ψ2∇u will extend smoothly
by zero across the boundaries when the Ei’s are smooth. A choice of power-law
weights (3.5.28) will lead to extensions of differentiability class determined by
the exponent σ, with a loss of a finite number of derivatives due to the fact that
L2 functions are not necessarily bounded, and that there is a loss of differen-
tiability when passing from Sobolev-differentiability to classical derivatives.

It then remains to show that minimisation works in a carefully chosen space.
This requires so-called “coercitivity inequalities”. For the functional (3.5.32)
the relevant inequality is the following weighted Poincaré inequality:

∫

Ω
ψ2|u|2 ≤ C

∫

Ω
ϕ2ψ2|∇u|2 . (3.5.33)

Here ϕ = (r − R1)
−1(R2 − r)−1 when ψ is given by (3.5.28) with σ 6= −1/2,

and ϕ = (r −R1)
−2(R2 − r)−2 for the exponential weights ψ given by (3.5.29)

with s 6= 0, cf. e.g. [132, 161].
There is an obvious catch here, namely (3.5.33) cannot possibly be true

since it is violated by constants. However, (3.5.33) holds on the subspace, say
F , of functions which are L2-orthogonal to constants, when using the weights
described above. This turns out to be good enough for solving Problem 3.5.10.
For then one can carry out the minimisation on F , finding a minimum u ∈ F .
The function u will solve the equation up to an L2-projection of the equation
on constants. In other words, we will have

∫

Ω
f(−div(ψ2∇u) + ρχ) = 0 , (3.5.34)

for all differentiable f such that
∫
Ω f = 0. Now, integrating the equation

(3.5.30) against the constant function f ≡ 1 we find
∫

Ω
(div(ψ2∇u)− ρχ) =

∫

Ω
div(ψ2∇u− Eχ) (3.5.35)

=

∫

∂Ω
(ψ2∇u− Eχ) ·m =

∫

S(R1)
E1 · n−

∫

S(R2)
E2 · n ,

where m is the outer-directed normal to ∂Ω, and n is the radial vector ~x/|~x|.
Since the Ei’s are divergence-free it holds that

∫

S(Ri)
Ei · n =

∫

B(Ri)
div(Ei) = 0 .
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It follows that the right-hand side of (3.5.35) vanishes, hence (3.5.34) holds for
all differentiable functions f , and u is in fact a solution of (3.5.30).

(Strictly speaking, when solving (3.5.30) by minimisation using the inequal-
ity (3.5.33), Equation (3.5.30) should be replaced by

div(ϕ2ψ2∇u) = ρχ . (3.5.36)

This does not affect the discussion so far, and only leads to a shift of the powers
α and σ in (3.5.28)-(3.5.29).)

We conclude that the answer to Problem 3.5.10 is yes, as already observed
in [164, 188].

One can likewise solve variants of Problem 3.5.10 with gluing regions which
are not annuli, e.g. a difference of two coaxial cones with distinct apertures as
in the Carlotto-Schoen Theorem 3.6.1 below. If one of the glued vector fields is
taken to be trivial, one obtains configurations where the electric field extends
all the way to infinity in open cones and vanishes in, e.g., a half-space.

The gluing construction for the linearised relativistic constraint equations
proceeds essentially in the same way. There, in addition to the weighted
Poincaré inequality (3.5.33) one also needs a weighted Korn inequality for vector
fields X: ∫

Ω
ψ2|X|2 ≤ C

∫

Ω
ϕ2ψ2|S(X)|2 , (3.5.37)

where S(X) is the symmetric two-covariant vector field defined as

S(X)ij =
1

2
(∇iXj +∇jXi) . (3.5.38)

In (3.5.37) one needs to assume σ 6∈ {−n/2,−n2/ − 1} for the weight (3.5.28),
and s 6= 0 when ψ is given by (3.5.29). If the metric g has non-trivial Killing
vectors, which are solutions of the equation S(X) = 0, then (3.5.37) will hold
for vector fields X which are in a closed subspace transverse to the space of
Killing vectors, with a constant depending upon the subspace.

As already mentioned the space of KIDs is trivial for generic metrics [68], so
that the problem of solving modulo kernel does not arise in generic situations.

The full non-linear gluing problem for the scalar curvature, or for vacuum
initial data, is solved using the above analysis of the linearised equation together
with a tailor-made version of the inverse function theorem, see [132, 161] for
details. There it is also shown how to treat problems where existence of KIDs
cannot be ignored.

3.5.5 Corvino’s theorem

Beyond Euclidean space itself, the constant time slices of the Schwarzschild
spacetime form the most basic examples of asymptotically flat, scalar flat man-
ifolds. One long-standing open problem [34, 391] in the field had been whether
there exist scalar flat metrics on Rn which are not globally spherically sym-
metric but which are spherically symmetric in a neighborhood of infinity and
hence, by Birkhoff’s theorem, Schwarzschild there.
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Corvino resolved this by showing that he could deform any asymptotically
flat, scalar flat metric to one which is exactly Schwarzschild outside of a compact
set.

Theorem 3.5.11 ([161]) Let (M,g) be a smooth Riemannian manifold with zero
scalar curvature containing an asymptotically flat end Sext = {|x| > R0 >
0}. Then there is a R > R0 and a smooth metric ḡ on M with zero scalar
curvature such that ḡ is equal to g in M \Sext and ḡ coincides on {|x| > R}
with the metric induced on a standard time-symmetric slice in the Schwarzschild
solution. Moreover the mass of ḡ can be made arbitrarily close to that of g by
choosing R sufficiently large.

Underlying this result is a gluing construction where the deformation has
compact support. The ability to do this is a reflection of the underdetermined
nature of the scalar curvature operator.

An elementary illustration of how an underdetermined system can lead to
compactly supported solutions is given by the construction of compactly sup-
ported transverse-traceless tensors on R3 in Appendix B of [162] (see also [181]
and Section 3.3.1).

An additional challenge in proving Theorem 3.5.11 is the presence of KIDs
on the standard slice of the Schwarzschild solution. If the original metric had
ADM mass m(g), a naive guess could be that the best fitting Schwarzschild
solution would be the one with precisely the same mass. However the mass,
and the coordinates of the center of mass, are in one-to-one correspondence
with obstructions arising from KIDs. To compensate for this co-kernel in the
linearized problem, Corvino uses these (n+1 in dimension n) degrees of freedom
as effective parameters in the geometric construction. The final solution can be
chosen to have its ADM mass arbitrarily close to the initial one.

Incidentally: Corvino’s technique has been applied and extended in a number
of important ways. The “asymptotic simplicity” model for isolated gravitational
systems proposed by Penrose [343] has been very influential. This model assumes
existence of smooth conformal completions to study global properties of asymptoti-
cally flat spacetimes. The question of existence of such vacuum spacetimes was open
until Chruściel and Delay [131], and subsequently Corvino [162], used this type of
gluing construction to demonstrate the existence of infinite dimensional families of
vacuum initial data sets which evolve to asymptotically simple spacetimes.

The extension of Corvino’s theorem 3.5.11 to non-time-symmetric data was done
in [132, 165]. This allowed for the construction of spacetimes which are exactly Kerr
outside of a compact set, as well as showing that one can specify other types of
controlled and physically relevant asymptotic behavior.

See also Section 3.5.8 for a list of further generalisations. 2

3.5.6 Initial data engineering

The gluing constructions of [248] and [249] discussed in Section 3.5.2 are per-
formed using a determined elliptic system provided by the conformal method,
which necessarily leads to a global deformation of the initial data set, small
away from the gluing site. Now, the ability of the Corvino gluing technique
to establish compactly supported deformations invited the question of whether
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these conformal gluings could be localized. This was answered in the affirma-
tive in [132] for CMC initial data under the additional, generically satisfied [46],
assumption that there are no KIDs in a neighborhood of the gluing site.

In [143, 144], this was substantially improved upon by combining the gluing
construction of [248] together with the Corvino gluing technique of [131, 161],
to obtain a localized gluing construction in which the only assumption is the
absence of KIDs near points. For a given n-manifoldM (which may or may not
be connected) and two points pa ∈M , a = 1, 2, we let M̃ denote the manifold
obtained by replacing small geodesic balls around these points by a neck Sn−1×
I. When M is connected this corresponds to performing codimension n surgery
on the manifold. When the points pa lie in different connected components of
M , this corresponds to taking the connected sum of those components.

Theorem 3.5.13 ([143, 144]) Let (M,g,K) be a smooth vacuum initial data set,
withM not necessarily connected, and consider two open sets Ωa ⊂M , a = 1, 2,
with compact closure and smooth boundary such that

the set of KIDs, K (Ωa), is trivial

(see Definition 3.5.8, p. 138). Then for all pa ∈ Ωa, ǫ > 0, and k ∈ N there
exists a smooth vacuum initial data set (M̃ , g(ǫ),K(ǫ)) on the glued manifold
M̃ such that (g(ǫ),K(ǫ)) is ǫ-close to (g,K) in a Ck × Ck topology away from
B(p1, ǫ)∪B(p2, ǫ). Moreover (g(ǫ),K(ǫ)) coincides with (g,K) away from Ω1∪
Ω2.

This result is sharp in the following sense: first note that, by the positive
mass theorem, initial data for Minkowski spacetime cannot locally be glued to
anything which is non-singular and vacuum. This meshes with the fact that
for Minkowskian initial data, we have K (Ω) 6= {0} for any open set Ω. Next,
recall that by the results in [46], the no-KID hypothesis in Theorem 3.5.13 is
generically satisfied. Thus, the result can be interpreted as the statement that
for generic vacuum initial data sets the local gluing can be performed around
arbitrarily chosen points pa. In particular the collection of initial data with
generic regions Ωa satisfying the hypotheses of Theorem 3.5.13 is not empty.

The proof of Theorem 3.5.13 is a mixture of gluing techniques developed
in [246, 248] and those of [132, 161, 165]. In fact, the proof proceeds initially via
a generalization of the analysis in [248] to compact manifolds with boundary.
In order to have CMC initial data near the gluing points, which the analysis
based on [248] requires, one makes use of the work of Bartnik [32] on the plateau
problem for prescribed mean curvature spacelike hypersurfaces in a Lorentzian
manifold.

Arguments in the spirit of those of the proof of Theorem 3.5.13 lead to the
construction of many-body initial data [129, 130]: starting from initial data for
N gravitating isolated systems, one can construct a new initial data set which
comprises isometrically compact subsets of each of the original systems, as large
as desired, in a distant configuration; compare Section 3.6.1 below.

An application of the gluing techniques concerns the question of the ex-
istence of CMC slices in spacetimes with compact Cauchy surfaces. In [33],
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Bartnik showed that there exist maximally extended, globally hyperbolic solu-
tions of the Einstein equations with dust which admit no CMC slices. Later,
Eardley and Witt (unpublished) proposed a scheme for showing that similar
vacuum solutions exist, but their argument was incomplete. It turns out that
these ideas can be implemented using Theorem 3.5.13, which leads to:

Corollary 3.5.14 [143, 144] There exist maximal globally hyperbolic vacuum
spacetimes with compact Cauchy surfaces which contain no compact spacelike
hypersurfaces with constant mean curvature.

Compact Cauchy surfaces with constant mean curvature are useful objects,
as the existence of one such surface gives rise to a unique foliation by such
surfaces [77], and hence a canonical choice of time function (often referred to
as CMC or York time). Foliations by CMC Cauchy surfaces have also been
extensively used in numerical analysis to explore the nature of cosmological
singularities. Thus the demonstration that there exist spacetimes with no such
surfaces has a negative impact on such studies.

One natural question is the extent to which spacetimes with no CMC slices
are common among solutions to the vacuum Einstein equations with a fixed
spatial topology. It is expected that the examples constructed in [143, 144]
are not isolated. In general, there is a great deal of flexibility (in the way of
free parameters) in the local gluing construction. This can be used to produce
one parameter families of distinct sets of vacuum initial data which lead to
spacetimes as in Corollary 3.5.14. What is less obvious is how to prove that
all members of these families give rise to distinct maximally extended, globally
hyperbolic vacuum spacetimes.

A deeper question is whether a sequence of spacetimes which admit constant
mean curvature Cauchy surfaces may converge, in a strong topology, to one
which admits no such Cauchy surface. (See [30, 33, 217] for general criteria
leading to the existence of CMC Cauchy surfaces.)

3.5.7 Non-zero cosmological constant

Gluing constructions have also been carried out with a non-zero cosmologi-
cal constant [134, 152, 154]. In these papers one constructs spacetimes which
coincide, in the asymptotic region, with the corresponding black hole mod-
els. One thus obtains constant negative scalar curvature metrics with exact
Schwarzschild-anti de Sitter behaviour outside of a compact set. In such space-
times one has complete control of the geometry in the domain of dependence of
the asymptotic region, described there by the Birmingham-Kottler metrics (see
Appendix B.3, p. 262). For time-symmetric slices of these spacetimes, the con-
straint equations reduce to the equation for constant scalar curvature R = 2Λ.
In [134, 152, 154] the emphasis is on gluing with compact support, in the spirit
of Corvino’s thesis and its extensions already discussed.

The time-symmetric slices of the Λ > 0 Kottler spacetimes provide “Delau-
nay” metrics (see [154] and references therein), and the main result of [152, 154]
is the construction of large families of metrics with exactly Delaunay ends.
When Λ < 0 the focus is on asymptotically hyperbolic metrics with constant
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negative scalar curvature. With hindsight, within the family of Kottler metrics
with Λ ∈ R (with Λ = 0 corresponding to the Schwarzschild metric), the gluing
in the Λ > 0 setting is technically easiest, while that with Λ < 0 is the most
difficult. This is due to the fact that for Λ > 0 one deals with one linearized
operator with a one-dimensional kernel; in the case Λ = 0 the kernel is (n+1)–
dimensional; while for Λ < 0 the construction involves a one-parameter family
of operators with (n+ 1)–dimensional kernels.

Incidentally: In [160] it has been shown how to use the gluing method to con-
struct non-time-symmetric vacuum initial data containing periodic asymptotic ends,
with the evolved metric coinciding with the Kerr-de Sitter metric outside of a
spatially-compact region.

3.5.8 Further generalisations

Let us list some further generalisations or applications of the Corvino-Schoen
gluing technique:

1. In [289] the method is used to construct non-trivial asymptotically flat
black hole spacetimes with smooth asymptotic structure.

2. In [132] it has been shown how to reduce the gluing problem to the ver-
ification of a few properties of the weight functions ϕ and ψ, together
with the verification of the Poincaré and Korn inequalities. It has also
been shown there how to use the technique to control the asymptotics of
solutions in asymptotically flat regions.

3. The differentiability thresholds for the applicability of the method have
been lowered in [133]. It has also been shown there how to construct a
Banach manifold structure for the set of vacuum initial data under various
asymptotic conditions using the general ideas developed in the process of
gluing.

4. In [187] gluings are done by interpolating scalar curvature.

5. In [188] the gluing method has been used to construct compactly sup-
ported solutions for a wide class of underdetermined elliptic systems. As
a particular case, for any open set U one obtains an infinite-dimensional
space of solutions of the vector constraint equation which are compactly
supported in U .

6. In [190] the gluing is used to make local “generalised connected-sum”
gluings along submanifolds.

7. In [163] the gluing method is used to deform initial data satisfying the
dominant energy condition to ones where the condition is strict.

8. In [64, 128] the gluing is used to construct null hypersurfaces with genera-
tors complete to the future in maximal globally hyperbolic developments
of asymptotically flat initial data sets, without any smallness conditions
on the data.
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9. The gluing methods have been extended in [85] to k-Yamabe metrics,
i.e. metrics for which the k-th symmetric polynomial of the Schouten
curvature tensor is constant.

10. In [237] the gluing method is used to exhibit instabilities of a class of
black-hole spacetimes.

3.6 Gravity shielding a la Carlotto-Schoen

In [84] Carlotto and Schoen show that gravitational fields can be used to shield
gravitational fields. That is to say, one can produce spacetime regions extending
to infinity where no gravitational forces are felt whatsoever, by manipulating
the gravitational field around these regions. A concise version of their result
reads:

Theorem 3.6.1 (Carlotto & Schoen [84]) Given an asymptotically flat initial
data set for vacuum Einstein equations there exist cones and asymptotically flat
vacuum initial data which coincide with the original ones inside the cones and
are Minkowskian outside slightly larger cones, see Figure 3.6.1.

Figure 3.6.1: Left picture: The new initial data are Minkowskian outside the
larger cone, and coincide with the original ones inside the smaller one. The
construction can also be carried out the other way round, with Minkowskian
data inside the smaller cone and the original ones outside the larger cone. Both
cones extend to infinity, and their tips are located very far in the asymptoti-
cally flat region. Right picture: Iterating the construction, one can embed any
finite number of distinct initial data sets into Minkowskian data, or paste-in
Minkowskian data inside several cones into a given data set.

Actually, the result is true for all cones with preassigned axis and pair of
apertures provided the vertex is shifted sufficiently far away in the asymptoti-
cally flat regions.

In the associated spacetimes (M ,g) the metric coincides with the Minkowski
metric within the domain of dependence, which we will denote by D , of the com-
plement of the larger cones, which forms an open subset of M ; we return to this
in Section 3.6.1 below. Physical objects in D do not feel any gravitational fields.
The Carlotto-Schoen gluing has effectively switched-off any gravitational effects
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in this region. This has been achieved by manipulating vacuum gravitational
fields only.

In this section we will highlight some key elements of the proof of Theo-
rem 3.6.1, and discuss selected further developments. Our presentation follows
closely [127].

Newtonian gravity

To put the Carlotto-Schoen Theorem in its proper context, let us recall that
Newtonian gravity can be viewed as the theory of a gravitational potential field
φ which solves the equation

∆φ = −4πGρ , (3.6.1)

where ∆ is the Laplace operator in an Euclidean R3 and G is Newton’s constant.
Up to conventions on signs, proportionality factors, and units, ρ is the matter
density, which is not allowed to be negative. Isolated systems are defined by
the requirement that both ρ and φ decay to zero as one recedes to infinity.

Freely falling bodies experience an acceleration proportional to the gradient
of φ. So no gravitational forces exist in those regions where φ is constant.

Suppose that ρ has support contained in a compact set K, and that φ is
constant on an open set Ω. Since solutions of (3.6.1) are analytic on R3 \K, φ
is constant on any connected component of R3\K which meets Ω. We conclude
that if Ω extends to infinity, then φ vanishes at all large distances. This implies,
for all sufficiently large spheres S(R),

0 =

∫

S(R)
∇φ · n d2S =

∫

B(R)
∆φd3V = −4πG

∫

B(R)
ρ d3V .

Since ρ is non-negative, we conclude that ρ ≡ 0. Equivalently, for isolated
systems with compact sources, Newtonian gravity cannot be screened away on
open sets extending to large distances.

The striking discovery of Carlotto and Schoen is, that such a screening is
possible in Einsteinian gravity.

The Newtonian argument above fails if matter with negative density is al-
lowed. It should therefore be emphasised that the Carlotto-Schoen construction
is done by manipulating vacuum initial data, without involvement of matter
fields.

Asymptotic flatness

Since the choice of decay rate of the metric towards the flat one plays an essential
role in the Carlotto-Schoen construction, for the convenience of the reader we
review the relevant definitions.

Initial data for general relativistic isolated systems are typically modelled
by asymptotically flat data with vanishing cosmological constant Λ. Actually,
astrophysical observations indicate that Λ is positive. However, for the purpose
of observing nearby stars, or for our stellar system, the corrections arising from
Λ are negligible, they only become important at cosmological scales.
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The class of asymptotically flat systems should obviously include the Schwarzschild
black holes. In those, on the usual slicing by t = const hypersurfaces it holds
that Kij ≡ 0 and

gij =
(
1 +

m

2r

)4
δij +O(r−2) , (3.6.2)

in spacetime dimension four, or

gij =
(
1 +

m

2rn−2

) 4
n−2

δij +O(r−(n−1)) , (3.6.3)

in general spacetime dimension n + 1. Here δij denotes the Euclidean metric
in manifestly flat coordinates. The asymptotics (3.6.2) is often referred to as
Schwarzschildean, and the parameter m is called the ADM mass of the metric.
Now, one can obtain initial data with non-vanishing total momentum by taking
Lorentz-transformed slices in the Schwarzschild spacetime. This leads to initial
data sets satisfying

∂i1 · · · ∂iℓ(gij − δij) = O(r−α−ℓ) , (3.6.4)

∂i1 · · · ∂ikKij = O(r−α−k−1) , (3.6.5)

with α = n − 2, for any k, ℓ ∈ N. Metrics g satisfying (3.6.4) will be called
asymptotically Euclidean.

The flexibility of choosing α ∈ (0, n − 2) in the definition of asymptotic
flatness (3.6.4)-(3.6.5), as well as k, ℓ smaller than some threshold, is necessary
in Theorem 3.6.1. Indeed, the new initial data constructed there are not expected
to satisfy (3.6.4) with α = n− 2. It would be of interest to settle the question,
whether or not this is really case.

There does not appear to be any justification for the Schwarzschildean
threshold α = n − 2 other than historical. On the other hand, the thresh-
old

α = (n − 2)/2 (3.6.6)

appears naturally as the optimal threshold for a well-defined total energy-
momentum of the initial data set. This has been first discussed in [116–118, 192],
compare [31].

Time-symmetric initial data and the Riemannian problem

Recall that initial data are called time-symmetric when Kij ≡ 0. In this case,
and assuming vacuum, the vector constraint equation is trivially satisfied, while
the scalar constraint equation becomes the requirement that (S , g) has constant
scalar curvature R:

R = 2Λ . (3.6.7)

In particular (S , g) should be scalar-flat when the cosmological constant Λ
vanishes. So all statements about vacuum initial data translate immediately
into statements concerning scalar-flat Riemannian manifolds. For example, the
following statement is a special case of Theorem 3.6.1:
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Theorem 3.6.2 (Carlotto & Schoen) Given a scalar-flat asymptotically Euclidean
metric g there exist cones and scalar-flat asymptotically Euclidean metrics which
coincide with g inside of the cones and are flat outside slightly larger cones.

This theorem was certainly one of the motivations for the proof of Theo-
rem 3.6.1. Indeed, the question of existence of non-trivial, scalar-flat, asymptot-
ically flat metrics ĝ which are exactly flat in a half-space arises when studying
complete, non-compact minimal hypersurfaces. Indeed, if ĝ is such a metric,
then all hyperplanes lying in the flat half-space minimize area under compactly
supported deformations which do not extend into the non-flat region. So The-
orem 3.6.2 shows that such metrics ĝ actually exist. This should be contrasted
with the following beautiful result of Chodosh and Eichmair [83], which shows
that minimality under all compactly supported perturbations implies flatness:

Theorem 3.6.3 (Chodosh, Eichmair) The only asymptotically Euclidean three-
dimensional manifold with non-negative scalar curvature that contains a com-
plete non-compact embedded surface S which is a (component of the) boundary
of some properly embedded full-dimensional submanifold of (M,g) and is area-
minimizing under compactly supported deformations is flat R3, and S is a flat
plane.

The above was preceded by a related rigidity result of Carlotto [82]:

Theorem 3.6.4 (Carlotto) Let (M,g) be a complete, three-dimensional, asymp-
totically Schwarzschildean Riemannian manifold with non-negative scalar cur-
vature. If M contains a complete, properly embedded, stable minimal surface
S, then (M,g) is the Euclidean space and S is a flat plane.

Such results immediately imply non-compactness for sequences of solutions
of the Plateau problem with a diverging sequence of boundaries. We note that
compactness results in this spirit play a key role in the Schoen & Yau proof
of the positive energy theorem. One could likewise imagine that convergence
of such sequences of solutions of the Plateau problem could provide a tool to
study stationary black hole solutions, but no arguments in such a spirit have
been successfully implemented so far.

3.6.1 Localised scalar curvature

It is an immediate consequence of the positive energy theorem that, for complete
asymptotically Euclidean manifolds with non-negative scalar curvature,

curvature cannot be localised in a compact set.

In other words, a flat region cannot enclose a non-flat one. A similar statement
applies for general relativistic initial data sets satisfying the dominant energy
condition. Indeed a metric which is flat outside of a compact set would have
zero total mass and hence would be flat everywhere by the rigidity-part of the
Positive Energy Theorem



152 CHAPTER 3. THE CONSTRAINT EQUATIONS

One would then like to know how much flatness can a non-trivial initial
data set carry? This question provided another motivation for Theorem 3.6.1,
which shows that non-flatness can be localised within cones.

A previous family of non-trivial asymptotically Euclidean scalar-flat metrics
containing flat regions is provided by the quasi-spherical metrics of Bartnik [36].
In Bartnik’s examples flatness can be localised within balls.

In [84] it is noticed that non-flat regions cannot be sandwiched between
parallel planes. This follows immediately from the formula for ADM mass,
due to Beig [42] (compare [22, 28, 116, 233]),

m = lim
R→∞

1

16π

∫

r=R
Gijx

injdS , (3.6.8)

where Gij := Rij − 1
2Rgij is the Einstein tensor, and xi is the coordinate vector

in the asymptotically Euclidean coordinate system; note that theR term usually
decays fast enough so that it can be dropped in this equation. Indeed, (3.6.8)
together with a non-zero mass and asymptotic flatness imply that the region
where the Ricci tensor has to have non-trivial angular extent as one recedes to
infinity. But this is not the case for a region sandwiched between two parallel
planes.

Time evolution

Consider a non-trivial asymptotically flat Carlotto-Schoen initial data set, at
t = 0, with the “non-Minkowskianity” localised in a cone with vertex at ~a, axis~i
and aperture θ > 0, which we will denote by C(~a,~i, θ). It follows from [63] that
the associated vacuum spacetime will exist globally when the data are small
enough, in a norm compatible with the Carlotto-Schoen setting.

One can think of the associated vacuum spacetime as describing a gravita-
tional wave localised, at t = 0, in an angular sector of opening angle 2θ and
direction defined by the vector ~i. We have seen that θ can be made as small
as desired but cannot be zero, so that all such solutions must have non-trivial
angular extent.

It is of interest to enquire how Carlotto-Schoen solutions evolve in time. In
what follows we assume that θ < π/2. Standard results on Einstein equations
show that the boundary enclosing the non-trivial region travels outwards no
faster than the speed of light c. This, together with elementary geometry shows
that at time t the spacetime metric will certainly be flat outside of a cone

C
(
~a− c

sin(θ)
t~i,~i, θ

)
. (3.6.9)

The reader will note that the tip of the cone (3.6.9) travels faster than light,
which is an artefact of the rough estimate. A more careful inspection near the
tip of the cone shows that the domain of dependence at time t consists of a
cone of aperture θ spanned tangentally on the boundary of a sphere of radius t
as shown in Figure 3.6.2. In any case the angular opening of the wave remains
constant on slices of constant time. However, the wave is likely to spread and
meet all generators of null infinity, but not before the intersection of S with
the light-cone of the origin (t = 0, ~x = 0) is reached.
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t = 0 −→ t = 1

Figure 3.6.2: Left graph: The cone in the figure represents the exterior bound-
ary of Ω at t = 0, with initial data Minkowskian below the graph. Right graph:
At t = 1, the evolved spacetime metric is Minkowskian below the graph. The
three-dimensional picture is obtained by rotating the graphs around the vertical
axis.

Many-body problem

Given two initial data sets (Ωa, ga,Ka), a = 1, 2, the question arises, whether
one can find a new initial data set which contains both? An answer to this is
not known in full generality. However, the Carlotto-Schoen construction gives
a positive answer to this question when the original initial data are part of
asymptotically flat initial data (Sa, ga,Ka), provided that the sets Ωa ⊂ Sa

can be enclosed in cones which do not intersect after “small angular fattenings”.
Indeed, one can then apply the deformation of Theorem 3.6.1 to each original
data set to new initial data (Sa, ĝa, K̂a) which coincide with the original ones
on Ωa and are Minkowskian outside the fattened cones. But then one can
superpose the resulting initial data sets in the Minkowskian region, as shown
in Figure 3.6.3.

The construction can be iterated to produce many-body initial data sets.
An alternative gluing construction with bounded sets Ωa ⊂ Sa has been

previously carried-out in [129, 130].

3.6.2 Elements of the proof

As already mentioned, the main idea of the proof of Theorem 3.6.1 is essentially
identical to that of the Corvino-Schoen gluing described in Section 3.5.3. There
is, however, a significant amount of new work involved.

As such, the first extraordinary insight is to imagine that the result can
be true at all when Ω is the difference of two cones with different apertures,
smoothed out at the vertex, see Figure 3.6.4. This is the geometry that we are
going to assume in the remainder of this section.

Next, all generalisations of [161, 165] listed in Section 3.5.8 involve gluing
across a compact boundary. In the current case ∂Ω is not compact, and so some
analytical aspects have to be revisited. In addition to weights governing decay
at ∂Ω, radial weights need to be introduced in order to account for the infinite
extent of the cone.
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(M1, g1, k1) (M2, g2, k2)

(M,g, k)

•
O

Figure 3.6.3: Theorem 3.6.1 allows to merge an assigned collection of data into
an exotic N−body solution of the Einstein constraint equations. From [84],
with kind permission of the authors.

(S , g, k)

•θ2 θ1
ΩI

Ω
ΩO

Figure 3.6.4: Regularized cones and the gluing region Ω, from [84] with kind
permission of the authors. ΩI ⊂ Ω is the interior cone, ΩO is the region outside
the larger cone.

Let d(p) denote the distance from p ∈ Ω to ∂Ω. Let θ1 < θ2 be the respective
apertures of the inner and outer cones and let θ denote the angle away from
the axis of the cones. A substantial part of the paper consists in establishing
inequalities in the spirit of (3.5.33) and (3.5.37) with ϕ = r and with weight
functions ψ which are smooth everywhere, behave like dσ for small d, and are
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equal to
ψ = rn/2−q(θ − θ1)σ(θ2 − θ)σ , (3.6.10)

for large distances, with q, σ > 0. More precisely, let σ > 0 be large enough,
and assume that 0 < q < (n− 2)/2, with q 6= (n− 4)/2 for n ≥ 5. Suppose that
g is the Euclidean metric and let Ω be as above. Let φ be a positive function
which for large distances equals θ − θ1 and θ2 − θ close to the inner and outer
cones, respectively, and which behaves as the distance from ∂Ω otherwise. Then
there exists a constant C such that for all differentiable functions u and vector
fields X, both with bounded support in Ω (no conditions at ∂Ω), the following
inequalities are true:

∫

Ω
|u|2r−n+2qφσ ≤ C

∫

Ω
|∇u|2r2−n+2qφσ , (3.6.11)

∫

Ω
|Y |2r−n+2qφσ ≤ C

∫

Ω
|S(Y )|2r2−n+2qφσ . (3.6.12)

A clever lemma relying on the coarea formula, ([84, Lemma 4.1]), reduces
the proof of the inequalities (3.6.11)-(3.6.12) to the case φ ≡ 1.

A key point in the proof of (3.6.12) is the inequality established in [84,
Proposition 4.5] (also known in [84] as “Basic Estimate II”), which takes the
form ∫

Ω
|∇Y |2r2−n+2qφσ ≤ C

∫

Ω
|S(Y )|2r2−n+2qφσ . (3.6.13)

The justification of (3.6.13) requires considerable ingenuity.
It is simple to show that (3.6.11)-(3.6.12) continue to hold for asymptotically

Euclidean metrics which are close enough to the Euclidean one, with uniform
constants. As explained in Section 3.5.4, these inequalities provide the stepping
stones for the analysis of the linear equations.

Note that the radial weights in (3.6.11) guarantee that affine functions are
not in the space obtained by completing C1

c (Ω) with respect to the norm defined
by the right-hand side. A similar remark concerning vectors with components
which are affine functions applies in the context of (3.6.12). This guarantees
that neither KIDs, nor asymptotic KIDs, interfere with the construction, which
would otherwise have introduced a serious obstruction to the argument.

Once these decoupled functional inequalities are gained, a perturbation ar-
gument ensures coercivity of the adjoint linearised constraint operator (in suit-
able doubly-weighted Sobolev spaces). This allows one to use direct meth-
ods to obtain existence of a unique global minimum for the functional whose
Euler-Lagrange equations are the linearized constraints. We refer the reader to
Propositions 4.6 and 4.7 of [84] for precise statements.

The argument of [84] continues with a Picard iteration scheme, which allows
one to use the analysis of the linear operator to obtain solutions to the nonlinear
problem under a smallness condition. This is not an off-the-shelf argument:
it involves some delicate choices of functional spaces for the iteration, where
one takes a combination of weighted-Sobolev and weighted-Schauder norms.
Alternatively one could use [131, Appendix G] at this stage of the proof, after
establishing somewhat different estimates, compare [135].
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To end the proof it suffices to start moving the cones to larger and larger
distances in the asymptotic region, so that the metric on Ω approaches the flat
one. When the tips of the cones are far enough the smallness conditions needed
to make the whole machinery work are met, and Theorem 3.6.1 follows.

An interesting, and somehow surprising, aspect of the result is the fact
that no matter how small the cone angles are, the ADM energy-momentum of
the glued data provides an arbitrarily good approximation of the ADM energy-
momentum of the given data when the vertex of the cones is chosen far enough in
the asymptotic region. This is proven in Section 5.6 of [84] and is then exploited
in the construction of N -body Carlotto-Schoen solutions, already presented in
Section 3.6.1. This is the object of Section 6 of their paper.

3.6.3 Beyond Theorem 3.6.1

The results of Carlotto and Schoen have meanwhile been extended in a few
directions.

In the initial-data context, gluings in the same spirit have been done in [136]
for asymptotically hyperbolic initial data sets. In terms of the half-space model
for hyperbolic space, the analogues of cones are half-annuli extending to the
conformal boundary at infinity. As a result one obtains e.g. non-trivial constant
scalar curvature metrics which are exactly hyperbolic in half-balls centered at
the conformal boundary. We provide more details in Section 3.6.4 below.

In a Riemannian asymptotically Euclidean setting, withKij ≡ 0 so that only
the scalar curvature matters, the following generalisations are straightforward:

1. Rather than gluing an asymptotically Euclidean metric to a flat one, any
two asymptotically metrics g1 and g2 are glued together.

2. In the spirit of [187], the gluings at zero-scalar curvature can be replaced
by gluings where the scalar curvature of the final metric equals

χR(g1) + (1− χ)R(g2)

where, as before, χ is a cut-off function varying between zero and one in
the gluing region. Thus, the scalar curvature of the final metric is sand-
wiched between the scalar curvatures of the original ones. This reduces of
course to a zero-scalar-curvature gluing if both g1 and g2 are scalar-flat.

3. The geometry of the gluing region can be allowed to be somewhat more
general than the interface between two cones [135].

A few more details about this can be found in Section 3.6.5 below.

3.6.4 Asymptotically hyperbolic gluings

Let us outline here one of the gluing constructions in [136], the reader is re-
ferred to that reference for some more general “exotic hyperbolic gluings”. The
underlying manifold is taken to be the “half-space model” of hyperbolic space:

H = {(z, θ)| z > 0, θ ∈ Rn−1} ⊂ Rn .
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One wishes to glue together metrics asymptotic to each other while interpolating
their respective scalar curvatures. The first metric is assumed to take the form,
in suitable local coordinates,

g =
1

z2
((1 +O(z))dz2 + hAB(z, θ

C)dθAdθB︸ ︷︷ ︸
=:h(z)

+O(z)Adz dθ
A) , (3.6.14)

where h(z) is a continuous family of Riemannian metrics on Rn−1.
We define

Bλ := {z > 0 ,
∑

i

(θi)2

︸ ︷︷ ︸
=:|θ|2

+z2 < λ2} , Aǫ,λ = Bλ \Bǫ .

The gluing construction will take place in the region

Ω = A1,4 . (3.6.15)

Let ĝ be a second metric on B5 which is close to g in Ck+4
1,z−σ(A1,4). Here, for

φ and ϕ — smooth strictly positive functions on M, and for k ∈ N, we define
Ckφ,ϕ to be the space of Ck functions or tensor fields for which the norm

‖u‖Ck
φ,ϕ(g)

= supx∈M
∑k

i=0 ‖ϕφi∇(i)u(x)‖g

is finite.
Let χ be a smooth non-negative function on H , equal to 1 on H \ B3,

equal to zero on B2, and positive on H \B2. We set

gχ := χĝ + (1− χ)g . (3.6.16)

In [136] a gluing-by-interpolation of the constraint equations is carried out. In
the time-symmetric case, the main interest is that of constant scalar curvature
metrics, which then continue to have constant scalar curvature, or for metrics
with positive scalar curvature, which then remains positive. Since the current
problem is related to the construction of initial data sets for Einstein equations,
in general-relativistic matter models such as Vlasov or dust, an interpolation of
scalar curvature is of direct interest.

One has [136]:

Theorem 3.6.5 Let n/2 < k < ∞, b ∈ [0, n+1
2 ], σ > n−1

2 + b, suppose that

g − g̊ ∈ Ck+4
1,z−1. For all ĝ close enough to g in Ck+4

1,z−σ(A1,4) there exists a

two-covariant symmetric tensor field h in Ck+2−⌊n/2⌋(H ), vanishing outside
of A1,4, such that the tensor field gχ + h defines an asymptotically hyperbolic
metric satisfying

R(gχ + h) = χR(ĝ) + (1− χ)R(g) . (3.6.17)

A similar result is established in [136] for the full constraint equations.
The proof involves “triply weighted Sobolev spaces” on A1,4 with

ϕ = x/ρ , ψ = xazbρc ,
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where a and c are chosen large as determined by k, n and σ. Here z is the
coordinate of (3.6.14), the function x is taken to be any smooth function on Ω
which equals the z2g̊-distance to

{|θ|2 + z2 = 1} ∪ {|θ|2 + z2 = 4}

near this last set, while ρ :=
√
x2 + z2. The heart of the proof is the establishing

of the relevant Poincaré and Korn inequalities. Once this is done, the scheme
of the proof follows closely the arguments described so far.

One would like to have a version of Theorem 3.6.5 with weights which expo-
nentially decay as x tends to zero. However, the triply-weighted Korn inequality
needed for this has not been established so far.

3.6.5 Asymptotically Euclidean scalar curvature gluings by in-
terpolation

We finish this séminaire by describing a straightforward generalisation of The-
orem 3.6.1 in the time-symmetric asymptotically Euclidean setting.

Let S(p,R) ⊂ Rn denote a sphere of radius R centred at p. Let Ω ⊂ Rn be a
domain with smooth boundary (thus Ω is open and connected, and ∂Ω = Ω \Ω
is a smooth manifold). We further assume that ∂Ω has exactly two connected
components, and that there exists R0 ≥ 1 such that

ΩS := Ω ∩ S(0, R0) (3.6.18)

also has exactly two connected components, with

Ω \B(0, R0) = {λp | p ∈ ΩS , λ ≥ 1} . (3.6.19)

The regularised differences of cones in the Carlotto-Schoen gluings provide
examples of such sets. Another example is displayed in Figure 3.6.5. Since the
construction can be iterated, the requirement that Ω be connected is irrelevant.

We let x : Ω → R be any smooth defining function for ∂Ω which has been
chosen so that

x(λp) = λx(p) for λ ≥ 1 and for p, λp ∈ Ω \B(0, R0). (3.6.20)

Equivalently, for p ∈ ΩS and λ larger than one, we require x(λp) = λxS(p),
where xS is a defining function for ∂ΩS within S(0, R0).

We will denote by r a smooth positive function which coincides with |~x| for
|~x| ≥ 1.

By definition of Ω there exists a constant c such that the distance function
d(p) from a point p ∈ Ω to ∂Ω is smooth for all d(p) ≤ cr(p). The function x
can be chosen to be equal to d in that region.

For β, s, µ ∈ R we define

ϕ =
(x
r

)2
r =

x2

r
, ψ = r−n/2−β

(x
r

)σ
e−sr/x =: rµxσe−sr/x (3.6.21)

on Ω. One can show that the weighted Poincaré ineqality (3.5.33) holds with
these weights, modulo a supplementary integral of |u|2 on a compact subset
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Figure 3.6.5: A possible set Ω, located between the two surfaces. The glued
metric coincides with g1 above the higher surface, coincides with g2 below the
lower surface, and is scalar-flat if both g1 and g2 were.

of Ω, for all tensor fields u compactly supported in Ω as long as s 6= 0 and
β ≡ σ + µ + n/2 6= 0. The supplementary integral does not lead to any new
difficulties in the proof, which proceeds as described above.

In order to carry out the scalar-curvature interpolation, recall that ∂Ω has
exactly two connected components. We denote by χ a smooth function with
the following properties:

1. 0 ≤ χ ≤ 1;

2. χ equals one in a neighborhood of one of the components and equals zero
in a neighborhood of the other component;

3. on Ω \ B(0, R0) the function χ is a function of x/r wherever it is not
constant.

The metric gχ is then defined as in (3.6.16).
Letting Ω, x and r be as just described, with ψ, ϕ given by (3.6.21), in [135]

the following is proved:

Theorem 3.6.6 Let ǫ > 0, k > n/2, β ∈ [−(n − 2), 0), and β̃ < min(β,−ǫ).
Suppose that g − δ ∈ Ck+4

r,rǫ ∩ C∞, where δ is the Euclidean metric. For all real
numbers σ and s > 0 and

all smooth metrics ĝ close enough to g in Ck+4

r,r−β̃
(Ω)

there exists on Ω a unique smooth two-covariant symmetric tensor field h such
that the metric gχ + h solves

R [gχ + h] = χR(ĝ) + (1− χ)R(g) . (3.6.22)

The tensor field h vanishes at ∂Ω and can be C∞-extended by zero across ∂Ω,
leading to a smooth asymptotically Euclidean metric gχ + h.
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There is little doubt that there is an equivalent of Theorem 3.6.6 in the full
initial-data context. In fact, the only missing element of the proof at the time
of writing of this review is a doubly-weighted Korn inequality with weights as
in (3.6.21).

The smallness assumptions needed in the theorem can be realised by moving
the set Ω to large distances, as in the Carlotto-Schoen theorem. When Ω does
not meet S(0, 1), an alternative is provided by “scaling Ω up” by a large factor.
This is equivalent to keeping Ω fixed and scaling-down the metrics from large to
smaller distances. It should be clear that the metrics will approach each other,
as well as the flat metric, when the scaling factor becomes large.
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Appendix A

Introduction to
pseudo-Riemannian geometry

A.1 Manifolds

It is convenient to start with the definition of a manifold:

Definition A.1.1 An n–dimensional manifold is a set M equipped with the
following:

1. topology: a “connected Hausdorff paracompact topological space” (think
of nicely looking subsets of R1+n, like spheres, hyperboloids, and such),
together with

2. local charts: a collection of coordinate patches (U , xi) covering M , where
U is an open subset of M , with the functions xi : U → Rn being contin-
uous. One further requires that the maps

M ⊃ U ∋ p 7→ (x1(p), . . . , xn(p)) ∈ V ⊂ Rn

are homeomorphisms.

3. compatibility: given two overlapping coordinate patches, (U , xi) and (Ũ , x̃i),
with corresponding sets V , Ṽ ⊂ Rn, the maps x̃j 7→ xi(x̃j) are smooth
diffeomorphisms wherever defined: this means that they are bijections dif-
ferentiable as many times as one wishes, with

det

[
∂xi

∂x̃j

]
nowhere vanishing .

Definition of differentiability: A function on M is smooth if it is smooth when
expressed in terms of local coordinates. Similarly for tensors.

Examples:

1. Rn with the usual topology, one single global coordinate patch.
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2. A sphere: use stereographic projection to obtain two overlapping coor-
dinate systems (or use spherical angles, but then one must avoid borderline
angles, so they don’t cover the whole manifold!).

3. We will use several coordinate patches (in fact, five), to describe the
Schwarzschild black hole, though one spherical coordinate system would suffice.

4. Let f : Rn → R, and define N := f−1(0). If ∇f has no zeros on
N , then every connected component of N is a smooth (n − 1)–dimensional
manifold. This construction leads to a plethora of examples. For example, if
f =

√
(x1)2 + . . .+ (xn)2 −R, with R > 0, then N is a sphere of radius R.

In this context a useful example is provided by the function f = t2 − x2 on
R2: its zero-level-set is the light-cone t = ±x, which is a manifold except at the
origin; note that ∇f = 0 there, which shows that the criterion is sharp.

A.2 Scalar functions

Let M be an n-dimensional manifold. Since manifolds are defined using co-
ordinate charts, we need to understand how things behave under coordinate
changes. For instance, under a change of coordinates xi → yj(xi), to a function
f(x) we can associate a new function f̄(y), using the rule

f̄(y) = f(x(y)) ⇐⇒ f(x) = f̄(y(x)) .

In general relativity it is a common abuse of notation to write the same symbol f
for what we wrote f̄ , when we think that this is the same function but expressed
in a different coordinate system. We then say that a real- or complex-valued f
is a scalar function when, under a change of coordinates x→ y(x), the function
f transforms as f → f(x(y)).

In this section, to make things clearer, we will write f̄ for f(x(y)) even when
f is a scalar, but this will almost never be done in the remainder of these notes.
For example we will systematically use the same symbol gµν for the metric
components, whatever the coordinate system used.

A.3 Vector fields

Physicists often think of vector fields in terms of coordinate systems: a vector
field X is an object which in a coordinate system {xi} is represented by a
collection of functions Xi. In a new coordinate system {yj} the field X is
represented by a new set of functions:

Xi(x)→ Xj(y) := Xj(x(y))
∂yi

∂xj
(x(y)) . (A.3.1)

(The summation convention is used throughout, so that the index j has to be
summed over.)

The notion of a vector field finds its roots in the notion of the tangent to a
curve, say s→ γ(s). If we use local coordinates to write γ(s) as (γ1(s), γ2(s), . . . , γn(s)),
the tangent to that curve at the point γ(s) is defined as the set of numbers

(γ̇1(s), γ̇2(s), . . . , γ̇n(s)) .
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Consider, then, a curve γ(s) given in a coordinate system xi and let us perform
a change of coordinates xi → yj(xi). In the new coordinates yj the curve γ is
represented by the functions yj(γi(s)), with new tangent

dyj

ds
(y(γ(s))) =

∂yj

∂xi
(γ(s))γ̇i(s) .

This motivates (A.3.1).

In modern differential geometry a different approach is taken: one identifies
vector fields with homogeneous first order differential operators acting on real
valued functions f :M → R. In local coordinates {xi} a vector field X will be
written as Xi∂i, where the X

i’s are the “physicists’s functions” just mentioned.
This means that the action of X on functions is given by the formula

X(f) := Xi∂if (A.3.2)

(recall that ∂i is the partial derivative with respect to the coordinate xi). Con-
versely, given some abstract first order homogeneous derivative operator X, the
(perhaps locally defined) functions Xi in (A.3.2) can be found by acting on the
coordinate functions:

X(xi) = Xi . (A.3.3)

One justification for the differential operator approach is the fact that the
tangent γ̇ to a curve γ can be calculated — in a way independent of the coor-
dinate system {xi} chosen to represent γ — using the equation

γ̇(f) :=
d(f ◦ γ)
dt

.

Indeed, if γ is represented as γ(t) = {xi = γi(t)} within a coordinate patch,
then we have

d(f ◦ γ)(t)
dt

=
d(f(γ(t)))

dt
=
dγi(t)

dt
(∂if)(γ(t)) ,

recovering the previous coordinate formula γ̇ = (dγi/dt).

An even better justification is that the transformation rule (A.3.1) becomes
implicit in the formalism. Indeed, consider a (scalar) function f , so that the
differential operator X acts on f by differentiation:

X(f)(x) :=
∑

i

Xi∂f(x)

∂xi
. (A.3.4)

If we make a coordinate change so that

xj = xj(yk) ⇐⇒ yk = yk(xj) ,

keeping in mind that

f̄(y) = f(x(y)) ⇐⇒ f(x) = f̄(y(x)) ,
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then

X(f)(x) :=
∑

i

Xi(x)
∂f(x)

∂xi

=
∑

i

Xi(x)
∂f̄(y(x))

∂xi

=
∑

i,k

Xi(x)
∂f̄(y(x))

∂yk
∂yk

∂xi
(x)

=
∑

k

X̄k(y(x))
∂f̄ (y(x))

∂yk

=

(∑

k

X̄k ∂f̄

∂yk

)
(y(x)) ,

with X̄k given by the right-hand side of (A.3.1). So

X(f) is a scalar iff the coefficients Xi satisfy the transformation law of a vector.

Exercice A.3.1 Check that this is a necessary and sufficient condition.

One often uses the middle formula in the above calculation in the form

∂

∂xi
=
∂yk

∂xi
∂

∂yk
. (A.3.5)

Note that the tangent to the curve s→ (s, x2, x3, . . . xn), where (x2, x3, . . . xn)
are constants, is identified with the differential operator

∂1 ≡
∂

∂x1
.

Similarly the tangent to the curve s → (x1, s, x3, . . . xn), where (x1, x3, . . . xn)
are constants, is identified with

∂2 ≡
∂

∂x2
,

etc. Thus, γ̇ is identified with

γ̇(s) = γ̇i∂i .

At any given point p ∈ M the set of vectors forms a vector space, denoted
by TpM . The collection of all the tangent spaces is called the tangent bundle
to M , denoted by TM .
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A.3.1 Lie bracket

Vector fields can be added and multiplied by functions in the obvious way.
Another useful operation is the Lie bracket, or commutator, defined as

[X,Y ](f) := X(Y (f))− Y (X(f)) . (A.3.6)

One needs to check that this does indeed define a new vector field: the simplest
way is to use local coordinates,

[X,Y ](f) = Xj∂j(Y
i∂if)− Y j∂j(X

i∂if)

= Xj(∂j(Y
i)∂if + Y i∂j∂if)− Y j(∂j(X

i)∂if +Xi∂j∂if)

= (Xj∂jY
i − Y j∂jX

i)∂if +XjY i∂j∂if − Y jXi∂j∂if︸ ︷︷ ︸
=XjY i (∂j∂if − ∂i∂jf)︸ ︷︷ ︸

0

= (Xj∂jY
i − Y j∂jX

i)∂if , (A.3.7)

which is indeed a homogeneous first order differential operator. Here we have
used the symmetry of the matrix of second derivatives of twice differentiable
functions. We note that the last line of (A.3.7) also gives an explicit coordinate
expression for the commutator of two differentiable vector fields.

The Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 .

Indeed, if we write SX,Y,Z for a cyclic sum, then

([X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]])(f) = SX,Y,Z [X, [Y,Z]](f)

= SX,Y,Z {X([Y,Z](f)) − [Y,Z](X(f))}
= SX,Y,Z {X(Y (Z(f)))−X(Z(Y (f)))− Y (Z(X(f))) + Z(Y (X(f)))} .

The third term is a cyclic permutation of the first, and the fourth a cyclic
permutation of the second, so the sum gives zero.

A.4 Covectors

Covectors are maps from the space of vectors to functions which are linear under
addition and multiplication by functions.

The basic object is the coordinate differential dxi, defined by its action on
vectors as follows:

dxi(Xj∂j) := Xi . (A.4.1)

Equivalently,

dxi(∂j) := δij :=

{
1, i = j;
0, otherwise.

The dxi’s form a basis for the space of covectors: indeed, let ϕ be a linear map
on the space of vectors, then

ϕ( X︸︷︷︸
Xi∂i

) = ϕ(Xi∂i) =︸︷︷︸
linearity

Xi ϕ(∂i)︸ ︷︷ ︸
call this ϕi

= ϕidx
i(X) =︸︷︷︸

def. of sum of functions

(ϕidx
i)(X) ,
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hence

ϕ = ϕidx
i ,

and every ϕ can indeed be written as a linear combination of the dxi’s. Under
a change of coordinates we have

ϕ̄iX̄
i = ϕ̄i

∂yi

∂xk
Xk = ϕkX

k ,

leading to the following transformation law for components of covectors:

ϕk = ϕ̄i
∂yi

∂xk
. (A.4.2)

Given a scalar f , we define its differential df as

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn .

With this definition, dxi is the differential of the coordinate function xi.

As presented above, the differential of a function is a covector by definition.
As an exercice, you should check directly that the collection of functions ϕi :=
∂if satisfies the transformation rule (A.4.2).

We have a formula which is often used in calculations

dyj =
∂yj

∂xk
dxk .

Incidentally: An elegant approach to the definition of differentials proceeds as
follows: Given any function f , we define:

df(X) := X(f) . (A.4.3)

(Recall that here we are viewing a vector field X as a differential operator on
functions, defined by (A.3.4).) The map X 7→ df(X) is linear under addition of
vectors, and multiplication of vectors by numbers: if λ, µ are real numbers, and X
and Y are vector fields, then

df(λX + µY ) =︸︷︷︸
by definition (A.4.3)

(λX + µY )(f)

=︸︷︷︸
by definition (A.3.4)

λX i∂if + µY i∂if

=︸︷︷︸
by definition (A.4.3)

λdf(X) + µdf(Y ) .

Applying (A.4.3) to the function f = xi we obtain

dxi(∂j) =
∂xi

∂xj
= δij ,

recovering (A.4.1). 2
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Example A.4.2 Let (ρ, ϕ) be polar coordinates on R2, thus x = ρ cosϕ, y =
ρ sinϕ, and then

dx = d(ρ cosϕ) = cosϕdρ− ρ sinϕdϕ ,
dy = d(ρ sinϕ) = sinϕdρ+ ρ cosϕdϕ .

At any given point p ∈M , the set of covectors forms a vector space, denoted
by T ∗

pM . The collection of all the tangent spaces is called the cotangent bundle
to M , denoted by T ∗M .

Summarising, covectors are dual to vectors. It is convenient to define

dxi(X) := Xi ,

where Xi is as in (A.3.2). With this definition the (locally defined) bases
{∂i}i=1,...,dimM of TM and {dxj}i=1,...,dimM of T ∗M are dual to each other:

〈dxi, ∂j〉 := dxi(∂j) = δij ,

where δij is the Kronecker delta, equal to one when i = j and zero otherwise.

A.5 Bilinear maps, two-covariant tensors

A map is said to be multi-linear if it is linear in every entry; e.g. g is bilinear if

g(aX + bY, Z) = ag(X,Z) + bg(Y,Z) ,

and
g(X, aZ + bW ) = ag(X,Z) + bg(X,W ) .

Here, as elsewhere when talking about tensors, bilinearity is meant with respect
to addition and to multiplication by functions.

A map g which is bilinear on the space of vectors can be represented by a
matrix with two indices down:

g(X,Y ) = g(Xi∂i, Y
j∂j) = XiY j g(∂i, ∂j)︸ ︷︷ ︸

=:gij

= gijX
iY j = gijdx

i(X)dxj(Y ) .

We say that g is a covariant tensor of valence two.

We say that g is symmetric if g(X,Y ) = g(Y,X) for all X, Y ; equivalently,
gij = gji.

A symmetric bilinear tensor field is said to be non-degenerate if det gij has
no zeros.

By Sylvester’s inertia theorem, there exists a basis θi of the space of covec-
tors so that a symmetric bilinear map g can be written as

g(X,Y ) = −θ1(X)θ1(Y )−. . .−θs(X)θs(Y )+θs+1(X)θs+1(Y )+. . .+θs+r(X)θs+r(Y )

(s, r) is called the signature of g; in geometry, unless specifically said otherwise,
one always assumes that the signature does not change from point to point.
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If r = n, in dimension n, then g is said to be a Riemannian metric tensor.

A canonical example is provided by the flat Riemannian metric on Rn,

g = (dx1)2 + . . .+ (dxn)2 .

By definition, a Riemannian metric is a field of symmetric two-covariant
tensors with signature (+, . . . ,+) and with det gij without zeros.

Incidentally: A Riemannian metric can be used to define the length of curves:
if γ : [a, b] ∋ s→ γ(s), then

ℓg(γ) =

∫ b

a

√
g(γ̇, γ̇)ds .

One can then define the distance between points by minimizing the length of the
curves connecting them. 2

If s = 1 and r = N − 1, in dimension N , then g is said to be a Lorentzian
metric tensor.

For example, the Minkowski metric on R1+n is

η = (dx0)2 − (dx1)2 − . . .− (dxn)2 .

A.6 Tensor products

If ϕ and θ are covectors we can define a bilinear map using the formula

(ϕ⊗ θ)(X,Y ) = ϕ(X)θ(Y ) . (A.6.1)

For example

(dx1 ⊗ dx2)(X,Y ) = X1Y 2 .

Using this notation we have

g(X,Y ) = g(Xi∂i, Y
j∂j) = g(∂j , ∂j)︸ ︷︷ ︸

=:gij

Xi
︸︷︷︸
dxi(X)

Y j
︸︷︷︸
dxj(Y )︸ ︷︷ ︸

(dxi⊗dxj(X,Y )

= (gijdx
i ⊗ dxj)(X,Y )

We will write dxidxj for the symmetric product,

dxidxj :=
1

2
(dxi ⊗ dxj + dxj ⊗ dxi) ,

and dxi ∧ dxj for twice the anti-symmetric one (compare Section A.15):

dxi ∧ dxj := dxi ⊗ dxj − dxj ⊗ dxi .

It should be clear how this generalises: the tensors dxi⊗ dxj ⊗ dxk, defined
as

(dxi ⊗ dxj ⊗ dxk)(X,Y,Z) = XiY jZk ,
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form a basis of three-linear maps on the space of vectors, which are objects of
the form

X = Xijkdx
i ⊗ dxj ⊗ dxk .

Here X is a called tensor of valence (0, 3). Each index transforms as for a
covector:

X = Xijkdx
i ⊗ dxj ⊗ dxk = Xijk

∂xi

∂ym
∂xj

∂yℓ
∂xk

∂yn
dym ⊗ dyℓ ⊗ dyn .

It is sometimes useful to think of vectors as linear maps on co-vectors, using
a formula which looks funny when first met: if θ is a covector, and X is a vector,
then

X(θ) := θ(X) .

So if θ = θidx
i and X = Xi∂i then

θ(X) = θiX
i = Xiθi = X(θ) .

It then makes sense to define e.g. ∂i ⊗ ∂j as a bilinear map on covectors:

(∂i ⊗ ∂j)(θ, ψ) := θiψj .

And one can define a map ∂i ⊗ dxj which is linear on forms in the first slot,
and linear in vectors in the second slot as

(∂i ⊗ dxj)(θ,X) := ∂i(θ)dx
j(X) = θiX

j . (A.6.2)

The ∂i ⊗ dxj ’s form the basis of the space of tensors of rank (1, 1):

T = T ij∂i ⊗ dxj .

Generally, a tensor of valence, or rank, (r, s) can be defined as an object
which has r vector indices and s covector indices, so that it transforms as

Si1...ir j1...js → Sm1...mr
ℓ1...ℓs

∂yi1

∂xm1
. . .

∂yir

∂xmr

∂xℓ1

∂yj1
. . .

∂xℓs

∂yjs

For example, if X = Xi∂i and Y = Y j∂j are vectors, then X⊗Y = XiY j∂i⊗∂j
forms a contravariant tensor of valence two.

Tensors of same valence can be added in the obvious way: e.g.

(A+B)(X,Y ) := A(X,Y ) +B(X,Y ) ⇐⇒ (A+B)ij = Aij +Bij .

Tensors can be multiplied by scalars: e.g.

(fA)(X,Y,Z) := fA(X,Y,Z) ⇐⇒ f(Aijk) := (fAijk) .

Finally, we have seen in (A.6.1) how to take tensor products for one-forms, and
in (A.6.2) how to take a tensor product of a vector and a one-form, but this
can also be done for higher order tensor; e.g., if S is of valence (a, b) and T is
a multilinear map of valence (c, d), then S ⊗ T is a multilinear map of valence
(a+ c, b+ d), defined as

(S ⊗ T )( θ, . . .︸ ︷︷ ︸
a covectors and b vectors

, ψ, . . .︸ ︷︷ ︸
c covectors and d vectors

) := S(θ, . . .)T (ψ, . . .) .
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A.6.1 Contractions

Given a tensor field Sij with one index down and one index up one can perform
the sum

Sii .

This defines a scalar, i.e., a function on the manifold. Indeed, using the trans-
formation rule

Sij → S̄ℓk = Sij
∂xj

∂yk
∂yℓ

∂xi
,

one finds

S̄ℓℓ = Sij
∂xj

∂yℓ
∂yℓ

∂xi︸ ︷︷ ︸
δji

= Sii ,

as desired.
One can similarly do contractions on higher valence tensors, e.g.

Si1i2...ir j1j2j3...js → Sℓi2...ir j1ℓj3...js .

After contraction, a tensor of rank (r + 1, s + 1) becomes of rank (r, s).

A.7 Raising and lowering of indices

Let g be a symmetric two-covariant tensor field on M , by definition such an
object is the assignment to each point p ∈ M of a bilinear map g(p) from
TpM × TpM to R, with the additional property

g(X,Y ) = g(Y,X) .

In this work the symbol g will be reserved to non-degenerate symmetric two-
covariant tensor fields. It is usual to simply write g for g(p), the point p being
implicitly understood. We will sometimes write gp for g(p) when referencing p
will be useful.

The usual Sylvester’s inertia theorem tells us that at each p the map g will
have a well defined signature; clearly this signature will be point-independent
on a connected manifold when g is non-degenerate. A pair (M,g) is said to be a
Riemannian manifold when the signature of g is (dimM, 0); equivalently, when
g is a positive definite bilinear form on every product TpM×TpM . A pair (M,g)
is said to be a Lorentzian manifold when the signature of g is (dimM − 1, 1).
One talks about pseudo-Riemannian manifolds whatever the signature of g,
as long as g is non-degenerate, but we will only encounter Riemannian and
Lorentzian metrics in this work.

Since g is non-degenerate it induces an isomorphism

♭ : TpM → T ∗
pM

by the formula

X♭(Y ) = g(X,Y ) .
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In local coordinates this gives

X♭ = gijX
idxj =: Xjdx

j . (A.7.1)

This last equality defines Xj — “the vector Xj with the index j lowered”:

Xi := gijX
j . (A.7.2)

The operation (A.7.2) is called the lowering of indices in the physics literature
and, again in the physics literature, one does not make a distinction between
the one-form X♭ and the vector X.

The inverse map will be denoted by ♯ and is called the raising of indices;
from (A.7.1) we obviously have

α♯ = gijαi∂j =: αi∂i ⇐⇒ dxi(α♯) = αi = gijαj ,

where gij is the matrix inverse to gij . For example,

(dxi)♯ = gik∂k .

Clearly gij , understood as the matrix of a bilinear form on T ∗
pM , has the same

signature as g, and can be used to define a scalar product g♯ on T ∗
p (M):

g♯(α, β) := g(α♯, β♯) ⇐⇒ g♯(dxi, dxj) = gij .

This last equality is justified as follows:

g♯(dxi, dxj) = g((dxi)♯, (dxj)♯) = g(gik∂k, g
jℓ∂ℓ) = gikgkℓ︸ ︷︷ ︸

=δiℓ

gjℓ = gji = gij .

It is convenient to use the same letter g for g♯ — physicists do it all the time
— or for scalar products induced by g on all the remaining tensor bundles, and
we will sometimes do so.

Incidentally: One might wish to check by direct calculations that gµνX
ν trans-

forms as a one-form if Xµ transforms as a vector. The simplest way is to notice
that gµνX

ν is a contraction, over the last two indices, of the three-index tensor
gµνX

α. Hence it is a one-form by the analysis at the end of the previous section.
Alternatively, if we write ḡµν for the transformed gµν ’s, and X̄

α for the transformed
Xα’s, then

ḡαβ︸︷︷︸
gµν

∂xµ

∂yα
∂xν

∂yβ

X̄β = gµν
∂xµ

∂yα
∂xν

∂yβ
X̄β

︸ ︷︷ ︸
Xν

= gµνX
ν ∂x

µ

∂yα
,

which is indeed the transformation law of a covector. 2

The gradient ∇f of a function f is a vector field obtained by raising the
indices on the differential df :

g(∇f, Y ) := df(Y ) ⇐⇒ ∇f := gij∂if∂j . (A.7.3)
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A.8 The Lie derivative

A.8.1 A pedestrian approach

We start with a pedestrian approach to the definition of Lie derivative; the
elegant geometric definition will be given in the next section.

Given a vector field X, the Lie derivative LX is an operation on tensor
fields, defined as follows:

For a function f , one sets

LXf := X(f) . (A.8.1)

For a vector field Y , the Lie derivative coincides with the Lie bracket:

LXY := [X,Y ] . (A.8.2)

For a one-form α, LXα is defined by imposing the Leibniz rule written the
wrong-way round:

(LXα)(Y ) := LX(α(Y ))− α(LXY ) . (A.8.3)

(Indeed, the Leibniz rule applied to the contraction αiX
i would read

LX(αiY
i) = (LXα)iY

i + αi(LXY )i ,

which can be rewritten as (A.8.3).)
Let us check that (A.8.3) defines a one-form. Clearly, the right-hand side

transforms in the desired way when Y is replaced by Y1+Y2. Now, if we replace
Y by fY , where f is a function, then

(LXα)(fY ) = LX(α(fY ))− α( LX(fY )︸ ︷︷ ︸
X(f)Y +fLXY

)

= X(fα(Y ))− α(X(f)Y + fLXY ))

= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y )− α(fLXY ))

= fX(α(Y ))− fα(LXY ))

= f((LXα)(Y )) .

So LXα is a C∞-linear map on vector fields, hence a covector field.
In coordinate-components notation we have

(LXα)a = Xb∂bαa + αb∂aX
b . (A.8.4)

Indeed,

(LXα)iY
i := LX(αiY

i)− αi(LXY )i

= Xk∂k(αiY
i)− αi(Xk∂kY

i − Y k∂kX
i)

= Xk(∂kαi)Y
i + αiY

k∂kX
i

=
(
Xk∂kαi + αk∂iX

k
)
Y i ,
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as desired
For tensor products, the Lie derivative is defined by imposing linearity under

addition together with the Leibniz rule:

LX(α⊗ β) = (LXα)⊗ β + α⊗LXβ .

Since a general tensor A is a sum of tensor products,

A = Aa1...apb1...bq∂a1 ⊗ . . . ∂ap ⊗ dxb1 ⊗ . . .⊗ dxap ,

requiring linearity with respect to addition of tensors gives thus a definition of
Lie derivative for any tensor.

For example, we claim that

LXT
a
b = Xc∂cT

a
b − T cb∂cXa + T ac∂bX

c , (A.8.5)

To see this, call a tensor T ab simple if it is of the form Y ⊗ α, where Y is a
vector and α is a covector. Using indices, this corresponds to Y aαb and so, by
the Leibniz rule,

LX(Y ⊗ α)ab = LX(Y
aαb)

= (LXY )aαb + Y a(LXα)b

= (Xc∂cY
a − Y c∂cX

a)αb + Y a(Xc∂cαb + αc∂bX
c)

= Xc∂c(Y
aαb)− Y cαb∂cX

a + Y aαc∂bX
c ,

which coincides with (A.8.5) if T ab = Y bαb. But a general T ab can be written
as a linear combination with constant coefficients of simple tensors,

T =
∑

a,b

T ab∂a ⊗ dxb︸ ︷︷ ︸
no summation, so simple

,

and the result follows.
Similarly, one has, e.g.,

LXR
ab = Xc∂cR

ab −Rac∂cXb −Rbc∂cXa , (A.8.6)

LXSab = Xc∂cSab + Sac∂bX
c + Sbc∂aX

c . (A.8.7)

etc. Those are all special cases of the general formula for the Lie derivative
LXA

a1...ap
b1...bq :

LXA
a1...ap

b1...bq = Xc∂cA
a1...ap

b1...bq −Aca2...apb1...bq∂cXa1 − . . .
+Aa1...apcb1...bq∂b1X

c + . . . .

A useful property of Lie derivatives is

L[X,Y ] = [LX ,LY ] , (A.8.8)

where, for a tensor T , the commutator [LX ,LY ]T is defined in the usual way:

[LX ,LY ]T := LX(LY T )−LY (LXT ) . (A.8.9)
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To see this, we first note that if T = f is a function, then the right-hand side of
(A.8.9) is the definition of [X,Y ](f), which in turn coincides with the definition
of L[X,Y ](f).

Next, for a vector field T = Z, (A.8.8) reads

L[X,Y ]Z = LX(LY Z)−LY (LXZ) , (A.8.10)

which is the same as

[[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] , (A.8.11)

which is the same as

[Z, [Y,X]] + [X, [Z, Y ]] + [Y, [X,Z]] = 0 , (A.8.12)

which is the Jacobi identity. Hence (A.8.8) holds for vector fields.
We continue with a one-form α, exploiting the fact that we have already

established the result for functions and vectors: For any vector field Z we have,
by definition

([LX ,LY ]α)(Z) = [LX ,LY ](α(Z)) − α([LX ,LY ](Z))

= L[X,Y ](α(Z)) − α(L[X,Y ](Z))

= (L[X,Y ]α)(Z) .

Incidentally: A direct calculation for one-forms, using the definitions, proceed
as follows: Let Z be any vector field,

(LXLY α)(Z) = X
(

(LY α)(Z)︸ ︷︷ ︸
Y (α(Z))−α(LY Z)

)

)
− (LY α) (LXZ)︸ ︷︷ ︸

Y (α(LXZ))−α(LY LXZ)

= X
(
Y (α(Z))

)
−X

(
α(LY Z)

))
− Y (α(LXZ)) + α(LY LXZ) .

Antisymmetrizing over X and Y , the second and third term above cancel out, so
that
(
(LXLY α−LY LX)α

)
(Z) = X

(
Y (α(Z))

)
+ α(LY LXZ)− (X ←→ Y )

= [X,Y ]
(
α(Z)

)
− α(LXLY Z −LY LXZ)

= L[X,Y ]

(
α(Z)

)
− α(L[X,Y ]Z)

=
(
L[X,Y ]α

)
(Z) .

Since Z is arbitrary, (A.8.8) for covectors follows. 2

To conclude that (A.8.8) holds for arbitrary tensor fields, we note that by
construction we have

L[X,Y ](A⊗B) = L[X,Y ]A⊗B +A⊗L[X,Y ]B . (A.8.13)

Similarly

LXLY (A⊗B) = LX(LYA⊗B +A⊗LY B)

= LXLYA⊗B + LXA⊗LYB + LYA⊗LXB

+A⊗LXLYB . (A.8.14)
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Exchanging X with Y and subtracting, the middle terms drop out:

[LX ,LY ](A⊗B) = [LX ,LY ]A⊗B +A⊗ [LX ,LY ]B . (A.8.15)

Basing on what has been said, the reader should have no difficulties finishing
the proof of (A.8.8).

Example A.8.2 As an example of application of the formalism, suppose that there
exists a coordinate system in which (Xa) = (1, 0, 0, 0) and ∂0gbc = 0. Then

LXgab = ∂0gab = 0 .

But the Lie derivative of a tensor field is a tensor field, and we conclude that
LXgab = 0 holds in every coordinate system.

Vector fields for which LXgab = 0 are called Killing vectors: they arise from
symmetries of spacetime. We have the useful formula

LXgab = ∇aXb +∇bXa . (A.8.16)

An effortless proof of this proceeds as follows: in adapted coordinates in which the
derivatives of the metric vanish at a point p, one immediately checks that equality
holds at p. But both sides are tensor fields, therefore the result holds at p for all
coordinate systems, and hence also everywhere.

The brute-force proof of (A.8.16) proceeds as follows:

LXgab = Xc∂cgab + ∂aX
cgcb + ∂bX

cgca

= Xc∂cgab + ∂a(X
cgcb)−Xc∂agcb + ∂b(X

cgca)−Xc∂bgca

= ∂aXb + ∂bXa +Xc (∂cgab − ∂agcb − ∂bgca)︸ ︷︷ ︸
−2gcdΓd

ab

= ∇aXb +∇bXa .

2

A.8.2 The geometric approach

We pass now to a geometric definition of Lie derivative. This requires, first, an
excursion through the land of push-forwards and pull-backs.

Transporting tensor fields

We start by noting that, given a point p0 in a manifold M , every vector X ∈
Tp0M is tangent to some curve. To see this, let {xi} be any local coordinates
near p0, with xi(p0) = xi0, then X can be written as Xi(p0)∂i. If we set
γi(s) = xi0 + sXi(p0), then γ̇

i(0) = Xi(p0), which establishes the claim. This
observation shows that studies of vectors can be reduced to studies of curves.

Let, now,M and N be two manifolds, and let φ :M → N be a differentiable
map between them. Given a vector X ∈ TpM , the push-forward φ∗X of X is
a vector in Tφ(p)N defined as follows: let γ be any curve for which X = γ̇(0),
then

φ∗X :=
d(φ ◦ γ)
ds

∣∣∣∣
s=0

. (A.8.17)
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In local coordinates yA on N and xi on M , so that φ(x) = (φA(xi)), we find

(φ∗X)A =
dφA(γi(s))

ds

∣∣∣∣
s=0

=
∂φA(γi(s))

∂xi
γ̇i(s)|s=0

=
∂φA(xi)

∂xi
Xi . (A.8.18)

The formula makes it clear that the definition is independent of the choice of
the curve γ satisfying X = γ̇(0).

Equivalently, and more directly, if X is a vector at p and h is a function on
h, then φ∗X acts on h as

φ∗X(h) := X(h ◦ φ) . (A.8.19)

Applying (A.8.18) to a vector field X defined on M we obtain

(φ∗X)A(φ(x)) =
∂φA

∂xi
(x)Xi(x) . (A.8.20)

The equation shows that if a point y ∈ N has more than one pre-image, say
y = φ(x1) = φ(x2) with x1 6= x2, then (A.8.20) might will define more than one
tangent vector at y in general. This leads to an important caveat: we will be
certain that the push-forward of a vector field on M defines a vector field on N
only when φ is a diffeomorphism. More generally, φ∗X defines locally a vector
field on φ(M) if and only if φ is a local diffeomorphism. In such cases we can
invert φ (perhaps locally) and write (A.8.20) as

(φ∗X)j(x) =

(
∂φj

∂xi
Xi

)
(φ−1(x)) . (A.8.21)

When φ is understood as a coordinate change rather than a diffeomorphism
between two manifolds, this is simply the standard transformation law of a
vector field under coordinate transformations.

The push-forward operation can be extended to contravariant tensors by
defining it on tensor products in the obvious way, and extending by linearity:
for example, if X, Y and Z are vectors, then

φ∗(X ⊗ Y ⊗ Z) := φ∗X ⊗ φ∗Y ⊗ φ∗Z .

Consider, next, a k-multilinear map α from Tφ(p0)M to R. The pull-back
φ∗α of α is a multilinear map on Tp0M defined as

TpM ∋ (X1, . . . Xk) 7→ φ∗(α)(X1, . . . ,Xk) := α(φ∗X1, . . . , φ∗Xk) .

As an example, let α = αAdy
A be a one-form. If X = Xi∂i then

(φ∗α)(X) = α(φ∗X) (A.8.22)

= α(
∂φA

∂xi
Xi∂A) = αA

∂φA

∂xi
Xi = αA

∂φA

∂xi
dxi(X) .
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Equivalently,

(φ∗α)i = αA
∂φA

∂xi
. (A.8.23)

If α is a one-form field on N , this reads

(φ∗α)i(x) = αA(φ(x))
∂φA(x)

∂xi
. (A.8.24)

It follows that φ∗α is a field of one-forms on M , irrespective of injectivity or
surjectivity properties of φ. Similarly, pull-backs of covariant tensor fields of
higher rank are smooth tensor fields.

For a function f equation (A.8.24) reads

(φ∗df)i(x) =
∂f

∂yA
(φ(x))

∂φA(x)

∂xi
=
∂(f ◦ φ)
∂xi

(x) , (A.8.25)

which can be succinctly written as

φ∗df = d(f ◦ φ) . (A.8.26)

Using the notation
φ∗f := f ◦ φ , (A.8.27)

we can write (A.8.26) as

φ∗d = dφ∗ for functions. (A.8.28)

Summarising:

1. Pull-backs of covariant tensor fields define covariant tensor fields. In par-
ticular the metric can always be pulled back.

2. Push-forwards of contravariant tensor fields can be used to define con-
travariant tensor fields when φ is a diffeomorphism.

In this context it is thus clearly of interest to consider diffeomorphisms φ,
as then tensor products can now be transported in the following way; we will
denote by φ̂ the associated map: We define φ̂f := f ◦ φ for functions, φ̂ := φ∗
for covariant fields, φ̂ := (φ−1)∗ for contravariant tensor fields. We use the rule

φ̂(A⊗B) = φ̂A⊗ φ̂B

for tensor products.
So, for example, if X is a vector field and α is a field of one-forms, one has

φ̂(X ⊗ α) := (φ−1)∗X ⊗ φ∗α . (A.8.29)

The definition is extended by linearity under addition and multiplication by
functions to any tensor fields. Thus, if f is a function and T and S are tensor
fields, then

φ̂(f T + S) = φ̂f φ̂T + φ̂S ≡ f ◦ φ φ̂T + φ̂S .
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Since everything was fairly natural so far, one would expect that contrac-
tions transform in a natural way under transport. To make this clear, we start
by rewriting (A.8.22) with the base-points made explicit:

((φ̂α)(X))(x) = (α(φ∗X))(φ(x)) . (A.8.30)

Replacing X by (φ∗)−1Y this becomes

((φ̂α)(φ̂Y ))(x) = (α(Y ))(φ(x)) . (A.8.31)

Equivalently
(φ̂α)(φ̂Y ) = φ̂(α(Y )) . (A.8.32)

Flows of vector fields

Let X be a vector field on M . For every p0 ∈ M consider the solution to the
problem

dxi

dt
= Xi(x(t)) , xi(0) = xi0 . (A.8.33)

(Recall that there always exists a maximal interval I containing the origin on
which (A.8.33) has a solution. Both the interval and the solution are unique.
This will always be the solution I ∋ t 7→ x(t) that we will have in mind.) The
map

(t, x0) 7→ φt[X](x0) := x(t)

where xi(t) is the solution of (A.8.33), is called the local flow of X. We say that
X generates φt[X]. We will write φt for φt[X] when X is unambiguous in the
context.

The interval of existence of solutions of (A.8.33) depends upon x0 in general.

Example A.8.3 As an example, let M = R and X = x2∂x. We then have to solve

dx

dt
= x2 , x(0) = x0 =⇒ x(t) =

{
0, x0 = 0;

x0

1−x0t
, x0 6= 0 , 1− x0t > 0.

Hence
φt(x) =

x

1− xt ,

with t ∈ R when x = 0, with t ∈ (−∞, 1/x) when x > 0 and with t ∈ (1/x,∞)
when x < 0. 2

We say that X is complete if φt[X](p) is defined for all (t, p) ∈ R×M .
The following standard facts are left as exercices to the reader:

1. φ0 is the identity map.

2. φt ◦ φs = φt+s.

In particular, φ−1
t = φ−t , and thus:

3. The maps x 7→ φt(x) are local diffeomorphisms; global if for all x ∈ M
the maps φt are defined for all t ∈ R.
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4. φ−t[X] is generated by −X:

φ−t[X] = φt[−X] .

A family of diffeomorphisms satisfying property 2. above is called a one
parameter group of diffeomorphisms. Thus, complete vector fields generate one-
parameter families of diffeomorphisms via (A.8.33).

Reciprocally, suppose that a local or global one-parameter group φt is given,
then the formula

X =
dφt
dt

∣∣∣∣
t=0

defines a vector field, said to be generated by φt.

The Lie derivative revisited

The idea of the Lie transport, and hence of the Lie derivative, is to be able
to compare objects along integral curves of a vector field X. This is pretty
obvious for scalars: we just compare the values of f(φt(x)) with f(x), leading
to a derivative

LXf := lim
t→0

f ◦ φt − f
t

≡ lim
t→0

φ∗t f − f
t

≡ lim
t→0

φ̂tf − f
t

≡ d(φ̂tf)

dt

∣∣∣∣
t=0

. (A.8.34)

We wish, next, to compare the value of a vector field Y at φt(x) with the
value at x. For this, we move from x to φt(x) following the integral curve of
X, and produce a new vector at x by applying (φ−1

t )∗ to Y |φt(x). This makes

it perhaps clearer why we introduced the transport map φ̂, since (φ̂Y )(x) is
precisely the value at x of (φ−1

t )∗Y . We can then calculate

LXY (x) := lim
t→0

((φ−1
t ) ∗ Y )(φt(x))− Y (x)

t
≡ lim

t→0

(φ̂tY )(x)− Y (x)

t
≡ d(φ̂tY (x))

dt

∣∣∣∣
t=0

.

(A.8.35)
In general, let X be a vector field and let φt be the associated local one-

parameter family of diffeomorphisms. Let φ̂t be the associated family of trans-
port maps for tensor fields. For any tensor field T one sets

LXT := lim
t→0

φ̂tT − T
t

≡ d(φ̂tT )

dt

∣∣∣∣
t=0

. (A.8.36)

We want to show that this operation coincides with that defined in Section A.8.1.

The equality of the two operations for functions should be clear, since
(A.8.34) easily implies:

LXf = X(f) .

Consider, next, a vector field Y . From (A.8.21), setting ψt := φ−t ≡ (φt)
−1

we have

φ̂tY
j(x) := ((φ−1

t )∗Y )j(x) = (
∂ψjt
∂xi

Y i)(φt(x)) . (A.8.37)
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Since φ−t is generated by −X, we have

ψi0(x) = xi ,
∂ψjt
∂xi

∣∣∣
t=0

= δji ,

ψ̇jt |t=0 :=
dψjt
dt

∣∣∣
t=0

= −Xj ,
∂ψ̇jt
∂xi

∣∣∣
t=0

= −∂iXj . (A.8.38)

Hence

d(φ̂tY
j)

dt
(x)|t=0 =

∂ψ̇j0
∂xi

(x)Y i(x) + ∂k(
∂ψj0
∂xi

Y i

︸ ︷︷ ︸
Y j

)(x)φ̇k(x)

= −∂iXj(x)Y i(x) + ∂jY
i(x)Xj(x)

= [X,Y ]j(x) ,

and we have obtained (A.8.2), p. 174.
For a covector field α, it seems simplest to calculate directly from (A.8.24):

(φ̂tα)i(x) = (φ∗tα)i(x) = αk(φt(x))
∂φkt (x)

∂xi
.

Hence

LXαi =
d(φ∗tα)i(x)

dt

∣∣∣∣
t=0

= ∂jαi(x)X
j(x) + αk(x)

∂Xk(x)

∂xi
(x) , (A.8.39)

as in (A.8.4).
The formulae just derived show that the Leibniz rule under duality holds

by inspection:
LX(α(Y )) = LXα(Y ) + α(LX (Y )) . (A.8.40)

Incidentally: Alternatively, one can start by showing that the Leibniz rule under
duality holds for (A.8.36), and then use the calculations in Section A.8.1 to derive
(A.8.39): Indeed, by definition we have

φ∗tα(Y ) = α((φt)∗Y ) ,

hence

α(Y )|φt(x) = α((φt)∗(φ
−1
t )∗Y )|φt(x) = φ∗tα|x((φ−1

t )∗Y |φt(x)) = φ̂tα(φ̂tY )|x .
Equivalently,

φ̂t(α(Y )) = (φ̂tα)(φ̂tY ) ,

from which the Leibniz rule under duality immediately follows.
A similar calculation leads to the Leibniz rule under tensor products. 2

The reader should have no difficulties checking that the remaining require-
ments set forth in Section A.8.1 are satisfied.

The following formula of Cartan provides a convenient tool for calculating
the Lie derivative of a differential form α:

LXα = X⌋dα + d(X⌋α) . (A.8.41)

The commuting of d and LX is an immediate consequence of (A.8.41) and of
the identity d2 = 0:

LXdα = d(LXα) . (A.8.42)
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A.9 Covariant derivatives

When dealing with Rn, or subsets thereof, there exists an obvious prescription
for how to differentiate tensor fields: in this case we have at our disposal the
canonical “trivialization {∂i}i=1,...,n of TRn” (this means: a globally defined set
of vectors which, at every point, form a basis of the tangent space), together
with its dual trivialization {dxj}j=1,...,n of T ∗Rn. We can expand a tensor field
T of valence (k, ℓ) in terms of those bases,

T = T i1...ik j1...jℓ∂i1 ⊗ . . . ⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxjℓ
⇐⇒ T i1...ik j1...jℓ = T (dxi1 , . . . , dxik , ∂j1 , . . . , ∂jℓ) , (A.9.1)

and differentiate each component T i1...ik j1...jℓ of T separately:

X(T )
in the coordinate system xi

:= Xi∂T
i1...ik

j1...jℓ

∂xi
∂xi1⊗. . .⊗∂xik⊗dxj1⊗. . .⊗dxjℓ .

(A.9.2)
The resulting object does, however, not behave as a tensor under coordinate
transformations, in the sense that the above form of the right-hand side will
not be preserved under coordinate transformations: as an example, consider the
one-form T = dx on Rn, which has vanishing derivative as defined by (A.9.2).
When expressed in spherical coordinates we have

T = d(ρ cosϕ) = −ρ sinϕdϕ+ cosϕdρ ,

the partial derivatives of which are non-zero (both with respect to the original
cartesian coordinates (x, y) and to the new spherical ones (ρ, ϕ)).

The Lie derivative LX of Section A.8 maps tensors to tensors but does not
resolve this question, because it is not linear under multiplication of X by a
function.

The notion of covariant derivative, sometimes also referred to as connec-
tion, is introduced precisely to obtain a notion of derivative which has tensorial
properties. By definition, a covariant derivative is a map which to a vector field
X and a tensor field T assigns a tensor field of the same type as T , denoted by
∇XT , with the following properties:

1. ∇XT is linear with respect to addition both with respect to X and T :

∇X+Y T = ∇XT +∇Y T , ∇X(T + Y ) = ∇XT +∇XY ; (A.9.3)

2. ∇XT is linear with respect to multiplication of X by functions f ,

∇fXT = f∇XT ; (A.9.4)

3. and, finally, ∇XT satisfies the Leibniz rule under multiplication of T by
a differentiable function f :

∇X(fT ) = f∇XT +X(f)T . (A.9.5)
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By definition, if T is a tensor field of rank (p, q), then for any vector field
X the field ∇XT is again a tensor of type (p, q). Since ∇XT is linear in X, the
field ∇T can naturally be viewed as a tensor field of rank (p, q + 1).

It is natural to ask whether covariant derivatives do exist at all in general
and, if so, how many of them can there be. First, it immediately follows from
the axioms above that if D and ∇ are two covariant derivatives, then

∆(X,T ) := DXT −∇XT

is multi-linear both with respect to addition and multiplication by functions —
the non-homogeneous terms X(f)T in (A.9.5) cancel — and is thus a tensor
field. Reciprocally, if ∇ is a covariant derivative and ∆(X,T ) is bilinear with
respect to addition and multiplication by functions, then

DXT := ∇XT +∆(X,T ) (A.9.6)

is a new covariant derivative. So, at least locally, on tensors of valence (r, s)
there are as many covariant derivatives as tensors of valence (r + s, r + s+ 1).

We note that the sum of two covariant derivatives is not a covariant deriva-
tive. However, convex combinations of covariant derivatives, with coefficients
which may vary from point to point, are again covariant derivatives. This re-
mark allows one to construct covariant derivatives using partitions of unity:
Let, indeed, {Oi}i∈N be an open covering of M by coordinate patches and let
ϕi be an associated partition of unity. In each of those coordinate patches we
can decompose a tensor field T as in (A.9.1), and define

DXT :=
∑

i

ϕiX
j∂j(T

i1...ik
j1...jℓ)∂i1 ⊗ . . .⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxjℓ . (A.9.7)

This procedure, which depends upon the choice of the coordinate patches and
the choice of the partition of unity, defines one covariant derivative; all other
covariant derivatives are then obtained from D using (A.9.6). Note that (A.9.2)
is a special case of (A.9.7) when there exists a global coordinate system on
M . Thus (A.9.2) does define a covariant derivative. However, the associated
operation on tensor fields will not take the simple form (A.9.2) when we go to
a different coordinate system {yi} in general.

A.9.1 Functions

The canonical covariant derivative on functions is defined as

∇X(f) = X(f) ,

and we will always use the above. This has all the right properties, so obviously
covariant derivatives of functions exist. From what has been said, any covariant
derivative on functions is of the form

∇Xf = X(f) + α(X)f , (A.9.8)

where α is a one-form. Conversely, given any one-form α, (A.9.8) defines a
covariant derivative on functions. The addition of the lower-order term α(X)f
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(A.9.8) does not appear to be very useful here, but it turns out to be useful
in geometric formulation of electrodynamics, or in geometric quantization. In
any case such lower-order terms play an essential role when defining covariant
derivatives of tensor fields.

A.9.2 Vectors

The simplest next possibility is that of a covariant derivative of vector fields.
Let us not worry about existence at this stage, but assume that a covariant
derivative exists, and work from there. (Anticipating, we will show shortly
that a metric defines a covariant derivative, called the Levi-Civita covariant
derivative, which is the unique covariant derivative operator satisfying a natural
set of conditions, to be discussed below.)

We will first assume that we are working on a set Ω ⊂ M over which we
have a global trivialization of the tangent bundle TM ; by definition, this means
that there exist vector fields ea, a = 1, . . . ,dimM , such that at every point
p ∈ Ω the fields ea(p) ∈ TpM form a basis of TpM .1

Let θa denote the dual trivialization of T ∗M — by definition the θa’s satisfy

θa(eb) = δab .

Given a covariant derivative ∇ on vector fields we set

Γab(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = Γab(X)ea , (A.9.9a)

Γabc := Γab(ec) = θa(∇eceb) ⇐⇒ ∇Xeb = ΓabcX
cea . (A.9.9b)

The (locally defined) functions Γabc are called connection coefficients. If {ea}
is the coordinate basis {∂µ} we shall write

Γµαβ := dxµ(∇∂β∂α)
(
⇐⇒ ∇∂µ∂ν = Γσνµ∂σ

)
, (A.9.10)

etc. In this particular case the connection coefficients are usually called Christof-
fel symbols. We will sometimes write Γσνµ instead of Γσνµ; note that the former
convention is more common. By using the Leibniz rule (A.9.5) we find

∇XY = ∇X(Y aea)

= X(Y a)ea + Y a∇Xea
= X(Y a)ea + Y aΓba(X)eb

= (X(Y a) + Γab(X)Y b)ea

= (X(Y a) + ΓabcY
bXc)ea , (A.9.11)

which gives various equivalent ways of writing ∇XY . The (perhaps only locally
defined) Γab’s are linear in X, and the collection (Γab)a,b=1,...,dimM is sometimes

1This is the case when Ω is a coordinate patch with coordinates (xi), then the
{ea}a=1,...,dimM can be chosen to be equal to {∂i}a=1,...,dimM . Recall that a manifold is
said to be parallelizable if a basis of TM can be chosen globally over M — in such a case Ω
can be taken equal to M . We emphasize that we are not assuming that M is parallelizable,
so that equations such as (A.9.9) have only a local character in general.
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referred to as the connection one-form. The one-covariant, one-contravariant
tensor field ∇Y is defined as

∇Y := ∇aY bθa ⊗ eb ⇐⇒ ∇aY b := θb(∇eaY )⇐⇒ ∇aY b = ea(Y
b) + ΓbcaY

c .

(A.9.12)
We will often write ∇a for ∇ea . Further, ∇aY b will sometimes be written as
Y b

;a.

A.9.3 Transformation law

Consider a coordinate basis ∂xi , it is natural to enquire about the transformation
law of the connection coefficients Γijk under a change of coordinates xi →
yk(xi). To make things clear, let us write Γijk for the connection coefficients in

the x–coordinates, and Γ̂ijk for the ones in the y–cordinates. We calculate:

Γijk := dxi
(
∇ ∂

∂xk

∂

∂xj

)

= dxi
(
∇ ∂

∂xk

∂yℓ

∂xj
∂

∂yℓ

)

= dxi
( ∂2yℓ

∂xk∂xj
∂

∂yℓ
+
∂yℓ

∂xj
∇ ∂

∂xk

∂

∂yℓ

)

=
∂xi

∂ys
dys
( ∂2yℓ

∂xk∂xj
∂

∂yℓ
+
∂yℓ

∂xj
∇ ∂yr

∂xk
∂

∂yr

∂

∂yℓ

)

=
∂xi

∂ys
dys
( ∂2yℓ

∂xk∂xj
∂

∂yℓ
+
∂yℓ

∂xj
∂yr

∂xk
∇ ∂

∂yr

∂

∂yℓ

)

=
∂xi

∂ys
∂2ys

∂xk∂xj
+
∂xi

∂ys
∂yℓ

∂xj
∂yr

∂xk
Γ̂sℓr . (A.9.13)

Summarising,

Γijk = Γ̂sℓr
∂xi

∂ys
∂yℓ

∂xj
∂yr

∂xk
+
∂xi

∂ys
∂2ys

∂xk∂xj
. (A.9.14)

Thus, the Γijk’s do not form a tensor; instead they transform as a tensor plus
a non-homogeneous term containing second derivatives, as seen above.

Exercice A.9.1 Let Γijk transform as in (A.9.14) under coordinate transfor-
mations. If X and Y are vector fields, define in local coordinates

∇XY :=
(
X(Y i) + ΓijkX

kY k
)
∂i . (A.9.15)

Show that ∇XY transforms as a vector field under coordinate transformations
(and thus is a vector field). Hence, a collection of fields {Γijk} satisfying the
transformation law (A.9.14) can be used to define a covariant derivative using
(A.9.15).
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A.9.4 Torsion

Because the inhomogeneous term in (A.9.14) is symmetric under the interchange
of i and j, it follows from (A.9.14) that

T ijk := Γikj − Γijk

does transform as a tensor, called the torsion tensor of ∇.
An index-free definition of torsion proceeds as follows: Let ∇ be a covariant

derivative defined for vector fields, the torsion tensor T is defined by the formula

T (X,Y ) := ∇XY −∇YX − [X,Y ] , (A.9.16)

where [X,Y ] is the Lie bracket. We obviously have

T (X,Y ) = −T (Y,X) . (A.9.17)

Let us check that T is actually a tensor field: multi-linearity with respect to
addition is obvious. To check what happens under multiplication by functions,
in view of (A.9.17) it is sufficient to do the calculation for the first slot of T .
We then have

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f

(
∇XY −∇YX

)
− Y (f)X − [fX, Y ] . (A.9.18)

To work out the last commutator term we compute, for any function ϕ,

[fX, Y ](ϕ) = fX(Y (ϕ)) − Y (fX(ϕ))︸ ︷︷ ︸
=Y (f)X(ϕ)+fY (X(ϕ))

= f [X,Y ](ϕ) − Y (f)X(ϕ) ,

hence
[fX, Y ] = f [X,Y ]− Y (f)X , (A.9.19)

and the last term here cancels the undesirable second-to-last term in (A.9.18),
as required.

In a coordinate basis ∂µ we have [∂µ, ∂ν ] = 0 and one finds from (A.9.10)

T (∂µ, ∂ν) = (Γσνµ − Γσµν)∂σ , (A.9.20)

which shows that T is determined by twice the antisymmetrization of the Γσµν ’s
over the lower indices. In particular that last antisymmetrization produces a
tensor field.

A.9.5 Covectors

Suppose that we are given a covariant derivative on vector fields, there is a
natural way of inducing a covariant derivative on one-forms by imposing the
condition that the duality operation be compatible with the Leibniz rule: given
two vector fields X and Y together with a field of one-forms α, one sets

(∇Xα)(Y ) := X(α(Y ))− α(∇XY ) . (A.9.21)
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Let us, first, check that (A.9.21) indeed defines a field of one-forms. The lin-
earity, in the Y variable, with respect to addition is obvious. Next, for any
function f we have

(∇Xα)(fY ) = X(α(fY ))− α(∇X(fY ))

= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y + f∇XY )

= f(∇Xα)(Y ) ,

as should be the case for one-forms. Next, we need to check that ∇ defined by
(A.9.21) does satisfy the remaining axioms imposed on covariant derivatives.
Again multi-linearity with respect to addition is obvious, as well as linearity
with respect to multiplication of X by a function. Finally,

∇X(fα)(Y ) = X(fα(Y ))− fα(∇XY )

= X(f)α(Y ) + f(∇Xα)(Y ) ,

as desired.

The duality pairing

T ∗
pM × TpM ∋ (α,X) → α(X) ∈ R

is sometimes called contraction. As already pointed out, the operation ∇ on
one-forms has been defined in (A.9.21) so as to satisfy the Leibniz rule under
duality pairing :

X(α(Y )) = (∇Xα)(Y ) + α(∇XY ) ; (A.9.22)

this follows directly from (A.9.21). This should not be confused with the Leib-
niz rule under multiplication by functions, which is part of the definition of
a covariant derivative, and therefore always holds. It should be kept in mind
that (A.9.22) does not necessarily hold for all covariant derivatives: if v∇ is
some covariant derivative on vectors, and f∇ is some covariant derivative on
one-forms, in general one will have

X(α(Y )) 6= (f∇X)α(Y ) + α(v∇XY ) .

Using the basis-expression (A.9.11) of ∇XY and the definition (A.9.21) we
have

∇Xα = Xa∇aαb θb ,

with

∇aαb := (∇eaα)(eb)
= ea(α(eb))− α(∇eaeb)
= ea(αb)− Γcbaαc .
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A.9.6 Higher order tensors

It should now be clear how to extend ∇ to tensors of arbitrary valence: if T is
r covariant and s contravariant one sets

(∇XT )(X1, . . . ,Xr, α1, . . . αs) := X
(
T (X1, . . . ,Xr, α1, . . . αs)

)

−T (∇XX1, . . . ,Xr, α1, . . . αs)− . . .− T (X1, . . . ,∇XXr, α1, . . . αs)

−T (X1, . . . ,Xr,∇Xα1, . . . αs)− . . .− T (X1, . . . ,Xr, α1, . . .∇Xαs) .
(A.9.23)

The verification that this defines a covariant derivative proceeds in a way iden-
tical to that for one-forms. In a basis we have

∇XT = Xa∇aTa1...ar b1...bsθa1 ⊗ . . .⊗ θar ⊗ eb1 ⊗ . . .⊗ ebs ,

and (A.9.23) gives

∇aTa1...ar b1...bs := (∇eaT )(ea1 , . . . , ear , θb1 , . . . , θbs)
= ea(Ta1...ar

b1...bs)− Γca1aTc...ar
b1...bs − . . .− ΓcaraTa1...c

b1...bs

+Γb1caTa1...ar
c...bs + . . . + ΓbscaTa1...ar

b1...c . (A.9.24)

Carrying over the last two lines of (A.9.23) to the left-hand side of that equation
one obtains the Leibniz rule for ∇ under pairings of tensors with vectors or
forms. It should be clear from (A.9.23) that ∇ defined by that equation is
the only covariant derivative which agrees with the original one on vectors,
and which satisfies the Leibniz rule under the pairing operation. We will only
consider such covariant derivatives in this work.

A.10 The Levi-Civita connection

One of the fundamental results in pseudo-Riemannian geometry is that of the
existence of a torsion-free connection which preserves the metric:

Theorem A.10.1 Let g be a two-covariant symmetric non-degenerate tensor
field on a manifold M . Then there exists a unique connection ∇ such that

1. ∇g = 0,

2. the torsion tensor T of ∇ vanishes.

Proof: Suppose, first, that a connection satisfying the above is given. By the
Leibniz rule we then have, for any vector fields X, Y and Z,

0 = (∇Xg)(Y,Z) = X(g(Y,Z)) − g(∇XY,Z)− g(Y,∇XZ) . (A.10.1)

We rewrite the same equation applying cyclic permutations to X, Y , and Z,
with a minus sign for the last equation:

g(∇XY,Z) + g(Y,∇XZ) = X(g(Y,Z)) ,

g(∇Y Z,X) + g(Z,∇YX) = Y (g(Z,X)) ,

−g(∇ZX,Y )− g(X,∇ZY ) = −Z(g(X,Y )) . (A.10.2)
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As the torsion tensor vanishes, the sum of the left-hand sides of these equations
can be manipulated as follows:

g(∇XY,Z) + g(Y,∇XZ) + g(∇Y Z,X) + g(Z,∇YX)− g(∇ZX,Y )− g(X,∇ZY )

= g(∇XY +∇YX,Z) + g(Y,∇XZ −∇ZX) + g(X,∇Y Z −∇ZY )

= g(2∇XY − [X,Y ], Z) + g(Y, [X,Z]) + g(X, [Y,Z])

= 2g(∇XY,Z)− g([X,Y ], Z) + g(Y, [X,Z]) + g(X, [Y,Z]) .

This shows that the sum of the three equations (A.10.2) can be rewritten as

2g(∇XY,Z) = g([X,Y ], Z)− g(Y, [X,Z]) − g(X, [Y,Z])
+X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y )) . (A.10.3)

Since Z is arbitrary and g is non-degenerate, the left-hand side of this equation
determines the vector field ∇XY uniquely, and uniqueness of ∇ follows.

To prove existence, let S(X,Y )(Z) be defined as one half of the right-hand
side of (A.10.3),

S(X,Y )(Z) =
1

2

(
X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

+g(Z, [X,Y ])− g(Y, [X,Z]) − g(X, [Y,Z])
)
.(A.10.4)

Clearly S is linear with respect to addition in all fields involved. Let us check
that it is also linear with respect to multiplication of Z by a function:

S(X,Y )(fZ) =
f

2

(
X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

+g(Z, [X,Y ])− g(Y, [X,Z]) − g(X, [Y,Z])
)

+
1

2

(
X(f)g(Y,Z) + Y (f)g(Z,X) − g(Y,X(f)Z)− g(X,Y (f)Z)

)

= fS(X,Y )(Z) . (A.10.5)

Since g is non-degenerate, we conclude that there exists a unique vector field
W (X,Y ) such that

S(X,Y )(Z) = g(W (X,Y ), Z) .

One readily checks that the assignment

(X,Y )→W (X,Y ) =: ∇XY

satisfies all the requirements imposed on a covariant derivative ∇XY .
It is immediate from (A.10.3), which is equivalent to (A.10.4), that the

connection ∇ so defined is torsion free: Indeed, the sum of all-but-first terms
at the right-hand side of (A.10.3) is symmetric in (X,Y ), and the first term is
what is needed to produce the torsion tensor when removing from (A.10.3) its
counterpart with X and Y interchanged.

Finally, one checks that∇ is metric-compatible by inserting∇XY and∇XZ,
as defined by (A.10.3), into (A.10.1). This concludes the proof. 2
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Incidentally: Let us give an index-notation version of the above. Using the
definition of ∇igjk we have

0 = ∇igjk ≡ ∂igjk − Γℓ
jigℓk − Γℓ

kigℓj ; (A.10.6)

here we have written Γi
jk instead of Γi

jk, as is standard in the literature. We rewrite
this equation making cyclic permutations of indices, and changing the overall sign:

0 = −∇jgki ≡ −∂jgki + Γℓ
kjgℓi + Γℓ

ijgℓk .

0 = −∇kgij ≡ −∂kgij + Γℓ
ikgℓj + Γℓ

jkgℓi .

Adding the three equations and using symmetry of Γk
ji in ij one obtains

0 = ∂igjk − ∂jgki − ∂kgij + 2Γℓ
jkgℓi ,

Multiplying by gim we obtain

Γm
jk = gmiΓℓ

jkgℓi =
1

2
gmi(∂jgki + ∂kgij − ∂igjk) . (A.10.7)

This proves uniqueness.
A straightforward, though somewhat lengthy, calculation shows that the Γm

jk’s
defined by (A.10.7) satisfy the transformation law (A.9.14). Exercice A.9.1 shows
that the formula (A.9.15) defines a torsion-free connection. It then remains to check
that the insertion of the Γm

jk’s, as given by (A.10.7), into the right-hand side of
(A.10.6), indeed gives zero, proving existence. 2

Let us check that (A.10.3) reproduces (A.10.7): Consider (A.10.3) with X = ∂γ ,
Y = ∂β and Z = ∂σ,

2g(∇γ∂β, ∂σ) = 2g(Γρ
βγ∂ρ, ∂σ)

= 2gρσΓ
ρ
βγ

= ∂γgβσ + ∂βgγσ − ∂σgβγ (A.10.8)

Multiplying this equation by gασ/2 we then obtain

Γα
βγ = 1

2g
ασ{∂βgσγ + ∂γgσβ − ∂σgβγ} . (A.10.9)

2

A.10.1 Geodesics and Christoffel symbols

A geodesic can be defined as the stationary point of the action

I(γ) =

∫ b

a

1

2
g(γ̇, γ̇)(s)
︸ ︷︷ ︸

=:L (γ,γ̇)

ds , (A.10.10)

where γ : [a, b]→M is a differentiable curve. Thus,

L (xµ, ẋν) =
1

2
gαβ(x

µ)ẋαẋβ .

One readily finds the Euler-Lagrange equations for this Lagrange function:

d

ds

(
∂L

∂ẋµ

)
=
∂L

∂xµ
⇐⇒ d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 . (A.10.11)
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This provides a very convenient way of calculating the Christoffel symbols:
given a metric g, write down L , work out the Euler-Lagrange equations, and
identify the Christoffels as the coefficients of the first derivative terms in those
equations.

Exercice A.10.3 Prove (A.10.11). 2

(The Euler-Lagrange equations for (A.10.10) are identical with those of

Ĩ(γ) =

∫ b

a

√
|g(γ̇, γ̇)(s)|ds , (A.10.12)

but (A.10.10) is more convenient to work with. For example, L is differentiable
at points where γ̇ vanishes, while

√
|g(γ̇, γ̇)(s)| is not. The aesthetic advantage

of (A.10.12), of being reparameterization-invariant, is more than compensated
by the calculational convenience of L .)

Incidentally: Example A.10.5 As an example, consider a metric of the form

g = dr2 + f(r)dϕ2 .

Special cases of this metric include the Euclidean metric on R2 (then f(r) = r2),
and the canonical metric on a sphere (then f(r) = sin2 r, with r actually being the
polar angle θ). The Lagrangian (A.10.12) is thus

L =
1

2

(
ṙ2 + f(r)ϕ̇2

)
.

The Euler-Lagrange equations read

∂L

∂ϕ︸︷︷︸
0

=
d

ds

(
∂L

∂ϕ̇

)
=

d

ds
(f(r)ϕ̇) ,

so that

0 = fϕ̈+f ′ṙϕ̇ = f
(
ϕ̈+ Γϕ

ϕϕϕ̇
2 + 2Γϕ

rϕṙϕ̇+ Γϕ
rr ṙ

2
)

=⇒ Γϕ
ϕϕ = Γϕ

rr = 0 , Γϕ
rϕ =

f ′

2f
.

Similarly
∂L

∂r︸︷︷︸
f ′ϕ̇2/2

=
d

ds

(
∂L

∂ṙ

)
= r̈ ,

so that

Γr
rϕ = Γr

rr = 0 , Γr
ϕϕ = −f

′

2
.

2

A.11 “Local inertial coordinates”

Proposition A.11.1 1. Let g be a Lorentzian metric, for every p ∈ M there
exists a neighborhood thereof with a coordinate system such that gµν = ηµν =
diag(1,−1, · · · ,−1) at p.

2. If g is differentiable, then the coordinates can be further chosen so that

∂σgαβ = 0 (A.11.1)

at p.
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The coordinates above will be referred to as local inertial coordinates near
p.

Remark A.11.2 An analogous result holds for any pseudo-Riemannian metric.
Note that normal coordinates, constructed by shooting geodesics from p, satisfy
the above. However, for metrics of finite differentiability, the introduction of
normal coordinates leads to a loss of differentiability of the metric components,
while the construction below preserves the order of differentiability.

Proof: 1. Let yµ be any coordinate system around p, shifting by a constant
vector we can assume that p corresponds to yµ = 0. Let ea = ea

µ∂/∂yµ be any
frame at p such that g(ea, eb) = ηab — such frames can be found by, e.g., a
Gram-Schmidt orthogonalisation. Calculating the determinant of both sides of
the equation

gµνea
µeb

ν = ηab

we obtain, at p,

det(gµν) det(ea
µ)2 = −1 ,

which shows that det(ea
µ) is non-vanishing. It follows that the formula

yµ = eµax
a

defines a (linear) diffeomorphism. In the new coordinates we have, again at p,

g
( ∂

∂xa
,
∂

∂xb

)
= eµae

ν
bg
( ∂

∂yµ
,
∂

∂yν

)
= ηab . (A.11.2)

2. We will use (A.9.14), which uses latin indices, so let us switch to that
notation. Let xi be the coordinates described in point 1., recall that p lies at the
origin of those coordinates. The new coordinates x̂j will be implicitly defined
by the equations

xi = x̂i +
1

2
Aijkx̂

jx̂k ,

where Aijk is a set of constants, symmetric with respect to the interchange of
j and k. Recall (A.9.14),

Γ̂ijk = Γsℓr
∂x̂i

∂xs
∂xℓ

∂x̂j
∂xr

∂x̂k
+
∂x̂i

∂xs
∂2xs

∂x̂k∂x̂j
; (A.11.3)

here we use Γ̂sℓr to denote the Christoffel symbols of the metric in the hatted
coordinates. Then, at xi = 0, this equation reads

Γ̂ijk = Γsℓr
∂x̂i

∂xs︸︷︷︸
δis

∂xℓ

∂x̂j︸︷︷︸
δℓj

∂xr

∂x̂k︸︷︷︸
δrk

+
∂xi

∂xs︸︷︷︸
δis

∂2xs

∂x̂k∂x̂j︸ ︷︷ ︸
As

kj

= Γijk +Aikj .

Choosing Aijk as −Γijk(0), the result follows.
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Incidentally: If you do not like to remember formulae such as (A.9.14), proceed
as follows: Let xµ be the coordinates described in point 1. The new coordinates x̂α

will be implicitly defined by the equations

xµ = x̂µ +
1

2
Aµ

αβ x̂
αx̂β ,

where Aµ
αβ is a set of constants, symmetric with respect to the interchange of α

and β. Set

ĝαβ := g
( ∂

∂x̂α
,
∂

∂x̂β

)
, gαβ := g

( ∂

∂xα
,
∂

∂xβ

)
.

Recall the transformation law

ĝµν(x̂
σ) = gαβ(x

ρ(x̂σ))
∂xα

∂x̂µ
∂xβ

∂x̂ν
.

By differentiation one obtains at xµ = x̂µ = 0,

∂ĝµν
∂x̂ρ

(0) =
∂gµν
∂xρ

(0) + gαβ(0)
(
Aα

µρδ
β
ν + δαµA

β
νρ

)

=
∂gµν
∂xρ

(0) +Aνµρ +Aµνρ , (A.11.4)

where
Aαβγ := gασ(0)A

σ
βγ .

It remains to show that we can choose Aσ
βγ so that the left-hand side can be made

to vanish at p. An explicit formula for Aσβγ can be obtained from (A.11.4) by a
cyclic permutation calculation similar to that in (A.10.2). After raising the first
index, the final result is

Aα
βγ =

1

2
gαρ

{
∂gβγ
∂xρ

− ∂gβρ
∂xγ

− ∂gργ
∂xβ

}
(0) ;

the reader may wish to check directly that this does indeed lead to a vanishing
right-hand side of (A.11.4).

2

A.12 Curvature

Let ∇ be a covariant derivative defined for vector fields, the curvature tensor
is defined by the formula

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (A.12.1)

where, as elsewhere, [X,Y ] is the Lie bracket defined in (A.3.6). We note the
anti-symmetry

R(X,Y )Z = −R(Y,X)Z . (A.12.2)

It turns out this defines a tensor. Multi-linearity with respect to addition is
obvious, but multiplication by functions require more work.

First, we have (see (A.9.19))

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z −∇Y (f∇XZ)− ∇f [X,Y ]−Y (f)XZ︸ ︷︷ ︸
=f∇[X,Y ]Z−Y (f)∇XZ

= fR(X,Y )Z .
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Incidentally: The simplest proof of linearity in the last slot proceeds via an
index calculation in adapted coordinates; so while we will do the elegant, index-
free version shortly, let us do the ugly one first. We use the coordinate system of
Proposition A.11.1 below, in which the first derivatives of the metric vanish at the
prescribed point p:

∇i∇jZ
k = ∂i(∂jZ

k − Γk
ℓjZ

ℓ) + 0×∇Z︸ ︷︷ ︸
at p

= ∂i∂jZ
k − ∂iΓk

ℓjZ
ℓ at p . (A.12.3)

Antisymmetrising in i and j, the terms involving the second derivatives of Z drop
out, so the result is indeed linear in Z. So ∇i∇jZ

k−∇j∇iZ
k is a tensor field linear

in Z, and therefore can be written as Rk
ℓijZ

ℓ.
Note that ∇i∇jZ

k is, by definition, the tensor field of first covariant derivatives
of the tensor field ∇jZ

k, while (A.12.1) involves covariant derivatives of vector fields
only, so the equivalence of both approaches requires a further argument. This is
provided in the calculation below leading to (A.12.7). 2

We continue with

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

=
{
∇X
(
Y (f)Z + f∇Y Z

)}
−
{
· · ·
}
X↔Y

−[X,Y ](f)Z − f∇[X,Y ]Z

=
{
X(Y (f))Z︸ ︷︷ ︸

a

+Y (f)∇XZ +X(f)∇Y Z︸ ︷︷ ︸
b

+f∇X∇Y Z
}
−
{
· · ·
}
X↔Y

− [X,Y ](f)Z︸ ︷︷ ︸
c

−f∇[X,Y ]Z .

Now, a together with its counterpart with X and Y interchanged cancel out
with c, while b is symmetric with respect to X and Y and therefore cancels out
with its counterpart with X and Y interchanged, leading to the desired equality

R(X,Y )(fZ) = fR(X,Y )Z .

In a coordinate basis {ea} = {∂µ} we find2 (recall that [∂µ, ∂ν ] = 0)

Rαβγδ := 〈dxα, R(∂γ , ∂δ)∂β〉
= 〈dxα,∇γ∇δ∂β〉 − 〈· · ·〉δ↔γ

= 〈dxα,∇γ(Γσβδ∂σ)〉 − 〈· · ·〉δ↔γ

= 〈dxα, ∂γ(Γσβδ)∂σ + ΓρσγΓ
σ
βδ∂ρ〉 − 〈· · ·〉δ↔γ

= {∂γΓαβδ + ΓασγΓ
σ
βδ} − {· · ·}δ↔γ ,

leading finally to

Rαβγδ = ∂γΓ
α
βδ − ∂δΓαβγ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ . (A.12.4)

2The reader is warned that certain authors use other sign conventions either for R(X,Y )Z,
or for Rα

βγδ, or both. A useful table that lists the sign conventions for a series of standard
GR references can be found on the backside of the front cover of [326].
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In a general frame some supplementary commutator terms will appear in the
formula for Rabcd.

Incidentally: An alternative way of introducing the Riemann tensor proceeds as
in [414]; here we assume for simplicity that∇ is torsion-free, but a similar calculation
applies in general:

Proposition A.12.3 Let ∇ be torsion-free. There exists a tensor field Rd
abc of

type (1, 3) such that
∇a∇bX

d −∇b∇aX
d = Rd

cabX
c . (A.12.5)

Proof: We need to check that the derivatives of X cancel. Now,

∇a∇bX
d = ∂a( ∇bX

d

︸ ︷︷ ︸
∂bXd+Γd

beXe

) + Γd
ac ∇bX

c

︸ ︷︷ ︸
∂bXc+Γc

be
Xe

−Γe
ab∇eX

d

= ∂a∂bX
d

︸ ︷︷ ︸
=:1ab

+∂aΓ
d
beX

e + Γd
be∂aX

e

︸ ︷︷ ︸
=:2ab

+Γd
ac∂bX

c

︸ ︷︷ ︸
=:3ab

+Γd
acΓ

c
beX

e − Γe
ab∇eX

d

︸ ︷︷ ︸
=:4ab

.

If we subtract ∇b∇aX
d, then

1. 1ab is symmetric in a and b, so will cancel out; similarly for 4ab because ∇
has been assumed to have no torsion;

2. 2ab will cancel out with 3ba; similarly 3ab will cancel out with 2ba.

So the left-hand side of (A.12.5) is indeed linear in Xe. Since it is a tensor, the
right-hand side also is. Since Xe is arbitrary, we conclude that Rd

cab is a tensor of
the desired type. 2

We note the following:

Theorem A.12.4 There exists a coordinate system in which the metric tensor
field has vanishing second derivatives at p if and only if its Riemann tensor
vanishes at p. Furthermore, there exists a coordinate system in which the met-
ric tensor field has constant entries near p if and only if the Riemann tensor
vanishes near p.

Proof: The condition is necessary, since Riem is a tensor. The sufficiency will
be admitted. 2

The calculation of the curvature tensor may be a very traumatic experience.
There is one obvious case where things are painless, when all gµν ’s are constants:
in this case the Christoffels vanish, and so does the curvature tensor. Metrics
with the last property are called flat.

For more general metrics, one way out is to use symbolic computer alge-
bra. This can, e.g., be done online on http://grtensor.phy.queensu.ca/

NewDemo. Mathematica packages to do this can be found at URL’s http://
www.math.washington.edu/~lee/Ricci, or http://grtensor.phy.queensu.
ca/NewDemo, or http://luth.obspm.fr/~luthier/Martin-Garcia/xAct. This
last package is least-user-friendly as of today, but is the most flexible, especially
for more involved computations.

We also note an algorithm of Benenti [51] to calculate the curvature tensor,
starting from the variational principle for geodesics, which avoids writing-out
explicitly all the Christoffel coefficients.
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Incidentally: Example A.12.6 As an example less trivial than a metric with
constant coefficients, consider the round two sphere, which we write in the form

g = dθ2 + e2fdϕ2 , e2f = sin2 θ .

As seen in Example A.10.5, the Christoffel symbols are easily founds from the
Lagrangian for geodesics:

L =
1

2
(θ̇2 + e2f ϕ̇2) .

The Euler-Lagrange equations give

Γθ
ϕϕ = −f ′e2f , Γϕ

θϕ = Γϕ
ϕθ = f ′ ,

with the remaining Christoffel symbols vanishing. Using the definition of the Rie-
mann tensor we then immediately find

Rϕ
θϕθ = −f ′′ − (f ′)2 = −e−f(ef )′′ = 1 . (A.12.6)

All remaining components of the Riemann tensor can be obtained from this one by
raising and lowering of indices, together with the symmetry operations which we
are about to describe. This leads to

Rab = gab , R = 2 .

2

Equation (A.12.1) is most frequently used “upside-down”, not as a definition
of the Riemann tensor, but as a tool for calculating what happens when one
changes the order of covariant derivatives. Recall that for partial derivatives
we have

∂µ∂νZ
σ = ∂ν∂µZ

σ ,

but this is not true in general if partial derivatives are replaced by covariant
ones:

∇µ∇νZσ 6= ∇ν∇µZσ .
To find the correct formula let us consider the tensor field S defined as

Y −→ S(Y ) := ∇Y Z .

In local coordinates, S takes the form

S = ∇µZν dxµ ⊗ ∂ν .

It follows from the Leibniz rule — or, equivalently, from the definitions in
Section A.9 — that we have

(∇XS)(Y ) = ∇X(S(Y ))− S(∇XY )

= ∇X∇Y Z −∇∇XY Z .

The commutator of the derivatives can then be calculated as

(∇XS)(Y )− (∇Y S)(X) = ∇X∇Y Z −∇Y∇XZ −∇∇XY Z +∇∇YXZ

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇[X,Y ]Z −∇∇XY Z +∇∇YXZ

= R(X,Y )Z −∇T (X,Y )Z . (A.12.7)
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Writing ∇S in the usual form

∇S = ∇σSµν dxσ ⊗ dxµ ⊗ ∂ν = ∇σ∇µZν dxσ ⊗ dxµ ⊗ ∂ν ,

we are thus led to

∇µ∇νZα −∇ν∇µZα = RασµνZ
σ − T σµν∇σZα . (A.12.8)

In the important case of vanishing torsion, the coordinate-component equivalent
of (A.12.1) is thus

∇µ∇νXα −∇ν∇µXα = RασµνX
σ . (A.12.9)

An identical calculation gives, still for torsionless connections,

∇µ∇νaα −∇ν∇µaα = −Rσαµνaσ . (A.12.10)

For a general tensor t and torsion-free connection each tensor index comes with
a corresponding Riemann tensor term:

∇µ∇νtα1...αr
β1...βs −∇ν∇µtα1...αr

β1...βs =

−Rσα1µνtσ...αr
β1...βs − . . .−Rσαrµνtα1...σ

β1...βs

+Rβ1σµν tα1...αr
σ...βs + . . .+Rβsσµνtα1...αr

β1...σ . (A.12.11)

A.12.1 Bianchi identities

We have already seen the anti-symmetry property of the Riemann tensor, which
in the index notation corresponds to the equation

Rαβγδ = −Rαβδγ . (A.12.12)

There are a few other identities satisfied by the Riemann tensor, we start with
the first Bianchi identity. Let A(X,Y,Z) be any expression depending upon
three vector fields X,Y,Z which is antisymmetric in X and Y , we set

∑

[XY Z]

A(X,Y,Z) := A(X,Y,Z) +A(Y,Z,X) +A(Z,X, Y ) , (A.12.13)

thus
∑

[XY Z] is a sum over cyclic permutations of the vectors X,Y,Z. Clearly,

∑

[XY Z]

A(X,Y,Z) =
∑

[XY Z]

A(Y,Z,X) =
∑

[XY Z]

A(Z,X, Y ) . (A.12.14)

Suppose, first, that X, Y and Z commute. Using (A.12.14) together with the
definition (A.9.16) of the torsion tensor T we calculate

∑

[XY Z]

R(X,Y )Z =
∑

[XY Z]

(
∇X∇Y Z −∇Y∇XZ

)

=
∑

[XY Z]

(
∇X∇Y Z −∇Y (∇ZX + T (X,Z))︸ ︷︷ ︸

we have used [X,Z]=0, see (A.9.16)

)
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=
∑

[XY Z]

∇X∇Y Z −
∑

[XY Z]

∇Y∇ZX

︸ ︷︷ ︸
=0 (see (A.12.14))

−
∑

[XY Z]

∇Y (T (X,Z)︸ ︷︷ ︸
=−T (Z,X)

)

=
∑

[XY Z]

∇X(T (Y,Z)) ,

and in the last step we have again used (A.12.14). This can be somewhat
rearranged by using the definition of the covariant derivative of a higher or-
der tensor (compare (A.9.23)) — equivalently, using the Leibniz rule rewritten
upside-down:

(∇XT )(Y,Z) = ∇X(T (Y,Z))− T (∇XY,Z)− T (Y,∇XZ) .

This leads to
∑

[XY Z]

∇X(T (Y,Z)) =
∑

[XY Z]

(
(∇XT )(Y,Z) + T (∇XY,Z) + T (Y, ∇XZ︸ ︷︷ ︸

=T (X,Z)+∇ZX

)
)

=
∑

[XY Z]

(
(∇XT )(Y,Z)− T (T (X,Z)︸ ︷︷ ︸

=−T (Z,X)

, Y )
)

+
∑

[XY Z]

T (∇XY,Z) +
∑

[XY Z]

T (Y,∇ZX)︸ ︷︷ ︸
=−T (∇ZX,Y )︸ ︷︷ ︸

=0 (see (A.12.14))

=
∑

[XY Z]

(
(∇XT )(Y,Z) + T (T (X,Y ), Z)

)
.

Summarizing, we have obtained the first Bianchi identity:

∑

[XY Z]

R(X,Y )Z =
∑

[XY Z]

(
(∇XT )(Y,Z) + T (T (X,Y ), Z)

)
, (A.12.15)

under the hypothesis that X, Y and Z commute. However, both sides of this
equation are tensorial with respect to X, Y and Z, so that they remain correct
without the commutation hypothesis.

We are mostly interested in connections with vanishing torsion, in which
case (A.12.15) can be rewritten as

Rαβγδ +Rαγδβ +Rαδβγ = 0 . (A.12.16)

Equivalently,
Rα[βγδ] = 0 , (A.12.17)

where brackets over indices denote complete antisymmetrisation, e.g.

A[αβ] =
1
2(Aαβ −Aβα) ,

A[αβγ] =
1
6(Aαβγ −Aβαγ +Aγαβ −Aγβα +Aαγβ −Aβγα) ,

etc.
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Our next goal is the second Bianchi identity. We consider four vector fields
X, Y , Z andW and we assume again that everybody commutes with everybody
else. We calculate

∑

[XY Z]

∇X(R(Y,Z)W ) =
∑

[XY Z]

(
∇X∇Y∇ZW︸ ︷︷ ︸

=R(X,Y )∇ZW+∇Y ∇X∇ZW

−∇X∇Z∇YW
)

=
∑

[XY Z]

R(X,Y )∇ZW

+
∑

[XY Z]

∇Y∇X∇ZW −
∑

[XY Z]

∇X∇Z∇YW

︸ ︷︷ ︸
=0

. (A.12.18)

Next,

∑

[XY Z]

(∇XR)(Y,Z)W =
∑

[XY Z]

(
∇X(R(Y,Z)W )−R(∇XY,Z)W

−R(Y, ∇XZ︸ ︷︷ ︸
=∇ZX+T (X,Z)

)W −R(Y,Z)∇XW
)

=
∑

[XY Z]

∇X(R(Y,Z)W )

−
∑

[XY Z]

R(∇XY,Z)W −
∑

[XY Z]

R(Y,∇ZX)W︸ ︷︷ ︸
=−R(∇ZX,Y )W︸ ︷︷ ︸

=0

−
∑

[XY Z]

(
R(Y, T (X,Z))W +R(Y,Z)∇XW

)

=
∑

[XY Z]

(
∇X(R(Y,Z)W )−R(T (X,Y ), Z)W −R(Y,Z)∇XW

)
.

It follows now from (A.12.18) that the first term cancels out the third one,
leading to

∑

[XY Z]

(∇XR)(Y,Z)W = −
∑

[XY Z]

R(T (X,Y ), Z)W , (A.12.19)

which is the desired second Bianchi identity for commuting vector fields. As
before, because both sides are multi-linear with respect to addition and multi-
plication by functions, the result remains valid for arbitrary vector fields.

For torsionless connections the components equivalent of (A.12.19) reads

Rαµβγ;δ +Rαµγδ;β +Rαµδβ;γ = 0 . (A.12.20)

Incidentally: In the case of the Levi-Civita connection, the proof of the second
Bianchi identity is simplest in coordinates in which the derivatives of the metric
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vanish at p: Indeed, a calculation very similar to the one leading to (A.12.25) below
gives

∇δRαµβγ(0) = ∂δRαµβγ(0) =

1

2

{
∂δ∂β∂µgαγ − ∂δ∂β∂αgµγ − ∂δ∂γ∂µgαβ + ∂δ∂γ∂αgµβ

}
(0) .(A.12.21)

and (A.12.20) follows by inspection 2

A.12.2 Pair interchange symmetry

There is one more identity satisfied by the curvature tensor which is specific to
the curvature tensor associated with the Levi-Civita connection, namely

g(X,R(Y,Z)W ) = g(Y,R(X,W )Z) . (A.12.22)

If one sets
Rabcd := gaeR

e
bcd , (A.12.23)

then (A.12.22) is equivalent to

Rabcd = Rcdab . (A.12.24)

We will present two proofs of (A.12.22). The first is direct, but not very
elegant. The second is prettier, but less insightful.

For the ugly proof, we suppose that the metric is twice-differentiable. By
point 2. of Proposition A.11.1, in a neighborhood of any point p ∈ M there
exists a coordinate system in which the connection coefficients Γαβγ vanish at
p. Equation (A.12.4) evaluated at p therefore reads

Rαβγδ = ∂γΓ
α
βδ − ∂δΓαβγ

=
1

2

{
gασ∂γ(∂δgσβ + ∂βgσδ − ∂σgβδ)

−gασ∂δ(∂γgσβ + ∂βgσγ − ∂σgβγ)
}

=
1

2
gασ

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
.

Equivalently,

Rσβγδ(0) =
1

2

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
(0) . (A.12.25)

This last expression is obviously symmetric under the exchange of σβ with γδ,
leading to (A.12.24).

The above calculation traces back the pair-interchange symmetry to the
definition of the Levi-Civita connection in terms of the metric tensor. As already
mentioned, there exists a more elegant proof, where the origin of the symmetry
is perhaps somewhat less apparent, which proceeds as follows: We start by
noting that

0 = ∇a∇bgcd −∇b∇agcd = −Recabged −Redabgce , (A.12.26)
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leading to anti-symmetry in the first two indices:

Rabcd = −Rbacd .

Next, using the cyclic symmetry for a torsion-free connection, we have

Rabcd +Rcabd +Rbcad = 0 ,

Rbcda +Rdbca +Rcdba = 0 ,

Rcdab +Racdb +Rdacb = 0 ,

Rdabc +Rbdac +Rabdc = 0 . (A.12.27)

The desired equation (A.12.24) follows now by adding the first two and sub-
tracting the last two equations, using (A.12.26).

Remark A.12.8 In dimension two, the pair-interchange symmetry and the anti-
symmetry in the last two indices immediately imply that the only non-zero compo-
nents of the Riemann tensor are

R1212 = −R2112 = R2121 = −R2112 .

This is equivalent to the formula

Rabcd =
R

2
(gacgbd − gadgbc) ,

as easily checked at a point p in a coordinate system where gab is diagonal at p.
In dimension three, a similar argument gives

Rabcd = (Pacgbd − Padgbc + gacPbd − gadPbc) , (A.12.28)

where

Pab := Rab −
R

2
gab .

2

Incidentally: It is natural to enquire about the number of independent compo-
nents of a tensor with the symmetries of a metric Riemann tensor in dimension n,
the calculation proceeds as follows: as Rabcd is symmetric under the exchange of ab
with cd, and anti-symmetric in each of these pairs, we can view it as a symmetric
map from the space of anti-symmetric tensor with two indices. Now, the space of
anti-symmetric tensors is N = n(n−1)/2 dimensional, while the space of symmetric
maps in dimension N is N(N + 1)/2 dimensional, so we obtain at most

n(n− 1)(n2 − n+ 2)

8

free parameters. However, we need to take into account the cyclic identity:

Rdabc +Rdbca +Rdcab = 0 . (A.12.29)

If a = b this reads
Rdaac +Rdaca +Rdcaa = 0 ,

which has already been accounted for. Similarly if a = d we obtain

Rabca +Rbcaa +Rcaba = 0 ,
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which holds in view of the previous identities. We conclude that the only new
identities which could possibly arise are those where abcd are all distinct. (Another
way to see this is to note the identity

Ra[bcd] = R[abcd] , (A.12.30)

which holds for any tensor satisfying

Rabcd = R[ab]cd = Rab[cd] = Rcdab , (A.12.31)

and which can be proved by writing explicitly all the terms in R[abcd]; this is the
same as adding the left-hand sides of the first and third equations in (A.12.27), and
removing those of the second and fourth.)

Clearly no identity involving four distinct components of the Riemann tensor
can be obtained using (A.12.31), so for each distinct set of four indices the Bianchi
identity provides a constraint which is independent of (A.12.31). In dimension four
(A.12.29) provides thus four candidate equations for another constraint, labeled by
d, but it is easily checked that they all coincide either directly, or using (A.12.30).
This leads to 20 free parameters at each space point. (Strictly speaking, to prove this
one would still need to show that there are no further algebraic identities satisfied
by the Riemann tensor, which is indeed the case.

Note that (A.12.30) shows that in dimension n ≥ 4 the Bianchi identity intro-

duces

(
n
4

)
new constraints, leading to

n(n− 1)(n2 − n+ 2)

8
− n(n− 1)(n− 2)(n− 3)

12
=
n2(n2 − 1)

12
(A.12.32)

independent components at each point. 2

A.12.3 Summmary for the Levi-Civita connection

Here is a full list of algebraic symmetries of the curvature tensor of the Levi-
Civita connection:

1. directly from the definition, we obtain

Rδγαβ = −Rδγβα ; (A.12.33)

2. the next symmetry, known as the first Bianchi identity, is less obvious:

Rδγαβ +Rδαβγ +Rδβγα = 0 ⇐⇒ Rδ [γαβ] = 0 ; (A.12.34)

3. and finally we have the pair-interchange symmetry:

Rαβγδ = Rγδαβ . (A.12.35)

Here, of course, Rγδαβ = gγσR
σ
δαβ .

It is not obvious, but true, that the above exhaust the list of all independent
algebraic identities satisfied by Rαβγδ.

As a consequence of (A.12.33) and (A.12.35) we find

Rαβδγ = Rδγαβ = −Rδγβα = −Rβαγδ ,
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and so the Riemann tensor is also anti-symmetric in its first two indices:

Rαβγδ = −Rβαγδ . (A.12.36)

The Ricci tensor is defined as

Rαβ := Rσασβ .

The pair-interchange symmetry implies that the Ricci tensor is symmetric:

Rαβ = gσρRσαρβ = gσρRρβσα = Rβα .

Finally we have the differential second Bianchi identity :

∇αRσδβγ +∇βRσδγα +∇γRσδαβ = 0 ⇐⇒ ∇[αRβγ]µν = 0 . (A.12.37)

A.12.4 Curvature of product metrics

Let (M,g) and (N,h) be two pseudo-Riemannian manifolds, on the product
manifoldM×N we define a metric g⊕h as follows: Every element of T (M×N)
can be uniquely written as X ⊕ Y for some X ∈ TM and Y ∈ TN . We set

(g ⊕ h)(X ⊕ Y, X̂ ⊕ Ŷ ) = g(X, X̂) + h(Y, Ŷ ) .

Let ∇ be the Levi-Civita connection associated with g, D that associated with
h, and D the one associated with g ⊕ h. To understand the structure of ∇,
we note that sections of T (M ×N) are linear combinations, with coefficients in
C∞(M×N), of elements of the formX⊕Y , whereX ∈ Γ(TM) and Y ∈ Γ(TN).
(Thus, X does not depend upon q ∈ N and Y does not depend upon p ∈ M .)
We claim that for such fields X ⊕ Y and W ⊕ Z we have

DX⊕Y (W ⊕ Z) = ∇XW ⊕DY Z . (A.12.38)

(If true, (A.12.38) together with the Leibniz rule characterises D uniquely.) To
verify (A.12.38), we check first that D has no torsion:

DX⊕Y (W ⊕ Z)−DW⊕Z(X ⊕ Y ) = ∇XW ⊕DY Z −∇WX ⊕DZY

= (∇XW −∇WX)⊕ (DY Z −DZY )

= [X,W ]⊕ [Y,Z]

= [X ⊕ Y,W ⊕ Z] .
(In the last step we have used [X ⊕ 0, 0 ⊕ Z] = [0 ⊕ Y,W ⊕ 0] = 0.) Next, we
check metric compatibility:

X ⊕ Y
(
(g ⊕ h)(W ⊕ Z, Ŵ ⊕ Ẑ)

)

= X ⊕ Y
(
g(W, Ŵ ) + h(Z, Ẑ)

)

= X
(
g(W, Ŵ )

)

︸ ︷︷ ︸
g(∇XW,Ŵ )+g(W,∇XŴ )

+ Y
(
h(Z, Ẑ)

)

︸ ︷︷ ︸
h(DY Z,Ẑ)+h(Z,DY Ẑ)

= g(∇XW, Ŵ ) + h(DY Z, Ẑ)︸ ︷︷ ︸
(g⊕h)(∇XW⊕DY Z,Ŵ⊕Ẑ)

+ g(W,∇XŴ ) + h(Z,DY Ẑ)︸ ︷︷ ︸
(g⊕h)(W⊕Z,∇XŴ⊕DY Ẑ)

= (g ⊕ h)(DX⊕YW ⊕ Z, Ŵ ⊕ Ẑ) + (g ⊕ h)(W ⊕ Z,DX⊕Y Ŵ ⊕ Ẑ) .
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Uniqueness of Levi-Civita connections proves (A.12.38).

Let Riem(k) denote the Riemann tensor of the metric k. It should be clear
from (A.12.38) that the Riemann tensor of g ⊕ h has a sum structure,

Riem(g ⊕ h) = Riem(g) ⊕ Riem(h) . (A.12.39)

More precisely,

Riem(g ⊕ h)(X ⊕ Y, X̂ ⊕ Ŷ )W ⊕ Z = Riem(g)(X, X̂)W ⊕ Riem(h)(Y, Ŷ )Z .
(A.12.40)

This implies

Ric(g ⊕ h) = Ric(g) ⊕ Ric(h) , (A.12.41)

in the sense that

Ric(g ⊕ h)(X ⊕ Y, X̂ ⊕ Ŷ ) = Ric(g)(X, X̂)⊕ Ric(h)(Y, Ŷ ) , (A.12.42)

and

trg⊕hRic(g ⊕ h) = trgRic(g) + trhRic(h) . (A.12.43)

A.12.5 An identity for the Riemann tensor

We write δαβγδ for δ
[α
γ δ

β]
δ ≡ 1

2(δ
α
γ δ

β
δ − δ

β
γ δαδ ), etc.

For completeness we prove the following identity satisfied by the Riemann
tensor, which is valid in any dimension, is clear in dimensions two and three,
implies the double-dual identity for the Weyl tensor in dimension four, and is
probably well known in higher dimensions as well:

δαβγδµνρσR
ρσ
γδ =

1

3!

(
Rαβµν + δαβµνR− 4δ

[α
[µR

β]
ν]

)
. (A.12.44)

The above holds for any tensor field satisfying

Rαβγδ = −Rβαγδ = Rβαδγ . (A.12.45)

To prove (A.12.44) one can calculate as follows:

4! δαβγδµνρσR
ρσ
γδ = 2[δαµ

(
δβν δ

γ
ρδ
δ
σ − δβρ δγν δδσ + δβσδ

γ
ν δ
δ
ρ

)

−δαν
(
δβµδ

γ
ρδ
δ
σ − δβρ δγµδδσ + δβσδ

γ
µδ
δ
ρ

)

+δαρ

(
δβµδ

γ
ν δ
δ
σ − δβν δγµδδσ + δβσδ

γ
µδ
δ
ν

)

−δασ
(
δβµδ

γ
ν δ
δ
ρ − δβν δγµδδρ + δβρ δ

γ
µδ
δ
ν

)
]Rρσγδ

= 2
(
2δαβµν δ

γ
ρδ
δ
σ − 4δαγµν δ

βδ
ρσ + 4δβγµν δ

αδ
ρσ + 2δαρ δ

β
σδ

γ
µδ
δ
ν

)
Rρσγδ

= 4
(
δαβµνR

γδ
γδ − 2δαγµνR

βσ
γσ + 2δβγµνR

ασ
γσ +Rαβµν

)

= 4
(
Rαβµν + δαβµνR

γδ
γδ − 4δ

[α
[µR

β]γ
ν]γ

)
. (A.12.46)
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If the sums are over all indices we obtain (A.12.44). The reader is warned,
however, that in some of our calculations the sums will be only over a subset of
all possible indices, in which case the last equation remains valid but the last
two terms in (A.12.46) cannot be replaced by the Ricci scalar and the Ricci
tensor.

Let us show that the double-dual identity for the Weyl tensor does indeed
follow from (A.12.44). For this, note that in spacetime dimension four we have

4!δαβγδµνρσ = ǫαβγδǫµνρσ , (A.12.47)

since both sides are completely anti-symmetric in the upper and lower indices,
and coincide when both pairs equal 0123. Hence, since the Weyl tensor W ρσ

γδ
has all the required symmetries and vanishing traces, we find

4Wαβ
µν =︸︷︷︸

by (A.12.46)

4!δαβγδµνρσW
ρσ
γδ = ǫαβγδǫµνρσW

ρσ
γδ . (A.12.48)

This is equivalent to the desired identity

ǫµνρσW
ρσ
γδ =Wαβ

µν ǫαβγδ . (A.12.49)

A.13 Geodesics

An affinely parameterised geodesic γ is a maximally extended solution of the
equation

∇γ̇ γ̇ = 0

(compare (A.10.11).) It is a fundamental postulate of general relativity that
physical observers move on timelike geodesics. This motivates the following def-
inition: an observer is a maximally extended future directed timelike geodesics.

Incidentally: It is sometimes convenient to consider geodesics which are not nec-
essarily affinely parameterised. Those are solutions of

∇ dγ
dλ

dγ

dλ
= χ

dγ

dλ
. (A.13.1)

Indeed, let us show that a change of parameter obtained by solving the equation

d2λ

ds2
+ χ

(
dλ

ds

)2

= 0 (A.13.2)

brings (A.13.2) to the form (A.13.2): under a change of parameter λ = λ(s) we
have

dγµ

ds
=
dλ

ds

dγµ

dλ
,

and

D

ds

dγν

ds
=

D

ds
(
dλ

ds

dγν

dλ
)

=
d2λ

ds2
dγν

dλ
+
dλ

ds

D

ds

dγν

dλ

=
d2λ

ds2
dγν

dλ
+
(dλ
ds

)2 D
dλ

dγν

dλ

=
d2λ

ds2
dγν

dλ
+
(dλ
ds

)2
χ
dγν

dλ
,
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and the choice indicated above gives zero, as desired. 2

Let f be a smooth function and let λ 7→ γ(λ) be any integral curve of ∇f ; by
definition, this means that dγµ/dλ = ∇µf . The following provides a convenient
tool for finding geodesics:

Proposition A.13.2 (Integral curves of gradients) Let f be a function satisfy-
ing

g(∇f,∇f) = ψ(f) ,

for some function ψ. Then the integral curves of ∇f are geodesics, affinely
parameterised if ψ′ = 0.

Proof: We have

γ̇α∇αγ̇β = ∇αf∇α∇βf = ∇αf∇β∇αf =
1

2
∇β(∇αf∇αf) =

1

2
∇βψ(f) = 1

2
ψ′∇βf .

(A.13.3)
Let λ the natural parameter on the integral curves of ∇f ,

dγµ

dλ
= ∇µf ,

then (A.13.3) can be rewritten as

D

dλ

dγµ

dλ
=

1

2
ψ′ dγ

µ

dλ
.

2

A significant special case is that of a coordinate function f = xi. Then

g(∇f,∇f) = g(∇xi,∇xi) = gii (no summation) .

For example, in Minkowski spacetime, all gµν ’s are constant, which shows that
the integral curves of the gradient of any coordinate, and hence also of any
linear combination of coordinates, are affinely parameterized geodesics. An
other example is provided by the coordinate r in Schwarzschild spacetime, where
grr = 1 − 2m/r; this is indeed a function of r, so the integral curves of ∇r =
(1− 2m/r)∂r are (non-affinely parameterized) geodesics.

Similarly one shows:

Proposition A.13.3 Suppose that d(g(X,X)) = 0 along an orbit γ of a Killing
vector field X. Then γ is a geodesic.

Exercice A.13.4 Consider the Killing vector field X = ∂t + Ω∂ϕ, where Ω is a
constant, in the Schwarzschild spacetime. Find all geodesic orbits of X by studying
the equation d(g(X,X)) = 0. 2
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A.14 Geodesic deviation (Jacobi equation)

Suppose that we have a one parameter family of geodesics

γ(s, λ) (in local coordinates, (γα(s, λ))),

where s is an affine parameter along the geodesic, and λ is a parameter which
labels the geodesics. Set

Z(s, λ) :=
∂γ(s, λ)

∂λ
≡ ∂γα(s, λ)

∂λ
∂α ;

for each λ this defines a vector field Z along γ(s, λ), which measures how nearby
geodesics deviate from each other, since, to first order, using a Taylor expansion,

γα(s, λ) = γα(s, λ0) + Zα(λ− λ0) +O((λ− λ0)2) .
To measure how a vector field W changes along s 7→ γ(s, λ), one introduces

the differential operator D/ds, defined as

DW µ

ds
:=

∂(W µ ◦ γ)
∂s

+ Γµαβ γ̇
βWα (A.14.1)

= γ̇β
∂W µ

∂xβ
+ Γµαβ γ̇

βWα (A.14.2)

= γ̇β∇βW µ . (A.14.3)

(It would perhaps be more logical to write DWµ

∂s in the current context, but
this is rarely done. Another notation for D

ds often used in the mathematical
literature is γ∗∂s.) The last two lines only make sense if W is defined in a
whole neighbourhood of γ, but for the first it suffices that W (s) be defined
along s 7→ γ(s, λ). (One possible way of making sense of the last two lines
is to extend, whenever possible, W µ to any smooth vector field defined in a
neighorhood of γµ(s, λ), and note that the result is independent of the particular
choice of extension because the equation involves only derivatives tangential to
s 7→ γµ(s, λ).)

Analogously one sets

DW µ

dλ
:=

∂(W µ ◦ γ)
∂λ

+ Γµαβ∂λγ
βWα (A.14.4)

= ∂λγ
β ∂W

µ

∂xβ
+ Γµαβ∂λγ

βWα (A.14.5)

= Zβ∇βW µ . (A.14.6)

Note that since s→ γ(s, λ) is a geodesic we have from (A.14.1) and (A.14.3)

D2γµ

ds2
:=

Dγ̇µ

ds
=
∂2γµ

∂s2
+ Γµαβ γ̇

β γ̇α = 0 . (A.14.7)

(This is sometimes written as γ̇α∇αγ̇µ = 0, which is again an abuse of notation
since typically we will only know γ̇µ as a function of s, and so there is no such
thing as ∇αγ̇µ.) Furthermore,

DZµ

ds
=︸︷︷︸

(A.14.1)

∂2γµ

∂s∂λ
+ Γµαβ γ̇

β∂λγ
α =︸︷︷︸
(A.14.4)

Dγ̇µ

dλ
, (A.14.8)
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(The abuse-of-notation derivation of the same formula proceeds as:

∇γ̇Zµ = γ̇ν∇νZµ = γ̇ν∇ν∂λγµ =︸︷︷︸
(A.14.3)

∂2γµ

∂s∂λ
+ Γµαβ γ̇

β∂λγ
α =︸︷︷︸
(A.14.6)

Zβ∇β γ̇µ

= ∇Z γ̇µ , (A.14.9)

which can then be written as

∇γ̇Z = ∇Z γ̇ .) (A.14.10)

We have the following identity for any vector fieldW defined along γµ(s, λ),
which can be proved by e.g. repeating the calculation leading to (A.12.9):

D

ds

D

dλ
W µ − D

dλ

D

ds
W µ = Rµδαβ γ̇

αZβW δ . (A.14.11)

If W µ = γ̇µ the second term at the left-hand side of (A.14.11) vanishes, and
from D

dλ γ̇ = D
dsZ we obtain

D2Zµ

ds2
(s) = Rµσαβ γ̇

αZβ γ̇σ . (A.14.12)

This is an equation known as the Jacobi equation, or as the geodesic deviation
equation; in index-free notation:

D2Z

ds2
= R(γ̇, Z)γ̇ . (A.14.13)

Solutions of (A.14.13) are called Jacobi fields along γ.

Incidentally: The advantage of the abuse-of-notation equations above is that,
instead of adapting the calculation, one can directly invoke the result of Proposi-
tion A.12.3to obtain (A.14.11):

D2Zµ

ds2
(s) = γ̇α∇α(γ̇

β∇βZ
µ)

= γ̇α∇α(Z
β∇βγ̇

µ)

= (γ̇α∇αZ
β)∇β γ̇

µ + Zβ γ̇α∇α∇β γ̇
µ

= (γ̇α∇αZ
β)∇β γ̇

µ + Zβ γ̇α(∇α∇β −∇β∇α)γ̇
µ + Zβ γ̇α∇β∇αγ̇

µ

= (γ̇α∇αZ
β)∇β γ̇

µ + Zβ γ̇αRµ
σαβ γ̇

σ + Zβ γ̇α∇β∇αγ̇
µ

= (γ̇α∇αZ
β)∇β γ̇

µ + Zβ γ̇αRµ
σαβ γ̇

σ

+Zβ∇β(γ̇
α∇αγ̇

µ

︸ ︷︷ ︸
0

)− (Zβ∇β γ̇
α)∇αγ̇

µ . (A.14.14)

A renaming of indices in the first and the last term gives

(γ̇α∇αZ
β)∇β γ̇

µ − (Zβ∇β γ̇
α)∇αγ̇

µ = (γ̇α∇αZ
β − Zα∇αγ̇

β)∇β γ̇
µ ,

which is zero by (A.14.10). This leads again to (A.14.12). 2
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A.15 Exterior algebra

A preferred class of tensors is provided by those that are totally antisymmetric
in all indices. Such k-covariant tensors are called k-forms. They are of spe-
cial interest because they can naturally be used for integration. Furthermore,
on such tensors one can introduce a differentiation operation, called exterior
derivative, which does not require a connection.

By definition, functions are zero-forms, and covectors are one-forms.

Let αi, i = 1, . . . , k, be a collection of one-forms, the exterior product of the
αi’s is a k-form defined as

(α1 ∧ · · · ∧ αk)(X1, . . . ,Xk) = det (αi(Xj)) , (A.15.1)

where det (αi(Xj)) denotes the determinant of the matrix obtained by applying
all the αi’s to all the vectors Xj . For example

(dxa ∧ dxb)(X,Y ) = XaY b − Y aXb .

Note that

dxa ∧ dxb = dxa ⊗ dxb − dxb ⊗ dxa ,

which is twice the antisymmetrisation dx[a ⊗ dxb].
Quite generally, if α is a totally anti-symmetric k-covariant tensor with

coordinate coefficients αa1...ak , then

α = αa1...akdx
a1 ⊗ · · · ⊗ dxak

= αa1...akdx
[a1 ⊗ · · · ⊗ dxak ]

=
1

k!
αa1...akdx

a1 ∧ · · · ∧ dxak

=
∑

a1<···<ak
αa1...akdx

a1 ∧ · · · ∧ dxak . (A.15.2)

The middle formulae exhibits the factorial coefficients needed to go from tensor
components to the components in the dxa1 ∧ · · · ∧ dxak basis.

Equation (A.15.2) makes it clear that in dimension n for any non-trivial k-
form we have k ≤ n. It also shows that the dimension of the space of k-forms,
with 0 ≤ k ≤ n, equals (

n
k

)
=

n!

k!(n − k)! .

A differential form is defined as a linear combination of k-forms, with k
possibly taking different values for different summands.

Let Y be a vector and α a k-form. The contraction Y ⌋α, also called the
interior product of Y and α, is a (k − 1)-form defined as

(Y ⌋α)(X1, . . . ,Xk−1) := α(Y,X1, . . . ,Xk−1) . (A.15.3)

The operation Y ⌋ is often denoted by iY .
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Let α be a k-form and β an ℓ-form, the exterior product α ∧ β of α and β,
also called wedge product, is defined using bilinearity:

α ∧ β ≡
( ∑

a1<···<ak
αa1...akdx

a1 ∧ · · · ∧ dxak
)
∧


 ∑

b1<···<bℓ
βb1...bℓdx

b1 ∧ · · · ∧ dxbℓ



:=
∑

a1<···<ak , b1<···<bℓ
αa1...akβb1...bℓ ×

dxa1 ∧ · · · ∧ dxak ∧ dxb1 ∧ · · · ∧ dxbℓ . (A.15.4)

The product so-defined is associative:

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ =: α ∧ β ∧ γ . (A.15.5)

Incidentally: In order to establish (A.15.5), we start by rewriting the definition
of the wedge product of a k-form α and l-form β as

(α ∧ β) (X1 . . . , Xk+l) :=
1

k!

1

l!

∑

π∈Sk+l

sgn(π) (α⊗ β) (Xπ(1), . . . , Xπ(k+l)) ,

(A.15.6)
where Xi ∈ Γ(TM) for i = 1, . . . , k + l.

Let Sp denote the group of permutations of p elements and let Ωℓ(M) denote
the space of ℓ-forms. For α ∈ Ωk(M), β ∈ Ωl(M) and γ ∈ Ωm(M) we have

((α ∧ β) ∧ γ)(X1, . . . , Xk+l+m)

=
1

(k + l)!m!

∑

π∈Sk+l+m

sgn(π) ((α ∧ β)⊗ γ) (Xπ(1), . . . , Xπ(k+l+m))

=
1

(k + l)!m!

∑

π∈Sk+l+m

sgn(π)(α ∧ β)(Xπ(1), . . . , Xπ(k+l)) · γ(Xπ(k+l+1), . . . , Xπ(k+l+m))

=
1

(k + l)!k!l!m!

∑

π∈Sk+l+m

sgn(π)
∑

π′∈Sk+l

sgn(π′)(α⊗ β)(Xπ′(π(1)), . . . , Xπ′(π(k+l))) ·

γ(Xπ(k+l+1), . . . , Xπ(k+l+m)) . (A.15.7)

We introduce a new permutation π′′ ∈ Sk+l+m such that

π′′(π(i)) =

{
π′(π(i)) for 1 ≤ i ≤ k + l ,
π(i) for i > k + l ,

which implies sgn(π′′) = sgn(π′). One then obtains

((α ∧ β) ∧ γ)(X1, . . . , Xk+l+m)

=
1

(k + l)!k!l!m!

∑

π′∈Sk+l

sgn(π′)
∑

π∈Sk+l+m

sgn(π)((α ⊗ β)⊗ γ)(Xπ′′(π(1)), . . . , Xπ′′(π(k+l+m))) .

Set σ := π′′ ◦ π. Then sgn(σ) = sgn(π′′)sgn(π), thus

sgn(π) = sgn(σ)sgn(π′′) = sgn(σ)sgn(π′)
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and we get

((α ∧ β) ∧ γ)(X1, . . . , Xk+l+m)

=
1

(k + l)!k!l!m!

∑

π′∈Sk+l

(sgn(π′))2

︸ ︷︷ ︸
=(k+l)!

∑

σ∈Sk+l+m

sgn(σ)((α ⊗ β)⊗ γ)(Xσ(1), . . . , Xσ(k+l+m))

=
1

k!l!m!

∑

σ∈Sk+l+m

sgn(σ)((α ⊗ β)⊗ γ)(Xσ(1), . . . , Xσ(k+l+m)) .(A.15.8)

A similar calculation gives

(α ∧ (β ∧ γ))(X1, . . . , Xk+l+m)

=
1

k!l!m!

∑

σ∈Sk+l+m

sgn(σ)(α ⊗ (β ⊗ γ))(Xσ(1), . . . , Xσ(k+l+m)) , (A.15.9)

and the associativity of the wedge product follows.
The above calculations lead to the following form of the wedge product of n

forms, where associativity is hidden in the notation:

(α1 ∧ · · · ∧ αn)(X1, . . . , Xk1+...+kn
)

=
1

k1! · · · kn!
∑

π∈Sk1+...+kn

sgn(π)(α1 ⊗ · · · ⊗ αn)(Xπ(1), . . . , Xπ(k1+...+kn)) ,

(A.15.10)

where αi ∈ Ωki(M) for i = 1, . . . , n and Xj ∈ Γ(TM) for j = 1, . . . , k1 + . . .+ kn.
Let us apply the last formula to one-forms: if αi ∈ Ω1(M) we have

(α1 ∧ · · · ∧ αn)(X1, . . . , Xn) =
∑

π∈Sn

sgn(π)(α1 ⊗ · · · ⊗ αn)(Xπ(1), . . . , Xπ(n))

=
∑

π∈Sn

sgn(π)
n∏

i=1

αi(Xπ(i))

= det(αi(Xj)) , (A.15.11)

where we have used the Leibniz formula for determinants. 2

The exterior derivative of a differential form is defined as follows:

1. For a zero form f , the exterior derivative of f is its usual differential df .

2. For a k-form α, its exterior derivative dα is a (k + 1)-form defined as

dα ≡ d
(

1

k!
αµ1...µkdx

µ1 ∧ · · · ∧ dxµk
)

:=
1

k!
dαµ1...µk ∧ dxµ1 ∧ · · · ∧ dxµk .

(A.15.12)
Equivalently

dα =
1

k!
∂βαµ1...µkdx

β ∧ dxµ1 ∧ · · · ∧ dxµk

=
k + 1

(k + 1)!
∂[βαµ1...µk ]dx

β ∧ dxµ1 ∧ · · · ∧ dxµk , (A.15.13)
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which can also be written as

(dα)µ1...µk+1
= (k + 1) ∂[µ1αµ2...µk+1] . (A.15.14)

One easily checks, using ∂α∂βy
γ = ∂β∂αy

γ , that the exterior derivative
behaves as a tensor under coordinate transformations. An “active way” of
saying this is

d(φ∗α) = φ∗(dα) , (A.15.15)

for any differentiable map φ. The tensorial character of d is also made clear by
noting that for any torsion-free connection ∇ we have

∂[µ1αµ2...µk+1] = ∇[µ1αµ2...µk+1] . (A.15.16)

Again by symmetry of second derivatives, it immediately follows from (A.15.12)
that d(df) = 0 for any function, and subsequently also for any differential form:

d2α := d(dα) = 0 . (A.15.17)

A coordinate-free definition of dα is

dα(X0,X1, . . . ,Xk) =
∑

0≤j≤k
(−1)jXj

(
α(X0, . . . , X̂j , . . . Xk)

)

+
∑

0≤i<j≤k
(−1)i+jα([Xi,Xj ],X0, . . . , X̂j , . . . Xk) , (A.15.18)

where X̂ℓ denotes the omission of the vector Xℓ.

It is not too difficult to prove that if
k
α is a k-form and

ℓ
β is an ℓ-form, then

the following version of the Leibniz rule holds:

d(
k
α ∧

ℓ
β) = (d

k
α)∧

ℓ
β +(−1)k k

α ∧(d
ℓ
β) . (A.15.19)

In dimension n, let σ ∈ {±1} denote the parity of a permutation, set

ǫµ1...µn =

{ √
|det gαβ |σ(µ1 . . . µn) if (µ1 . . . µn) is a permutation of (1 . . . n);

0 otherwise.

The Hodge dual ⋆α of a k-form α = αµ1...µkdx
µ1 ⊗ · · · ⊗ dxµk is a (n− k)-form

defined as

⋆α =
1

k!(n − k)!ǫµ1...µkµk+1...µnα
µ1...µkdxµk+1 ⊗ · · · ⊗ dxµn . (A.15.20)

Equivalently,

⋆αµk+1...µn =
1

k!(n− k)!ǫµ1...µkµk+1...µnα
µ1...µk . (A.15.21)

For example, in Euclidean three-dimensional space,

⋆1 = dx ∧ dy ∧ dz , ⋆dx = dy ∧ dz , ⋆(dy ∧ dz) = dx , ⋆(dx ∧ dy ∧ dz) = 1 ,

etc. In Minkowski four-dimensional spacetime we have, e.g.,

⋆dt = −dx ∧ dy ∧ dz , ⋆dx = −dy ∧ dz ∧ dt ,
⋆(dt ∧ dx) = −dy ∧ dz , ⋆(dx ∧ dy) = −dz ∧ dt , ⋆(dx ∧ dy ∧ dz) = −dt .
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A.16 Submanifolds, integration, and Stokes’ theo-
rem

When integrating on manifolds, the starting observation is that the integral of
a scalar function f with respect to the coordinate measure

dnx := dx1 · · · dxn

is not a coordinate-independent operation. This is due to the fact that, under
a change of variables x 7→ x̄(x), one has

∫

Rn

f̄(x̄)dnx̄ =

∫

Rn

f̄(x̄(x))︸ ︷︷ ︸
f(x)

|Jx 7→x̄(x)|dnx , (A.16.1)

where the Jacobian Jx 7→x̄ is the determinant of the Jacobi matrix,

Jx 7→x̄ =

∣∣∣∣
∂(x̄1, . . . , x̄n)

∂(x1, . . . , xn)

∣∣∣∣ .

Supposing that we have a metric

g = gij(x)dx
idxj = gij(x)

∂xi

∂x̄k
(x̄(x))

∂xj

∂x̄ℓ
(x̄(x)) dx̄kdx̄ℓ = ḡkℓ(x̄(x))dx̄

kdx̄ℓ

(A.16.2)
at our disposal, the problem can be cured by introducing the metric measure

dµg :=
√

det gijd
nx . (A.16.3)

Indeed, using

x (x̄(x)) = x =⇒ ∂xk

∂x̄ℓ
(x̄(x))

∂x̄ℓ

∂xi
(x) = δki =⇒ Jx̄ 7→x (x̄(x)) Jx 7→x̄(x) = 1 ,

it follows from (A.16.2) that

√
det ḡij (x̄(x)) =

√
det gij(x)|Jx̄ 7→x (x̄(x)) | =

√
det gij(x)

|Jx 7→x̄(x)|
,

hence

dµg ≡
√

det gij(x)d
nx =

√
det ḡij (x(x̄))|Jx 7→x̄ (x) |dnx . (A.16.4)

This shows that
∫

Rn

f(x)
√

det gijd
nx =

∫

Rn

f(x)
√

det ḡij |Jx 7→x̄ (x) |dnx .

Comparing with (A.16.1), this is equal to

∫

Rn

f(x)dµg =

∫

Rn

f (x(x̄))
√

det ḡijd
nx̄ =

∫

Rn

f̄(x̄)dµḡ .
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A similar formula holds for subsets of Rn. We conclude that the metric
measure dµg is the right thing to use when integrating scalars over a manifold.

Now, when defining conserved charges we have been integrating on submani-
folds. The first naive thought would be to use the spacetime metric determinant
as above for that, e.g., in spacetime dimension n+ 1,

∫

{x0=0}
f =

∫

Rn

f(0, x1, . . . , xn)
√

det gµνdx
1 . . . dxn .

This does not work because if we take g to be the Minkowski metric on Rn,
and replace x0 by x̄0 using x0 = 2x̄0, the only thing that will change in the last
integral is the determinant

√
det gµν , giving a different value for the answer.

So, to proceed, it is useful to make first a short excursion into hypersurfaces,
induced metrics and measures.

A.16.1 Hypersurfaces

A subset S ⊂ M is called a hypersurface if near every point p ∈ S there
exists a coordinate system {x1, . . . , xn} on a neighborhood U of p in M and a
constant C such that

S ∩U = {x1 = C} .
For example, any hyperplane {x1 = const} in Rn is a hypersurface. Similarly,
a sphere {r = R} in Rn is a hypersurface if R > 0.

Further examples include graphs,

x1 = f(x2, . . . , xn−1) ,

which is seen by considering new coordinates (x̄i) = (x1 − f, x2, . . . xn).
A standard result in analysis asserts that if ϕ is a differentiable function on

an open set Ω such that dϕ nowhere zero on Ω ∩ {ϕ = c} for some constant c,
then

Ω ∩ {ϕ = c}
forms a hypersurface in Ω.

A vector X ∈ TpM , p ∈ S , is said to be tangent to S if there exists
a differentiable curve γ with image lying on S , with γ(0) = p, such that
X = γ̇(0). One denotes by TS the set of such vectors. Clearly, the bundle
TS of all vectors tangent to S , defined when S is viewed as a manifold on
its own, is naturally diffeomorphic with the bundle TS ⊂ TM just defined.

As an example, suppose that S = {x1 = C} for some constant C, then TS

is the collection of vectors defined along S for which X1 = 0.

As another example, suppose that

S = {x0 = f(xi)} (A.16.5)

for some differentiable function f . Then a curve γ lies on S if and only if

γ0 = f(γ1, . . . , γn) ,



216 APPENDIX A. PSEUDO-RIEMANNIAN GEOMETRY

and so its tangent satisfies

γ̇0 = ∂1f γ̇
1 + . . .+ ∂nf γ̇

n .

We conclude that X is tangent to S if and only if

X0 = X1∂1f + . . .+X
n∂nf = Xi∂if ⇐⇒ X = Xi∂if∂0+X

i∂i . (A.16.6)

Equivalently, the vectors
∂if∂0 + ∂i

form a basis of the tangent space TS .
Finally, if

S = Ω ∩ {ϕ = c} (A.16.7)

then for any curve lying on S we have

ϕ(γ(s)) = c ⇐⇒ γ̇µ∂µϕ = 0 and ϕ(γ(0)) = c .

Hence, a vector X ∈ TpM is tangent to S if and only if ϕ(p) = c and

Xµ∂µϕ = 0 ⇐⇒ X(ϕ) = 0 ⇐⇒ dϕ(X) = 0 . (A.16.8)

A one-form α is said to annihilate TS if

∀X ∈ TS α(X) = 0 . (A.16.9)

The set of such one-forms is called the annihilator of TS , and denoted as
(TS )o. By elementary algebra, (TS )o is a one-dimensional subset of T ∗M .
So, (A.16.8) can be rephrased as the statement that dϕ annihilates TS .

A vector Y ∈ TpM is said to be normal to S if Y is orthogonal to every
vector in X ∈ TpS , where TpS is viewed as a subset of TpM . Equivalently, the
one form g(Y, ·) annihilates TpS . If N has unit length, g(N,N) ∈ {−1,+1},
then N is said to be the unit normal. Thus,

∀X ∈ TS g(X,N) = 0 , g(N,N) = ǫ ∈ {±1} . (A.16.10)

In Riemannian geometry only the plus sign is possible, and a unit normal vector
always exists. This might not be the case in Lorentzian geometry: Indeed,
consider the hypersurface

S = {t = x} ⊂ R1,1 (A.16.11)

in two-dimensional Minkowski spacetime. A curve lying on S satisfies γ0(s) =
γ1(s), hence X is tangent to S if and only if X0 = X1. Let Y be orthogonal
to X 6= 0, then

0 = η(X,Y ) = X0(−Y 0 + Y 1) ,

whence
Y 0 = Y 1 . (A.16.12)

We conclude that, for non-zero X,

0 = η(X,Y ) ⇒ Y ∈ TS , in particular 0 = η(Y, Y ),
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and so no such vector Y can have length one or minus one.
Since vectors of the form (A.16.12) are tangent to S as given by (A.16.11),

we also reach the surprising conclusion that vectors normal to S coincide with
vectors tangent to S in this case.

Suppose that the direction normal to S is timelike or spacelike. Then the
metric h induced by g on S is defined as

∀ X,Y ∈ TS h(X,Y ) = g(X,Y ) . (A.16.13)

Hence, h coincides with g whenever both are defined, but we are only allowed
to consider vectors tangent to S when using h.

Some comments are in order: If g is Riemannian, then normals to S are
spacelike, and (A.16.13) defines a Riemannian metric on S . For Lorentzian g’s,
it is easy to see that h is Riemannian if and only if vectors orthogonal to S are
timelike, and then S is called spacelike. Similarly, h is Lorentzian if and only
if vectors orthogonal to S are spacelike, and then S is called timelike. When
the normal direction to S is null, then (A.16.13) defines a symmetric tensor on
S with signature (0,+, · · · ,+), which is degenerate and therefore not a metric;
such hypersurfaces are called null, or degenerate.

If S is not degenerate, it comes equipped with a Riemannian or Lorentzian
metric h. This metric defines a measure dµh which can be used to integrate
over S .

We are ready now to formulate the Stokes theorem for open bounded sets:
Let Ω be a bounded open set with piecewise differentiable boundary and assume
that there exists a well-defined field of exterior-pointing conormals N = Nµdx

µ

to Ω. Then for any differentiable vector field X it holds that
∫

Ω
∇αXαdµg =

∫

∂Ω
XµNµdS . (A.16.14)

If ∂Ω is non-degenerate, Nµ can be normalised to have unit length, and then
dS is the measure dµh associated with the metric h induced on ∂Ω by g.

The definition of dS for null hypersurfaces is somewhat more complicated.
The key point is that (A.16.14) remains valid for a suitable measure dS on
null components of the boundary. This measure is not uniquely defined by the
geometry of the problem, but the product NµdS is.

Incidentally: In order to prove (A.16.14) on a smooth null hypersurface N one
can proceed as follows. Let use denote by N any smooth field of null normals to N .
The field N is defined up to multiplication by a nowhere-vanishing smooth function.
We can find an ON-frame {eµ} so that the vector fields e2, . . . en are tangent to N

and orthogonal to N , with
N = e0 + e1 . (A.16.15)

Note that {e0, e1} form an ON-basis of the space {e2, . . . , en}⊥, and are thus de-
fined up to changes of signs (e0, e1) 7→ (±e0,±e1) and two-dimensional Lorentz
transformations. If N = ∂Ω we choose e0 to be outwards directed; then (A.16.15)
determines the orientation of e1.

Let {θµ} be the dual basis, thus the volume form dµg is

dµg = θ0 ∧ · · · ∧ θn .
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Set
dS := −θ1 ∧ · · · ∧ θn|N ,

where (· · ·)|N denotes the pull-back to N . It holds that

dS = −θ0 ∧ θ2 ∧ · · · ∧ θn|N . (A.16.16)

Indeed, we have X⌋dµg|N = 0 for any vector field tangent to N , in particular

0 = N⌋dµg|N =
(
θ1 ∧ θ2 ∧ · · · ∧ θn − θ0 ∧ θ2 ∧ · · · ∧ θn

)∣∣
N
,

which is (A.16.16).
In the formalism of differential forms Stokes’ theorem on oriented manifolds

reads ∫

Ω

∇µX
µdµg =

∫

∂Ω

X⌋dµg . (A.16.17)

If ∂Ω is null, in the adapted frame just described we have XµNµ = −X0 +X1 and

X⌋dµg|∂Ω =
(
X0θ1 ∧ · · · ∧ θn −X1θ0 ∧ θ2 ∧ · · · ∧ θn

)
|∂Ω = (−X0 +X1)dS

= XµNµdS , (A.16.18)

as desired.
Since the left-hand side of (A.16.18) is independent of any choices made, so is

the right-hand side. 2

Remark A.16.2 The reader might wonder how (A.16.14) fits with the usual version
of the divergence theorem

∫

Ω

∂αX
αdµg =

∫

∂Ω

XµdSµ , (A.16.19)

which holds for sets Ω which can be covered by a single coordinate chart. For this
we note the identity

∇µX
µ =

1√
| det g|

∂µ
(√
| det g|Xµ

)
, (A.16.20)

which gives

∫

Ω

∇αX
αdµg =

∫

Ω

1√
| det g|

∂α
(√
| det g|Xα

)√
| det g|dnx =

∫

Ω

∂α
(√
| det g|Xα

)
dnx .

(A.16.21)
This should make clear the relation between (A.16.19) and (A.16.14). 2

A.17 Odd forms (densities)

In this section we review the notion of an odd differential n-form on a manifold
M ; we follow the very clear approach of [406].

Locally, in a vicinity of a point x0, an odd form may be defined as an
equivalence class [(αn,O)], where αn is a differential n-form defined in a neigh-
bourhood U and O is an orientation of U ; the equivalence relation is given
by:

(αn,O) ∼ (−αn,−O) ,
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where −O denotes the orientation opposite to O. Using a partition of unity,
we may define odd forms globally, even if the manifold is non-orientable.

Odd differential n-forms on an m-dimensional manifold can be described
using antisymmetric contravariant tensor densities of rank r = (m − n) (see
[392]). Indeed, if f i1...ir are components of such a tensor density with respect to
a coordinate system (xi), then we may assign to f an odd n-form defined by the
representative (αn,O), where O is the local orientation carried by (x1, . . . , xm)
and

αn := f i1...ir
(

∂

∂xi1
∧ . . . ∧ ∂

∂xir

)
y( dx1 ∧ . . . ∧ dxm) .

In particular, within this description scalar densities (i.e., densities of rank
m − n = 0) are odd forms of maximal rank, whereas vector densities are odd
(m− 1)-forms.

Odd n-forms are designed to be integrated over externally oriented n-dimen-
sional submanifolds. An exterior orientation of a submanifold Σ is an orienta-
tion of a bundle of tangent vectors transversal with respect to Σ. The integral of
an odd form α̃n = [(αn,O)] over a n-dimensional submanifold D with exterior
orientation Oext is defined as follows:

∫

(D,Oext)

α̃n :=

∫

(D,Oint)

αn ,

where Oint is an internal orientation of D, such that (Oext,Oint) = O; it should
be obvious that the result does not depend upon the choice of a representative.
For example, a flow through a hypersurface depends usually upon its exterior
orientation (given by a transversal vector) and does not feel any interior orien-
tation. Similarly, the canonical formalism in field theory uses structures, which
are defined in terms of flows through Cauchy hypersurfaces in spacetime. This
is why canonical momenta are described by odd (m−1)-forms. The integrals of
such forms are insensitive to any internal orientation of the hypersurfaces they
are integrated upon, but are sensitive to a choice of the time arrow (i.e., to its
exterior orientation).

The Stokes theorem generalizes to odd forms in a straightforward way:
∫

(D,Oext)

dα̃n−1 =

∫

∂(D,Oext)

α̃n−1 ,

where d[(αn,O)] := [( dαn,O)] and ∂(D,Oext) is the boundary of D, equipped
with an exterior orientation inherited in the canonical way from (D,Oext). This
means that if (e1, . . . , em−n) is an oriented basis of vectors transversal to D and
if f is a vector tangent to D, transversal to ∂D and pointing outwards of D,
then the exterior orientation of ∂(D,Oext) is given by (e1, . . . , em−n, f).

A.18 Moving frames

A formalism which is very convenient for practical calculations is that of moving
frames; it also plays a key role when considering spinors. By definition, a
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moving frame is a (locally defined) field of bases {ea} of TM such that the
scalar products

gab := g(ea, eb) (A.18.1)

are point independent. In most standard applications one assumes that the ea’s
form an orthonormal basis, so that gab is a diagonal matrix with plus and minus
ones on the diagonal. However, it is sometimes convenient to allow other such
frames, e.g. with isotropic vectors being members of the frame.

It is customary to denote by ωabc the associated connection coefficients:

ωabc := θa(∇eceb) ⇐⇒ ∇Xeb = ωabcX
cea , (A.18.2)

where, as elsewhere, {θa(p)} is a basis of T ∗
pM dual to {ea(p)} ⊂ TpM ; we will

refer to θa as a coframe. The connection one forms ωab are defined as

ωab(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = ωab(X)ea ; . (A.18.3)

As always we use the metric to raise and lower indices, even though the ωabc’s
do not form a tensor, so that

ωabc := gadω
e
bc , ωab := gaeω

e
b . (A.18.4)

When ∇ is metric compatible, the ωab’s are anti-antisymmetric: indeed, as the
gab’s are point independent, for any vector field X we have

0 = X(gab) = X(g(ea, eb)) = g(∇Xea, eb) + g(ea,∇Xeb)
= g(ωca(X)ec, eb) + g(ea, ω

d
b(X)ed)

= gcbω
c
a(X) + gadω

d
b(X)

= ωba(X) + ωab(X) .

Hence
ωab = −ωba ⇐⇒ ωabc = −ωbac . (A.18.5)

One can obtain a formula for the ωab’s in terms of Christoffels, the frame
vectors and their derivatives: In order to see this, we note that

g(ea,∇eceb) = g(ea, ω
d
bced) = gadω

d
bc = ωabc . (A.18.6)

Rewritten the other way round this gives an alternative equation for the ω’s
with all indices down:

ωabc = g(ea,∇eceb) ⇐⇒ ωab(X) = g(ea,∇Xeb) . (A.18.7)

Then, writing
ea = ea

µ∂µ ,

we find

ωabc = g(ea
µ∂µ, ec

λ∇λeb)
= gµσea

µec
λ(∂λeb

σ + Γσλνeb
ν) . (A.18.8)
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Next, it turns out that we can calculate the ωab’s in terms of the Lie brackets
of the vector fields ea, without having to calculate the Christoffel symbols. This
shouldn’t be too surprising, since an ON frame defines the metric uniquely. If
∇ has no torsion, from (A.18.7) we find

ωabc − ωacb = g(ea,∇eceb −∇ebec) = g(ea, [ec, eb]) .

We can now carry out the usual cyclic-permutations calculation to obtain

ωabc − ωacb = g(ea, [ec, eb]) ,

−(ωbca − ωbac) = −g(eb, [ea, ec]) ,
−(ωcab − ωcba) = −g(ec, [eb, ea]) .

So, if the connection is the Levi-Civita connection, summing the three equations
and using (A.18.5) leads to

ωcba =
1

2

(
g(ea, [ec, eb])− g(eb, [ea, ec])− g(ec, [eb, ea])

)
. (A.18.9)

Equations (A.18.8)-(A.18.9) provide explicit expressions for the ω’s; yet another
formula can be found in (A.18.11) below. While it is useful to know that
there are such expressions, and while those expressions are useful to estimate
things for PDE purposes, they are rarely used for practical calculations; see
Example A.18.3 for more comments about that last issue.

It turns out that one can obtain a simple expression for the torsion of ω
using exterior differentiation. Recall that if α is a one-form, then its exterior
derivative dα can be calculated using the formula

dα(X,Y ) = X(α(Y ))− Y (α(X)) − α([X,Y ]) . (A.18.10)

Exercice A.18.1 Use (A.18.9) and (A.18.10) to show that

ωcba =
1

2

(
− ηad dθd(ec, eb) + ηbd dθ

d(ea, ec) + ηcd dθ
d(eb, ea)

)
. (A.18.11)

2

We set
T a(X,Y ) := θa(T (X,Y )) ,

and using (A.18.10) together with the definition (A.9.16) of the torsion tensor
T we calculate as follows:

T a(X,Y ) = θa(∇XY −∇YX − [X,Y ])

= X(Y a) + ωab(X)Y b − Y (Xa)− ωab(Y )Xb − θa([X,Y ])

= X(θa(Y ))− Y (θa(X))− θa([X,Y ]) + ωab(X)θb(Y )− ωab(Y )θb(X)

= dθa(X,Y ) + (ωab ∧ θb)(X,Y ) .

It follows that
T a = dθa + ωab ∧ θb . (A.18.12)

In particular when the torsion vanishes we obtain the so-called Cartan’s first
structure equation

dθa + ωab ∧ θb = 0 . (A.18.13)
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Example A.18.2 As a simple example, we consider a two-dimensional metric of
the form

g = dx2 + e2fdy2 , (A.18.14)

where f could possibly depend upon x and y. A natural frame is given by

θ1 = dx , θ2 = efdy .

The first Cartan structure equations read

0 = dθ1︸︷︷︸
0

+ω1
b ∧ θb = ω1

2 ∧ θ2 ,

since ω1
1 = ω11 = 0 by antisymmetry, and

0 = dθ2︸︷︷︸
ef∂xfdx∧dy

+ω2
b ∧ θb = ∂xfθ

1 ∧ θ2 + ω2
1 ∧ θ1 .

It should then be clear that both equations can be solved by choosing ω12 propor-
tional to θ2, and such an ansatz leads to

ω12 = −ω21 = −∂xf θ2 = −∂x(ef ) dy . (A.18.15)

We continue this example in Example A.18.5, p. 224. 2

Example A.18.3 As another example of the moving frame technique we consider
(the most general) three-dimensional spherically symmetric metric

g = e2β(r)dr2 + e2γ(r)dθ2 + e2γ(r) sin2 θdϕ2 . (A.18.16)

There is an obvious choice of ON coframe for g given by

θ1 = eβ(r)dr , θ2 = eγ(r)dθ , θ3 = eγ(r) sin θdϕ , (A.18.17)

leading to
g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3 ,

so that the frame ea dual to the θa’s will be ON, as desired:

gab = g(ea, eb) = diag(1, 1, 1) .

The idea of the calculation which we are about to do is the following: there is only
one connection which is compatible with the metric, and which is torsion free. If we
find a set of one forms ωab which exhibit the properties just mentioned, then they
have to be the connection forms of the Levi-Civita connection. As shown in the
calculation leading to (A.18.5), the compatibility with the metric will be ensured if
we require

ω11 = ω22 = ω33 = 0 ,

ω12 = −ω21 , ω13 = −ω31 , ω23 = −ω32 .

Next, we have the equations for the vanishing of torsion:

0 = dθ1 = − ω1
1︸︷︷︸

=0

θ1 − ω1
2θ

2 − ω1
3θ

3

= −ω1
2θ

2 − ω1
3θ

3 ,

dθ2 = γ′eγdr ∧ dθ = γ′e−βθ1 ∧ θ2
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= − ω2
1︸︷︷︸

=−ω1
2

θ1 − ω2
2︸︷︷︸

=0

θ2 − ω2
3θ

3

= ω1
2θ

1 − ω2
3θ

3 ,

dθ3 = γ′eγ sin θ dr ∧ dϕ+ eγ cos θ dθ ∧ dϕ = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3
= − ω3

1︸︷︷︸
=−ω1

3

θ1 − ω3
2︸︷︷︸

=−ω2
3

θ2 − ω3
3︸︷︷︸

=0

θ3

= ω1
3θ

1 + ω2
3θ

2 .

Summarising,

−ω1
2θ

2 − ω1
3θ

3 = 0 ,

ω1
2θ

1 − ω2
3θ

3 = γ′e−βθ1 ∧ θ2 ,
ω1

3θ
1 + ω2

3θ
2 = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3 .

It should be clear from the first and second line that an ω1
2 proportional to θ

2 should
do the job; similarly from the first and third line one sees that an ω1

3 proportional
to θ3 should work. It is then easy to find the relevant coefficient, as well as to find
ω2

3:

ω1
2 = −γ′e−βθ2 = −γ′e−β+γdθ , (A.18.18a)

ω1
3 = −γ′e−βθ3 = −γ′e−β+γ sin θ dϕ , (A.18.18b)

ω2
3 = −e−γ cot θ θ3 = − cos θ dϕ . (A.18.18c)

We continue this example on p. 224. 2

It is convenient to define curvature two-forms:

Ωab = Rabcdθ
c ⊗ θd = 1

2
Rabcdθ

c ∧ θd . (A.18.19)

The second Cartan structure equation reads

Ωab = dωab + ωac ∧ ωcb . (A.18.20)

This identity is easily verified using (A.18.10):

Ωab(X,Y ) =
1

2
Rabcd θ

c ∧ θd(X,Y )︸ ︷︷ ︸
=XcY d−XdY c

= RabcdX
cY d

= θa(∇X∇Y eb −∇Y∇Xeb −∇[X,Y ]eb)

= θa(∇X(ωcb(Y )ec)−∇Y (ωcb(X)ec)− ωcb([X,Y ])ec)

= θa
(
X(ωcb(Y ))ec + ωcb(Y )∇Xec

−Y (ωcb(X))ec − ωcb(X)∇Y ec − ωcb([X,Y ])ec

)

= X(ωab(Y )) + ωcb(Y )ωac(X)

−Y (ωab(X)) − ωcb(X)ωac(Y )− ωab([X,Y ])

= X(ωab(Y ))− Y (ωab(X)) − ωab([X,Y ])︸ ︷︷ ︸
=dωa

b(X,Y )

+ωac(X)ωcb(Y )− ωac(Y )ωcb(X)

= (dωab + ωac ∧ ωcb)(X,Y ) .
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Equation (A.18.20) provides an efficient way of calculating the curvature tensor
of any metric.

Example A.18.4 In dimension two the only non-vanishing components of ωa
b are

ω1
2 = −ω2

1, and it follows from (A.18.20) that

Ω1
2 = dω1

2 + ω1
a ∧ ωa

2 = dω1
2 . (A.18.21)

In particular (assuming that θ2 is dual to a spacelike vector, whatever the signature
of the metric)

Rdµg = Rθ1 ∧ θ2 = 2R12
12θ

1 ∧ θ2 = R1
2abθ

a ∧ θb = 2Ω1
2

= 2dω1
2 , (A.18.22)

where dµg is the volume two-form. 2

Example A.18.5 (Example A.18.2 continued) We have seen that the connection
one-forms for the metric

g = dx2 + e2fdy2 (A.18.23)

read
ω12 = −ω21 = −∂xf θ2 = −∂x(ef ) dy .

By symmetry the only non-vanishing curvature two-forms are Ω12 = −Ω21. From
(A.18.20) we find

Ω12 = dω12 + ω1b ∧ ωb
2︸ ︷︷ ︸

=ω12∧ω2
2=0

= −∂2x(ef ) dx ∧ dy = −e−f∂2x(e
f ) θ1 ∧ θ2 .

We conclude that
R1212 = −e−f∂2x(e

f ) . (A.18.24)

(Compare Example A.12.6, p. 197.) For instance, if g is the unit round metric on the
two-sphere, then ef = sinx, and R1212 = 1. If ef = sinhx, then g is the canonical
metric on hyperbolic space, and R1212 = −1. Finally, the function ef = coshx
defines a hyperbolic wormhole, with again R1212 = −1. 2

Example A.18.6 (Example A.18.3 continued): From (A.18.18) we find:

Ω1
2 = dω1

2 + ω1
1︸︷︷︸

=0

∧ω1
2 + ω1

2 ∧ ω2
2︸︷︷︸

=0

+ω1
3 ∧ ω3

2︸ ︷︷ ︸
∼θ3∧θ3=0

= −d(γ′e−β+γdθ)

= −(γ′e−β+γ)′dr ∧ dθ
= −(γ′e−β+γ)′e−β−γθ1 ∧ θ2

=
∑

a<b

R1
2abθ

a ∧ θb ,

which shows that the only non-trivial coefficient (up to permutations) with the pair
12 in the first two slots is

R1
212 = −(γ′e−β+γ)′e−β−γ . (A.18.25)

A similar calculation, or arguing by symmetry, leads to

R1
313 = −(γ′e−β+γ)′e−β−γ . (A.18.26)
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Finally,

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 + ω2
2︸︷︷︸

=0

∧ω2
3 + ω2

3 ∧ ω3
3︸︷︷︸

=0

= −d(cos θ dϕ) + (γ′e−βθ2) ∧ (−γ′e−βθ3)

= (e−2γ − (γ′)2e−2β)θ2 ∧ θ3 ,
yielding

R2
323 = e−2γ − (γ′)2e−2β . (A.18.27)

The curvature scalar can easily be calculated now to be

R = Rij
ij = 2(R12

12 +R13
13 +R23

23)

= −4(γ′e−β+γ)′e−β−γ + 2(e−2γ − (γ′)2e−2β) . (A.18.28)

2

Example A.18.7 Consider an n-dimensional Riemannian metric of the form

g = e2h(r)dr2 + e2f(r) h̊AB(x
C)dxAdxB︸ ︷︷ ︸
=:̊h

. (A.18.29)

Let θ̊A be an ON -frame for h̊, with corresponding connection coefficients ω̊A
B:

dθ̊A + ω̊A
B ∧ θ̊B = 0 .

Set
θ1 = ehdr , θA = ef θ̊A .

Then the first structure equations,

dθ1︸︷︷︸
0

+ω1
B ∧ θB = 0 ,

d(ef θ̊A) + ehωA
1 ∧ dr + efωA

B ∧ θ̊B = 0 ,

are solved by
ωA

1 = e−h(ef )′ θ̊A , ωA
B = ω̊A

B . (A.18.30)

This leads to

ΩA
1 = dωA

1 + ωA
B ∧ ωB

1

= e−h−f (e−h(ef )′)′ θ1 ∧ θA , (A.18.31)

ΩA
B = Ω̊A

B − e−2h−2f ((ef )′)2 θA ∧ θB , (A.18.32)

where Ω̊A
B are the curvature two-forms of the metric h̊,

Ω̊A
B =

1

2
R̊A

BCD θ̊
A ∧ θ̊B =

e−2f

2
R̊A

BCD θ
A ∧ θB . (A.18.33)

Hence

RA
1B1 = −e−h−f(e−h(ef )′)′ δAB , (A.18.34)

RA
1BC = 0 = R1

B , (A.18.35)

RA
BCD = e−2f R̊A

BCD − e−2h−2f ((ef )′)2δA[CgD]B , (A.18.36)

RA
C = −e−h−f

(
(e−h(ef )′)′ + (n− 2)e−h−f((ef )′)2

)
δAC

+e−2f R̊A
C , (A.18.37)

R1
1 = −(n− 1)e−h−f (e−h(ef )′)′ , (A.18.38)

R = −(n− 1)e−h−f
(
2(e−h(ef )′)′ + (n− 2)e−h−f((ef )′)2

)

+e−2f R̊ . (A.18.39)
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Let g be the space-part of the Birmingham metrics thus g takes the form
(A.18.29) with

ef = r , e−2h = β − 2m

rn−2
− ǫr

2

ℓ2
, ǫ ∈ {0,±1} , (A.18.40)

where β, m and ℓ are real constants. Then

RA
1B1 =

( ǫ
ℓ2
−m(n− 2)r−n

)
δAB , (A.18.41)

RA
1BC = 0 = R1

B , (A.18.42)

RA
BCD = R̊A

BCD −
( β
r2
− ǫ

ℓ2
+ 2mr−n

)
δA[CgD]B , (A.18.43)

RA
B =

ℓ2(n− 2)
(
mr2 − βrn

)
+ ǫ(n− 1)rn+2

ℓ2rn+2
δAB

+r−2R̊A
B , (A.18.44)

R1
1 = (n− 1)

( ǫ
ℓ2
−m(n− 2)r−n

)
, (A.18.45)

R =
(n− 1)

(
ǫnr2 − βℓ2(n− 2)

)

ℓ2r2
+ r−2R̊ . (A.18.46)

If h̊ is Einstein, with
R̊AB = (n− 2)βh̊AB , (A.18.47)

the last formulae above simplify to

RA
B =

ℓ2(n− 2)r−n−2
(
β(n− 2)rn +mr2

)
+ ǫ(n− 1)

ℓ2
δAB , (A.18.48)

R =
ǫ(n− 1)n

ℓ2
. (A.18.49)

2

Example A.18.8 We can use (A.18.11),

ωcba =
1

2

(
− ηad dθd(ec, eb) + ηbd dθ

d(ea, ec) + ηcd dθ
d(eb, ea)

)
, (A.18.50)

to determine how the curvature tensor transforms under conformal rescalings. For
this let g = ηabθ

aθb with dηab = 0, and let

g = e2fg = ηab e
fθa︸︷︷︸
=:θa

⊗efθb ≡ ηabθ
a
θ
b
. (A.18.51)

If the vector fields {ea} form a basis dual to the basis {θa}, then the vector fields
ea = e−fea provide a basis dual to {θb},

ωcba =
1

2

(
− ηad d(efθd)(e−fec, e

−feb) + ηbd d(e
fθd)(e−fea, e

−fec)

+ηcd d(e
fθd)(e−feb, e

−fea)
)

= e−f

(
ωcba +

1

2

(
− ηad (df ∧ θd)(ec, eb) + ηbd (df ∧ θd)(ea, ec) + ηcd (df ∧ θd)(eb, ea)

))

= e−f
(
ωcba − ηa[bec](f) + ηb[cea](f) + ηc[aeb](f)

)

= e−f (ωcba − ηabec(f) + ηaceb(f)) . (A.18.52)
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Equivalently,

ωcb = ωcbaθ
a
= efωcbaθ

a = ωcb +
(
ηac∇bf − ηab∇cf

)
θa . (A.18.53)

Taking the exterior derivative one finds

Ωcb = Ωcb +
(
ηab∇d∇cf − ηac∇d∇bf

+ηac∇df∇bf + ηdb∇cf∇af − ηacηdb|df |2g
)
θa ∧ θd . (A.18.54)

Reexpressed in terms of the Riemann tensor, this reads

e2fRcbad = Rcbad + 2
(
ηb[a∇d]∇cf − ηc[a∇d]∇bf

+ηc[a∇d]f∇bf + ηb[d∇a]f∇cf − ηc[aηd]b|df |2g
)
, (A.18.55)

where the components Rcbad are taken with respect to a g-ON frame, and all com-
ponents of the right-hand side are taken with respect to a g-ON frame. Taking
traces we obtain, in dimension d,

e2fRac = Rac + (2− d)
(
∇a∇cf −∇af∇cf + |df |2gηac

)
−∆gfηac ,(A.18.56)

e2fR = R+ (1 − d)
(
2∆gf + (d− 2)|df |2g

)
. (A.18.57)

2

The Bianchi identities have a particularly simple proof in the moving frame
formalism. For this, let ψa be any vector-valued differential form, and define

Dψa = dψa + ωab ∧ ψb . (A.18.58)

Thus, in this notation the vanishing of torsion reads

Dθa = 0 . (A.18.59)

Whether or not the torsion vanishes, we find

Dτa = dτa + ωab ∧ τ b = d(dθa + ωab ∧ θb) + ωac ∧ (dθc + ωcb ∧ θb)
= dωab ∧ θb − ωab ∧ dθb + ωac ∧ (dθc + ωcb ∧ θb)
= Ωab ∧ θb .

If the torsion vanishes the left-hand side is zero, and we find

Ωab ∧ θb = 0 . (A.18.60)

This is equivalent to the first Bianchi identity:

0 = Ωab ∧ θb =
1

2
Rabcdθ

c ∧ θd ∧ θb = Ra[bcd]θ
c ∧ θd ∧ θb ⇐⇒ Ra[bcd] = 0 .

(A.18.61)
Next, for any differential form αb with two-frame indices, such as the cur-

vature two-form, we define

Dαab := dαab + ωac ∧ αcb − ωcb ∧ αac . (A.18.62)
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(The reader will easily work-out the obvious generalisation of this definition
to differential forms with any number of frame indices.) For the curvature
two-form we find

DΩab = d(dωab + ωac ∧ ωcb) + ωac ∧Ωcb − ωcb ∧ Ωac

= dωac ∧ ωcb − ωac ∧ dωcb + ωac ∧ Ωcb − ωcb ∧ Ωac

= (Ωac − ωae ∧ ωec) ∧ ωcb − ωac ∧ (Ωcb − ωce ∧ ωeb)
+ωac ∧ Ωcb − ωcb ∧ Ωac = 0 .

Thus

DΩab = 0 , (A.18.63)

Let us show that this is equivalent to the second Bianchi identity:

0 = DΩab =
1

2
Rabc;dθ

d ∧ θb ∧ θc = 1

2
Ra[bc;d]θ

d ∧ θb ∧ θc

⇐⇒ Ra[bc;d] = 0 . (A.18.64)

Here the only not-obviously-apparent fact is, if any, the second equality in the
first line of(A.18.64):

DΩab =
1

2

(
d(Rabefθ

e ∧ θf) + ωac ∧Rcbef θe ∧ θf − ωcb ∧Racef θe ∧ θf
)

=
1

2

(
dRabef︸ ︷︷ ︸

ek(Ra
bef ) θk

∧θe ∧ θf +Rabef dθe︸︷︷︸
−ωe

k∧θk
∧θf +Rabefθ

e ∧ dθf︸︷︷︸
−ωf

k∧θk

+Rcbef ω
a
c ∧ θe ∧ θf −Racef ωcb ∧ θe ∧ θf

)

=
1

2
∇ekRabef θk ∧ θe ∧ θf , (A.18.65)

as desired.

A.19 Arnowitt-Deser-Misner (ADM) decomposition

In the study of the general relativistic Cauchy problem it is sometimes conve-
nient to write the spacetime metric g in the form

g = −α2dt2 + gij(dx
i + βidt)(dxj + βjdt) . (A.19.1)

so that

g00 = −α2 + gijβ
iβj , g0i = gijβ

j , gij = gij . (A.19.2)

It is straightforward to check that the relations gαβgβγ = δαγ are satisfied by
the following tensor:

g00 = −α−2 , g0i = α−2βj , gij = gij − α−2βiβj , (A.19.3)
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where gij is the matrix inverse to gij. Equivalently, the inverse metric g♯ =
gµν∂µ∂ν takes the form

g♯ = −α−2(∂t − βi∂i)2 + gij∂i∂j . (A.19.4)

Here we have implicitly assumed that the level sets of t are spacelike, so that
∇t is timelike.

If t is increasing to the future, then the field N of future-directed unit
normals to the hypersurfaces

Sτ := {t = τ}

is
N = α−1(∂t − βi∂i) , (A.19.5)

while g := gijdx
idxj is the metric induced by g on Sτ . The Sτ ’s are spacelike if

and only if gij is Riemannian everywhere if and only if N is timelike everywhere.
The following formula is often used:

√
|det gµν | = α

√
|det gij | . (A.19.6)

The covariant counterpart of N takes a simple form,

N ♭ := gµνn
µdxν = −αdt . (A.19.7)

The extrinsic curvature tensor K of Sτ , also called the second fundamental
form of Sτ , as defined in (1.4.6), takes therefore the form3

Kij = ∇iNj = ∂iNj − ΓµijNµ = αΓ0
ij

=
1

2α

(∂gij
∂t
−Diβj −Djβi

)
, (A.19.8)

where D denotes the covariant derivative operator of the metric gij , and βi =
gijβ

j . It holds that:

Γij0 = αKi
j +Djβ

i − α−1βiDjα− α−1βiβkKkj , (A.19.9)

Γmkℓ(g) = Γmkℓ(g) − α−1βmKkℓ , (A.19.10)

Γ0
0ℓ =

1

α

(
Dℓα+ βkKkℓ

)
, (A.19.11)

Γ0
00 =

1

α
∂tα+

1

2α
βℓDℓ(α

2 − βkβk) . (A.19.12)

The space-components of the spacetime curvature tensor can be related to the
curvature tensor of g by (1.4.16). Assuming that the Sτ ’s are spacelike we have

Rijkℓ(g) = Rijkℓ(g) +KikKjℓ −KiℓKjk . (A.19.13)

We also have (1.4.23),

DkKij −DiKkj =
1

α
(Rj0ki(g) −Rjℓki(g)βℓ) , (A.19.14)

3The reader is warned that some authors use an opposite sign in the definition of K.
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which together with (A.19.13) provides a formula for Rj0ki(g).
Similarly to (A.19.13), the constraint equations (1.4.19) and (1.4.24) do not

involve neither the lapse function α nor the shift vector β in vacuum:

R(g) = 16πTµνN
µNν + 2Λ + |K|2h − (trhK)2 , (A.19.15)

DjK
j
k −DkK

j
j = 8πTkνN

µ . (A.19.16)

The vacuum Einstein equations imply the following evolution equation for Kij :

∂tKij = −LβKij − α(R(g)ij − 2Ki
kKkj +Kk

kKij) +DiDjα .

(Not unexpectedly, the vacuum KID equation (3.5.16), p. 139 is obtained by
setting ∂tKij = 0.)

It turns out that the constraint equations propagate causally, in the following
sense: If the vacuum constraint equations are satisfied on a spacelike hypersur-
face O, and if the space-components R(g)ij = 0 of the vacuum Einstein equa-
tions hold on the domain of dependence U of O, then the constraint equations
(and hence all Einstein equations) are satisfied on U . This can be proved by
noting that the Bianchi identities imply a homogeneous symmetric-hyperbolic
system of equations for the constraint functions [417].

A.20 Extrinsic curvature vector

Let N be a smooth n-dimensional submanifold of an m-dimensional pseudo-
Riemannian manifold (M,g), n < m. The normal bundle T⊥N is defined as
the bundle of all vectors ξ ∈ TpM , p ∈ N , such that ξ is orthogonal to all
vectors tangent to N at p. Here we view TpN as a subspace of TpM .

We will assume that the tensor field induced by g on N is non-degenerate,
hence defines a pseudo-Riemannian metric on N . Equivalently,

T⊥
p N ∩ TpN = {0}

for every p ∈ N .
For p ∈ N let Pp denote the orthogonal projection from TpM to TpN . Let

ξ, X and Y be vector fields defined near N such that X and Y are tangent to
N along N , while ξ is normal to N along N . On N one sets

DXY := P (∇XY ) , σ(X,Y ) := ∇XY −DXY , (A.20.1)

Aξ(X) := P (∇Xξ) , D⊥
Xξ := ∇Xξ −Aξ(X) . (A.20.2)

The tensor field σ is called the shape operator of N . We thus have

∇XY = DXY + σ(X,Y ) , ∇Xξ = D⊥
Xξ +Aξ(X) . (A.20.3)

Calculations essentially identical to those of Section 1.4 (see, e.g., [87]) show
that DXY is the covariant derivative operator associated with the metric in-
duced by g on M , that σ is symmetric, that D⊥ defines a connection on the
normal bundle of N , and that

g(Aξ(X), Y ) = g(σ(X,Y ), ξ) . (A.20.4)
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For each pairX,Y as above the field σ(X,Y ) is a vector field defined alongN
and normal to N . Let ei, i = 1, . . . , n be vector fields defined in a neighborhood
of N which form an ON -basis of TN near a point p ∈ N . The mean extrinsic
curvature vector of N at p is defined as

κ =
∑

i

σ(ei, ei) . (A.20.5)

It is simple to check that κ does not depend upon the choice of the vector fields
ei, and therefore is globally defined on N .

A.21 Null hyperplanes

One of the objects that occur in Lorentzian geometry and which posses rather
disturbing properties are null hyperplanes and null hypersurfaces, and it ap-
pears useful to include a short discussion of those. Perhaps the most unusual
feature of such objects is that the direction normal is actually tangential as
well. Furthermore, because the normal has no natural normalization, there is
no natural measure induced on a null hypersurface by the ambient metric.

In this section we present some algebraic preliminaries concerning null hy-
perplanes, null hypersurfaces will be discussed in Section ?? below.

Let W be a real vector space, and recall that its dual W ∗ is defined as
the set of all linear maps from W to R in the applications (in this work only
vector spaces over the reals are relevant, but the field makes no difference for
the discussion below). To avoid unnecessary complications we assume that W
is finite dimensional. It is then standard that W ∗ has the same dimension as
W .

We suppose that W is equipped with a a) bilinear, b) symmetric, and c)
non-degenerate form q. Thus

q :W ×W → R

satisfies

a) q(λX + µY,Z) = λq(X,Z) + µq(Y,Z) , b) q(X,Y ) = q(Y,X) ,

and we also have the implication

c) ∀Y ∈W q(X,Y ) = 0 =⇒ X = 0 . (A.21.1)

(Strictly speaking, we should have indicated linearity with respect to the second
variable in a) as well, but this property follows from a) and b) as above). By an
abuse of terminology, we will call q a scalar product ; note that standard algebra
textbooks often add the condition of positive-definiteness to the definition of
scalar product, which we do not include here.

Let V ⊂W be a vector subspace of W . The annihilator V 0 of W is defined
as the set of linear forms on W which vanish on V :

V 0 := {α ∈W ∗ : ∀Y ∈ V α(Y ) = 0} ⊂W ∗ .
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V 0 is obviously a linear subspace of W ∗.
Because q non-degenerate, it defines a linear isomorphism, denoted by ♭,

between W and W ∗ by the formula:

X♭(Y ) = q(X,Y ) .

Indeed, the map X 7→ X♭ is clearly linear. Next, it has no kernel by (A.21.1).
Since the dimensions of W and W ∗ are the same, it must be an isomorphism.
The inverse map is denoted by ♯. Thus, by definition we have

q(α♯, Y ) = α(Y ) .

The map ♭ is nothing but “the lowering of the index on a vector using the metric
q”, while ♯ is the “raising of the index on a one-form using the inverse metric”.

For further purposes it is useful to recall the standard fact:

Proposition A.21.1

dimV + dimV 0 = dimW .

Proof: Let {ei}i=1,...,dimV be any basis of V , we can complete {ei} to a basis
{ei, fa}, with a = 1, . . . ,dimW − dimV , of W . Let {e∗i , f∗a} be the dual basis
of W ∗. It is straightforward to check that V 0 is spanned by {f∗a}, which gives
the result. 2

The quadratic form q defines the notion of orthogonality:

V ⊥ := {Y ∈W : ∀X ∈ V q(X,Y ) = 0} .

A chase through the definitions above shows that

V ⊥ = (V 0)♯ .

Proposition A.21.1 implies:

Proposition A.21.2

dimV + dimV ⊥ = dimW .

This implies, again regardless of signature:

Proposition A.21.3
(V ⊥)⊥ = V .

Proof: The inclusion (V ⊥)⊥ ⊃ V is obvious from the definitions. The equality
follows now because both spaces have the same dimension, as a consequence of
Proposition (A.21.2). 2

Now,
X ∈ V ∩ V ⊥ =⇒ q(X,X) = 0 , (A.21.2)

so that X vanishes if q is positive- or negative-definite, leading to dimV ∩
dimV ⊥ = {0} in those cases. However, this does not have to be the case
anymore for non-definite scalar products q.
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A vector subspace V of W is called a hyperplane if

dimV = dimW − 1 .

Proposition A.21.2 implies then

dimV ⊥ = 1 ,

regardless of the signature of q. Thus, given a hyperplane V there exists a
vector w such that

V ⊥ = Rw .

If q is Lorentzian, we say that

V is





spacelike if w is timelike;
timelike if w is spacelike;
null if w is null.

An argument based e.g. on Gram-Schmidt orthonormalization shows that if V is
spacelike, then the scalar product defined on V by restriction is positive-definite;
similarly if V is timelike, then the resulting scalar product is Lorentzian. The
last case, of a null V , leads to a degenerate induced scalar product. In fact, we
claim that

V is null if and only if V contains its normal. . (A.21.3)

To see (A.21.3), suppose that V ⊥ = Rw, with w null. Since q(w,w) = 0 we
have w ∈ (Rw)⊥, and from Proposition A.21.3

w ∈ (Rw)⊥ = (V ⊥)⊥ = V .

Since V does not contain its normal in the remaining cases, the equivalence is
established.

As discussed in more detail in the next section, a hypersurface N ⊂M is
called null if at every p ∈ N the scalar product restricted to TpN is degenerate.
Equivalently, the tangent space TpN is a null subspace of TpM . So (A.21.2)
shows that vectors normal to a null hypersurface N are also tangent to N .

A.22 Elements of causality theory

We collect here some definitions from causality theory. Given a manifold M

equipped with a Lorentzian metric g, at each point p ∈M the set of timelike
vectors in TpM has precisely two components. A time-orientation of TpM is
the assignment of the name “future pointing vectors” to one of those compo-
nents; vectors in the remaining component are then called “past pointing”. A
Lorentzian manifold is said to be time-orientable if such locally defined time-
orientations can be defined globally in a consistent way. A spacetime is a time-
orientable Lorentzian manifold on which a time-orientation has been chosen.

A differentiable path γ will be said to be timelike if at each point the tangent
vector γ̇ is timelike; it will be said future directed if γ̇ is future directed. There
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is an obvious extension of this definition to null, causal or spacelike curves. We
define an observer to be an inextendible, future directed timelike path. In these
notes the names “path” and ”curve” will be used interchangeably.

Let U ⊂ O ⊂M . One sets

I+(U ;O) := {q ∈ O : there exists a timelike future directed path

from U to q contained in O} ,
J+(U ;O) := {q ∈ O : there exists a causal future directed path

from U to q contained in O} ∪U .

I−(U ;O) and J−(U ;O) are defined by replacing “future” by “past” in the
definitions above. The set I+(U ;O) is called the timelike future of U in O,
while J+(U ;O) is called the causal future of U in O, with similar terminology
for the timelike past and the causal past. We will write I±(U ) for I±(U ;M ),
similarly for J±(U ), and one then omits the qualification “in M ” when talking
about the causal or timelike futures and pasts of U . We will write I±(p;O) for
I±({p};O), I±(p) for I±({p};M ), etc.

A function f will be called a time function if its gradient is timelike, past
pointing. Similarly a function f will be said to be a causal function if its gradient
is causal, past pointing. The choice “past-pointing” here has to do with our
choice (−,+, . . . ,+) of the signature of the metric. This is easily understood
on the example of Minkowski spacetime (Rn+1, η), where the gradient of the
usual time coordinate t is −∂t, since η00 = −1. Had we chosen to work with the
signature (+,−, . . . ,−), time functions would have been defined to have future
pointing gradients.

A differentiable hypersurface S ⊂ M is called a Cauchy surface if every
inextendible causal curve intersects S precisely once. A spacetime is called
globally hyperbolic if it contains a Cauchy hypersurface. A key property of
globally hyperbolic spacetimes is, that they possess a time-function t (in fact,
many) with the property that each level set of t is a Cauchy surface.

A spacetime (M , g) is called maximal globally hyperbolic if it is globally
hyperbolic and if there exists no spacetime (M̃ , g̃) such that (M , g) is a proper
subset of (M̃ , g̃).

The reader is referred to [125, 139, 198, 222, 283, 284, 323, 403] for extensive
modern treatments of causality theory, including applications to incompleteness
theorems (also known as “singularity theorems”).



Appendix B

Some interesting spacetimes

B.1 Taub-NUT spacetimes

The Taub–NUT metrics are solutions of vacuum Einstein equations on space-
time manifolds MI of the form

MI := I × S3 ,

where I an interval. They take the form [324]

−U−1dt2 + (2ℓ)2Uσ21 + (t2 + ℓ2)(σ22 + σ23) , (B.1.1)

U(t) = −1 + 2(mt+ ℓ2)

t2 + ℓ2
. (B.1.2)

Here ℓ and m are real numbers with ℓ > 0. Further, the one-forms σ1, σ2 and
σ3 form a basis of the set of left-invariant one-forms on SU(2) ≈ S3: If

iS3 : S3 → R4

is the standard embedding of S3 into R4, then (see Section B.1.4 below)

σ1 = 2i∗S3(x dw − w dx+ y dz − z dy) ,
σ2 = 2i∗S3(z dx− x dz + y dw − w dy) ,
σ3 = 2i∗S3(x dy − y dx+ z dw − w dz) . (B.1.3)

The function U always has two zeros,

U(t) =
(t+ − t)(t− t−)

t2 + ℓ2
,

where
t± := m±

√
m2 + ℓ2 .

It follows that I has to be chosen so that t± 6∈ I. The spacetime (M(t−,t+), g)
will be referred to as the Taub spacetime [401].

It is convenient to parameterize S3 with Euler angles

(ζ, θ, ϕ) ∈ [0, 4π] × [0, π] × [0, 2π] ,

235
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normalised so that

x+ iy = sin

(
θ

2

)
ei(ϕ−ζ)/2 , z + iw = cos

(
θ

2

)
ei(ϕ+ζ)/2 . (B.1.4)

This leads to the following form of the metric

g = −U−1dt2 + (2ℓ)2U(dζ + cos θdϕ)2 + (t2 + ℓ2)(dθ2 + sin2 θdϕ2) . (B.1.5)

Incidentally: Remark B.1.2 There is a natural action of S1 on the circles ob-
tained by varying ζ at fixed t, θ and ϕ:

ζ → ζ + 2α .

Equation (B.1.4) shows that this corresponds to the following action of eiα ∈ S1 on
R4 ≈ C2:

(x+ iy, z + iw)→
(
e−iα(x+ iy), eiα(z + iw)

)
. (B.1.6)

The action (B.1.6) is clearly free (this means that no point is left invariant by
elements of the group different from the identity), so that each orbit is a circle.

The coordinates (θ, ϕ) in (B.1.4) relate to the usual spherical coordinates on
S2, as follows: writing momentarily z and w for two complex numbers (not to be
confused with the real numbers appearing in (B.1.3) or (B.1.6)), consider the map

C2 ⊃ S3 ∋ (z, w) −→ (2zw, |z|2 − |w|2) ∈ C× R ≈ R3 . (B.1.7)

This is invariant under (B.1.6), and maps S3 into S2:

|2zw|2 + (|z|2 − |w|2)2 = (|z|2 + |w|2)2 = 1 .

Inserting (B.1.4) into (B.1.7) gives immediately

(
sin

(
θ

2

)
ei(ϕ−ζ)/2, cos

(
θ

2

)
ei(ϕ+ζ)/2

)
−→

(
sin(θ)eiϕ, cos(θ)

)
.

The above structure is known as the Hopf fibration of S3 by S1’s, and provides a
non-trivial circle bundle over S2.

2

From (B.1.5) we have

g#(dt, dt) = gtt = −U , (B.1.8)

which shows that the level sets of t are

• spacelike for t ∈ (t−, t+), and

• timelike for t < t− or t > t+.

Equation (B.1.8) further shows that

∇t = gµt∂µ = −U∂t ,

so that
g(∇t,∇t) = −U(t) < 0 for t ∈ (t−, t+) .
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Equivalently, t is a time function in this range of t’s. Thus, (M(t− ,t+), g) is
stable causal, with all level sets of t compact, which easily implies that

(M(t− ,t+), g) is globally hyperbolic . (B.1.9)

From (B.1.5) we further find

g(∂ζ , ∂ζ) = 2ℓ2U ,

so that the Hopf circles — to which ∂ζ is tangent — are

• spacelike for t ∈ (t−, t+), and

• timelike for t < t− or t > t+.

In particular

(M(−∞,t−), g) and (M(t+,∞), g) contain closed timelike curves .

Let γ be the metric induced by g on the level sets of t,

γ = (2ℓ)2Uσ21 + (t2 + ℓ2)(σ22 + σ23) .

Again in the t-range (t−, t+), the volume |Sτ | of the level sets Sτ of t equals

|Sτ | =
∫

Sτ

dµγ =

√
U(t)(t2 + ℓ2)

U(0)ℓ2
|S0| .

Here dµγ is the volume element of the metric γ — in local coordinates

dµγ =
√

det γij d
3x .

This is a typical “big-bang — big-crunch” behaviour, where the volume of
the space-slices of the universe “starts” at zero, expands to a maximum, and
collapses again to a zero value.

The standard way of performing extensions across the Cauchy horizons t±
is to introduce new coordinates

(t, ζ, θ, ϕ)→ (t, ζ ±
∫ t

t0

[2ℓU(s)]−1ds, θ, ϕ) , (B.1.10)

which gives

g± = ±4ℓ(dζ + cos θdϕ)dt

+(2ℓ)2U(dζ + cos θdϕ)2 + (t2 + ℓ2)(dθ2 + sin2 θdϕ2) . (B.1.11)

Somewhat surprisingly, the metrics g± are non-singular for all t ∈ R. In order
to see that let, as before, MR := R×S3, and on MR consider the one-forms θa,
a = 0, . . . , 3, defined as

θ0 = dt ,

θ1 = 2ǫℓ(dζ + cos θdφ) = −2ℓǫσ3 ,
θ2 =

√
t2 + ℓ2 dθ ,

θ3 =
√
t2 + ℓ2 sin θdϕ .
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θ0 and θ1 are smooth everywhere on MR, while θ
2 and θ3 are smooth except

for the usual harmless spherical coordinates singularity at the south and north
poles of S3. In this frame the metrics gǫ, ǫ = ±, take the form

gǫ = θ0 ⊗ θ1 + θ1 ⊗ θ0 + Uθ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3
=: gabθ

a ⊗ θb , (B.1.12)

which manifestly shows their regular — in fact analytic — character on MR.
Each of the spacetimes (MR, g±) will be referred to as the Taub-NUT space-

time.

B.1.1 Geodesics

The geodesics in Taub-NUT spacetime possess many interesting features. This
can be studied in detail because of the large number of Killing vectors. Our
presentation is based on [226, 322, 325].

By definition, a Killing vector field is a solution of the equation

∇αXβ +∇βXα = 0 . (B.1.13)

The interest of Killing vectors here arises from the fact that they provide con-
stants of motion along geodesics: Indeed, if X is a solution of the Killing equa-
tion, and γ is an affinely parameterised geodesic, we have

dg(X, γ̇)

ds
= g(∇γ̇X, γ̇) + g(X,∇γ̇ γ̇︸︷︷︸

=0

)

= ∇αXβ γ̇
αγ̇β

=
1

2
(∇αXβ +∇βXα)γ̇

αγ̇β = 0 .

It is shown in Section B.1.4 (see (B.1.40)) that the following vector fields are
Killing vectors1 of g (recall that csc θ = 1/ sin θ):

ξ1 :=
1

2
(y∂w − z∂x − w∂y + x∂z)

= − sinϕ∂θ − cosϕ(cot θ∂ϕ − csc θ∂ζ) , (B.1.14a)

ξ2 :=
1

2
(−x∂w + w∂x − z∂y + y∂z)

= cosϕ∂θ − sinϕ(cot θ∂ϕ − csc θ∂ζ) , (B.1.14b)

ξ3 :=
1

2
(−z∂w − y∂x + x∂y + w∂z)

= ∂ϕ , (B.1.14c)

η :=
1

2
(−x∂w + y∂x − x∂y + w∂z)

= ∂ζ . (B.1.14d)

We set
pa := g(γ̇, ξa) , p‖ = g(γ̇, η) . (B.1.15)

1By analyticity, these are also Killing vectors of gǫ.
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Inserting (B.1.14) into (B.1.1) gives

p3 = (t2 + ℓ2) sin2 θϕ̇ , (B.1.16a)

p‖ = (2ℓ)2U(ζ̇ + cos θϕ̇)

= (2ℓ)2U(ζ̇ +
p3 cos θ

(t2 + ℓ2) sin2 θ
) , (B.1.16b)

p1 = csc θ cosϕ(2ℓ)2U(ζ̇ + cos θϕ̇)

+ (t2 + ℓ2)(− sinϕθ̇ − sin θ cos θ cosϕϕ̇)

= csc θ cosϕp‖ − (t2 + ℓ2) sinϕθ̇ − cot θ cosϕp3 , (B.1.16c)

p2 = csc θ sinϕ(2ℓ)2U(ζ̇ + cos θϕ̇)

+ (t2 + ℓ2)(cosϕθ̇ − sin θ cos θ sinϕϕ̇)

= csc θ sinϕp‖ + (t2 + ℓ2) cosϕθ̇ − cot θ sinϕp3 . (B.1.16d)

Equations (B.1.16a)-(B.1.16b) provide equations for ϕ̇ and ζ̇. Multiplying
(B.1.16c) by − sinϕ, (B.1.16d) by cosϕ, and adding, one obtains an equation
for θ̇. This leads to the following first order equations, assuming sin θ 6= 0,

dθ

ds
=
p2 cosϕ− p1 sinϕ

t2 + ℓ2
, (B.1.17a)

dϕ

ds
=

p3

(t2 + ℓ2) sin2 θ
, (B.1.17b)

dζ

ds
=

p‖
(2ℓ)2U

− cos θp3

(t2 + ℓ2) sin2 θ
. (B.1.17c)

The missing first-order equation for t is obtained from the fact that the Lorentzian
length

ε := g(γ̇, γ̇) ∈ {0,±1}
is constant along an affinely parameterised geodesic:

( dt
ds

)2
=
(p‖
2ℓ

)2
+ U

(
− ε+ (p2 cosϕ− p1 sinϕ)2

t2 + ℓ2
+

p23
(t2 + ℓ2) sin2 θ

)
.

(B.1.17d)

There is a useful equation linking the constants of motion which can be
obtained as follows: Multiplying (B.1.16c) by cosϕ, (B.1.16d) by sinϕ, and
adding, the terms θ̇ drop out, leading to

sin θ cosϕp1 + sin θ sinϕp2 + cos θp3 = p‖ . (B.1.18)

(This can also be seen directly from the relation

sin θ cosϕξ1 + sin θ sinϕξ2 + cos θξ3 = η (B.1.19)

which follows from (B.1.14).)
Now, the left-hand side of (B.1.18) is the scalar product, with respect to the

Euclidean metric δ on R3, of the δ-unit vector (sin θ cosϕ, sin θ sinϕ, cos θ) and
of (p1, p2, p3). The Cauchy-Schwarz inequality gives

|p‖| ≤
√
p21 + p22 + p23 ,
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with equality if and only if the vectors (sin θ cosϕ, sin θ sinϕ, cos θ) and (p1, p2, p3)
are aligned. If we denote by α the angle between those vectors, then (B.1.18)
shows that

p‖ =
√
p21 + p22 + p23 cosα .

This further implies that α is constant along geodesics. If we write γ(s) as

γ(s) = (t(s), ζ(s), q(s)) , q(s) ∈ S2 , (B.1.20)

that property is equivalent to the statement that q(s) lies on a circle correspond-
ing to the intersection of S2, viewed as a subset of R3, with a plane orthogonal
to (p1, p2, p3). It follows that (regardless of the character of γ):

1. If (sin θ cosϕ, sin θ sinϕ, cos θ) and (p1, p2, p3) are initially aligned, they
remain so, thus q(s) is constant. Equivalently, if p‖ = ±

√
p21 + p22 + p23

then ϕ̇ = θ̇ = 0;

2. Performing a rotation if necessary, one can choose the Euler coordinates
(ζ, θ, ϕ) so that the entire orbit q(s) avoids the singular points sin θ = 0.
In what follows this choice will always be made.

We start by noting

Proposition B.1.3 All inextendible causal geodesics in Taub spacetime are fu-
ture and past incomplete.

Proof: For causal geodesics we have ε ∈ {0,−1}. It follows from (B.1.17d)
that dt/ds has no zeros, hence t is strictly monotonic on γ and can be used as
a parameter. Without loss of generality we can assume dt/ds > 0.

Equation (B.1.17d) can be rewritten as

s(t2)−s(t1) =
∫ t2

t1

(
(
p‖
2ℓ

)2+U(−ε+(p2 cosϕ− p1 sinϕ)2
t2 + ℓ2

+
p23

(t2 + ℓ2) sin2 θ
)
)− 1

2
dt .

(B.1.21)
The proof is simplest for timelike geodesics, for then ε = −1 and we can estimate

|s(t2)− s(t1)| ≤
∫ t2

t1

dt√
U
≤
∫ t+

t−

√
t2 + ℓ2

(t+ − t)(t− t−)
dt <∞ (B.1.22)

(recall that x−1/2 is integrable near zero). This provides the required bound on
s, independently of γ.

For ǫ = 0 some more work is needed. If p‖ 6= 0 (B.1.21) gives

|s(t2)− s(t1)| ≤
2ℓ|t− t0|
|p‖|

≤ 2ℓ|t+ − t−|
|p‖|

,

providing again the desired bound on s. Similarly for p3 6= 0

|s(t2)− s(t1)| ≤
∫ t2

t1

| sin θ|
√
t2 + ℓ2√

U |p3|
≤ 1

|p3|

∫ t+

t−

t2 + ℓ2√
(t+ − t)(t− t−)

dt <∞ .
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The only case which has not been covered so far is ε = p‖ = p3 = 0. Then ϕ
is constant by (B.1.17b), with p2 cosϕ − p1 sinϕ 6= 0 (otherwise dt/ds = 0 by
(B.1.17d), which is not possible on a non-trivial geodesic). Equation (B.1.21)
gives

|s(t2)− s(t1)| ≤
1

|p2 cosϕ− p1 sinϕ|

∫ t+

t−

√
t2 + ℓ2√
U

dt <∞ ,

and the proof is complete. 2

We continue with

Proposition B.1.4 Let q(t) be as in (B.1.20). For any maximally extended
geodesic γ the limits

lim
t→t±

q(t)

exist, and are continuous functions of the initial values for γ.

Proof: From (B.1.17a) and (B.1.17b) we have

∣∣∣dθ
dt

∣∣∣ =
∣∣∣dθ
ds

ds

dt

∣∣∣ ≤ 1√
U(t2 + ℓ2)

,

∣∣∣dϕ
dt

∣∣∣ ≤ 1√
U(t2 + ℓ2)

.

Note that the right-hand side is in L1([t−, t+]). The existence of the limits
follows by integration, while the continuity of the limits upon the initial values
is a consequence of the Lebesgue dominated convergence theorem. 2

It remains to analyse the behavior of ζ near the end points. For definiteness
we assume dt/ds > 0 and study t → t+, the analysis near t− is essentially
identical. It is again best to use directly the t parameterisation, rewriting
(B.1.17c) as

dζ

dt
=
dζ

ds

ds

dt
=

p‖
(2ℓ)2U

− cos θp3
(t2+ℓ2) sin2 θ√(

p‖
2ℓ

)2
+ U

(
− ε+ (p2 cosϕ−p1 sinϕ)2

t2+ℓ2
+

p23
(t2+ℓ2) sin2 θ

) . (B.1.23)

As elsewhere, we assume that coordinates are chosen so that θ is uniformly
bounded away from 0 and π/2. If p‖ 6= 0 we obtain

dζ

dt
=

p‖
|p‖|

1

(2ℓ)U
+O(t+ − t) , (B.1.24)

leading to a logarithmic divergence of ζ:

ζ(t) = − p‖
|p‖|

ln(t+ − t)
2ℓ

+ ζ+ +O(t+ − t) , (B.1.25)

for some constant ζ+.
For p‖ = 0 we obtain completely different behavior:

dζ

dt
= − cos θp3√

U
(
− ε+ (p2 cosϕ−p1 sinϕ)2

t2+ℓ2
+

p23
(t2+ℓ2) sin2 θ

)
(t2 + ℓ2)sin2 θ

. (B.1.26)
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An analysis as in the proof of Proposition B.1.3 shows that we have

ζ(t) = ζ+ +O(t+ − t) , (B.1.27)

for some constant ζ+.

Comparing (B.1.25) with (B.1.10) we have obtained:

Theorem B.1.5 (Hajiček [226]) Let γ be a maximally extended causal geodesic
in the Taub spacetime (M(t− ,t+), g). Then:

1. γ can be smoothly extended to {t = t+} in the Taub-NUT spacetime
(MR, g+) if and only if p‖ < 0.

2. Similarly, γ can be smoothly extended to {t = t+} in the Taub-NUT space-
time (MR, g−) if and only if p‖ > 0.

3. For geodesics with p‖ = 0, and only for those geodesics, the limits

lim
t→t+

(ζ(t), θ(t), ϕ(t))

exist.

Proof: Necessary conditions are obtained from Equation (B.1.10): extendibil-
ity in (MR, g+) requires that

(ζ +

∫ t

t0

[2ℓU(s)]−1ds, θ, ϕ)

admits a limit along γ as t approaches t+. It follows from (B.1.25), (B.1.27)
and Proposition B.1.4 that this limit exists if and only if p‖ < 0. If that
last condition holds, then γ acquires an end point on {t = t+}, and smooth
extendibility readily follows. The proof for (MR, g−) is similar. 2

B.1.2 Inequivalent extensions of the maximal globally hyper-
bolic region

Let us summarise what we learned so far about the Taub-NUT spacetime:

1. (M(t− ,t+), g) is globally hyperbolic.

2. (MR, g±) are extensions of (M(t−,t+), g), in the sense that there exists an
isometric diffeomorphism from (M(t− ,t+), g) into its image in (MR, g+),
similarly for (MR, g−).

3. Viewed as a subset of each of (MR, g±), (M(t− ,t+), g) is maximal globally
hyperbolic, in the sense that any larger subset of (MR, g±) containing
(M(t− ,t+), g) is not globally hyperbolic. This follows from the fact that the
hypersurfaces {t = t±}, both in (MR, g+) and in (MR, g−), are threaded
by null geodesics, which therefore do not enter the globally hyperbolic
region {t ∈ (t−, t+)}.



B.1. TAUB-NUT SPACETIMES 243

4. By Theorem B.1.5 there exist null geodesics starting in (M(t−,t+), g) which
extend into (MR, g+) but which do not extend into (MR, g−), and vice-
versa.

This last property gives a precise sense in which (MR, g+) and (MR, g−)
are different extensions of (M(t−,t+), g). One is therefore tempted to draw the
following conclusion, essentially due to Misner [324] (compare [124, 140]):

Theorem B.1.6 The Taub-NUT spacetime (M(t− ,t+), g) provides an example
of maximal globally hyperbolic vacuum spacetime which possesses smooth non-
isometric extensions.

While this theorem is correct, the conclusion is somewhat hasty as reached
because (MR, g+) and (MR, g−) are actually isometric. Indeed, it is clear from
(B.1.11) that the map

t 7→ −t (B.1.28)

maps g± to g∓. Another isometry, which offers the advantage of preserving
time-orientation, is provided by the map

(ζ, ϕ) 7→ (−ζ,−ϕ) . (B.1.29)

We see from (B.1.4) that (B.1.29) is the restriction to S3 ⊂ R4 of the real-
analytic map

(x, y, z, w) 7→ (x,−y, z,−w) ,
and thus clearly a smooth map, in fact real-analytic, from S3 to S3. Note, how-
ever, that neither of the maps (B.1.28) and (B.1.29) belongs to the connected
component of the identity of the group of diffeomorphisms of MR.

As such, a correct proof of Theorem B.1.6 proceeds as follows: Consider the
four spacetimes

(M(t− ,∞), g±) and (M(−∞,t+), g±)

These are all extensions of (M(t− ,t+), g). We can glue together (M(t− ,∞), g±)
with (M(−∞,t+), g±) using the identity map on the overlap (M(t− ,t+), g±), which
results in the spacetimes (MR, g±). But another possibility is to glue (M(t−,∞), g+)
with (M(−∞,t+), g−) by using the map (B.1.29) on the overlap; let us denote
the resulting spacetime by (MR, ǧ+). One can likewise glue (M(t− ,∞), g−)
with (M(−∞,t+), g+) using (B.1.29), which results in a spacetime, denoted by
(MR, ǧ−), isometric to (MR, ǧ+). A straightforward argument based on the
properties of maximally extended geodesics pointed-out in Theorem B.1.5 shows
that (MR, g+) and (MR, ǧ+) are not isometric, and thus provide the example
needed for Theorem B.1.6.

Remark B.1.7 The argument just given provides two non-isometric analytic
vacuum extensions, say (MR, g+) and (MR, ǧ+). These are actually maximal
but, were they not, one could take any maximal analytic extension of each, ob-
taining two non-isometric maximal analytic extensions. An uncountable num-
ber of further distinct maximal analytic vacuum extensions can be obtained by
removing sets, say U , from MR such that 1) U does not intersect the globally
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hyperbolic region M(t−,t+) and, e.g., 2) such that MR \ U is not simply con-
nected. Taking any maximal analytic vacum extension of the universal covering
space of (MR \ U , g+) leads to the an uncountable plethora of non-isometric
maximal analytic vacuum extensions. 2

Further related arguments can be found in [140].

B.1.3 Conformal completions at infinity

Each of the metrics g± can be smoothly conformally extended to the boundary
at infinity “t =∞” by introducing

x = 1/t ,

so that (B.1.11) becomes

g± = x−2
(
∓ 4ℓ(dζ + cos θdϕ)dx

+(2ℓ)2x2U(dζ + cos θdϕ)2 + (1 + ℓ2x2)(dθ2 + sin2 θdϕ2)
)
.

(B.1.30)

In each case this leads to a conformal boundary at infinity

I := {x = 0} ,

called “Scri”, diffeomorphic to S3 with a metric, obtained by crossing-out the
x−2 factor in (B.1.30), which smoothly extends to I . Now, the isometry
(B.1.29) between g+ and g− given by

(x, ζ, θ, ϕ)→ (x,−ζ, θ,−ϕ) ,

shows that the two conformal completions so obtained are isometric. However,
in addition to the two ways of attaching Scri to the region t ∈ (t+,∞) there are
the two corresponding ways of extending this region across the Cauchy horizon
t = t+ pointed-out in Section B.1.2, leading to four manifolds with boundary
(MR, g±) and (MR, ǧ±). As already seen, each of the manifolds from one pair
is not isometric to one from the other. Taking into account the corresponding
completion at “t = −∞”, and the two extensions across the Cauchy horizon
t = t−, one is led to four inequivalent conformal completions of each of the two
inequivalent maximally analytically-extended standard Taub-NUT spacetimes.

B.1.4 Taub-NUT metrics and quaternions

Isometries of Taub-NUT metrics are best understood using quaternions, we
start by recalling some elementary facts about those. Consider R × R3, where
R3 is equipped with an orientation and with the product Euclidean metric. We
will write

w + ~x , w ∈ R , ~x ∈ R3 ,
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for the element (w, ~x). The set R× R3 is equipped with the product

(w + ~x)(v + ~y) = wv − (~x, ~y) + w~y + v~x+ ~x× ~y , (B.1.31)

where (·, ·) is the metric on R3 and × is the associated vector product: if ei is
an oriented ON-basis in R3, then

~x× ~y = ǫijkx
iyjek . (B.1.32)

Here, as elsewhere, ǫijk is completely symmetric and satisfies ǫ123 = 1. It is
well known, though somewhat tedious to show, that R×R3 equipped with the
usual vector space-structure, and with the above product, is a field, called the
field of quaternions.

If p = w + ~x one defines its conjugate p by the formula

p = w − ~x .

Note that

p = p , p q = q p . (B.1.33)

A quaternion is called real if

p = p ⇐⇒ p = w + i~0 (we then write p ∈ R) ,

and pure if p = −p. The quaternionic product is non-commutative in general,
however the following property is often used:

p = p =⇒ ∀q pq = qp .

The norm |p| of p = w + ~x is defined as

|p| =
√
N(p) , where N(p) := pp = w2 + |~x|2 = pp . (B.1.34)

The set of unit quaternions (i.e., quaternions satisfying |p| = 1) is thus naturally
diffeomorphic to a three-dimensional sphere.

Let Rq, respectively Lq, denote the right translations, respectively left trans-
lations:

Rq(p) = pq−1 , Lq(p) = qp .

Both maps preserve the unit sphere provided q is unit:

|Lq(p)|2 = qpqp = q pp︸︷︷︸
∈R

q = ppqq = pp = |p|2 if qq = 1 ,

|Rq(p)|2 = pq−1pq−1 = pqpq = p qq︸︷︷︸
=1

p = |p|2 if qq = 1 .

One easily checks the composition rules

Rq1Rq2 = Rq1q2 , Lq1Lq2 = Lq1q2 .
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It follows that Rq and Lq each define a homomorphism from the sphere of unit
quaternions to SO(4). Note that

Lq1Rq2(p) = q1pq
−1
2 = Rq2Lq1(p) ,

hence the left and right translations commute.

It can be shown (cf., e.g. [58, Vol. I, Section 8.9]) that

R× L : S3 × S3 → SO(4)

is surjective, with kernel {(1, 1), (−1,−1)}, but this is irrelevant for our pur-
poses.

The maps (Rq)
∗ and (Lq)

∗ preserve the Euclidean metric δ on R4; by re-
striction, they also preserve the round metric on S3. In order to see that, let
us write (xα) for (w, xi). The map p→ qp is linear and therefore there exists a
matrix Qαβ such that, if we represent p by xµ, then qp is represented by Qµνx

ν .
Let X = Xµ∂µ be a vector in TpR

4, by definition we have

((
(Lq)∗X

)
f
)
(xβ) = Xα∂α

(
f(Qµνx

ν)
)
=
(
QσαX

α∂σf
)
(Qµνx

ν) .

This shows that if we identify the vector Xw∂w + Xi∂i with the quaternion
Xw +Xiei, where ei is the canonical (ON, oriented) basis of R3, then

(
(Lq)∗X

)
qp

= qXp . (B.1.35)

In this formula we have used a subscript to indicate the point at which the
vector is attached.

(A proper way of handling the identification buisiness above would be to
define a map, say ι, by the formula ι(Xw∂w+X

i∂i) = Xw+Xiei, then (B.1.35)
would read (Lq)∗X = ι−1(qι(X)), a rather heavy notation. We hope that
equations such as (B.1.35) will not introduce an undue amount of confusion.)

One similarly finds

(
(Rq)∗X

)
pq−1

= Xpq
−1 . (B.1.36)

Now, still using the identification above, the Euclidean scalar product δ of two
vectors X,Y ∈ TpR4 can be written as

δ(X,Y ) =
1

2
(XY + Y X) (B.1.37)

(this follows immediately by polarisation from (B.1.34)). Equation (B.1.35)
then gives, assuming again |q| = 1

(
(Lq)

∗δ
)
(X,Y ) = δ((Lq)∗X, (Lq)∗Y ) =

1

2
(qXY + qY qX)

=
1

2
(XqqY + Y qqX) =

1

2
(XY + Y X) = δ(X,Y ) .
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Similarly,

(
(Rq)

∗δ
)
(X,Y ) = δ((Rq)∗X, (Rq)∗Y ) =

1

2
(XqY q + Y qXq)

=
1

2
q (XY + Y X)︸ ︷︷ ︸

∈R

q =
1

2
qq︸︷︷︸
=1

(XY + Y X) = δ(X,Y ) .

A vector field X is called left-invariant if (Lq)∗X = X for all unit quater-
nions q; similarly, X is called right-invariant if (Rq)∗X = X for all unit quater-
nions q. Setting p = 1 in (B.1.35) and (B.1.36) one obtains necessary conditions
for invariance:

(Lq)∗X = X =⇒ Xq = qX1 . (B.1.38)

(Rq)∗X = X =⇒ Xq = X1q . (B.1.39)

One easily checked that these are also sufficient, thus any X1 ∈ T(1,0,0,0)S3 (re-
call that we order the coordinates as w, x, y, z, so that the unity is the quaternion
(1, 0, 0, 0)) defines left- and right-invariant vector fields by the formulae above.
For example, if (B.1.39) holds, then from (B.1.36) we find

(
(Rq)∗X

)
pq−1

= Xpq
−1 = X1pq

−1 = Xpq−1 .

We let ξ1 be the the right-invariant vector field associated with −e2/2, and
ξ2 the right-invariant vector field associated with e1/2, and ξ3 the right-invariant
vector field associated with e3/2. From (B.1.39) with q = (w, x, y, z) we obtain2

ξ1 =
1

2
(y∂w − z∂x − w∂y + x∂z) , (B.1.40a)

ξ2 =
1

2
(−x∂w + w∂x − z∂y + y∂z) , (B.1.40b)

ξ3 =
1

2
(−z∂w − y∂x + x∂y + w∂z) . (B.1.40c)

(The right-invariant vector fields on R4 with X1 = ∂w lead to a vector field over
S3 which is not tangent to the sphere, and therefore will not be of interest to
us.)

The left-invariant vector fields tangent to S3 can likewise be calculated from
(B.1.38). Letting ηi be the vector field with X1 = ei/2 one obtains

η1 = −
1

2
(x∂w − w∂x − z∂y + y∂z) , (B.1.41a)

η2 = −
1

2
(y∂w + z∂x − w∂y − x∂z) , (B.1.41b)

η3 = −
1

2
(z∂w − y∂x + x∂y − w∂z) . (B.1.41c)

Let h̊ be the usual round metric on S3 induced by the flat metric δ on R4. Set

σi = −4̊h(ηi, ·) ∈ ΓT∗S
3 . (B.1.42)

2The somewhat funny ordering of the ξi’s is chosen for consistency of notation with [325].
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We obtain

σ1 = 2i∗S3(xdw − wdx− zdy + ydz) , (B.1.43a)

σ2 = 2i∗S3(ydw + zdx− wdy − xdz) , (B.1.43b)

σ3 = 2i∗S3(zdw − ydx+ xdy − wdz) , (B.1.43c)

and we recognise the one-forms (B.1.3). This leads to:

Proposition B.1.8 The metric (B.1.1) is invariant under left translations.
Further, the connected component of the identity of the group of isometries
of g is SO(3) × SO(2), with the vector fields (B.1.40) and (B.1.41c) spanning
the set of Killing vectors of g.

Proof: We have shown that the usual round metric on S3 is invariant under
left translations, and so are the vector fields ηi. This implies that the forms σi
are left-invariant,

(Lq)∗σi = σi .

Hence, any metric constructed out of the σi’s with coefficients which are con-
stant over S3 will be invariant under left translations, proving our first claim.

For q ∈ S3 consider the one-parameter group of isometries of R4 defined as
Lexp(αq/2). Denote by X the associated generator,

X =
dLexp(αq/2)

dα

∣∣∣
α=0

.

We have

((
Rq̂

)
∗X
)
f(p) = X(f(pq̂)) =

( d

dα
f(exp(αq/2)pq̂)

)∣∣∣
α=0

=
(
X(f)

)
(pq̂) ,

which shows that X is right-invariant. (Similarly, generators of one parameter
groups of right translations provide left-invariant vector fields.) But we have
shown that right-invariant vector fields tangent to S3 are necessarily linear
combinations of (B.1.40). As S3 is three-dimensional, we conclude that all
three vector fields (B.1.40) must be Killing.

The metric g has one more continuous symmetry, which can be seen as
follows. Note, first, that every vector field X is invariant under its own flow:

LXX = [X,X] = 0 .

Since h̊ is right-invariant, we then have, using the Leibniz rule,

Lη3σ3 = −4Lη3

(
h̊(η3, ·)

)
= 0 . (B.1.44)

Next, the set of quaternions {1, ei}, viewed as vector fields on R4 using our
identifications described above, forms at each point p ∈ R4 an orthonormal
basis of the tangent space TpR

4. At (1, 0, 0, 0) this basis has the property that
the first vector 1 = ∂w is normal to S3, hence {ei} forms an orthornomal basis
of T(1,0,0,0)S

3. But, up to permutations and signs, the collection of vector fields
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{2ξi} coincides with {ei} at T(1,0,0,0)S
3. Right-invariance and (the obvious)

transitivity imply that {2ξi} forms an h̊-orthonormal basis of TpS
3 at every

p ∈ S3. From the definition (B.1.42) we conclude that

h̊ = 4(σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3) .

Since Lη3 h̊ = 0 we obtain

Lη3(σ1⊗ σ1 +σ2⊗ σ2) = Lη3(σ1⊗σ1 + σ2⊗σ2 +σ3⊗ σ3)−Lη3(σ3⊗σ3) = 0 .

It now directly follows from the form (B.1.1) of g that η3 is a Killing vector,
as desired. Note that η3 is left-invariant, therefore it commutes with the ξa’s.
This shows the product structure of the SO(3)× SO(2) isometries obtained so
far. Here the first factor is the left translations, while the second factor is the
right translations generated by η3.

To see that g does not have any further Killing vectors we use the facts that
a) every Killing vector of g is necessarily a Killing vector of each of the metrics
g|t=const; b) the dimension of an isometry group of a metric on S3 cannot be five
[281, Theorem 8.17], and c) if that dimension is six, then g|t=const is proportional
to the canonical metric on S3, which is not the case for the metrics (B.1.1). 2

Incidentally: For completeness we give a direct calculation of the generators of
left translations. Suppose that q is a pure unit quaternion q. We then have q = −q
hence q2 = −qq = −|q|2 = −1, so that

q2n = (−1)n , q2n+1 = (−1)nq .

This gives

exp
(αq

2

)
=

∞∑

n=0

(αq)n

2nn!

=

∞∑

n=0

(αq)2n

22n(2n)!
+

∞∑

n=0

(αq)2n+1

22n+1(2n+ 1)!

=

∞∑

n=0

(−1)nα2n

22n(2n)!
+ q

∞∑

n=0

(−1)nα2n+1

22n+1(2n+ 1)!

= cos
(α
2

)
+ sin

(α
2

)
q .

It is usual to write i for e1, j for e2 and k for e3, this leads to the multiplication
rules

i2 = j2 = k2 = −1 , ij = −ji = k , jk = −kj = i , ki = −ik = j . (B.1.45)

Let

Y1 =
dLexp(αi/2)

dα

∣∣∣
α=0

be the vector field generated by Lexp(αi/2), thus Y1(p) is tangent, at α = 0, to the
curve

α→
(
cos
(α
2

)
+ sin

(α
2

)
i
)
p .
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The cos terms give no contribution after differentiating and setting α = 0. If we
write p = w + xi + yj + zk, we obtain, using (B.1.45),

sin
(α
2

)
i
(
w + xi + yj + zk

)
= sin

(α
2

)(
− x+ wi− zj + yk

)

Taking a derivative at α = 0 leads to

Y1 =
1

2
(−x∂w + w∂x − z∂y + y∂z) . (B.1.46a)

One recognises the field ξ2 of (B.1.40b). Similar calculations show that

Y2 :=
dLexp(αj/2)

dα

∣∣∣
α=0

=
1

2
(−y∂w + z∂x + w∂y − x∂z) = −ξ1 , (B.1.46b)

Y3 :=
dLexp(αk/2)

dα

∣∣∣
α=0

=
1

2
(−z∂w − y∂x + x∂y + w∂z) = ξ3 . (B.1.46c)

2

We close this section by an analysis of the transformation properties of the
Killing vector fields of g under left translations. First, η3 is left-invariant by
construction. Next, consider any right-invariant vector field X on S3. From
(B.1.35) and (B.1.38) we have

(
(Lq)∗X

)
qp = qXp = qX1p = qX1q

−1qp =
(
(Lq)∗X

)
1qp .

This shows that X1 transforms according to the rule

(
(Lq)∗X

)
1
= ρqX1 , where ρqp := qpq−1 . (B.1.47)

We have

Proposition B.1.10 The action of S3 in (B.1.47) maps pure quaternions p ∈
R3 to pure quaternions by SO(3)-rotations of R3. The map

S3 ∋ q → ρq ∈ SO(3)

is a surjective homomorphism, with kernel {±1}.

Remark B.1.11 The last property shows that SO(3) is diffeomorphic to the
real projective space RP 3 = S3/{±1}.

Proof: We follow [58, Section 8.9], and start by noting that a quaternion p
is pure if and only if p2 is a negative real number. So, assuming p is pure, we
have

(ρqp)
2 = (qpq−1)(qpq−1) = q p2︸︷︷︸

∈R

q−1 = p2qq−1 = p2 ∈ R− .
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It follows that the action (B.1.47) leaves the set of pure quaternions invariant,
as desired.

We have ρq = Lq ◦ Rq, and since each of those maps preserves |p|, ρq also
does, showing that ρq is an isometry of (R3, δ).

To show surjectivity, suppose that q is pure, we will show that −ρq is a
reflection in the plane orthogonal to q. SinceO(3) is generated by reflections [58,
Theorem 8.2.12], surjectivity will follow. First, if p = q we have

−ρq(q) = −qqq−1 = −q .

Next, suppose that p is orthogonal to q, from (B.1.37) one finds

p ⊥ q ⇐⇒ pq + qp = 0 ⇐⇒ pq = −qp .

We then obtain

−ρq(p) = −qp q−1

︸︷︷︸
=q

= −q pq︸︷︷︸
=−qp

= q2p = −p = p ,

so that ρq is indeed the claimed reflection.

To finish the proof, suppose that ρqp = p for each pure quaternion p = ~y.
Writing q as w + ~x we have

ρqp = p ⇐⇒ qp = pq

⇐⇒ w~y + ~x× ~y = (w + ~x)~y = ~y(w + ~x) = w~y + ~y × ~x
⇐⇒ ~x× ~y = 0 ,

so that ~x is proportional to ~y, possibly with a zero proportionality factor. Since
this is true for all ~y we obtain ~x = 0, and as q ∈ S3 we conclude that w = ±1.
2

B.2 Robinson–Trautman spacetimes.

The Robinson–Trautman (RT) metrics are vacuum metrics which can be viewed
as evolving from data prescribed on a single null hypersurface.

From a physical point of view, the RT metrics provide examples of isolated
gravitationally radiating systems. In fact, these metrics were hailed to be the
first exact nonlinear solutions describing such a situation. Their discovery [381]
was a breakthrough in the conceptual understanding of gravitational radiation
in Einstein’s theory.

The RT metrics were the only example of vacuum dynamical black holes
without any symmetries and with exhaustively described global structure un-
til the construction, in 2013 [171], of a large class of such spacetimes using
“scattering data” at the horizon and at future null infinity. Further dynamical
black holes have been meanwhile constructed in 2018 in [172, 276], by evolution
of small perturbations of Schwarzschild initial data. See also [148] for asymp-
totically many-black-hole dynamical vacuum spacetimes with “a piece of I ”,
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and [262] for a class of vacuum multi-black-holes with a positive cosmological
constant.

There are several interesting features exhibited by the RT metrics: First,
and rather unexpectedly, in this class of metrics the Einstein equations reduce
to a single parabolic fourth order equation. Next, the evolution is unique within
the class, in spite of a “naked singularity” at r = 0. Last but not least, they
possess remarkable extendibility properties.

By definition, the Robinson–Trautman spacetimes can be foliated by a null,
hypersurface-orthogonal, shear-free, expanding geodesic congruence. It has been
shown by Robinson and Trautman [363] that in such a spacetime there always
exists a coordinate system in which the metric takes the form

g = −Φ du2 − 2du dr + r2e2λ g̊ab(x
c) dxa dxb︸ ︷︷ ︸
=:̊g

, λ = λ(u, xa) , (B.2.1)

Φ =
R

2
+

r

12m
∆gR−

2m

r
, R = R(gab) ≡ R(e2λg̊ab) , (B.2.2)

where the xa’s are local coordinates on the two-dimensional smooth Riemannian
manifold ( 2M, g̊), m 6= 0 is a constant which is related to the total Trautman-
Bondi mass of the metric, and R is the Ricci scalar of the metric g := e2λg̊.
In writing (B.2.1)-(B.2.2) we have ignored those spacetimes which admit a
congruence as above and where the parameter m vanishes.

The Einstein equations for a metric of the form (B.2.1) reduce to a single
equation

∂ugab =
1

12m
∆gRgab ⇐⇒ ∂uλ =

1

24m
e−2λ∆g̊(e

−2λ(R̊− 2∆g̊λ)) , (B.2.3)

where ∆g is the Laplace operator of the two-dimensional metric g = gabdx
adxb,

and R̊ is the Ricci scalar of the metric g̊.
Equation (B.2.3) will be referred to as the RT equation. It is first-order

in the “time” u, fourth-order in the space-variables xa, and belongs to the
family of parabolic equations. The Cauchy data for (B.2.3) consist of a function
λ0(x

a) ≡ λ(u = u0, x
a), which is equivalent to prescribing the metric gµν of the

form (B.2.1) on a null hypersurface {u = u0, r ∈ (0,∞)} × 2M . Without loss
of generality, translating u if necessary, we can assume that u0 = 0.

Note that the initial data hypersurface asymptotes to a curvature singularity
at r = 0, with the scalar RαβγδR

αβγδ diverging as r−6 when r = 0 is approached.
This is a “white hole singularity”, familiar to all known stationary black hole
spaces-times.

The RT equation (B.2.3) has been considered in a completely different con-
text by Calabi [80].

The function λ ≡ 0 solves (B.2.3) when g̊ is the unit round metric on
the sphere. The metric (B.2.1) is then the Schwarzschild metric in retarded
Eddington-Finkelstein coordinates.

It follows from the theory of parabolic equations that form < 0 the evolution
problem for (B.2.3) is locally well posed backwards in u, while for m > 0 the
RT equation can be locally solved forwards in u. Redefining u to −u transforms
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(B.2.3) with m < 0, u ≤ 0 to the same equation with a new mass parameter
−m > 0 and with u ≥ 0. Thus, when discussing (B.2.3) it suffices to assume
m > 0. On the other hand, the global properties of the associated spacetimes
will be different, and will need separate discussion.

Note that solutions of typical parabolic equations, including (B.2.3), imme-
diately become analytic. This implies that for smooth but not analytic initial
functions λ0, the equation will not be solvable backwards in u when m > 0, or
forwards in u when m < 0.

In [121, 122, 156] the following has been proved:

1. When m > 0 solutions of (B.2.3) with, say smooth, initial data at u = 0
exist for all u ≥ 0. The proof consists in showing that all Sobolev norms
of the solution remain finite during the evolution. The first key to this
is the monotonicity of the Trautman-Bondi mass, which for RT metrics
equals [395]

mTB =
m

4π

∫

S2

e3λdµg̊ . (B.2.4)

The second is the monotonicity property of

∫

2M
(R−R0)

2 (B.2.5)

discovered by Calabi [80] and, independently, by Lukács, Perjes, Porter
and Sebestyén [304].

2. Let m > 0. There exists a strictly increasing sequence of real numbers
λi > 0, integers ni with n1 = 0, and functions ϕi,j ∈ C∞( 2M), 0 ≤ j ≤
ni, such that, possibly after performing a conformal transformation of g̊,
solutions of (B.2.3) have a full asymptotic expansion of the form

λ(u, xa) =
∑

i≥1 , 0≤j≤ni

ϕi,j(x
a)uje−λiu/m , (B.2.6)

when u tends to infinity. The result is obtained by a delicate asymptotic
analysis of solutions of the RT equation.

The decay exponents λi and the ni’s are determined by the spectrum of ∆g̊.
For example, if ( 2M, g̊) is a round two sphere, we have [122]

λi = 2i , i ∈ N , with n1 = . . . = n14 = 0 , n15 = 1 . (B.2.7)

Remark B.2.1 The first global existence result for the RT equation has been ob-
tained by Rendall [365] for a restricted class of near-Schwarzschildian initial data.
Global existence and convergence to a round metric for all smooth initial data
has been established in [121]. There the uniformization theorem for compact two-
dimensional manifolds has been assumed. An alternative proof of global existence,
which establishes the uniformization theorem as a by-product, has been given by
Struwe [400]. 2
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The RT metrics all possess a smooth conformal boundary à la Penrose at
“r = ∞”. To see this, one can replace r by a new coordinate x = 1/r, which
brings the metric (B.2.1) to the form

g = x−2

(
−
(
Rx2

2
+
x∆gR

12m
− 2mx3

)
du2 + 2du dx + e2λg̊

)
, (B.2.8)

so that the metric g multiplied by a conformal factor x2 smoothly extends to
{x = 0}.

In what follows we shall take ( 2M, g̊) to be a two dimensional sphere equipped
with the unit round metric. See [122] for a discussion of other topologies.

B.2.1 m > 0

Let us assume that m > 0. Following an observation of Schmidt reported
in [402], the hypersurface “u = ∞” can be attached to the manifold {r ∈
(0,∞) , u ∈ [0,∞)} × 2M as a null boundary by introducing Kruskal–Szekeres-
type coordinates (û, v̂), defined in a way identical to the ones for the Schwarzschild
metric:

û = − exp
(
− u

4m

)
, v̂ = exp

(
u+ 2r

4m
+ ln

( r

2m
− 1
))

. (B.2.9)

This brings the metric to the form

g = −32m3 exp
(
− r

2m

)

r
dû dv̂ + r2e2λg̊

−16m2 exp
( u

2m

)(R
2
− 1 +

r∆gR

12m

)
dû2 . (B.2.10)

Note that gûû vanishes when λ ≡ 0, and one recovers the Schwarzschild metric in
Kruskal-Szekeres coordinates. Equations (B.2.6)-(B.2.7) imply that gûû decays
as eu/2m×e−2u/m = û6. Hence g approaches the Schwarzschild metric as O(û6)
when the null hypersurface

H+ := {û = 0}
is approached. A projection diagram, as defined in [151], with the 2M factor
projected out, can be found in Figure B.2.1.

In terms of û the expansion (B.2.6) becomes

λ(û, xa) =
∑

i≥1 , 0≤j≤ni

ϕi,j(x
a) (−4m log(|û|))j û8i , (B.2.11)

which can be extended to û > 0 as an even function of û. This expansion
carries over to similar expansions of R and ∆gR, and results in an asymptotic
expansion of the form

gûû(û, x
a) =

∑

i≥1 , 0≤j≤ni

ψi,j(x
a) (log |û|)j û8i−2 , (B.2.12)

for some functions ψij . It follows from (B.2.2) that the even extension of gûû
will be of C117–differentiability class.

In fact, any two such even functions gûû can be continued into each other
across u = 0 to a function of C5–differentiability class. It follows that:
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r = 0

H−(u = u0)

I +(r =∞)

H+(u =∞)

Figure B.2.1: A projection diagram for RT metrics with m > 0.

1. Any two RT metrics can be joined together as in Figure B.2.2 to obtain a
spacetime with a metric of C5–differentiability class. In particular g can
be glued to a Schwarzschild metric beyond H, resulting in a C5 metric.

r = 0

( 4M ,g)

u = u0

r =∞

u =∞

r = 0

u = u0

r =∞

Figure B.2.2: Vacuum RT extensions beyond H+ = {u = ∞}. Any two RT
metrics with the same mass parameter m can be glued across the null hyper-
surface H+, leading to a metric of C5–differentiability class.

2. It follows from (B.2.2) that g can be glued to itself in the C117–differentiability
class.

The vanishing, or not, of the expansion functions ϕi,j in (B.2.6) with j ≥ 1
turns out to play a key role for the smoothness of the metric at H. Indeed,
the first non-vanishing function ϕi,j with j ≥ 1 will lead to a ψi,j (ln |û|)j û8i−2

term in the asymptotic expansion of gûû. As a result, gûû will be extendable
to an even function of û of C8i−3-differentiability class, but not better. It is
shown in [156] that

1. Generic λ(0, xa) close to zero lead to a solution with ψ15,1 6= 0, resulting in
metrics which are extendible across H in the C117-differentiability class,
but not C118, in the coordinate system above.

2. There exists an infinite-dimensional family of non-generic initial functions
λ(0, xa) for which ψ15,1 ≡ 0. An even extension of gûû across H results
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in a metric of C557-differentiability class, but not C558, in the coordinate
system above.

The question arises, whether the above differentiability issues are related to
a poor choice of coordinates. By analysing the behaviour of the derivatives of
the Riemann tensor on geodesics approaching H, one can show [156] that the
metrics of point 1 above cannot be extended across H in the class of spacetimes
with metrics of C123-differentiability class. Similarly the metrics of point 2
cannot be extended across H in the class of spacetimes with metrics of C564-
differentiability class. One expects that the differentiability mismatches are
not a real effect, but result from a non-optimal inextendibility criterion used.
It would be of some interest to settle this issue.

Summarising, we have the following:

Theorem B.2.2 Let m > 0. For any λ0 ∈ C∞(S2) there exists a Robinson–
Trautman spacetime ( 4M ,g) with a “half-complete” I +, the global structure of
which is shown in Figure B.2.1. Moreover:

1. ( 4M ,g) is smoothly extendible to the past through H −. If, however, λ0
is not analytic, then no vacuum Robinson–Trautman extensions through
H − exist.

2. There exist infinitely many non-isometric vacuum Robinson–Trautman
C5 extensions3 of ( 4M ,g) through H +, which are obtained by gluing to
( 4M ,g) any other positive mass Robinson–Trautman spacetime, as shown
in Figure B.2.2.

3. There exist infinitely many C117 vacuum RT extensions of ( 4M ,g) through
H +. One such extension is obtained by gluing a copy of ( 4M ,g) to itself,
as shown in Figure B.2.2.

4. For any 6 ≤ k ≤ ∞ there exists an open set Ok of Robinson–Trautman
spacetimes, in a Ck(S2) topology on the set of the initial data functions
λ0, for which no C123 extensions beyond H + exist, vacuum or otherwise.
For any u0 there exists an open ball Bk ⊂ Ck(S2) around the initial data
for the Schwarzschild metric, λ0 ≡ 0, such that Ok ∩ Bk is dense in Bk.

The picture that emerges from Theorem B.2.2 is the following: generic
initial data lead to a spacetime which has no RT vacuum extension to the past
of the initial surface, even though the metric can be smoothly extended (in the
non–vacuum class); and generic data sufficiently close4 to Schwarzschildian ones
lead to a spacetime for which no smooth vacuum RT extensions exist beyond
H+. This shows that considering smooth extensions across H+ leads to non–
existence, while giving up the requirement of smoothness of extensions beyond

3By this we mean that the metric can be C5 extended beyond H
+; the extension can

actually be chosen to be of C5,α–differentiability class, for any α < 1.
4It is rather clear from the results of [156] that generic RT spacetimes will not be smoothly

extendible across H+, without any restrictions on the “size” of the initial data; but no rigorous
proof is available.
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H+ leads to non–uniqueness. It follows that global well-posedness of the general
relativistic initial value problem completely fails in the class of positive mass
Robinson–Trautman metrics.

Remark B.2.3 There are two striking differences between the global structure seen
in Figure B.2.2 and the usual Penrose diagram for Schwarzschild spacetime. The
first is the lack of past null infinity, which we have seen to be unavoidable in the
RT case. The second is the lack of the past event horizon, sections of which can be
technically described as a marginally past outer trapped surfaces. The existence of
such surfaces in RT spacetimes is a non-trivial property which has been established
in [402]. 2

B.2.2 m < 0

Unsurprisingly, and as already mentioned, the global structure of RT spacetimes
turns out to be different when m < 0, which we assume now. As already noted,
in this case we should take u ≤ 0, in which case the expansion (B.2.6) again
applies with u→ −∞.

The existence of future null infinity as in (B.2.8) applies without further
due, except that now the coordinate u belongs to (−∞, 0].

The new aspect is the possibility of attaching a conformal boundary at past
null infinity, I −, which is carried out by first replacing u with a new coordinate
v defined as [385]

v = u+ 2r + 4m ln
(∣∣∣ r

2m
− 1
∣∣∣
)
. (B.2.13)

In the coordinate system (v, r, xa) the metric becomes

g = −
(
1− 2m

r

)
dv2 + 2dv dr + r2e2λg̊

+

(
R

2
− 1 +

r

12m
∆gR

)(
dv − 2dr

1− 2m
r

)2

. (B.2.14)

The last step is the usual replacement of r by x = 1/r:

g = x−2

[
− x2(1− 2mx)dv2 − 2dv dx+ e2λg̊

+

(
R− 2

2x2
+

12m∆gR

x3

)(
x2dv +

2dx

1− 2mx

)2 ]
. (B.2.15)

One notices that all terms in the conformally rescaled metric x2 × g extend
smoothly to smooth functions of (v, xa) at the conformal boundary {x = 0}
except possibly for

(
R− 2

2x2
+

12m∆gR

x3

)
×
(

4dx2

(1− 2mx)2
+

4x2dv dx

1− 2mx

)
. (B.2.16)

Now, from the definition of v we have

exp

(
−2u

m

)
=
( r

2m
− 1
)8

exp

(
2v − 4r

|m|

)

=

(
1− 2mx

2mx

)8

exp

(
2v

|m|

)
exp

(
− 4

|m|x

)
.
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r = 0

H+(u = u0) I +(r =∞)

io

I −(u = −∞)

Figure B.2.3: A projection diagram for RT metrics with m < 0.

Using the fact that λ = O(exp(−2u/m)), similarly for all angular derivatives
of λ, we see that all three functions λ, R − 2 and ∆gR decay to zero, as x
approaches zero, faster than any negative power of x. In fact, the offending
terms (B.2.16) extend smoothly by zero across {x = 0}. We conclude that the
conformally rescaled metric x2 × g smoothly extends to I − := {x = 0}.

Summarising, we have:

Theorem B.2.4 Let m < 0. For any λ0 ∈ C∞( 2M) there exists a unique RT
spacetime ( 4M ,g) with a complete i0 in the sense of [13], a complete I −, and
“a piece of I +”, as shown in Figure B.2.3. Moreover

1. ( 4M ,g) is smoothly extendible through H +, but

2. if λ0 is not analytic, there exist no vacuum RT extensions through H +.

The generic non-extendability of the metric through H + in the vacuum RT
class is rather surprising, and seems to be related to a similar non-extendability
result for compact non–analytic Cauchy horizons in the polarized Gowdy class,
cf. [142]. Since it may well be possible that there exist vacuum extensions
which are not in the RT class, this result does not unambiguously demonstrate
a failure of Einstein equations to propagate generic data forwards in u in such a
situation; however, it certainly shows that the forward evolution of the metric
via Einstein equations breaks down in the class of RT metrics with m < 0.

B.2.3 Λ 6= 0

So far we have assumed a vanishing cosmological constant. It turns out that
there exists a straightforward generalisation of RT metrics to Λ 6= 0. The metric
retains its form (B.2.1), with the function Φ of (B.2.2) taking instead the form

Φ =
R

2
+

r

12m
∆gR−

2m

r
− Λ

3
r2 . (B.2.17)

We continue to assume that m 6= 0.
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It turns out that the key equation (B.2.3) remains the same, thus λ tends
to zero and Φ tends to the function

Φ̊ =
R̊

2
− 2m

r
− Λ

3
r2 (B.2.18)

as u approaches infinity. It follows from the generalised Birkhoff theorem that
these are the Birmingham metrics. The relevant projection diagrams can be
found in Figures B.2.4-B.2.7.

r =∞

r = 0

Figure B.2.4: The causal diagram when m < 0, Λ > 0 and Φ̊ has no zeros.

The global structure of the spacetimes with Λ 6= 0 and λ 6≡ 0 should be clear
from the analysis of the case Λ = 0: One needs to cut one of the building blocs
of Figures B.2.4-B.2.7 with a line with a ±45-degrees slope, corresponding to
the initial data hypersurface u0 = 0. This hypersurface should not coincide
with one of the Killing horizons there, where Φ̊ vanishes. The Killing horizons
with the opposite slope in the diagrams should be ignored. Depending upon the
sign of m, one can evolve to the future or to the past of the associated spacetime
hypersurface until a conformal boundary at infinity or a Killing horizon Φ̊(r0) =
0 with the same slope is reached.

The metric will always be smoothly conformally extendable through the
conformal boundaries at infinity.

As discussed in [67], the extendibility properties across the horizons which
are approached as m× u tends to infinity will depend upon the surface gravity
of the horizon and the spectrum of g̊. For simplicity we assume that

2M = S2 ⇐⇒ R̊ > 0 ,

a similar analysis can be carried out for other topologies.
Consider, first, a zero r = r0 of Φ̊ such that

c =
Φ̊′(r0)

2
> 0 .

r
=
r 0

r
=
r
0

r
=
r 0

r
=
r
0

r
=
r
0

r = 0r = 0

r =∞ r =∞

Figure B.2.5: The causal diagram for Kottler metrics with Λ > 0, and Φ̊ ≤ 0,
with Φ̊ vanishing precisely at r0.
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r
=

0

r
=

0
r =∞

r =∞

r
=
r 0

r
=
r 0

r
=
r
0

r
=
r
0

Figure B.2.6: The causal diagram for Kottler metrics with m < 0, Λ > 0
R̊ ∈ R, or m = 0 and R̊ = 1, with r0 defined by the condition Φ̊(r0) = 0. The
set {r = 0} is a singularity unless the metric is the de Sitter metric ( 2M = S2

and m = 0), or a suitable quotient thereof so that {r = 0} corresponds to a
center of (possibly local) rotational symmetry.

r =∞ r = 0

r =∞ r = 0

r
=
r
(1
)

0

r
=
r
(1
)

0

r
=
r (1)0

r
=
r (1)0

r
=
r
(2
)

0

r
=
r (2)0

r
=
r
(2
)

0

r
=
r
(2
)

0

r
=
r (2)0

r
=
r (2)0

r
=
r (1)0

r
=
r
(1
)

0

Figure B.2.7: The causal diagram for Kottler metrics with Λ > 0 and exactly
two first-order zeros of Φ̊.

Similarly to (B.2.9), introduce Kruskal–Szekeres-type coordinates (û, v̂) de-
fined as

û = −e−cu , v̂ = ec(u+2F (r)) , (B.2.19)

where

F ′ =
1

Φ̊
. (B.2.20)

This brings the metric to the form

g = −e
−2cF (r)Φ̊

c2
dû dv̂ + r2e2λg̊ − e2cu

c2

(
R− R̊

2
+
r∆gR

12m︸ ︷︷ ︸
O(exp(−2u/m))

)
dû2 . (B.2.21)

It is elementary to show that gûv̂ extends smoothly across {r = r0}. Next we
have

gûû = O
(
e2(c−

1
m
)u
)
= O

(
û2(

1
mc

−1)
)

(B.2.22)

which will extend continuously across a horizon {û = 0} provided that

1

mc
> 1 ⇐⇒ mF ′(r0) < 2 . (B.2.23)
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In fact when (B.2.23) holds, then for any ǫ > 0 the extension to any other RT

solution will be of C⌊2( 1
mc

−1)⌋−ǫ differentiability class.
When Λ > 0, the parameter c = c(m,Λ) can be made as small as desired

by making m approach from below the critical value

mc =
1

3
√
Λ
,

for which c vanishes. For m > mc the function Φ̊ has no (real) zeros, and for
0 < m < mc all zeros are simple.

It follows from Figure B.2.8 that the extension through the black hole event
horizon is at least of C6-differentiability class, and becomes as differentiable as
desired when the critical mass is approached.

Figure B.2.8: The value of the real positive zero of Φ̊ (left plot), the productm×
c(m,Λ) (middle plot), and the function 2/(m× c(m,Λ))− 2 (which determines
the differentiability class of the extension through the black hole event horizon;
right plot) as functions of m, with R̊ = 2 and Λ = 3.

The calculation above breaks down for degenerate horizons, where m = mc,
for which c = 0. In this case an extension across a degenerate horizon can be
obtained by replacing u by a coordinate v defined as

v = u+ 2F (r) , with again
dF

dr
=

1

Φ̊
. (B.2.24)

An explicit formula for F can be found, which is not very enlightening. Since Φ̊
has a quadratic zero, we find that for r approaching r0 we have, after choosing
an integration constant appropriately,

u ≈ v + 1

3(r − r0)
=⇒ Φ̊ ∼ u−2 and e−

2u
m ∼ e−

2
3m(r−r0) , (B.2.25)

where f ∼ g is used to indicate that |f/g| is bounded by a positive constant
both from above and below over compact intervals of v.

Using du = dv − 2dr/Φ̊ we find

g = −Φdv2 +2
2Φ − Φ̊

Φ̊︸ ︷︷ ︸
1+O(exp(−2u/m))

dv dr− 4
Φ− Φ̊

Φ̊2︸ ︷︷ ︸
O(u4 exp(−2u/m))

dr2+ r2e2λg̊ . (B.2.26)

It easily follows that gvr can be smoothly extended by a constant function across
r = r0, and that grr can be again smoothly extended by the constant function
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0. We conclude that any RT metric with a degenerate horizon can be smoothly
continued across the horizon to a Schwarzschild-de Sitter or Schwarzschild-anti
de Sitter metric with the same mass parameter m, as first observed in [67].

Incidentally: Some results on higher-dimensional generalisations of RT metrics
can be found in [351].

B.3 Birmingham (Kottler–Schwarzschild-(A)(de)Sitter)

metrics

The Schwarzschild-de Sitter (Λ > 0), and Schwarzschild-anti de Sitter (Λ < 0)
metrics, first written down by Kottler [280], are special cases of the family of
vacuum metrics discovered by Birmingham [66]. The metrics take the form

g = −f(r)dt2 + dr2

f(r)
+ r2 h̆AB(x

C)dxAdxB︸ ︷︷ ︸
=:h̆

, (B.3.1)

where h̆ is a Riemannian Einstein metric on a compact (n − 1)-dimensional
manifold N , and where we denote by xA the local coordinates on N . As first
pointed out by Birmingham in [66], for any m ∈ R and

ℓ ∈ R∗ ∪
√
−1R∗

the function

f =
R̆

(n− 1)(n − 2)
− 2m

rn−2
− r2

ℓ2
, (B.3.2)

where R̆ is the (constant) scalar curvature of h̆, leads to a vacuum metric,

Rµν =
n

ℓ2
gµν , (B.3.3)

where ℓ is a constant related to the cosmological constant Λ ∈ R as

1

ℓ2
=

2Λ

n(n− 1)
. (B.3.4)

A comment about negative Λ, and thus purely complex ℓ’s, is in order.
When considering a negative cosmological constant (B.3.4) requires ℓ ∈

√
−1R,

which is awkward to work with. So when Λ < 0 it is convenient to change r2/ℓ2

in f to −r2/ℓ2, change the sign in (B.3.4), and use a real ℓ. We will often do
this without further ado.

Clearly, n cannot be equal to two in (B.3.2), and we therefore exclude this
dimension in what follows.

The multiplicative factor two in front of m is convenient in dimension three
when h̆ is a unit round metric on S2, and we will keep this form regardless of
topology and dimension of N .

There is a rescaling of the coordinate r = br̄, with b ∈ R∗, which leaves
(B.3.1)-(B.3.2) unchanged if moreover

h̆ = b2h̆ , m̄ = b−nm, t̄ = bt . (B.3.5)
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We can use this to achieve

β :=
R̆

(n− 1)(n − 2)
∈ {0,±1} . (B.3.6)

The set {r = 0} corresponds to a singularity when m 6= 0. Except in the case
m = 0 and β = −1, by an appropriate choice of the sign of b we can always
achieve r > 0 in the regions of interest.
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Conformal rescalings

Consider a metric g̃ related to g by a conformal rescaling:

g̃ij = ϕℓgij ⇐⇒ g̃ij = ϕ−ℓgij , (C.0.1)

where ϕ is a function and ℓ is a real number.

C.1 Christoffel symbols

Under (C.0.1) the the Christoffel symbols transform as follows:

Γ̃ijk =
1

2
g̃im(∂j g̃km + ∂kg̃jm − ∂mg̃jk)

=
1

2
ϕ−ℓgim(∂j(ϕ

ℓgkm) + ∂k(ϕ
ℓgjm)− ∂m(ϕℓgjk))

= Γijk +
ℓ

2ϕ
(δik∂jϕ+ δij∂kϕ− gjkDiϕ) , (C.1.1)

where D denotes the covariant derivative of g. Equation (C.1.1) can be rewrit-
ten as

D̃XY = DXY + C(X,Y ) , (C.1.2)

with

C(X,Y ) =
ℓ

2ϕ

(
Y (ϕ)X +X(ϕ)Y − g(X,Y )Dϕ

)
(C.1.3a)

=
ℓ

2ϕ

(
Y (ϕ)X +X(ϕ)Y − g̃(X,Y )D̃ϕ

)
. (C.1.3b)

C.2 The curvature

Let R̃iem denote the curvature tensor of a connection of the form (C.1.2); from
(C.1.3) we obtain

R̃(X,Y )Z =
(
D̃XD̃Y Z −X ↔ Y

)
− D̃[X,Y ]Z

=
(
DX(DY Z +C(Y,Z)) + C(X, (DY Z + C(Y,Z))−X ↔ Y

)

265
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−D[X,Y ]Z − C( [X,Y ]︸ ︷︷ ︸
=DXY−DYX

, Z)

= R(X,Y )Z +
(
(DXC)(Y,Z) + C(DXY,Z) + C(Y,DXZ)

+C(X,DY Z) + C(X,C(Y,Z))−X ↔ Y
)
− C(DXY,Z) + C(DYX,Z)

= R(X,Y )Z +
(
(DXC)(Y,Z) + C(X,C(Y,Z))−X ↔ Y

)
.

In index notation this can be rewritten as

R̃ijkℓ = Rijkℓ + Ciℓj;k − Cikj;ℓ + CikmC
m
jℓ − CiℓmCmjk . (C.2.1)

C.2.1 The Weyl conformal connection

There is a natural generalisation of (C.1.2)-(C.1.3) to Weyl conformal connec-
tions, obtained by the replacement

ℓ∂aϕ

2ϕ
−→ fa (C.2.2)

there, where fadx
a is an arbitrary one-form, not necessarily exact (compare [213]).

In other words, one sets

Cijk = δijfk + δikfj − giℓfℓ gjk . (C.2.3)

Since Cijk is symmetric in j and k, the connection D̃ is always torsion-free.

Inserting into (C.2.1) one finds the following formula for the curvature tensor
of a Weyl connection

R̃ijkℓ = Rijkℓ+2
(
fj;[kδ

i
ℓ]+δ

i
jf[ℓ;k]−f i;[kgℓ]j+δi[kfℓ]fj−gj[kfℓ]f i−δi[kgℓ]jfmfm

)
.

(C.2.4)
Contracting over i and k one obtains the Ricci tensor of D̃

R̃jℓ := Ric(g̃)ij

= Rjℓ + (1− n)fj;ℓ + fℓ;j − f i;igjℓ + (n− 2)(fjfℓ − gjℓfmfm) .
(C.2.5)

(Note that R̃jℓ is not symmetric in general.) We calculate the Ricci scalar of
the Weyl connection by taking the trace of R̃jℓ using the metric g:

gjℓR̃jℓ = R− (n − 1)(2f i ;i + (n − 2)fmf
m) (C.2.6)

(the reader is warned that this is not the curvature scalar g̃jℓR̃jℓ of the metric
g̃ when fa is expressed in terms of ϕ using (C.2.2), see (C.2.14) below).

For n 6= 2 it is convenient to introduce the tensor

L̃ij =
1

n− 2

(
R̃(ij) −

n− 2

n
R̃[ij] −

1

2 (n − 1)
gij g

klR̃kl

)
. (C.2.7)
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which is a natural generalisation of the Schouten tensor Aij associated to a
metric g:

Aij =
1

n− 2

(
Rij −

1

2(n− 1)
gijg

kℓRkℓ

)
. (C.2.8)

From (C.2.5)-(C.2.8) one finds

Di fj − fi fj +
1

2
gij fk f

k = Aij − L̃ij . (C.2.9)

C.2.2 The Weyl tensor

Using (C.2.9) to eliminate the derivatives of fi from (C.2.4) one obtains

R̃i jkℓ = 2{δi[kL̃ℓ]j − δijL̃[kℓ] − gj[kL̃ℓ]i}+ Cijkℓ , (C.2.10)

where the Weyl tensor Cijkℓ, often also denoted as W i
jkℓ, is defined as

Cijkl := Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
1

(n− 1)(n− 2)
R(gikgjl − gilgjk)

= Rijkl −Aikgjl +Ailgjk +Ajkgil −Ajlgik . (C.2.11)

The Weyl tensor has the important property that all its traces vanish, in par-
ticular

Cijik = 0 .

C.2.3 The Ricci tensor and the curvature scalar

We now return to (C.1.3); in this case R̃ij is the Ricci tensor of the metric g̃ij ,
hence L̃ij = Ãij, the Schouten tensor of g̃ij . Equation (C.2.10) implies that
Cijkℓ is invariant under conformal changes of the metric:

C̃ijkℓ = Cijkℓ .

Next, (C.2.9) can be viewed as a transformation law of the Schouten tensor
under conformal changes. Indeed, expressing fa in terms of ϕ by inverting
(C.2.2), Equation (C.2.9) can be rewritten as

Ãij = Aij −
ℓ

2ϕ
DiDjϕ+

ℓ

4ϕ2

(
(2 + ℓ)DiϕDjϕ−

ℓ

2
gijDkϕD

kϕ
)
, (C.2.12)

which does not have any dimension-dependent coefficients, and which simplifies
somewhat when ℓ = −2. Similarly, (C.2.5) gives

R̃ij = Rij −
(n− 2)ℓ

2ϕ
DiDjϕ+

(n− 2)ℓ(ℓ+ 2)

4ϕ2
DiϕDjϕ−

ℓ

2ϕ
∆gϕgij

−(n− 2)ℓ2 − 2ℓ

4ϕ2
DkϕDkϕgij . (C.2.13)
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Taking a g̃–trace one obtains

R̃ := g̃ijR̃ij = ϕ−ℓgijR̃ij

= ϕ−ℓ
(
R− (n − 1)ℓ

ϕ
∆gϕ−

(n− 1)ℓ {(n− 2)ℓ− 4}
4ϕ2

DiϕDiϕ

)
.

(C.2.14)

For n 6= 2 a very convenient choice is

(n− 2)ℓ = 4 , (C.2.15)

leading to

g̃ij = ϕ
4

n−2 gij , R̃ = ϕ− 4
n−2

(
R− 4(n − 1)

(n− 2)ϕ
∆gϕ

)
. (C.2.16)

An immediate useful consequence of (C.2.16) is the following: if R = 0 and if ϕ
is g–harmonic (i.e., ∆gϕ = 0), then g̃ also has vanishing scalar curvature, and
ϕ is g̃–harmonic.

It is sometimes useful to take ϕ = eu and ℓ = 1, which gives

g̃ij = eugij , R̃ = e−u
(
R− (n − 1)∆gu−

(n− 1)(n − 2)

4
|du|2g

)
.(C.2.17)

When n = 2 one obtains

g̃ij = eugij , R̃ = e−u (R−∆gu) . (C.2.18)

For the record we note the metric version of (C.2.10),

Rijkℓ = 2{δi[kAℓ]j − gj[kAℓ]i}+ Cijkℓ . (C.2.19)

C.3 The Beltrami-Laplace operator

Under a conformal transformation as in (C.2.16) we have the following trans-
formation law for the Laplacian acting on functions:

∆g̃f =
1√

det g̃ij
∂k(
√

det g̃ij g̃
kℓ∂ℓf)

=
ϕ− 2n

n−2

√
det gij

∂k

(
ϕ

2n
n−2

− 4
n−2︸ ︷︷ ︸

ϕ2

√
det gijg

kℓ∂ℓf

)

= ϕ− 4
n−2 (∆gf + 2ϕ−1gkℓ∂kϕ∂ℓf) .

This implies
(
∆g̃ −

(n− 2)

4(n − 1)
R̃

)
f

= ϕ− 4
n−2

(
∆gf + 2ϕ−1gkℓ∂kϕ∂ℓf −

(n− 2)

4(n− 1)
Rf + ϕ−1f∆gϕ

)

= ϕ− 4
n−2

−1

(
∆g(fϕ)−

(n− 2)

4(n− 1)
Rfϕ

)
.
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Hence the operator

∆g −
(n− 2)

4(n − 1)
R

is conformally-covariant: if g̃ij = ϕ
4

n−2 gij , then(
∆g̃ −

(n− 2)

4(n− 1)
R̃

)
f = ϕ−n+2

n−2

(
∆g −

(n − 2)

4(n− 1)
R

)
fϕ ; (C.3.1)

equivalently
(
∆g −

(n− 2)

4(n − 1)
R

)
h = ϕ

n+2
n−2

(
∆g̃ −

(n− 2)

4(n − 1)
R̃

)(
h

ϕ

)
. (C.3.2)

C.4 The Cotton tensor

Given any pseudo-Riemannian metric gij , the Cotton tensor Bijk is defined as

Bijk = Ai[j;k] , (C.4.1)

where Aij is the Schouten tensor (C.2.8). The tensor Bijk has the following
properties

Bijk = Bi[jk]︸ ︷︷ ︸
(a)

, Bi
ik︸︷︷︸

(b)

= 0 , B[ijk]︸ ︷︷ ︸
(c)

= 0 , (C.4.2)

which, from a purely algebraic point of view, allows a five-dimensional vector
space of such tensors at each space point. (The first property in (C.4.2) follows
immediately from the definition; similarly the last one is obvious in view of the
symmetry of Aij in its indices. The middle-one coincides with the contracted
Bianchi identity, Ri

j
;j =

1
2R;j.)

The Cotton tensor further satisfies the differential identity

Bi[jk;l] = 0 . (C.4.3)

One can think of the Cotton tensor as the three-dimensional counterpart
of the Weyl tensor. Indeed, the Weyl tensor vanishes identically in dimension
three so it is not of much interest there. The key property of B is its invariance
under conformal transformation when n = 3.

In dimension three, an object equivalent to the Cotton tensor is the tensor

Hij =
1

2
ǫkliBjkl . (C.4.4)

The tensor Hij is symmetric, tracefree and divergence-free. Indeed, the van-
ishing of its trace is precisely (C.4.2)(c). The vanishing of the divergence is
(C.4.3). To see the symmetry, we calculate as follows, where underbracing an
equality sign with “def.” means “equal by definition”:

H12 =︸︷︷︸
def.

B223 = B113 +B223 +B333︸ ︷︷ ︸
=0 by (C.4.2)(b)

−B113 − B333︸︷︷︸
=0 by (C.4.2)(a)

= − B113︸︷︷︸
=−B131 by (C.4.2)(a)

=︸︷︷︸
def.

H21 .

Finally, one readily verifies the inversion formula

Bijk = ǫjk
ℓHiℓ . (C.4.5)
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C.5 The Bach tensor

The Bach tensor is defined by the formula

Bab = DcDdCabcd +
1

2
RcdCacbd . (C.5.1)

Its interest arises from the fact that it is conformally covariant in four dimen-
sions,

gij → ω2gij =⇒ Bij → ω−2Bij .

Whatever the dimension, Bij vanishes if g is Einstein. This follows from the
fact that DdCabcd vanishes for Einstein metrics by the Bianchi identity, while
the second term in (C.5.1) becomes a trace in the second and third index, which
is zero for the Weyl tensor.

C.6 The Graham-Hirachi theorem, and the Fefferman-
Graham obstruction tensor

C.6.1 The Fefferman-Graham tensor

Let, as elsewhere, n+1 denote spacetime dimension. In what follows we assume
that n is odd. The Fefferman-Graham tensor H is a conformally covariant
tensor, built out of the metric g and its derivatives up to order n + 1, of the
form

H = (∇∗∇)n+1
2

−2[∇∗∇(A) +∇2(trA)] + Fn , (C.6.1)

where A is the Schouten tensor (C.2.8), and where Fn is a tensor built out of
lower order derivatives of the metric (see, e.g., [223], where the notation O is
used in place of H). It turns out that Fn involves only derivatives of the metric
up to order n− 1: this is an easy consequence of Equation (2.4) in [223], using
the fact that odd-power coefficients of the expansion of the metric gx in [223,
Equation (2.3)] vanish. (For n = 3, 5 this can also be verified by inspection of
the explicit formulae for F3 and F5 given in [223].)

The system of equations

H = 0 (C.6.2)

will be called the Anderson-Fefferman-Graham (AFG) equations. It has the
following properties [223]:

1. The system (C.6.2) is conformally invariant: if g is a solution, so is ϕ2g,
for any positive function ϕ.

2. If g is conformal to an Einstein metric, then (C.6.2) holds.

3. H is trace-free.

4. H is divergence-free.
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The tensor H was originally discovered by Fefferman and Graham [199] as an
obstruction to the existence of a formal power series expansion for conformally
compactifiable Einstein metrics, with conformal boundary equipped with the
conformal equivalence class [g] of g. Indeed. H is the tensor g̃log arising as the
coefficient of the xn log x term in the expansion (??), p. ??. This geometric
interpretation is irrelevant from our point of view, as here we are interested in
(C.6.2) as an equation on its own.

C.6.2 The Graham-Hirachi theorem

It is of interest to classify all conformally-covariant tensors which are polynomial
in the metric, its inverse, and in the derivatives of the metric. Such tensors will
be called natural. Now, one may construct further covariants from known ones
by taking tensor products and contracting. A tensor will be called irreducible
if it cannot be constructed in that fashion in a non-trivial way.

The following theorem of Hirachi-Graham shows that up to quadratic and
higher terms in curvature, the Weyl tensor, or the Cotton tensor in dimension
3, and the obstruction tensor are the only irreducible conformally invariant
tensors:

Theorem C.6.1 (Graham-Hirachi [223]) A conformally covariant irreducible nat-
ural tensor of n-dimensional oriented Riemannian manifolds is equivalent mod-
ulo a conformally covariant natural tensor of degree at least 2 in curvature with
a multiple of one of the following:

1. n = 3: the Cotton tensor Cijk = Aij;k −Aik;j

2. n = 4: the self-dual or anti-self dual Weyl tensor

C±
ijkl := Cijkl ±

1

2
ǫij

mnCmnkl

or the Bach tensor Bij = Oij

3. n ≥ 5 odd: the Weyl tensor Cijkl

4. n ≥ 6 even: the Weyl tensor Cijkl or the obstruction tensor Oij

C.7 Frame coefficients, Dirac operators

In order to calculate the transformation law of the connection coefficients, we
will consider a conformal rescaling of the form ḡij = e2ugij . Let θ̄i be an
orthonormal coframe for ḡ, then

θi := e−uθ̄i

is an orthonormal coframe for ḡ. We claim that:

ω̄ij(ek) = ωij(ek)− ei(u)gjk + ej(u)gik , (C.7.1)
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equivalently

ω̄ij = ω̄ij(ek)θ
k = ωij − ei(u)θj + ej(u)θi . (C.7.2)

To verify this equation, notice that ω̄ij as given by this equation is anti-
symmetric in i and j; further, it is straightforward to check that

dθ̄i + ω̄ij ∧ θ̄j = 0 ,

and (C.7.1) follows from uniqueness of ω̄ij.

Let ei be an orthonormal frame for g. Recall that the Dirac operator /∇ is
defined by the formula

/∇ψ := γk∇ekψ = γk(ek(ψ) −
1

4
ωijkγ

iγj)ψ .

The corresponding Dirac operator /∇ associated to the metric ḡ reads

/∇ψ := γk∇̄ēkψ = γk(ēk(ψ) −
1

4
ω̄ijkγ

iγj)ψ .

Using (C.7.1) one finds

/∇ψ = e−
(n+1)u

2 /∇(e
(n−1)u

2 ψ) . (C.7.3)

C.8 Elements of bifurcation theory

Bifurcation theory provides one of the tools for constructing solutions of elliptic
PDEs. For the reader’s convenience, we state here some results that are used in
this work. Detailed accounts of this theory can be found in [167, 354, 356–358],
[337, Sections 3.2 and 3.3] and references therein.

Consider a continuous mapping F : I × Ω → B, where I is a non-empty
interval of R, Ω is a subset of a Banach space A and B is another Banach space.
We want to study the zero-level set of F , i.e. the set of pairs (λ, x) ∈ I ×A for
which F (λ, x) = 0.

A pair (λ0, x0) ∈ I × Ω is called a bifurcation point for F if there exists
a sequence (λi)i>0 converging to λ0 with λi ∈ I and two sequences (x1i )i>0,
(x2i )i>0 in Ω such that

• ∀i, x1i 6= x2i ,

• x1i , x2i → x0,

• F (λi, x1i ) = F (λi, x
2
i ) = 0.

If the mapping F is C1, this imposes that the differential ∂xF is not in-
vertible at (λ0, x0) since, otherwise, this would contradict the conclusion of the
implicit function theorem. Two types of bifurcation points arise in our work,
described in the next propositions, see Figure C.8.1.
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Figure C.8.1: Examples of Fold Bifurcation (left figure), and Pitchfork Bifur-
cations (middle and right figure).

Proposition C.8.1 (Fold bifurcation) Let (λ0, x0) be a point in the zero set
of F . Assume that ∂xF (λ0, x0) is Fredholm with index 0 and that the kernel
of ∂xF (λ0, x0) has dimension 1 and is generated by y1. Assume further that
∂λF (λ0, x0) is not in the range of ∂xF (λ0, x0). Then there exists a neighborhood
J × Ω′ ⊂ I × Ω of (λ0, x0) and a C1-curve γ : U → J × Ω′, where U ⊂ R is a
neighborhood of 0, such that

• γ(0) = (λ0, x0),

• γ̇(0) = (0, y1),

• ∀(λ, x) ∈ J × Ω′, F (λ, x) = 0 ⇐⇒ ∃t ∈ U, (λ, x) = γ(t).

For a proof of this proposition, we refer the reader to [354, Theorem 2.3.1].
More information can be gained if we assume that F is C2:

Proposition C.8.2 (Fold bifurcation 2) Under the assumptions of Proposition
C.8.1, there exists a linear form µ ∈ B∗, µ 6= 0, whose kernel is the range of
∂xF (λ0, x0). Assuming further that F is C2 and

µ(∂2xF (λ0, x0)(y1, y1)) 6= 0 ,

then the curve γ = (γλ, γx) is C
2 and

γ̈λ(0) =
µ(∂λF (λ0, x0))

µ(∂2xF (λ0, x0)(y1, y1))
.

In particular, upon shrinking the neighborhood J × Ω′ of (λ0, x0), we have:

• If γ̈λ(0) > 0, then, for any λ ∈ J ,

#{x ∈ Ω′, F (λ, x) = 0} =





0 if λ < λ0 ,
1 if λ = λ0 ,
2 if λ > λ0 .

• If γ̈λ(0) < 0, then, for any λ ∈ J ,

#{x ∈ Ω′, F (λ, x) = 0} =





2 if λ < λ0 ,
1 if λ = λ0 ,
0 if λ > λ0 .
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The second type of bifurcation was discovered in [167]:

Proposition C.8.3 (Pitchfork bifurcation) Assume that F is C2 and that

U ∋ t 7→ γ(t) ≡ (γλ(t), γx(t)) ∈ I × Ω

is a C1 curve of solutions:

∀t ∈ U, F (γ(t)) = 0 ,

with U a neighborhood of 0 in R such that

γ(0) = (λ0, x0) , γ̇λ(0) 6= 0 .

Assume further that ∂xF (λ0, x0) has a 1-dimensional kernel spanned by v ∈ A
and that D2F (λ0, x0)(γ̇(0), v) 6= 0. Then (λ0, x0) is a bifurcation point for F
and there exists a neighborhood J ×Ω′ of (λ0, x0) such that the set of solutions
of F (λ, x) = 0 consists of the union of two C2 curves (γ and another one)
intersecting (transversally) only at (λ0, x0).



Appendix D

A collection of identities

We include here a collection of useful identities, mostly compiled by Erwann
Delay. I am grateful to Erwann for allowing me to include his list here.

D.1 ADM notation

Letting g̃ij denote the inverse matrix to gij , using the Arnowitt-Deser-Misner
notation we have

gkl = g̃kl − N lNk

N2 , g0k = Nk, g
0k = Nk

N2 , N
2 = − 1

g00
, g00 = NkNk −N2.

(D.1.1)
where Nk := g̃klNl. The associated decomposition of the Christoffel symbols
reads

Γ0
k0 = ∂k logN −

N l

N
Klk , Γ0

00 = ∂0 logN +Nk∂k logN −
N lNk

N
Klk

(recall that Kkl = −NΓ0
kl =

1
2N (DlNk +DkNl − ∂0gkl)). Furthermore,

Γkij = Γ̃kij+
Nk

N
Kij , Γk0j = DjN

k −NKk
j +

Nk

N

(
N lKlj −DjN

)
.

D.2 Some commutators

Here are some formulae for the commutation of derivatives:

∇m∇ltik −∇l∇mtik = Rpklmtip +Rpilmtkp ,

∇i∇jV l −∇j∇iV l = RlkijV
k ,

∇k∇k|df |2 = 2(∇lf∇l∇k∇kf +Ric(∇f,∇f) + |∇∇f |2) ,

∇k∇k∇i∇jf −∇i∇j∇k∇kf −Rkj∇k∇if −Rki∇k∇jf + 2Rqjli∇q∇lf

= (∇iRkj +∇jRki −∇kRij)∇kf .

275
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D.3 Bianchi identities

The Bianchi identities for a Levi-Civita connection:

Rijkl +Riljk +Riklj = 0 ,

∇lRtijk +∇kRtilj +∇jRtikl = 0 ,

∇tRtijk +∇kRij −∇jRik = 0 ,

∇kRik −
1

2
∇kR = 0 .

D.4 Linearisations

Linearisations for various objects of interest:

DgΓ
k
ij(g)h =

1

2
(∇ihkj +∇jhki −∇khij) ,

2[DgRiem(g)h]sklm = ∇l∇khsm−∇l∇shkm+∇m∇shkl−∇m∇khsl+Rpklmhps+Rpsmlhpk ,
2[DgRiem(g)h]iklm = ∇l∇khim−∇l∇ihkm+∇m∇ihkl−∇m∇khil+gisRpsmlhpk−Rpklmhip ,

DgRic(g)h =
1

2
∆Lh− div∗div(Gh) ,

∆Lhij = −∇k∇khij +Rikh
k
j +Rjkh

k
j − 2Rikjlh

kl ,

Gh = h− 1

2
tr hg, (divh)i = −∇khik, div∗w =

1

2
(∇iwj +∇jwi) ,

DgR(g)h = −∇k∇k(tr h) +∇k∇lhkl −Rklhkl ,
[DgR(g)]

∗f = −∇k∇kfg +∇∇f − f Ric(g) .

D.5 Warped products

Let (M,g), ∇ := ∇g, f :M → R and

(M =M ×f I, g̃ = −f2dt2 + g) ,

then for X,Y tangent to M and V,W tangent to I, we have

Ric(g̃)(X,Y ) = Ric(g)(X,Y )− f−1∇∇f(X,Y ) ,

Ric(g̃)(X,V ) = 0 = g̃(X,V ) ,

Ric(g̃)(V,W ) = −f−1∇k∇kf g̃(V,W ) .

Let (M,g), ∇ := ∇g, f :M → R and let (M =M×f I, g̃ = ǫf2dt2+g), ǫ = ±1.
xa = (x0 = t, xi = (x1, . . ., xn)) .

Γ̃0
00 = Γ̃0

ij = Γ̃ki0 = 0, Γ̃0
i0 = f−1∂if, Γ̃k00 = −ǫf∇kf, Γ̃kij = Γkij ,

R̃lijk = Rlijk, R̃l0j0 = −ǫf∇j∇lf, R̃0
ij0 = f−1∇j∇if ,

R̃0
ijk = R̃lij0 = R̃l0jk = R̃0

0jk = R̃0
0j0 = 0 ,

R̃mijk = Rmijk, R̃0ijk = 0, R̃0ij0 = ǫf∇j∇if ,
R̃ik = Rik − f−1∇k∇if, R̃0k = 0, R̃00 = −ǫf∇i∇if ,

R̃ = R− 2f−1∇i∇if .
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D.6 Hypersurfaces

Let M be a non-isotropic hypersurface in M̃ , with ν normal, and u, v tangent
to M at m, we have

II(u, v) = (∇̃UV −∇UV )m = (∇̃UV )⊥m = II(v, u) = −l(u, v)νm .

Setting S(u) = ∇̃uν ∈ TmM , one has

< S(u), v >=< ∇̃uν, v >=< −ν, ∇̃uV >= l(u, v) .

If x, y, u, v are tangent to M , then

R(x, y, u, v) = R̃(x, y, u, v) + l(x, u)l(y, v) − l(x, v)l(y, u) .

The Gauss-Codazzi equations read

R̃(x, y, u, ν) = ∇yl(x, u)−∇xl(y, u) .

The Ricci tensor can be decomposed as:

R̃(y, v) = R(y, v) + II ◦ II(y, v) − trII II(y, v) + R̃(ν, y, ν, v) ,

R̃(y, ν) = −∇ytrII + yj∇iIIij ,

R̃ = R+ |II|2 − (trII)2 + 2R̃(ν, ν) .

D.7 Conformal transformations

The Weyl tensor:

Wijkl = Rijkl−
1

n− 2
(Rikgjl−Rilgjk+Rjlgik−Rjkgil)+

R

(n− 1)(n − 2)
(gjlgik−gjkgil) .

We have

Wi
j
kl(e

fg) =Wi
j
kl(g) .

The Schouten tensor

Sij =
1

n− 2
[2Rij −

R

n− 1
gij ] .

Under a conformal transformation g′ = efg, we have

Γ′k
ij − Γkij =

1

2
(δkj ∂if + δki ∂jf − gij∇kf) .

R′
ij = Rij −

n− 2

2
∇i∇jf +

n− 2

4
∇if∇jf −

1

2
(∇k∇kf +

n− 2

2
|df |2)gij

R′ = e−f [R− (n− 1)∇i∇if −
(n− 1)(n − 2)

4
∇if∇if ] .
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Specialising to g′ = e
2

n−2
ug,

R′
ij = Rij −∇i∇ju+

1

n− 2
∇iu∇ju−

1

n− 2
(∇k∇ku+ |du|2)gij .

In the notation g′ = v
2

n−2 g,

R′
ij = Rij − v−1∇i∇jv +

n− 1

n− 2
v−2∇iv∇jv −

1

n− 2
v−1(∇k∇kv)gij .

If we write instead g′ = φ4/(n−2)g, then

R′
ij = Rij−2φ−1∇i∇jφ+

2n

n− 2
φ−2∇iφ∇jφ−

2

n− 2
φ−1(∇k∇kφ+φ−1|dφ|2)gij ,

R′φ(n+2)/(n−2) = −4(n− 1)

n− 2
∇k∇kφ+Rφ .

When we have two metrics g and g′ at our disposal, then

T kij := Γ′k
ij − Γkij =

1

2
g′kl(∇ig′lj +∇jg′li −∇lg′ij) .

Riem′i
klm − Riemi

klm = ∇lT ikm −∇mT ikl + T ijlT
j
km − T ijmT

j
kl .

Under g′ = efg, the Laplacian acting on functions transforms as

∇′k∇′
kv = e−f (∇k∇kv +

n− 2

2
∇kf∇kv) .

For symmetric tensors we have instead

∇′k∇′
kuij = e−f

[
∇k∇kuij +

n− 6

2
∇kf∇kuij − (∇if∇kukj +∇jf∇kuki)

+(∇kf∇iukj +∇kf∇juki) + (
3− n
2
∇kf∇kf −∇k∇kf)uij

−n
4
(∇if∇kfukj +∇jf∇kfuki) +

1

2
∇if∇jfukk +

1

2
gijukl∇kf∇lf

]
.

D.8 Laplacians on tensors

For symmetric u’s and arbitrary T ’s let

(Du)kij :=
1√
2
(∇kuij −∇juik),

then

(D∗T )ij =
1

2
√
2
(−∇kTkij −∇kTkji +∇kTijk +∇kTjik) .

Further

D∗Duij = −∇k∇kuij +
1

2
(∇k∇iujk +∇k∇juik) ,

and

div∗divu = −1

2
(∇i∇kujk +∇j∇kuik) ,

thus

(D∗D + div∗div)uij = −∇k∇kuij +
1

2
(Rkju

k
i +Rkiu

k
j − 2Rqjliu

ql) .
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D.9 Stationary metrics

Let (M,γ) be a Riemannian or pseudo-Riemannian three dimensional manifold,
define λ :M → R, ξ :M → T ∗M , (N = I ×M,g) by the formulae

g(t, x) =

(
λ tξ
ξ λ−1(ξ tξ − γ)

)
= λ(dt+ λ−1ξidx

i)2 − λ−1γijdx
idxj .

Let w = −λ2 ∗γ d(λ−1ξ). ∇ = ∇g, Ei = γisEs. Then

Ric(γ)ij =
1

2
λ−1(∇iλ∇jλ+ wiwj) + λ−2(Ric(g)ij −Ric(g)cdξcξdγij) ,

∇i∇iλ = λ−1(|dλ|2 − |w|2)− 2λ−1Ric(g)abξ
aξb ,

∇i(λ−2wi) = 0 ,

λ(∗γdw)i = −2λ−1T (g)icξ
c, Ric(g) = G(T (g)) .
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[58] M. Berger, Géométrie, Nathan, Paris, 1990.

[59] A.L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzge-
biete. 3. Folge, vol. 10, Springer Verlag, Berlin, New York, Heidelberg, 1987.

[60] L. Bessières, G. Besson, and S. Maillot, Ricci flow on open 3-manifolds and
positive scalar curvature, Geom. Topol. 15 (2011), 927–975, arXiv:1001.1458
[math.DG]. MR 2821567

[61] L. Bieri, An Extension of the Stability Theorem of the Minkowski Space in General
Relativity, Ph.D. thesis, ETH Zürich, 2007.
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[254] J. Isenberg and N. Ó Murchadha, Non-CMC conformal data sets which do not
produce solutions of the Einstein constraint equations, Class. Quantum Grav. 21
(2004), S233–S241, A space-time safari: Essays in honour of Vincent Moncrief;
arXiv:gr-qc/0311057. MR MR2053007 (2005c:83003)

[255] J. Isenberg and J. Park, Asymptotically hyperbolic non-constant mean curva-
ture solutions of the Einstein constraint equations, Classical Quantum Grav. 14
(1997), A189–A201. MR 2000e:83009

[256] J. Isenberg and M. Weaver, On the area of the symmetry orbits in T 2 symmetric
spacetimes, Class. Quantum Grav. 20 (2003), 3783–3796, arXiv:gr-qc/0304019.

[257] J.T. Jebsen, On the general spherically symmetric solutions of Einstein’s gravi-
tational equations in vacuo, Gen. Rel. Grav. 37 (2005), 2253–2259, translation
of Ark. Mat. Ast. Fys. (Stockholm) 15, nr.18 (1921).

[258] Q. Jin, Y. Li, and H. Xu, Symmetry and asymmetry: the method of moving
spheres, Adv. Differential Equations 13 (2008), no. 7-8, 601–640. MR 2479025
(2010h:35118)

[259] J. Joudioux, Gluing for the constraints for higher spin fields, (2017),
arXiv:1704.01084 [gr-qc].

[260] D. Joyce, Constant scalar curvature metrics on connected sums, Int. Jour. Math.
Math. Sci. (2003), 405–450, arXiv:math.DG/0108022. MR 1 961 016

[261] J. Kánnár, On the existence of C∞ solutions to the asymptotic characteristic
initial value problem in general relativity, Proc. Roy. Soc. London Ser. A 452

(1996), 945–952.

[262] D. Kastor and J. Traschen, Cosmological multi–black hole solutions, Phys. Rev.
D47 (1993), 5370–5375, hep-th/9212035.

[263] , Cosmological multi-black-hole solutions, Phys. Rev. D (3) 47 (1993),
5370–5375, arXiv:hep-th/9212035. MR 1225552 (94d:83046)

[264] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,
Arch. Rational Mech. Anal. 58 (1975), 181–205. MR MR0390516 (52 #11341)

[265] M.A. Khuri, F.C. Marques, and R.M. Schoen, A compactness theorem for
the Yamabe problem, Jour. Diff. Geom. 81 (2009), 143–196. MR 2477893
(2010e:53065)

[266] S. Kichenassamy and A. Rendall, Analytic description of singularities in Gowdy
space-times, Class. Quantum Grav. 15 (1998), 1339–1355.

[267] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the
classical wave equation, Commun. Pure Appl. Math. 38 (1985), 321–332. MR
MR784477 (86i:35091)

[268] , The null condition and global existence to nonlinear wave equations,
Nonlinear systems of partial differential equations in applied mathematics, Part
1 (Santa Fe, N.M., 1984), Lectures in Appl. Math., vol. 23, Amer. Math. Soc.,
Providence, RI, 1986, pp. 293–326. MR MR837683 (87h:35217)
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Soc., Zürich, 2008, pp. 299–358. MR 2436235 (2010b:53128)



300 BIBLIOGRAPHY

[324] C.W. Misner, Taub–NUT space as a counterexample to almost anything, Rela-
tivity Theory and Astrophysics, AMS, Providence, Rhode Island, 1967, Lectures
in Appl. Math., vol. 8, pp. 160–169.

[325] C.W. Misner and A. Taub, A singularity-free empty universe, Soviet. Phys. JEPT
28 (1969), 122–133.

[326] C.W. Misner, K. Thorne, and J.A. Wheeler, Gravitation, Freeman, San Fransisco,
1973.

[327] V. Moncrief, Spacetime symmetries and linearization stability of the Einstein
equations I, Jour. Math. Phys. 16 (1975), 493–498.

[328] , Global properties of Gowdy spacetimes with T 3×R topology, Ann. Phys.
132 (1981), 87–107.

[329] , Infinite-dimensional family of vacuum cosmological models with Taub-
NUT (Newman-Unti-Tamburino)-type extensions, Phys. Rev. D 23 (1981), 312–
315. MR 82b:83024

[330] V. Moncrief and D. Eardley, The global existence problem and cosmic censorship
in general relativity, Gen. Rel. Grav. 13 (1981), 887–892.

[331] V. Moncrief and J. Isenberg, Symmetries of cosmological Cauchy horizons, Com-
mun. Math. Phys. 89 (1983), 387–413. MR 709474 (85c:83026)

[332] , Symmetries of cosmological Cauchy horizons with exceptional orbits,
Jour. Math. Phys. 26 (1985), 1024–1027.

[333] , Symmetries of Cosmological Cauchy Horizons with Non-Closed Orbits,
(2018), arXiv:1807.10141 [gr-qc].

[334] C.B. Morrey, Multiple integrals in the calculus of variation, Die Grundlehren der
mathematischen Wissenschaften, Band 130, Springer Verlag, Berlin, Heidelberg,
New York, 1966. MR MR0202511 (34 #2380)

[335] H. Nariai, On a new cosmological solution of Einstein’s field equations of gravi-
tation, Sci. Rep. Tohoku Univ. Ser. I. 35 (1951), 62–67. MR 14,1133f

[336] E. Newman, L. Tamburino, and T. Unti, Empty-space generalization of the
Schwarzschild metric, Jour. Math. Phys. 4 (1963), 915–923. MR MR0152345
(27 #2325)

[337] L. Nirenberg, Topics in nonlinear functional analysis, Courant Lecture Notes
in Mathematics, vol. 6, New York University, Courant Institute of Mathemati-
cal Sciences, New York; American Mathematical Society, Providence, RI, 2001,
Chapter 6 by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974
original. MR 1850453 (2002j:47085)

[338] L. Nirenberg and H.F. Walker, The null spaces of elliptic partial differential
operators in Rn, Jour. Math. Anal. Appl. 42 (1973), 271–301, Collection of
articles dedicated to Salomon Bochner. MR MR0320821 (47 #9354)

[339] M. Obata, The conjectures of conformal transformations of Riemannian mani-
folds., Bull. Amer. Math. Soc. 77 (1971), 265–270. MR MR0270397 (42 #5286)

[340] J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys.
Rev. 56 (1939), 455–459.

[341] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, Progress
in Nonlinear Differential Equations and their Applications, 39, Birkhäuser
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qc/0006035. MR MR1846852 (2002h:83075)

[375] , Existence of an asymptotic velocity and implications for the asymptotic
behavior in the direction of the singularity in T 3-Gowdy, Commun. Pure Appl.
Math. 59 (2006), 977–1041. MR MR2222842

[376] , The Cauchy problem in general relativity, ESI Lectures in Mathematics
and Physics, European Mathematical Society (EMS), Zürich, 2009. MR 2527641
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