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B Weighted Poincaré inequalities 251

Bibliography 255



Part I

Energy in general relativity
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Chapter 1

Mass and Energy-momentum

There exist various reasons why one might be interested in the notion of energy
in general relativity:

1. First, one expects that generic gravitating systems will emit gravitational
waves. Detecting such waves requires a transfer of energy between the
field and the detector, and to quantify such effects it is clearly useful to
have a device that measures the energy carried away by the gravitational
field.

2. Next, in Lagrangean field theories with Lagrange function L (φA, ∂µφ
A)

there is a well defined notion of energy-density, discussed shortly in Sec-
tion 1.2. There is no known geometrically defined notion of energy in
general relativity, which makes the question more interesting.

3. Now, it turns out that there is a well defined notion of global energy and
momentum for isolated gravitating systems. The positivity of this total
energy has proved surprisingly difficult to establish, a problem eventually
settled by Schoen and Yau [163, 164] in space-dimension lower than or
equal to seven [162], and by completely different methods by Witten [187]
under the hypothesis that the manifold is spin; the general case remaining
open.

4. The positive energy theorem has a surprising application in the proof by
Schoen [161] in 1984 of the Yamabe conjecture: for every metric g on a
compact manifold there exists a strictly positive function φ such that the
metric φg has constant scalar curvature. See [131]. (A solution of the
Yamabe problem has also be given by Bahri [9] by completely different
methods in 1993.)

5. Yet another surprising application of the positive of energy is the proof, by
Bunting and Masood-ul-Alam [43], that event horizons in regular, static,
vacuum black holes are connected.

6. The hunting season for an optimal definition of “quasi-local” energy is
still open!

3



4 CHAPTER 1. MASS AND ENERGY-MOMENTUM

1.1 The mass of asymptotically Euclidean manifolds

There exist various approaches to the definition of mass in general relativity,
the first one being due to Einstein [83] himself. In Section 1.2 below we will
outline two geometric Hamiltonian approaches to that question. However, those
approaches require some background knowledge in symplectic field theory, and
it appears useful to present an elementary approach which quickly leads to the
correct definition for asymptotically flat Riemannian manifolds without any
prerequisites.

In the remainder in this chapter we will restrict ourselves to dimensions greater
than or equal to three, as the situation turns out to be completely different in di-
mension two: Indeed, it should be clear from the considerations below that the mass
is an object which is related to the integral of the scalar curvature over the man-
ifold. Now, in dimension two, that integral is a topological invariant for compact
manifolds, while it is related to a “deficit angle” in the non-compact case. This an-
gle, to which we return in Remark 1.1.3, appears to be the natural two-dimensional
equivalent of the notion of mass.

The Newtonian approximation provides the simplest situation in which it
is natural to assign a mass to a Riemannian metric: recall that in this case the
space-part of the metric takes the form

gij = (1 + 2φ)δij , (1.1.1)

where φ is the Newtonian potential,

∆δφ = −4πµ , (1.1.2)

with µ – the energy density. (In the Newtonian approximation we also have
g0i = 0, g00 = −1 + 2φ, but this is irrelevant for what follows.) When µ has
compact support supp µ ⊂ B(0, R) we have, at large distances,

φ =
M

r
+O(r−2) , (1.1.3)

where M is the total Newtonian mass of the sources:

M =

∫

R3

µ d3x

= − 1

4π

∫

R3

∆δφ

= − 1

4π

∫

B(0,R)
∆δφ

= − 1

4π

∫

S(0,R)
∇iφ dSi

= − lim
R→∞

1

4π

∫

S(0,R)
∇iφ dSi . (1.1.4)

Here dSi denotes the usual coordinate surface element,

dSi = ∂i⌋dx ∧ dy ∧ dz , (1.1.5)
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with ⌋ denoting contraction. Then the number M appearing in (1.1.3) or,
equivalently, given by (1.1.4), will be called the mass of the metric (1.1.1).

In Newtonian theory it is natural to suppose that µ ≥ 0. We then obtain
the simplest possible version of the positive mass theorem:

Theorem 1.1.1 (Conformally flat positive mass theorem) Consider a C2 met-
ric on R

3 of the form (1.1.1) with a strictly positive function 1 + 2φ satisfying

−4πµ := ∆δφ ≤ 0 , φ→r→∞ 0 .

Then

0 ≤ m := − lim
R→∞

1

4π

∫

S(0,R)
∇iφ dSi ≤ ∞ ,

with m vanishing if and only if gij is flat.

Proof: The result follows from (1.1.4); we simply note that m will be finite if
and only if µ is in L1(R3). ✷

Somewhat more generally, suppose that

gij = ψδij + o(r−1) , ∂k(gij − ψδij) = o(r−2) , (1.1.6)

with ψ tending to 1 as r tends to infinity. Then a natural generalisation of
(1.1.4) is

m := − lim
R→∞

1

8π

∫

S(0,R)
∇iψ dSi , (1.1.7)

provided that the limit exists.
Let us see whether Definition (1.1.7) can be applied to the Schwarzschild

metric:
4g = −(1− 2m/r)dt2 +

dr2

1− 2m/r
+ r2dΩ2 , (1.1.8)

where
dΩ2 = dθ2 + sin2 θdϕ2 . (1.1.9)

Here we have decorated 4g with a subscript four, emphasising its four dimen-
sional character, and we shall be using the symbol g for its three dimensional
space-part. Now, every spherically symmetric metric is conformally flat, so that
the space-part of the Schwarzschild metric can be brought to the form (1.1.6)
without the error term, as follows: We want to find ρ such that

g :=
dr2

1− 2m/r
+ r2dΩ2 = ψ

(
dρ2 + ρ2dΩ2

)
. (1.1.10)

Let us check that the answer is

ψ =

(
1 +

m

2ρ

)4

.

Comparing the coefficients in front of dθ2, or in front of dϕ2, in (1.1.10) yields

r =

(
1 +

m

2ρ

)2

ρ . (1.1.11)
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To finish verifying (1.1.10) it suffices to check the grr term. Differentiating we
have

dr =

(
1 +

m

2ρ

)(
2×

(
− m

2ρ2

)
× ρ+ 1 +

m

2ρ

)
dρ =

(
1 +

m

2ρ

)(
1− m

2ρ

)
dρ ,

(1.1.12)
while

1− 2m

r
= 1− 2m

(1 + m
2ρ)2ρ

=
(1 + m

2ρ)2 − 2m
ρ

(1 + m
2ρ )2

=
1 + m

ρ +
(
m
2ρ

)2
− 2m

ρ

(1 + m
2ρ)2

=
(1− m

2ρ)2

(1 + m
2ρ)2

,

and (1.1.10) readily follows. Hence

g =

(
1 +

m

2|~y|

)4

δ , (1.1.13)

where δ denotes the flat Euclidean metric in the coordinate system (yi). From
the asymptotic development

(
1 +

m

2|~y|

)4

= 1 +
2m

|~y| +O(|~y|−2)

we find that the space-part of the Schwarzschild metric has mass m, as desired.
More precisely, one finds a mass m in the coordinate system in which g takes
the form (1.1.13). This raises immediately the question, whether the number
so obtained does, or does not, depend upon the coordinate system chosen to
calculate it. We will shortly see that m is coordinate-independent, and indeed
a geometric invariant.

For further reference we note that we have also obtained

4g = −
(1− m

2ρ )2

(1 + m
2ρ )2

dt2 +

(
1 +

m

2ρ

)4 (
dρ2 + ρ2(dθ2 + sin2 θdϕ2)

)
. (1.1.14)

Actually, (1.1.12) shows that the map which to ρ assigns r is not a diffeomorphism,
since dr/dρ vanishes at

r = 2m⇐⇒ ρ = m/2 .

This is related to the fact that the left-hand-side of (1.1.10) is singular at r = 2m,
while the right-hand side of (1.1.10) extends smoothly across ρ = m/2. This shows
that the apparent singularity of the metric at the left-hand-side of (1.1.10) is only
a coordinate artefact. This is called a coordinate singularity by physicists.

A closer inspection of (1.1.11)-(1.1.12) shows that the manifold Rt×{ρ > 0}×S2

contains the Schwarzschild manifold Rt × {r > 2m} × S2 twice, once for ρ > m/2,
and one more copy for ρ < m/2.
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A hint how to proceed in general is given by the conformally flat positive
energy theorem 1.1.1, where we have used positivity properties of the “mass
density µ := ∆δφ/(−4π)” to obtain information about the asymptotic behavior
of the metric. Recall that the general relativistic correspondent of the mass
density µ is the energy density ρ. Thus, we need an equation which involves ρ.
A candidate here is the scalar constraint equation,

R(g) = 16πρ+ |K|2 − (trgK)2 , ρ := Tµνn
µnν . (1.1.15)

(Recall that we are working in the asymptotically flat context here, which re-
quires Λ = 0.) Here nµ is the field of unit normals to the spacelike initial data
hypersurface S ⊂M , with space metric g induced from the space-time metric
4g. Further, Tµν is the energy-momentum tensor, so that ρ has the interpreta-
tion of energy-per-unit-volume of matter fields on S . Finally, K = Kijdx

idxj

is the extrinsic curvature tensor of S in M : in adapted coordinates in which
S = {x0 = const} we have

Kij =
1

2
(∇inj +∇jni) .

(K is thus the space-part of half of the Lie derivative of the metric in direction
normal to S , and thus measures how the metric changes when moved in that
direction.)

Now, R contains a linear combination of second derivatives of g, which is
vaguely reminiscent of (1.1.2), however there are also terms which are quadratic
in the Christoffel symbols, and it is not completely clear that this is the right
equation. We shall, however, hope for the best, manipulate the equation in-
volving R(g), and see what comes out of that. Thus, we isolate all the second
derivatives terms in R(g) and we reexpress them as the divergence of a certain
object:

R(g) = gijRicij = gijRkikj

= gij
(
∂kΓ

k
ij − ∂jΓkik + q

)
,

where q denotes an object which is quadratic in the first derivatives of gij with
coefficients which are rational functions of gkl. Now,

Γkij =
1

2
gkℓ (∂jgℓi + ∂igℓj − ∂ℓgij) ,

hence

Γkik =
1

2
gkℓ (∂kgℓi + ∂igℓk − ∂ℓgik) =

1

2
gkℓ∂igℓk .

It follows that

R(g) =
1

2
gijgkℓ (∂k∂jgℓi + ∂k∂igℓj − ∂k∂ℓgij − ∂j∂igℓk + q)

= gijgkℓ (∂k∂jgℓi − ∂j∂igℓk) +
q

2

= ∂j

(
gijgkℓ (∂kgℓi − ∂igℓk)

)
+ q′ ,
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with a different quadratic remainder term. We will need to integrate this ex-
pression, so we multiply everything by

√
det g, obtaining finally

√
det gR(g) = ∂jU

j + q′′ , (1.1.16)

with q′′ yet another quadratic expression in ∂g, and

U
j :=

√
det g gijgkℓ (∂kgℓi − ∂igℓk) . (1.1.17)

This is the object needed for the definition of mass:

Definition 1.1.2 Let g be a W 1,∞
loc metric defined on R

n \B(0, R0), we set

m := lim
R→∞

1

16π

∫

S(0,R)
U
jdSj

= lim
R→∞

1

16π

∫

S(0,R)
gijgkℓ (∂kgℓi − ∂igℓk)

√
det g dSj , (1.1.18)

whenever the limit exists.

We emphasize that we do not assume that the metric is defined on R
n, as

that would exclude many cases of interest, including the Schwarzschild metric.

The normalisation in (1.1.18) has been tailored to n = 3, and a different
normalisation could perhaps be more convenient in higher dimension. As this is
irrelevant for most of our purposes we will always use the above normalisation
unless explicitly indicated otherwise.

Remark 1.1.3 In dimension two the scalar curvature is always, locally, a total
divergence, which considerably simplifies the subsequent analysis. This will be
discussed in Section 1.1.1 below.

Let us consider the question of convergence of the integral (1.1.18):

Proposition 1.1.4 ([10, 55, 142]) Let g be aW 1,∞
loc metric defined on R

n\B(0, R0)
such that

∀ i, j, k, ℓ gij , g
kℓ ∈ L∞ , ∂kgij ∈ L2 . (1.1.19)

1. If

R(g) ∈ L1 ,

then m exists, and is finite.

2. [Infinite positive energy theorem] If R(g) is a non-negative mea-
surable function which is not in L1, then the limit in (1.1.18) exists with

m =∞ .
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Proof: The result follows immediately from the divergence theorem: we write

∫

S(0,R)
U
jdSj −

∫

S(0,R0)
U
jdSj =

∫

B(0,R)\B(0,R0)
∂jU

jd3x

=

∫

B(0,R)\B(0,R0)
(
√

det gR− q′′)d3x ,

with q′′ ∈ L1 since the ∂kgij ’s are in L2. If R(g) is in L1, or if R(g) is measurable
and positive, the monotone convergence theorem gives

lim
R→∞

∫

S(0,R)
U
jdSj =

∫

Rn\B(0,R0)

√
det gR d3x

−
∫

Rn\B(0,R0)
q′′d3x+

∫

S(0,R0)
U
jdSj , (1.1.20)

with the last two terms being finite, and the result follows. ✷

Since the arguments of this section have a purely Riemannian character, the ex-
trinsic curvature tensor K, which would be present if a whole initial data set were
considered, is irrelevant for the current purposes. However, it is worthwhile point-
ing out that similar manipulations can be done with the vector constraint equation,
leading to the definition of the ADM momentum of an initial data set, as follows:
For notational convenience let us set

P ij := trgKg
ij −Kij , (1.1.21)

Jj := T j
µn

µ , (1.1.22)

so that the vector constraint equation can be rewritten as

DiP
i
j = 8πJj . (1.1.23)

The vector field J is usually called the matter momentum vector. Similarly to
(1.1.16), we want to obtain a divergence identity involving J . Now, divergence
identities involve vector fields, while (1.1.23) involves the divergence of a tensor;
this is easily taken care of by choosing some arbitrary vector field X and writing

Di(P
i
jX

j) = DiP
i
jX

i + P i
jDiX

j = 8πJiX
i + P i

jDiX
j . (1.1.24)

Integrating over large spheres gives

∫

S∞

P i
jX

jdSi = lim
R→∞

∫

S(R)

P i
jX

jdSi

=

∫

M

(
8πJ iXi + P i

jDiX
j
)
, (1.1.25)

provided that the last integral converges. Let X i
∞ be any set of constants, the ADM

momentum vector p is the set of numbers pi defined using the boundary integrand
above:

piX
i
∞ :=

1

8π

∫

S∞

P i
jX

j
∞dSi . (1.1.26)

To analyse convergence, let X be any differentiable vector field which coincides with
X∞ for r large, and which is zero outside of the asymptotic region. It is natural to
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assume that the total momentum of the fields other than the gravitational one is
finite:

J ∈ L1(Mext) ,

this ensures convergence of the J integral in (1.1.25). The convergence of the second
term there is usually taken care of by requiring that

P ij , ∂kgij ∈ L2(Mext) . (1.1.27)

For then we have, for r large,

P ijDiXj = P i
jDiX

j = P i
j(∂iX

j
∞︸ ︷︷ ︸

=0

+Γj
ikX

k
∞) ≤ C|P |

∑

i,j,k

|∂igjk| .

Integrating over M and using 2ab ≤ a2 + b2 gives
∣∣∣∣
∫

Mext

P ijDiXj

∣∣∣∣ =

∣∣∣∣
∫

Mext

P ijDiXj

∣∣∣∣ ≤ C
∫

Mext

(
|P |2 +

∑

i,j,k

|∂igjk|2
)
,

and convergence follows. We have thus proved

Proposition 1.1.5 Suppose that

J ∈ L1(Mext) , P ij , ∂kgij ∈ L2(Mext) .

Then the ADM momentum (1.1.26) is finite.

It seems sensible to test our definition on a few examples. First, if g is the
flat Euclidean metric on R

n, and we use the standard Euclidean coordinates,
then m = 0, which appears quite reasonable. Consider, next, the space-part of
the (four-dimensional) Schwarzschild metric: whether in the form (1.1.10) or
(1.1.13) it can be written as

gij = δij +O(r−1) , with ∂kgij = O(r−2) (1.1.28)

(for (1.1.13) this is straightforward; for (1.1.10) one should introduce the ob-
vious pseudo-Euclidean coordinates xi associated to the spherical coordinates
(r, θ, ϕ). We will use the scalar constraint equation to calculate R(g); this
requires calculating the extrinsic curvature tensor Kij. Recall that

K(X,Y ) := g(P (∇Xn), Y ) ,

where P is the orthogonal projection on the space tangent to the hypersurface
in consideration; in our case these are the hypersurfaces t = const. From (1.1.8)
the field of unit conormals nµdx

µ to those hypersurfaces takes the form

nµdx
µ =

√
1− 2m/rdt .

Further,
P (Xµ∂µ) = Xi∂i .

Let X = P (X) so that X = Xi∂i, we calculate

∇Xnk = X( nk︸︷︷︸
=0

)− ΓναknνX
α

= −n0Γ0
ikX

i . (1.1.29)



1.1. THE MASS OF ASYMPTOTICALLY EUCLIDEAN MANIFOLDS 11

Further

Γ0
ik =

1

2
4g00(∂i

4g0k︸︷︷︸
=0

+∂k
4g0i︸︷︷︸
=0

−∂04gik) (1.1.30a)

= −1

2
4g00∂0

4gik = 0 , (1.1.30b)

hence

Kij = 0 .

The scalar constraint equation (1.1.15) gives now

R(g) = 0 .

This is obviously in L1, while r−2 is in L2 on R
3 \ B(0, 1) (since r−4 is in

L1(R3 \ B(0, 1))), and convergence of m follows from Proposition 1.1.4. In
order to calculate the value of m it is convenient to derive a somewhat simpler
form of (1.1.18): generalising somewhat (1.1.28), suppose that

gij = δij + o(r−1/2) , with ∂kgij = O(r−3/2) . (1.1.31)

This choice of powers is motivated by the fact that the power r−3/2 is the
borderline power to be in L2(R3 \B(0, 1)): the function r−σ with σ > 3/2 will
be in L2, while if σ = 3/2 it will not. Under (1.1.31) we have

16πm(R) :=

∫

S(0,R)
gijgkℓ (∂kgℓi − ∂igℓk)

√
det g dSj

=

∫

S(0,R)

(
δij + o(r−1/2)

)(
δkℓ + o(r−1/2)

)
(∂kgℓi − ∂igℓk)︸ ︷︷ ︸

O(r−3/2)

√
det g︸ ︷︷ ︸

1+o(r−1/2)

dSj

=

∫

S(0,R)
δijδkℓ (∂kgℓi − ∂igℓk) dSj + o(1) ,

so that

m = mADM := lim
R→∞

1

16π

∫

S(0,R)
(∂ℓgℓi − ∂igℓℓ) dSi . (1.1.32)

This formula is known as the Arnowitt–Deser–Misner (ADM) expression for
the mass of the gravitational field at spatial infinity.

Exercice 1.1.6 Check that an identical calculation applies in space-dimension
n ≥ 4 provided that the the decay rates o(r−1/2) and O(r−3/2) in (1.1.31) are
replaced by o(r−(n−2)/2) and O(r−(n−2)/2−1).

Returning to the Schwarzschild metric consider, first, (1.1.13), or — more
generally – metrics which are conformally flat:

gij = (1 + 2φ)δij =⇒ ∂ℓgℓi − ∂igℓℓ = 2(∂ℓφ δℓi − ∂iφ δℓℓ︸︷︷︸
=3

) = −4∂iφ , (1.1.33)
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and (1.1.32) reduces to (1.1.4), as desired. The original form given by the left-
hand-side of (1.1.10) requires some more work. Again generalising somewhat,
we consider general spherically symmetric metrics

g = φ(r)dr2 + χ(r)r2dΩ2 , (1.1.34)

with φ, χ differentiable, tending to one as r goes to infinity at rates compatible
with (1.1.31):

φ− 1 = o(r−1/2) , χ− 1 = o(r−1/2) , ∂rφ = O(r−3/2) , ∂rχ = O(r−3/2) .
(1.1.35)

We need to reexpress the metric in the pseudo-Cartesian coordinate system
associated to the spherical coordinate system (r, θ, ϕ):

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (1.1.36)

We have

g = φ dr2 + χ(dr2 + r2dΩ2)− χ dr2
= χ δ + (φ− χ)dr2

= χ δ + (φ− χ)(
∑

i

xi

r
dxi)2 ,

so that

gij = χδij +
(φ− χ)xixj

r2
.

The contribution of the first term to the ADM integral (1.1.32) is obtained from
the calculation in (1.1.33), while the second one gives

[
∂ℓ

(
(φ− χ)xℓxi

r2

)
− ∂i

(
(φ− χ)xℓxℓ

r2

)]
xi

r

= (φ′ − χ′) +
[
(φ− χ)∂ℓ

(
xℓxi

r2

)
− ∂i(φ− χ)

]xi
r︸ ︷︷ ︸

=φ′−χ′

= (φ− χ)

(
3xi + xi − 2xi

r2

)
xi

r
= 2

φ− χ
r

.

Summing it all up, we obtain the following expression for the ADM mass of a
spherically symmetric metric (1.1.34) satisfying (1.1.35):

m = lim
R→∞

1

16π

∫

S(0,R)

(
−2r2χ′ + 2r(φ− χ)

)
d2S

= lim
r→∞

1

2

(
−r2χ′ + r(φ− χ)

)
. (1.1.37)

For the original form of the Schwarzschild metric we have χ ≡ 1 and φ =
1/(1 − 2m/r), yielding again the value m for the ADM mass of g.
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Exercice 1.1.7 Derive the n-dimensional equivalent of (1.1.37):

m = lim
r→∞

(n− 1)ωnr
n−2

16π

(
−rχ′ + φ− χ

)
, (1.1.38)

where ωn = 2πn/2

Γ(n/2) is the area of a sphere Sn−1.

As another example of calculation of the ADM mass, consider the Kasner
metrics on {t > 0} × R

3:

4g = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 . (1.1.39)

The metric (1.1.39) is vacuum provided that

p1 + p2 + p3 = p21 + p22 + p23 = 1 . (1.1.40)

All slices t = const are flat, each of them has thus vanishing ADM mass. This
seems to be extremely counter-intuitive, because the metric is highly dynamical.
In fact, one would be tempted to say that it has infinite kinetic energy: Indeed,
let us calculate the extrinsic curvature tensor of the t = const slices: from
(1.1.29)–(1.1.30a) we have

K = ∇ink dxidxk

=
1

2
∂tgik dx

idxk

= p1t
2p1−1dx2 + p2t

2p2−1dy2 + p3t
2p3−1dz2 . (1.1.41)

At each value of t we obtain thus a tensor field with entries which are constant in
space. The problem here is that while the space slices of the Kasner space-time
are asymptotically Euclidean, the space-time metric itself is not asymptotically
flat in any sensible way. This example suggests that a physically meaningful
notion of total mass can only be obtained for metrics which satisfy asymptotic
flatness conditions in a space-time sense; we will return to this question in
Section 1.1.4.

1.1.1 Mass in two dimensions

In our approach above we have tied the notion of global mass to the second
derivatives that appear in the scalar curvature. Now, there is an essential dif-
ference between dimension two and higher, in that a vanishing scalar curvature
in dimension two implies local flatness of the metric, while this is not the case
anymore in higher dimensions. This is at the origin of the need of a different
treatment of two dimensional manifolds.

To begin, it is useful to review some simple two-dimensional manifolds with
non-negative scalar curvature. The simplest is of course the flat two-dimensional
metric,

g = dx2 + dy2 = dr2 + r2dϕ2 . (1.1.42)

The next simplest flat models are provided by the cylinder R×S1, where the x-
coordinate in (1.1.42) has been periodically identified, or by the simplest torus,
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Figure 1.1.1: A flat cone in R3 with opening angle π/6.

where x and y have been periodically identified. More sophisticated tori arise by
choosing two linearly independent vectors ~ℓ and ~m in the plane, and identifying
~x = (x, y) with ~x + n1~ℓ+ n2 ~m, for all n1, n2 ∈ Z.

Yet another family of flat examples is provided by two-dimensional axi-
symmetric cones in three dimensional Euclidean space. These are defined as

Cα = {z = cot(α)ρ}, where ρ =
√
x2 + y2 ,

see Figure 1.1.1. Then Cα is invariant under rotations around the z-axis, is
invariant under positive scaling, and has an opening angle 2α at the singular
tip ~x = 0. The metric, say gα, induced on Cα by the Euclidean metric reads

gα = (dz2 + dρ2 + ρ2dϕ2)|Cα

= (cotα2 + 1)dρ2 + ρ2dϕ2 . (1.1.43)

This can be brought to a manifestly flat form by first replacing ρ by

ρ̂ := (
√

cotα2 + 1)ρ ,

so that

gα = dρ̂2 +
ρ̂2 dϕ2

cotα2 + 1
,

and then replacing ϕ by

ϕ̂ :=
ϕ√

cotα2 + 1
.

This leads to a flat metric in polar coordinates

gα = dρ̂2 + ρ̂2dϕ̂2 . (1.1.44)

Keeping in mind that ϕ was 2π periodic, the new variable

ϕ̂ is
2π√

cotα2 + 1
-periodic.
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The difference between 2π and the new value of the period is called the deficit
angle, which is positive for the Cα-cones. More generally, one can consider
metrics (1.1.44) where ϕ̂ has any period, the deficit angle can then be negative.
The case where no periodicity conditions are imposed on ϕ̂ corresponds to the
flat metric on the universal cover of R2 \ {0}. The metric (1.1.44) is smooth at
ρ̂ = 0 if and only if the deficit angle is zero.

An example of positively curved two-dimensional metric is provided by the
round sphere,

g = dr2 + sin2 rdϕ2 ,

where r ∈ [0, π]. Using the sphere metric one can construct a C1 metric on R
2,

with scalar curvature R ≥ 0, by setting

g =

{
dr2 + sin2 rdϕ2, r ∈ [0, π/2];
dr2 + dϕ2, r ∈ [π/2,∞).

The geometry is that of a flat cylinder for r ≥ π/2. This is a “cylinder with a
a spherical cap”. Note that the metric is not C2 at the junction r = π/2, but
can be smoothed there while maintaining positive scalar curvature.

Further interesting examples of similar nature, with R ≥ 0, can be obtained
by choosing r0 ∈ (0, π/2) and setting

g =

{
dr2 + sin2 r dϕ2, r ∈ [0, r0];

dr2 + ((r − r0) cos r0 + sin r0)
2dϕ2, r ∈ [r0,∞).

(1.1.45)

This is a piecewise-smooth C1 metric, with scalar curvature equal to two for
r ≤ r0, and zero otherwise. Keeping in mind that ϕ is 2π-periodic, the geometry
for r ≥ r0 is that of a flat cone with deficit angle 2π(1− cos r0). This provides a
family of flat cones capped-off by a sphere. To smooth out the metric at r = r0,
note that by (A.12.5) below the scalar curvature of the metric

g = dr2 + e2f(r)dϕ2 (1.1.46)

equals
R = −2e−f (ef )′′ . (1.1.47)

Given R(r), this can be viewed as a linear equation for ef . Integrating this
equation from zero to infinity with R ≥ 0 obtained as a small smoothing,
localised near r = r0, of the scalar curvature of the metric (1.1.45) leads to a
smooth metric with positive scalar curvature which coincides with the metric
on a cone for sufficiently large r.

We continue with some definitions. We shall say that a two-dimensional
manifold M is finitely connected if M is diffeomorphic to a compact bound-
aryless manifold N from which a finite non-zero number of points has been
removed. Equivalently, M is diffeomorphic to the union of a compact set with
a finite number of exterior regions diffeomorphic to R

2 \B(0, Ri). Let p be any
point in M and let Sp(t) and Bp(t) be the geodesic sphere and ball around p:

Sp(t) := {q ∈M : dg(p, q) = t} , Bp(t) = {q ∈M : dg(p, q) < t} .
We will denote by Lp(t) the length of Sp(t) and by Ap(t) the area of Bp(t). We
have the following theorem of Shiohama [168]:
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Theorem 1.1.8 Let (M,g) be a complete, non-compact, finitely connected two
dimensional manifold. If

R(g) ∈ L1(M) ,

then

lim
t→∞

Lp(t)

t
= lim

t→∞
2Ap(t)

t2
= 2πχ(M) − 1

2

∫

M
Rdµg . (1.1.48)

There are several interesting consequences of this result. First, one notices
that the right-hand-side of (1.1.48) does not depend upon p, so that the first
two terms are also p–independent. Next, since the left-hand-side (1.1.48) is non-
negative, if g is a complete metric on R

2 we obtain the Cohn-Vossen inequality
∫

M
Rdµg ≤ 4π , (1.1.49)

with equality if and only if the metric is flat.
Of particular interest to us are metrics of non-negative scalar curvature. As

this imposes restrictions on the topology of the manifold, such theorems belong
to the family of “topological censorship theorems”. One has:

Theorem 1.1.9 (“Two-dimensional topological censorship”) Let (M,g) be a com-
plete Riemannian manifold with R ≥ 0, then M is diffeomorphic to R

2, S2, or
a quotient thereof.

Some comments are in order: The result under the hypothesis that M
is non-compact is attributed in [47] to Cohn-Vossen [76]. There remains the
compact case, which follows from the usual Gauss-Bonnet theorem together
with the classification of two-dimensional compact manifolds in terms of their
Euler characteristic. We note that a complete two-dimensional manifold with
R ≥ δ > 0 must be compact by a classical theorem of Myers in any case. Under
the supplementary conditions of Theorem 1.1.8, one can also argue from there,
using the fact that the left-hand side of (1.1.48) is non-negative, but note that
the conditions of Theorem 1.1.9 allow a priori more general manifolds.

As another application of (1.1.48), consider a manifold which is the union
of a compact set with a finite number of ends Mi, i = 1, . . . , I, diffeomorphic
to [Ri,∞) × S1, and with the metric asymptotically approaching a flat metric
on a cone on Mi:

g(ωi) = dr2 + r2
( ωi

2π

)2
dϕ2 (1.1.50)

for some positive constant ωi. Here we parameterize S1 by an angular variable
ϕ ∈ [0, 2π], so that the circles r = const. have g(ωi)–length equal to ωir. Such
metrics will be called asymptotically conical. Under very mild conditions on the
convergence of g to g(ωi) we will have

A(B(t) ∩Mi) =
1

2
ωit

2 + o(t2) ,

for t large. In the simplest case M = R
2 we then obtain

1

2

∫

M
Rdµg = 2π − ω ,
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with ω = ω1. Hence, the integral of R equals the deficit angle 2π − ω. This
leads to the:

Theorem 1.1.10 (Two-dimensional positive energy theorem) For asymptotically
conical complete metrics on R

2 with L1 ∋ R ≥ 0 the deficit angle is non-
negative, vanishing if and only if the metric is flat.

Proof: The result follows of course from Theorem 1.1.8, but in the current
restrictive setting the proof is simple enough to be given here.

To simplify the argument we will assume that there exists a global coor-
dinate system in which the metric g is exactly flat near the origin, and coin-
cides with (1.1.50) for large distances. Under the asymptotic fall-off conditions
(1.1.53) below the proof for the more general case proceeds in an identical way,
except that one has to keep track of annoying error terms. Near the origin
one should then use coordinates in which gij = δij +O(|x|2); such coordinates
always exist. The fact that the last coordinate system does not have to coincide
with the coordinate system in the asymptotic region, in which the metric takes
the form (1.1.50), also needs to be addressed.

Thus, let e2 be any nowhere vanishing unit vector field on R
2 \ {0} such

that e2 = r−1∂ϕ in local coordinates near the origin in which gij = δij , and
which equals (2π/ωr)∂ϕ for large distances in the region where (1.1.50) holds.
Let {ea} be the associated orthonormal frame, hence e1 = ∂r both for small
and large distances in the relevant coordinates. By (A.17.22) we have

∫

B(R)\B(ǫ)
Rdµg = 2

∫

B(R)\B(ǫ)
dω1

2

= 2

(∫

S(R)
ω1

2 −
∫

S(ǫ)
ω1

2

)
, (1.1.51)

where B(ǫ) denotes an open coordinate ball centered at the origin in the co-
ordinates where e1 = ∂r, similarly for B(R), and we need to calculate the
connection forms ω1

2. Let θ1 = dr, θ2 = (ωr/2π)dϕ be the coframe dual to
{ea}, the structure equations

0 = dθ1 + ω1
a ∧ θa = d(dr) + ω1

2 ∧ θ2 = rω1
2 ∧ dϕ

and

0 = dθ2 + ω2
b ∧ θb =

ω

2π
d(rdϕ) + ω2

1 ∧ dr =
ω

2π
dr ∧ dϕ+ ω2

1 ∧ dr ,

are solved by

ω1
2 = −ω2

1 = − ω

2π
dϕ (1.1.52)

for large |x|. An identical formula with ω = 2π holds near the origin. The
integrals over the circles in the last line of (1.1.51) are thus straightforward to
evaluate, giving

∫

R2

Rdµg = lim
ǫ→0 , R→∞

∫

B(R)\B(ǫ)
Rdµg = 2(2π − ω) ,
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proving non-negativity of the right-hand side. Further, the vanishing of the
deficit angle together with R ≥ 0 implies R ≡ 0, leading to a flat metric, as
desired. ✷

We note that the last calculations go through with error terms which give a
vanishing contribution in the limit if one assumes that in the asymptotic region
the derivatives

|D̊kgij |g (1.1.53)

decay sufficiently fast, where D̊ is the covariant derivative operator of the metric
(1.1.50), and | · |g denotes the norm of a tensor with respect to the metric g.
But, again, this assumption is not needed for the current conclusion in view of
Theorem 1.1.8.

1.1.2 Coordinate independence

The next example is due to Denissov and Solovyev [78]: let δ be the Euclidean
metric on R

3 and introduce a new coordinate system (ρ, θ, ϕ) by changing the
radial variable r to

r = ρ+ cρ1−α , (1.1.54)

with some constants α > 0, c ∈ R. This gives

dr2 + r2dΩ2 = (1 + (1− α)cρ−α)2dρ2 + (1 + cρ−α)2ρ2dΩ2 .

This is of the form (1.1.34) with r replaced by ρ and

φ(ρ) = (1 + (1− α)cρ−α)2 , χ(ρ) = (1 + cρ−α)2 ,

so we can apply (1.1.37):

−ρ2χ′ + ρ(φ− χ) = 2cαρ−α+1(1 + cρ−α) + ρ
(
(1 + (1− α)cρ−α)2 − (1 + cρ−α)2

)

= 2cαρ−α+1(1 + cρ−α) + ρ
(
(1 + cρ−α − αcρ−α)2 − (1 + cρ−α)2

)

= 2cαρ−α+1(1 + cρ−α) + ρ
(
−2αcρ−α(1 + cρ−α) + α2c2ρ−2α

)

= α2c2ρ1−2α.

It follows that

mADM = lim
ρ→∞

1

2

(
−ρ2χ′ + ρ(φ− χ)

)

=





∞ , α < 1/2 ,
c2/8 , α = 1/2 ,
0 , α > 1/2 .

(1.1.55)

Let yi denote the coordinate system associated to the angular variables (ρ, θ, ϕ)
by replacing r with ρ in (1.1.36). Then the exponent α in (1.1.54) dictates the
rate at which the metric components approach δij :

δijdx
idxj = gijdy

idyj , with gij − δij = O(ρ−α) , ∂kgij = O(ρ−α−1) .

Note that above we have calculated the ADM mass integral (1.1.32), rather
than the original integral (1.1.18). We have already seen that both integrals
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coincide if α > 1/2 (compare (1.1.31)), but they do not necessarily do that
for α ≤ 1/2. One can similarly calculate the mass m of (1.1.18) obtaining an
identical conclusion: the mass m of the flat metric in the coordinate system
yi is infinite if α < 1/2, can have an arbitrary positive value depending upon
c if α = 1/2, and vanishes for α > 1/2. The lesson of this is that the mass
appears to depend upon the coordinate system chosen, even within the class of
coordinate systems in which the metric tends to a constant coefficients matrix
as r tends to infinity.

The reader will notice that for α = 1/2 the metric does not satisfy the conditions
of Proposition 1.1.4, as the derivatives of gij in the new coordinate system will
not be in L2. It follows that the conditions of Proposition 1.1.4 are not necessary
for the existence of those limits, though they seem to be very close to be optimal,
since — as shown above — allowing α’s smaller than 1/2 leads to infinite mass
representations for Euclidean space.

Exercice 1.1.11 Check that in dimensions n > 3 the coordinate transforma-
tion (1.1.54) leads to

mADM = lim
ρ→∞

(n− 1)ωnα
2c2ρn−2−2α

16π
=





∞ , α < (n− 2)/2 ,
(n−1)ωnα2c2

16π , α = (n− 2)/2 ,
0 , α > (n− 2)/2 ,

(1.1.56)
so that the borderline decay exponent is now α = (n− 2)/2.

In order to clarify the question of dependence of the mass upon coordi-
nates it is useful to include those coordinate systems explicitly in the notation.
Consider, thus, a pair (g, φ), where

1. g is a Riemannian metric on an n–dimensional manifold N , N diffeomor-
phic to R

n \B(R), where B(R) is a closed ball. N should be thought of
as one of (possible many) asymptotically flat ends of M .

2. φ is a coordinate system on the complement of a compact set K of N
such that, in local coordinates φi(p) = xi the metric takes the following
form:

gij = δij + hij , (1.1.57)

with hij satisfying

∀i,j,k |hij | ≤ c(r + 1)−α , |∂hij
∂xk
| ≤ c(r + 1)−α−1 , (1.1.58)

for some constant c ∈ R, where r(x) = (
∑

(xi)2 )1/2.

3. Finally, gij is uniformly equivalent to the flat metric δ: there exists a
constant C such that

∀Xi ∈ R
n C−1

∑
(Xi)2 ≤ gij XiXj ≤ C

∑
(Xi)2 . (1.1.59)

Such a pair (g, φ) will be called α–admissible.
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We note that (1.1.59) is equivalent to the requirement that all the gij ’s and gij ’s
are uniformly bounded: indeed, at any point we can diagonalise gij using a rotation;
arranging the resulting eigenvalues λi in increasing order we have

λ1
∑

(X î)2 ≤ λ1(X 1̂)2 + . . .+ λn(X n̂)2︸ ︷︷ ︸
=gij XiXj

≤ λn
∑

(X î)2 , (1.1.60)

where we have used the symbol X î to denote the components of X in the diagonal-

ising frame. Since the X i’s differ from the X î’s by a rotation we have

∑
(X î)2 =

∑
(X i)2 ,

leading to

C = max(λ−1
1 , λn) .

In order to prove that uniform boundedness of gij ’s leads to the second inequality in
(1.1.59) we note that in an arbitrary, not necessarily diagonalising, frame we have

gijX
iXj ≤ sup

i,j,x
|gij(x)|

∑

i,j

|X iXj|

= sup
i,j,x
|gij(x)|

(
(X1)2 + . . .+ (Xn)2 +

∑

i<j

2|X iXj|︸ ︷︷ ︸
≤(Xi)2+(Xj)2

)

≤
(

1 +
(n− 1)

2

)
sup
i,j,x
|gij(x)|((X1)2 + . . .+ (Xn)2) ,

with a similar calculation for gij , leading to (recall that, after diagonalisation, the
largest eigenvalue of gij is λ−1

1 )

λn ≤
n+ 1

2
sup
i,j,x
|gij(x)| , λ−1

1 ≤ n+ 1

2
sup
i,j,x
|gij(x)| . (1.1.61)

We thus have the following estimate for the constant C in (1.1.59):

C ≤ C(n) max(sup
i,j,x
|gij(x)|, sup

i,j,x
|gij(x)|) . (1.1.62)

To finish the proof of equivalence, we note that (1.1.59) gives directly

|gij | = |g(∂i, ∂j)| ≤ 2λn ≤ 2C , similarly |gij | ≤ 2C . (1.1.63)

We have the following result, we follow the proof in [55]; an independent,
completely different proof, under slightly different conditions, can be found
in [10]:

Theorem 1.1.12 (Coordinate-independence of the mass [10, 55]) Consider two
α–admissible coordinate systems φ1 and φ2, with some

α > (n− 2)/2 , (1.1.64)

and suppose that

R(g) ∈ L1(N) .
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Let S(R) be any one-parameter family of differentiable spheres, such that r(S(R)) =
minx∈S(R) r(x) tends to infinity, as R does. For φ = φ1 and φ = φ2 define

m(g, φ) = lim
R→∞

1

16π

∫

S(R)
(gik,i − gii,k)dSk , (1.1.65)

with each of the integrals calculated in the respective local α–admissible coordi-
nates φa. Then

m(g, φ1) = m(g, φ2) .

The example of Denissov and Solovyev presented above shows that the
condition α > (n− 2)/2 in Theorem 1.1.12 is sharp.

Proof: We start with a lemma:

Lemma 1.1.13 (Asymptotic symmetries of asymptotically Euclidean manifolds)
Let (g, φ1) and (g, φ2) be α1 and α2–admissible, respectively, with αa > 0. Let
φ1 ◦ φ−1

2 : Rn\K2 → R
n\K1 be a twice differentiable diffeomorphism, for some

compact sets K1 and K2 ⊂ R
n. Set

α = min(α1, α2) .

Then there exists a matrix ωij ∈ O(n) such that, in local coordinates

φi1(p) = xi , φi2(p) = yi ,

the diffeomorphisms φ1 ◦ φ−1
2 and φ2 ◦ φ−1

1 take the form

xi(y) = ωij y
i + ηi(y) , yi(x) = (ω−1)ij x

i + ζ i(x) .

When α < 1 the fields ζ i and ηi satisfy, for some constant C ∈ R,

|ζ i,j(x)| ≤ C(r(x) + 1)−α , |ζ i(x)| ≤
{
C(ln r(x) + 1) , α = 1,
C(r(x) + 1)1−α , otherwise,

|ηi,j(y)| ≤ C(r(y) + 1)−α , |ηi(y)| ≤
{
C(ln r(y) + 1) , α = 1,
C(r(y) + 1)1−α , otherwise,

r(x) = (
∑

(xi)2)1/2 , r(y) = (
∑

(yi)2)1/2 .

On the other hand, for α > 1 there exist constants Åi and a constant C such
that

|ζ i,j(x)| ≤ C(r(x) + 1)−α , |ζ i(x)− Åi| ≤ Cr1−α ,
with an analogous statement for η.

Proof: Let us first note that both (g, φ1) and (g, φ2) are α–admissible, so that
we do not have to worry about two constants α1 and α2. Let g1ij and g2ij be the
representatives of g in local coordinates φ1 and φ2:

g = g1ij(x)dxidxj = g2kℓ(y)dykdyℓ .

In the proof that follows the letters C,C ′, etc., will denote constants which may
vary from line to line, their exact values can be estimated at each step but are
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irrelevant for further purposes. Let us write down the equations following from
the transformation properties of the metric

g2ij(y) = g1kℓ(x(y))
∂xk

∂yi
∂xℓ

∂yj
, (1.1.66a)

g1ij(x) = g2kℓ(y(x))
∂yk

∂xi
∂yℓ

∂xj
. (1.1.66b)

Contracting (1.1.66a) with gij1 (x(y)), where gij1 denotes the inverse matrix to
g1ij , one obtains

gij1 (x(y))g2ij(y) = gij1 (x(y))g1kℓ(x(y))
∂xk

∂yi
∂xℓ

∂yj
. (1.1.67)

Now, the function appearing on the right-hand-side above is a strictly positive
quadratic form in ∂xi/∂yj , and uniform ellipticity of gij1 gives

C−1
∑

k,i

(
∂xk

∂yi
)2 ≤ gij1 (x(y))g1kℓ(x(y))

∂xk

∂yi
∂xℓ

∂yj
≤ C

∑

k,i

(
∂xk

∂yi
)2 .

In order to see this, we let Ai
j be the tensor field ∂xi/∂xj ; in a frame diagonalising

g1ij , as in (1.1.60), we have

gij1 (x(y))g1kℓ(x(y))Ak
iA

ℓ
j =

∑

i,j

λ−1
i λj(A

j
i)

2

and we conclude with (1.1.61)

Since the function appearing at the left-hand-side of (1.1.67) is uniformly
bounded we obtain ∑

k,i

|∂x
k

∂yi
| ≤ C . (1.1.68)

Similar manipulations using (1.1.66b) give

∑

k,i

|∂y
k

∂xi
| ≤ C . (1.1.69)

Inequalities (1.1.68)–(1.1.69) show that all the derivatives of x(y) and y(x) are
uniformly bounded. Let Γx be the ray joining x and K1, and let yi0(x) be the
image by φ2 ◦φ−1

1 of the intersection point of K1 with Γx (if there is more than
one, choose the one which is closest to x). We have, in virtue of (1.1.69),

|yi(x)− yi0(x)| =
∣∣∣∣
∫

Γx

∂yi

∂xk
dxk
∣∣∣∣ ≤ C r(x) ,

so that
r(y(x)) ≤ C r(x) + C1 . (1.1.70)

A similar reasoning shows

r(x(y)) ≤ C r(y) + C1 . (1.1.71)
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Equations (1.1.70) and (1.1.71) can be combined into a single inequality

r(y(x))/C − C1 ≤ r(x) ≤ C r(y(x)) + C1 . (1.1.72)

This equation shows that any quantity which is1 O(r(x)−β) (O(r(y)−β)) is also
O(r(y)−β) (O(r(x)−β)), when composed with φ2 ◦ φ−1

1 (φ1 ◦ φ−1
2 ).

We continue using the transformation law of the connection coefficients
under changes of coordinates. If we write 1Γijk for the Christoffel symbols of
g1ij , and 2Γijk for those of g2ij, Equation (A.9.13) of Appendix (A.9.3) gives

1Γijk =
∂xi

∂ys
∂2ys

∂xk∂xj
+
∂xi

∂ys
∂yℓ

∂xj
∂yr

∂xk
2Γsrℓ . (1.1.73)

This can be rewritten as an equation for the second derivatives of y with respect
to x:

∂2yp

∂xk∂xj
=

∂yp

∂xi

(
1Γijk −

∂xi

∂ys
∂yℓ

∂xj
∂yr

∂xk
2Γsrℓ

)

=
∂yp

∂xi
1Γijk −

∂yℓ

∂xj
∂yr

∂xk
2Γprℓ . (1.1.74)

The decay rate of the connection coefficients, and the fact that r(x) is equivalent
to r(y), gives

∂2yi

∂xj∂xk
= O(r−α−1) . (1.1.75)

In a similar way one establishes

∂2xi

∂yj∂yk
= O(r−α−1) . (1.1.76)

An alternative, direct way is to inspect the equation obtained by differentiating
(1.1.66). This involves several terms, so in order to simplify the notations we intro-
duce

Ai
j =

∂yi

∂xj
, Bi

j =
∂xi

∂yj
,

Cijk = Am
ig

2
mℓ

∂Aℓ
j

∂xk
= g2mℓ

∂ym

∂xi
∂2yℓ

∂xj∂xk
,

Dijk = Bm
ig

1
mℓ

∂Bℓ
j

∂yk
.

Differentiating (1.1.66b) with respect to x, taking into account (1.1.58), (1.1.69)
and (1.1.72) leads to

Cijk + Cjik = O(r−α−1) .

We perform the usual cyclic permutation calculation:

Cijk + Cjik = O(r−α−1) ,

−Cjki − Ckji = O(r−α−1) ,

1f(s) = O(sγ) is used here to denote a function satisfying |f(s)| ≤ C(|s| + 1)γ for some
positive constant C.



24 CHAPTER 1. MASS AND ENERGY-MOMENTUM

Ckij + Cikj = O(r−α−1) .

Adding the three equations and using the symmetry of Cijk in the last two indices
yields

Cijk = O(r−α−1) .

This equality together with (1.1.68) and the definition of Cijk gives (1.1.75)

We need a lemma:

Lemma 1.1.14 Let σ > 0 and let f ∈ C1(Rn \B(R)) satisfy

∂if = O(r−σ−1) .

Then there exists a constant f∞ such that

f − f∞ = O(r−σ) .

Proof: Integrating along a ray we have

f(r1~n)− f(r2~n) =

∫ r1

r2

∂f

∂r
(r~n)dr =

∫ r1

r2

O(r−σ−1)dr = O(r−σ2 ) . (1.1.77)

It follows that the sequence {f(i~n)}i∈N is Cauchy, therefore the limit

f∞(~n) = lim
i→∞

f(i~n)

exists. Letting r1 = i in (1.1.77) and passing with i to infinity we obtain

f(~x)− f∞(
~x

r
) = O(r−σ) .

Integrating over an arc of circle Γ connecting the vectors r~n1 and r~n1 we have

|f(r~n1)− f(r~n1)| =
∣∣∣∣
∫

Γ
df

∣∣∣∣ ≤ sup
Γ
|df ||Γ| ,

where |Γ| denotes the Euclidean length of Γ. Since |Γ| ≤ 2πr we obtain

|f(r~n1)− f(r~n1)| ≤ 2πCr−σ .

Passing with r to infinity we find

f∞(~n1) = f∞(~n1) ,

so that f∞ is ~n–independent, as desired. ✷

Lemma 1.1.14 shows that the limits

Åij = lim
r→∞

Aij(r~n) ,

B̊i
j = lim

r→∞
Bi

j(r~n) ,
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(~n — any vector satisfying
∑

(ni)2 = 1) exist and are ni independent matrices,
with A = B−1. Define

ζ i(x) = yi(x)− Åij xj , ηi(y) = xi(y)− B̊i
j y

j .

Equation (1.1.76) leads to

Aij(r2~n)−Aij(r1~n) =

∫ r2

r1

∂2xi

∂xj∂xk
(r~n) nk dr = O(r−α1 )

for r2 > r1. We have Aij = Åij + ζ i,j, so that passing with r2 to infinity one
finds

ζ i,j(x) = O(r−α) .

Integrating along rays one obtains

ζ i(x) =

{
O(r1−α) , 0 < α < 1,
O(ln r) , α = 1,

with a similar calculation for η. Finally, for α > 1 we find that there exist
constants Åi such that

ζ i(x) = Åi +O(r1−α) .

Equations (1.1.58) and (1.1.72) allow us to write (1.1.66) in the following
form

∑

k

∂yk

∂xi
∂yk

∂xj
= δij +O(r−α) , (1.1.78a)

∑

k

∂xk

∂yi
∂xk

∂yj
= δij +O(r−α) . (1.1.78b)

Passing to the limit r→∞ one obtains that Åij and B̊i
j are rotation matrices,

which finishes the proof. ✷

Let us return to the proof of Theorem 1.1.12. We start by noting that the
limit in (1.1.65) does not depend upon the family of spheres chosen — this
follows immediately from the identity (1.1.20).

Next, let us show that the integrand of the mass has tensorial properties
under rotations: if yi = ωijx

j, then

g1ij(x) = g2kℓ(y(x))
∂yk

∂xi
∂yℓ

∂xj
= g2kℓ(ωx)ωki ω

ℓ
j ,

so that

∂g1ij(x)

∂xj
−
∂g1jj(x)

∂xi
=

∂g2kℓ(ωx)

∂yr
ωrjω

k
i ω

ℓ
j −

∂g2kℓ(ωx)

∂yr
ωriω

k
j ω

ℓ
j .

(1.1.79)

Now, a rotation matrix satisfies

ωriω
s
i = δrs , (1.1.80)
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so that (1.1.79) can be rewritten as

∂g1ij(x)

∂xj
−
∂g1jj(x)

∂xi
=

∂g2kℓ(ωx)

∂yℓ
ωki −

∂g2ℓℓ(ωx)

∂yr
ωri

=

(
∂g2kℓ(ωx)

∂yℓ
− ∂g2ℓℓ(ωx)

∂yk

)
ωki . (1.1.81)

Finally, the surface forms dSj also undergo a rotation:

∂

∂xi
⌋dx1∧. . .∧dxn = ωsi

∂

∂ys
⌋
(

det
∂x

∂y

)

︸ ︷︷ ︸
=1

dy1∧. . .∧dyn = ωsi
∂

∂ys
⌋dy1∧. . .∧dyn .

This, together with (1.1.81) and (1.1.80) leads to
(
∂g1ij(x)

∂xj
−
∂g1jj(x)

∂xi

)
∂

∂xj
⌋dx1 ∧ . . . ∧ dxn

=

(
∂g2kℓ(ωx)

∂yℓ
− ∂g2ℓℓ(ωx)

∂yk

)
ωkiω

s
i
∂

∂ys
⌋dy1 ∧ . . . ∧ dyn

=

(
∂g2kℓ(ωx)

∂yℓ
− ∂g2ℓℓ(ωx)

∂yk

)
∂

∂yk
⌋dy1 ∧ . . . ∧ dyn .

It follows that the mass will not change if a rigid coordinate rotation is per-
formed.

In particular, replacing the coordinate yi by (ω−1)ijy
j will preserve the

mass, and to finish the proof it remains to consider coordinate transformations
such that the matrix ω in Lemma 1.1.13 is the identity. We then have

h2ij = g2ij − δij = h1ij(x(y)) + ηk,i(y) + ηi,j(y) +O(r−2α) (1.1.82)

where
h1ij = g1ij − δij .

Therefore

∂g2ij(y)

∂yj
−
∂g2jj(y)

∂yi
=

∂h1ij(x(y))

∂xj
−
∂h1jj(x(y))

∂xi

+
∂

∂xj

(
∂ηi

∂xj
− ∂ηj

∂xi

)
+O(r−2α−1) . (1.1.83)

While integrated over the sphere r(y) = const, the last term in (1.1.83) will
give no contribution in the limit r(y)→∞ since 2α+ 1 > n− 1 by hypothesis.
The next to last term in (1.1.83) will give no contribution being the divergence
of an antisymmetric quantity: indeed, we have

∂

∂xj

(
∂ηi

∂xj
− ∂ηj

∂xi

)
∂

∂xi
⌋dx1 ∧ . . . ∧ dxn = d

(
∂ηi

∂xj
∂

∂xj
⌋ ∂
∂xj
⌋dx1 ∧ . . . ∧ dxn

)
,

and Stokes’ theorem shows that the integral of that term over S(R) vanishes.
Finally, the first term in (1.1.83) reproduces the ADM mass of the metric g1ij .

✷
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1.1.3 Moving hypersurfaces in space-time

By way of example, we consider a family of hypersurfaces Sτ in Minkowski
space-time given by the equation

Sτ = {t = f(τ, ~x)} ,

with
f(τ) = τ + ar1/2

for r large. We then have

η = −dt2 + dr2 + r2dΩ2

= (dτ +
a

2
r−1/2dr)2 + dr2 + r2dΩ2

= dτ2 + ar−1/2dτ dr + (1− a2

4r
)dr2 + r2dΩ2 .

This shows that, for r large, the metric induced on the Sτ ’s reads

(1− a2

4r
)dr2 + r2dΩ2 . (1.1.84)

At leading order this is the same as a Schwarzschild metric with mass parameter
−a2/8, so that the ADM mass of the slices Sτ is negative and equals

mADM = −a
2

8
.

This example shows that deforming a hypersurface in space-time might lead
to a change of mass. The fact that this can happen should already have been
clear from the Kasner example (1.1.39), where the space-time itself does not
satisfy any asymptotic flatness conditions. But this might seem a little more
surprising in Minkowski space-time, which is flat. It should be emphasised that
the (strictly negative) mass of the Sτ ’s is not an artifact of a funny coordinate
system chosen on Sτ : indeed, Theorem 1.1.12 shows that m is a geometric
invariant of the geometry of Sτ . Further, one could suspect that negativity of
m arises from singularities of the Sτ ’s arising from the singular behaviour of
r−1/2 at r = 0. However, this is not the case, since we are free to modify f
at will for r smaller than some constant R to obtain globally smooth spacelike
hypersurfaces.

A somewhat similar behavior can be seen when Lemâıtre coordinates (τ, ρ, θ, ϕ)
are used in Schwarzschild space-time: in this coordinate system the Schwarzschild
metric takes the form [172]

ds2 = −dτ2 +

(
∂Y

∂ρ
dρ

)2

+ Y 2dΩ2 , (1.1.85)

with

Y =

(
3

√
m

2
τ + ρ3/2

)2/3

.

On any fixed hypersurface τ = const we can replace ρ by a new radial coordinate
Y ; Equation (1.1.85) shows then that the slices τ = const are flat, hence have zero
mass.
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All the foliations we have been considering above have mass which does not
depend upon the slice Sτ . This is not true in general, consider a new time τ
in Minkowski space-time which, for r large, is given by the formula

τ =
t

1 + ar1/2
.

We then have

η = −d
(
τ(1 + ar1/2)

)2
+ dr2 + r2dΩ2

= −(1 + ar1/2)2dt2 − (a+ r−1/2)aτ dτdr +
(

1− τ2a2

4r

)
dr2 + r2dΩ2 .

It follows that the ADM mass of the slices τ = const is well defined, equal to

mADM = −τ
2a2

8
,

which clearly changes when going from one slice to another.

1.1.4 Alternative expressions

In this section we review some space-time expressions for the total energy. Let
Xµ

∞ be a set of constants, and let X be any vector field on M such that

X =
(
Xµ

∞ +O(r−α)
)
∂µ

in a coordinate system xµ on the asymptotic region such that S is given by
the equation x0 = 0, and such that on S we have

gµν = ηµν +O(r−α) , ∂σgµν = O(r−α−1) , ∂σ∂ρgµν = O(r−α−2) , (1.1.86)

with, as usual, α > (n− 2)/2. In dimension n = 3, a calculation leads to [54]

pµX
µ
∞ = lim

R→∞
3

16π

∫

S(R)
δαβγλµνX

νηλρηγσ∂ρg
σµdSαβ . (1.1.87)

Here

δαβγλµν := δα[λδ
β
µδ

γ
ν] , dSαβ =

1

2
ǫαβγδdx

γ ∧ dxδ ,

with ǫ0123 =
√
|det g|, etc.

Expression (1.1.87) is well suited for the proof that pµ is invariant under a
certain class of coordinate transformations, closely related to those considered
in Section 1.1.2: Indeed, suppose that the xµ’s have been replaced by new
coordinates yµ such that

yµ = xµ + ζµ ,

with ζµ satisfying fall-off conditions analogous to, though somewhat stronger
than those of Lemma 1.1.13:

|ζµ,ν(x)| ≤ C(r(x) + 1)−α , |ζµ,νρ(x)| ≤ C(r(x) + 1)−α−1 , (1.1.88)

|ζµ(x)− Åµ| ≤
{
C(ln r(x) + 1) , α = 1,
C(r(x) + 1)1−α , otherwise,

(1.1.89)
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for some constants Åµ. This leads to a change of the metric as in (1.1.82),

gµν −→ gµν + ζµ,ν + ζν,µ +O(r−2α−1) ,

with ζµ = ηµνζ
ν . Further, up to terms which obviously do not contribute in

the limit,

∆(pµX
µ
∞) = lim

R→∞
3

16π

∫

S(R)
(δαβγλµνX

νηλρζµ,ρ),γdSαβ = 0 , (1.1.90)

as the integral of a total divergence integrates out to zero.
The calculations that follow have been carried-out in dimension three, and

we have not checked their validity in higher dimensions. With some effort one
finds the identity, essentially due to Ashtekar and Hansen [7] (compare [54])

pµX
µ
∞ = lim

R→∞
1

32π

(∫

S(R)
ǫµναβX

µxνRαβρσdx
ρ ∧ dxσ

+2

∫

S(R)
d(ǫµναβX

µxνgαγΓβγρdx
ρ)
)

= lim
R→∞

1

32π

∫

S(R)
ǫµναβX

µxνRαβρσdx
ρ ∧ dxσ , (1.1.91)

since the integral of the exterior derivative of a one form gives zero by Stokes’
theorem.

The expression (1.1.91) looks somewhat more geometric than the more fa-
miliar ADM formula (1.1.32). However it should be remembered that the co-
ordinate functions xν appearing in (1.1.91) do not transform as a vector field
under coordinate changes so that one still needs to appeal to Lemma 1.1.13
to establish the geometric character of (1.1.91). On the other hand, the proof
of coordinate invariance under transformations (1.1.88)-(1.1.89) is immediate,
as the error introduced by the non-vectorial character of xν gives directly a
vanishing contribution in the limit.

Formula (1.1.91) can be rewritten in a 3 + 1 form, as follows: let, first
Xµ

∞ = δµ0 . Recalling that S is given by the formula x0 = 0 and that p0 is the
ADM mass m we find

m = lim
R→∞

1

32π

∫

S(R)
ǫijkx

i (4)Rjkℓm dx
ℓ ∧ dxm . (1.1.92)

Here we have decorated the space-time Riemann curvature tensor with a sub-
script four to emphasise its four-dimensional nature. Supposing that the ex-
trinsic curvature tensor Kij falls–off as r−α−1, with α > 1/2 (which will be the
case under (1.1.86)), we then find by the Gauss-Codazzi equation

(4)Rjkℓm = (3)Rjkℓm +O(r−2α−2) , (1.1.93)

where (3)Rjkℓm denotes the curvature tensor of the space-metric h induced on
S by g. Since α > 1/2 the error terms in (1.1.93) will give no contribution in
the limit r→∞ so that we finally obtain the purely three-dimensional formula

m = lim
R→∞

1

32π

∫

S(R)
ǫijkx

i (3)Rjkℓmdx
ℓ ∧ dxm . (1.1.94)
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1.1.5 Energy in stationary space-times, Komar mass

Yet another way of rewriting (1.1.91) is given by

pµX
µ
∞ = lim

R→∞
1

16π

∫

S(R)
XµxνRµναβdS

αβ . (1.1.95)

This is particularly convenient when X is a Killing vector, as then we have the
identity (A.16.5)

RµναβX
µ = ∇ν∇αXβ .

Inserting this into (1.1.95) one obtains

pµX
µ
∞ = lim

R→∞

( 1

16π

∫

S(R)
X [β;α]

;γx
γdSαβ

= lim
R→∞

1

16π

(
2

∫

S(R)
X [α;β]dSαβ + 3

∫

S(R)
(X [α;βxγ]);γdSαβ

)

= lim
R→∞

1

8π

∫

S(R)
X [α;β]dSαβ . (1.1.96)

This last integral is known as the Komar integral. A general argument for equal-
ity of the ADM mass and of the Komar mass for stationary space-times has been
first proved by Beig [19] in space-dimension three. In higher dimensions this
can be established by showing that any asymptotically flat stationary metric
has the same leading order behavior as the higher-dimensional Schwarzschild
metric, for which the equality is straightforward.

1.2 A space-time formulation

The aim of the following two sections is to sketch a Hamiltonian derivation of
the ADM energy-momentum, within the geometric Hamiltonian formalism of
Kijowski and Tulczyjew [127].

1.2.1 Hamiltonian dynamics

As a motivation, consider a mechanical system of N bodies with positions qi,
i = 1, . . . , 3N , with Lagrange function L(qi, q̇i). By definition, the equations of
motion are

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
. (1.2.1)

The canonical momenta are defined as

pi :=
∂L

∂q̇i
. (1.2.2)

Since we have assumed that the Lagrange function has no explicit time depen-
dence, the energy

H =
∑

i

piq̇
i − L (1.2.3)
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is conserved, and therefore provides useful information about the dynamics:

Ḣ =
∑

(ṗiq̇
i + piq̈

i)− L̇

=
∑(

d

dt

(
∂L

∂q̇i

)

︸ ︷︷ ︸
= ∂L

∂qi

q̇i +
∂L

∂q̇i
q̈i
)
− ∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i

= 0 . (1.2.4)

The energy also has a Hamiltonian interpretation, this proceeds as follows:
The configuration space Q is defined as the collection of all positions {(qi)}. In
the simplest case above this is R

3N , but more generally it is natural to assume
that Q is a manifold; this is useful e.g. when constraints are present. The phase
space is the collection of all qi’s and pi’s. This is thus R6N for an unconstrained
mechanical system of N bodies, or more generally the cotangent bundle T ∗Q
of the configuration space Q. The phase space carries a canonical symplectic
form

Ω := dpi ∧ dqi .
Assuming that the relation (1.2.2) defining the momenta pi can be inverted to
express the velocities q̇i as functions of pi and qj , the energy H can then be
viewed as a function on phase space. The equations of motion of the system
define a vector field T on the phase space

T := q̇i∂qi + ṗi∂pi ,

where q̇i is calculated as a function of qj and pi from (1.2.2), and ṗi is calculated
using (1.2.1)-(1.2.2). Thus, the flow of T provides solutions of the equations of
motion. The Hamilton equations of motion

ṗi =
∂H

∂qi
, q̇i = −∂H

∂pi
,

can be rewritten as an equation that ties T , H and Ω:

T ⌋Ω = ṗidq
i − q̇idpi

= dH . (1.2.5)

We say that H generates T with respect to the symplectic form Ω. Equivalently,
H is a generating function for the dynamics T .

Consider, now, a Lagrangean field theory with Lagrange function L(ϕA, ϕAµ),
where

ϕAµ := ∂µϕ
A .

The field equations are

∂µpA
µ =

∂L

∂ϕA
, where pA

µ :=
∂L

∂ϕAµ
. (1.2.6)

To define energy we need a replacement of the notion of time-derivative,
this is provided by the Lie derivative of the fields with respect to a vector field
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X. Next, the sum over the index i in (1.2.3) is replaced by a sum over the
index A carried by the fields and integration over a hypersurface S : Indeed,
given a spacelike hypersurface S and a vector field X there is a natural notion
of Hamiltonian generating the flow of X, given by the formula [127]

H(X,S ) =

∫

S

(pA
µ£Xϕ

A −XµL︸ ︷︷ ︸
=:Hµ(X)

) dSµ . (1.2.7)

The conservation law (1.2.4) of a Hamiltonian from mechanics is replaced by
the vanishing of the divergence of Hµ(X) provided that the theory is invariant
under changes of coordinates. More precisely, away from zeros of X we can
always find adapted coordinates so that Xµ∂µ = ∂0 (in the argument below,
the zeros of X can be handled by continuity, or by taking linear combinations
of vector fields). The requirement of coordinate invariance means that in the
new coordinate system the Lagrangean depends again upon the fields only; in
other words, no explicit dependence upon the coordinates is introduced when
coordinate changes are performed. Now, for most fields occurring in theoretical
physics, in adapted coordinates the Lie derivatives are just partial derivatives
with respect to x0, and then

∂µH
µ = ∂µ(pA

µ£Xϕ
A −XµL)

= ∂µpA
µ∂0ϕ

A + pA
µ∂0∂µϕ

A − ∂0L

=
∂L

∂ϕA
∂0ϕ

A +
∂L

∂ϕAµ
∂0∂µϕ

A − ∂L

∂ϕA
∂0ϕ

A − ∂L

∂ϕAµ
∂0ϕ

A
µ

= 0 ,

as claimed.
There is also a canonical symplectic form ΩS associated to the hypersurface

S , defined as

ΩS ((δ1pA
λ, δ1ϕ

B), (δ2pC
λ, δ2ϕ

D)) =

∫

S

(δ1pA
µδ2ϕ

A − δ2pAµδ1ϕA) dSµ .

(1.2.8)
The function H(X,S ) generates the field equations with respect to ΩS , in a
sense which is made precise in [127].

1.2.2 Hamiltonian general relativity

Let us show how those ideas can be applied to the gravitational field, described
by a metric tensor gµν , of signature (−1,+1, . . . ,+1) on a space-time M . For
notational simplicity only the vacuum Einstein equations will be considered,

Rµν(g) = 0 ; (1.2.9)

the inclusion of matter fields presents no difficulties but complicates the nota-
tion.

There exist several variational principles which produce (1.2.9) [27, 75, 79,
82, 83, 106, 115, 116, 124, 151], as well as several canonical formulations of the
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associated theory [5, 8, 20, 24, 107, 110, 144, 158]. Our presentation is borrowed
from [64], where a generalization of the background field formulation used in
[53], based on a first order variational principle “covariantized” by the intro-
duction of a background connection2 is presented. (see also [73, Section 5] or
[69, Appendix A]).

Recall that in the original variational principle of Einstein [83] one removes
from the Hilbert Lagrangian [115] a coordinate-dependent divergence, obtain-
ing thus a first order variational principle for the metric. In [53] the Hilbert
Lagrangian was modified by removing a coordinate-independent divergence,
which, however, did depend upon a background metric. This proceeds as fol-
lows: Consider the Ricci tensor,

Rµν = ∂α

[
Γαµν − δα(µΓκν)κ

]
−
[
ΓασµΓσαν − ΓαµνΓσασ

]
, (1.2.10)

where the Γ’s are the Christoffel symbols of g. Contracting Rµν with the con-
travariant density of the metric,

gµν :=
1

16π

√
− det g gµν , (1.2.11)

one obtains the following expression for the Hilbert Lagrangian density:

L̃ =
1

16π

√
− det gR = gµνRµν

= ∂α

[
gµν

(
Γαµν − δα(µΓκν)κ

)]
+ gµν

[
ΓασµΓσαν − ΓαµνΓ

σ
ασ

]
. (1.2.12)

Here we have used the metricity condition of Γ, which is equivalent to the
following identity:

gµν,α := ∂αg
µν = gµνΓσασ − gµσΓνσα − gνσΓµσα . (1.2.13)

Suppose now, that Bα
σµ is another symmetric connection in M , which will be

used as a “background” (or “reference”) connection. Denote by rµν its Ricci
tensor. From the metricity condition (1.2.13) we similarly obtain

gµνrµν = ∂α

[
gµν

(
Bα
µν − δα(µBκ

ν)κ

)]
− gµν

[
Bα
σµB

σ
αν −Bα

µνB
σ
ασ

]

+gµν
[
ΓασµB

σ
αν +Bα

σµΓσαν − ΓαµνB
σ
ασ −Bα

µνΓσασ
]
. (1.2.14)

It is useful to introduce the tensor field

pαµν :=
(
Bα
µν − δα(µBκ

ν)κ

)
−
(

Γαµν − δα(µΓκν)κ

)
. (1.2.15)

Once the reference connection Bα
µν is given, the tensor pαµν encodes the entire

information about the connection Γαµν :

Γαµν = Bα
µν − pαµν +

2

3
δα(µp

κ
ν)κ .

2The idea of using a background connection instead of a background metric has been
advocated in [171]. However, the framework we use here is closer in spirit to the one in [53].
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Subtracting Equation (1.2.14) from (1.2.12), and using the definition of pαµν , we
arrive at the equation

gµνRµν = −∂α
(
gµνpαµν

)
+ L ,

where

L := gµν
[(

Γασµ −Bα
σµ

)
(Γσαν −Bσ

αν)−
(
Γαµν −Bα

µν

)
(Γσασ −Bσ

ασ) + rµν
]
.

Since the quantity L differs by a total divergence from the Hilbert La-
grangian, the associated variational principle leads to the same equations of
motion. Further, the metricity condition (1.2.13) enables us to rewrite L in
terms of the first derivatives of gµν : Indeed, replacing in (1.2.13) the partial
derivatives g

µν
,α by the covariant derivatives g

µν
;α, calculated with respect to

the background connection B,

gµν;α := gµν (Γσασ −Bσ
ασ)− gµσ (Γνσα −Bν

σα)− gνσ (Γµσα −Bµ
σα) , (1.2.16)

we may calculate pαµν in terms of the latter derivatives. The final result is:

pλµν =
1

2
gµαg

λα
;ν +

1

2
gναg

λα
;µ −

1

2
gλαgσµgρνg

σρ
;α

+
1

4
gλαgµνgσρg

σρ
;α , (1.2.17)

where by gµν we denote the matrix inverse to gµν . Inserting these results into
the definition of L, we obtain:

L =
1

2
gµαg

µν
;λg

λα
;ν −

1

4
gλαgσµgρνg

µν
;λg

σρ
;α

+
1

8
gλαgµνg

µν
;λgσρg

σρ
;α + gµνrµν . (1.2.18)

We note the identity

∂L

∂gµν,λ
=

∂L

∂gµν;λ
= pλµν , (1.2.19)

which shows that the tensor field pλµν is the momentum canonically conjugate
to the contravariant tensor density gµν ; prescribing this last object is of course
equivalent to prescribing the metric. From this point of view, gravitational
fields on a manifold M are sections of the bundle

F = S0T
2M ⊗ Λ̃n+1M

prF→M

��

M

, (1.2.20)

where S0T
2M denotes the bundle of non-degenerate symmetric contravari-

ant tensors over M and Λ̃n+1M is the bundle of densities. Given a back-
ground symmetric connection B on M , we take L given by Equation (1.2.18)
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as the Lagrangian for the theory. The canonical momentum pλµν is defined
by Equation (1.2.17). If S is any piecewise smooth hypersurface in M , and
if (δap

λ
µν , δag

αβ), a = 1, 2, are two sections over S of the bundle of vertical
vectors tangent to the space-time phase bundle, one sets

ΩS ((δ1p
λ
µν , δ1g

αβ), (δ2p
λ
µν , δ2g

αβ)) =

∫

S

(δ1p
µ
αβδ2g

αβ − δ2pµαβδ1gαβ) dSµ .

(1.2.21)
Here (see [64, 127] for details) only such variations (δap

λ
µν , δag

αβ) are allowed
which arise from one-parameter families of solutions of the vacuum Einstein
equations.

Under suitable boundary conditions, the dynamics of the gravitational field
obtained generated by flowing, in space-time, along a vector field X is Hamil-
tonian with respect to this symplectic structure, with

H(X,S ) =

∫

S

(pµαβ£Xg
αβ −XµL) dSµ . (1.2.22)

This follows from the variational formula

−δH =

∫

S

(
£Xp

λ
µνδg

µν −£Xg
µνδpλµν

)
dSλ

+

∫

∂S

X [µpν]αβδg
αβ dSµν . (1.2.23)

This identity reduces to the desired Hamilton equations of motion in spaces
of fields where the boundary integral vanishes as a result of boundary condi-
tions. The vanishing of those integrals requires a careful case-by-case analysis:
indeed, the analysis will be different for asymptotically flat space-times [53, 64],
or for asymptotically anti-de Sitter space-times [70], or for boundaries at finite
distance. We note that this last case has not received adequate Hamiltonian
treatment so far.

Consider (1.2.22) when B is the metric connection of a given background
metric bµν , and when X is a Killing vector field of bµν . Under those restrictions
it was shown in [53] that the integrand in (1.2.22) is equal to the divergence of
a “Freud-type superpotential” [87]:

Hµ ≡ pµαβ£Xg
αβ −XµL = ∂αU

µα , (1.2.24)

U
νλ = U

νλ
βX

β − 1

8π

√
|det gρσ|gα[νδλ]β Xβ

;α , (1.2.25)

U
νλ
β =

2|det bµν |
16π

√
|det gρσ |

gβγ(e2gγ[λgν]κ);κ

= 2gβγ

(
gγ[λgν]κ

)
;κ

= 2gµ[νp
λ]
µβ − 2δ

[ν
β p

λ]
µσg

µσ − 2

3
gµ[νδ

λ]
β p

σ
µσ , (1.2.26)

where a semi-column denotes the covariant derivative of the metric b, square
brackets denote antisymmetrization (with a factor of 1/2 when two indices are
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involved), as before gβγ ≡ (gασ)−1 = 16πgβγ/
√
|det gρσ|, and

e ≡
√

| det gρσ|√
|det bµν |

.

Now, the hypothesis of metricity of the background connection B is rather
natural when metrics, which asymptote to a prescribed background metric bµν ,
are considered. Further, the assumption in [53] that X is a Killing vector field
of the background metric seems to be natural, and not overly restrictive, when
X is thought of as representing time translations in the asymptotic region. Nev-
ertheless, that last hypothesis is not adequate when one wishes to obtain simul-
taneously Hamiltonians for several vector fields X. Consider, for example, the
problem of assigning a four-momentum to an asymptotically flat space-time —
in that case four vector fields X, which asymptote to four linearly independent
translations, are needed. The condition of invariance of the background metric
bµν under a four-parameter family of flows generated by those vector fields puts
then undesirable topological constraints on M . The situation is even worse
when considering vector fields X, which asymptote to BMS supertranslations:
in that case there are no background metrics, which are asymptotically flat and
for which X is a Killing vector. This leads to the necessity of finding formulae
in which neither the condition that Bµ

αβ is the Levi–Civita connection of some
metric bαβ, nor the condition that X is a Killing vector field of the background
are imposed. It may be checked that the following generalization of Equations
(1.2.24)–(1.2.25) holds3:

pµαβ£Xg
αβ −XµL = ∂αU

µα − 2gβ[γδ
µ]
σ (Xσ

;βγ −Bσ
βγκX

κ) , (1.2.27)

U
νλ =

(
2gµ[νp

λ]
µβ − 2δ

[ν
β p

λ]
µσg

µσ − 2
3g
µ[νδ

λ]
β p

σ
µσ

)
Xβ − 2gα[νδ

λ]
β X

β
;α . (1.2.28)

Here Bσ
βγκ is the curvature tensor of the connection Bσ

βγ .

We close this section by noting that the background connection can be
completely eliminated from the relevant volume integrals. (On the other hand,
we emphasize that the formula with the background metric is very convenient
for most practical calculations.) For this purpose we introduce the quantity

Aαµν := Γαµν − δα(µΓκν)κ , (1.2.29)

together with its counterpart for the background metric:

◦Aαµν := Bα
µν − δα(µBκ

ν)κ . (1.2.30)

It follows that pαµν = ◦Aαµν−Aαµν . Now, we use the formula for the Lie derivative
of a connection:

£XB
λ
µν = Xλ

;µν −XσBλ
µνσ .

3The calculations of [53, Appendix] are actually done without any hypotheses on the vector
fieldX; it is only at the end that it is assumed that X is a Killing vector field of the background
metric. See also [123].
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Consequently, we have:

gµν£X ◦Aλµν = 2gβ[γδλ]σ (Xσ
;βγ −Bσ

βγκX
κ) .

This, together with (1.2.27), shows that H(X,S ) given by (1.2.22) takes the
form

H(X,S ) = Hboundary(X,S ) +Hvolume(X,S ) , (1.2.31)

Hboundary(X,S ) =
1

2

∫

∂S

U
αµ dSαµ , (1.2.32)

Hvolume(X,S ) = −
∫

S

gµν£X ◦Aλµν dSλ

= −
∫

S

2gβ[γδλ]σ (Xσ
;βγ −Bσ

βγκX
κ) dSλ . (1.2.33)

It follows that (1.2.23) can be rewritten as

−δHboundary(X,S ) =

∫

S

(
£Xg

µνδAλµν −£XA
λ
µνδg

µν
)
dSλ

+

∫

∂S

X [µpαβ
ν]δgαβ dSµν . (1.2.34)

In this formula the Hamiltonian is a boundary integral, and the only background
dependence in the right hand side of (1.2.34) is through the boundary terms.

1.2.3 Poincaré charges, Lorentz invariance

Let S be an n-dimensional spacelike hypersurface in a n + 1-dimensional
Lorentzian space-time (M , g), n ≥ 2. Suppose that M contains an open set
U with a global time coordinate t, and that S ∩ U = {t = 0}. Assume that
there exists a coordinate system xµ covering a set which contains

S0 := {x0 = 0 , r(x) :=
√∑

(xi)2 > R} ,

and assume that the tensors gµν := g(∂µ, ∂ν) and bµν := b(∂µ, ∂ν) satisfy along
S0

bµν = ηµν := diag(−1,+1, . . . ,+1) , (1.2.35a)

|gµν − bµν | ≤ Cr−α , |∂σgµν | ≤ Cr−α−1 , n/2− 1 < α ≤ n− 2 . (1.2.35b)

The ADM energy-momentum vector is defined as

pµ(S0) := H(∂µ,S0) . (1.2.36)

One checks that p0 coincides with the ADM mass:

p0 = mADM = lim
R→∞

1

16π

∫

S(R)
(gik,i − gii,k)dSk .
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A further calculation shows that the pi’s can be rewritten as in (1.1.26):

pi :=
1

8π
lim
R→∞

∫

S(R)
Pi
jdSj , (1.2.37)

an expression known as the ADM momentum of an asymptotically flat initial
data set.

As pointed out in Proposition 1.1.5, the set of numbers (pi) is well defined
whenever the mass is (see Theorem 1.1.12) provided that one also has

DjPi
j ∈ L1 . (1.2.38)

It easily follows from Lemma 1.1.13 that the collection (pi) transforms as a
covector under asymptotic rotations.

The remaining Lorentz charges are defined as the Hamiltonians associated
to the generators xµ∂ν − xν∂µ, where xµ := ηµνx

ν :

Jµν(S0) := H(xµ∂ν − xν∂µ,S0) . (1.2.39)

In space-time dimension four, the Jµν ’s split naturally into an angular-

momentum vector ~J , associated with rotations, and a center of mass vector ~c,
associated with boosts:

Ji := H(ǫijkx
j∂k, {t = 0}) , (1.2.40)

ci := H(t∂i + xi∂t, {t = 0}) = H(xi∂t, {t = 0}) . (1.2.41)

The corresponding integrals will not converge without further restrictions.
This is not unfamiliar from Newtonian theory, where finiteness of Newtonian
mass, ∫

R3

ρd3x .

does not guarantee finiteness of angular-momentum integrals:

ǫijk

∫

R3

ρxjvkd3x .

Indeed, even small velocities and masses can give arbitrarily large contributions
to the angular momentum for objects located sufficiently far away from the
origin. There are various ways to guarantee well defined global charges [24, 56,
158, 170], here we follow both the approach and the presentation of [61]. This
is most convenient for the purposes of initial data gluing theorems.

Let Ω ⊂ R
1,n be invariant under the transformation

xµ → −xµ , (1.2.42)

for any f : Ω→ R we set

f+(x) =
1

2
(f(x) + f(−x)) , f−(x) =

1

2
(f(x)− f(−x)) .
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We shall henceforth only consider metrics defined on domains of coordinate
systems which are invariant under (1.2.42), and we will assume that in addition
to (1.2.35) we have

|g−µν | ≤ C(1 + r)−α− , |∂σ(g−µν)| ≤ C(1 + r)−1−α− , α− > α , α+α− > n− 1 .
(1.2.43)

We note that in dimension n+ 1 = 3 + 1 , Equations (1.2.35) and (1.2.42) hold
for the Schwarzschild metric in the usual static coordinates, with α = 1 and α−
— as large as desired. Similarly (1.2.35), (1.2.42) hold for the Kerr metric in
the Boyer-Lindquist coordinates, with α = 1 and α− = 2.

Recall that a boost-type domain ΩR,T,θ ⊂ R
1,n is defined as

ΩR,T,θ := {r > R , |t| < θr + T} , (1.2.44)

with θ ∈ (0,∞]. We have the following:

Proposition 1.2.1 Let gµν be a Lorentzian metric satisfying (1.2.35) and (1.2.43)
on a boost-type domain ΩR,T,θ, and suppose that the coordinate components
Tµν := T (∂µ, ∂ν) of the energy-momentum tensor density,

Tµν :=

√
|det gαβ |

8π

(
Ric µν −

1

2
trgRic gµν

)
, (1.2.45)

satisfy

|Tµν | ≤ C(1 + r)−n−ǫ , |T −
µν | ≤ C(1 + r)−n−1−ǫ , ǫ > 0. (1.2.46)

Let S ⊂ ΩR,T,θ be the hypersurface {y0 = 0}∩ΩR,T,θ, where the coordinates yµ

are obtained from the xµ’s by a Poincaré transformation,

xµ → yµ := Λµνx
ν + aµ , (1.2.47)

so that Λµν is a constant-coefficients Lorentz matrix, and aµ is a set of con-
stants, set S0 := {x0 = 0}. Then:

1. The integrals defining the “Poincaré charges” (1.2.36)-(1.2.39) of S and
S0 converge.

2. We have

(pµ(S ), Jµν(S )) = (Λµ
αpα(S0),Λµ

αΛν
βJαβ(S0)

+aµΛν
αpα(S0)− aνΛµ

αpα(S0)) . (1.2.48)

Here Λα
β := ηαµΛµνη

νβ and

pµ(S0) = H(∂/∂xµ,S0), while pµ(S ) = H(∂/∂yµ,S ),

similarly for Jµν .
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Proof: Recall that

H(X,S ) =
1

2

∫

∂S

U
αβdSαβ , (1.2.49)

U
νλ = U

νλ
βX

β +
1

8π
(
√
|det gρσ| gα[ν

−
√
|det bρσ| bα[ν)Xλ]

;α , (1.2.50)

U
νλ
β =

2|det bµν |
16π

√
|det gρσ |

gβγ(e2gγ[νgλ]κ);κ , (1.2.51)

e =
√
|det gρσ |/

√
|det bµν | . (1.2.52)

Now,
∫

{x0=0,r=R}
U
αβdSαβ = 2

∫

{x0=0,R0≤r≤R}
∇̊βUαβdSα +

∫

{x0=0,r=R0}
U
αβdSαβ ,

(1.2.53)
with

16π∇̊βUαβ = T
α
βX

β +
√
|det b|

(
QαβX

β +Qαβγ ∇̊βXγ
)
, (1.2.54)

where Qαβ is a quadratic form in ∇̊σgµν , and Qαβγ is bilinear in ∇̊σgµν and
gµν−bµν , both with bounded coefficients which are constants plus terms O(r−α).
For pµ and for R ≥ R0 one immediately obtains
∫

{x0=0,r=R}
U
αβdSαβ =

∫

{x0=0,r=R0}
U
αβdSαβ +O(Rn−2−2α

0 )

+
1

8π

∫

{x0=0,R0≤r≤R}
T

α
βX

βdSα (1.2.55)

=

∫

{x0=0,r=R0}
U
αβdSαβ +O(Rn−2−2α

0 ) +O(R−ǫ
0 ) .

(1.2.56)

For Jµν simple parity considerations lead instead to
∫

{x0=0,r=R}
U
αβdSαβ =

∫

{x0=0,r=R0}
U
αβdSαβ +O(R

n−1−α−α−

0 ) +O(R−ǫ
0 ) .

(1.2.57)
Passing to the limit R→∞ one obtains convergence of pµ(S0) and of Jµν(S0).
For further reference we note the formulae

pµ(S0) =

∫

{x0=0,r=R0}
U
αβdSαβ

+
1

16π

∫

r≥R0

T
µ
νX

νdSµ +O(Rn−2−2α
0 ) , (1.2.58a)

Jµν(S0) =

∫

{x0=0,r=R0}
U
αβdSαβ

+
1

16π

∫

r≥R0

T
µ
νX

νdSµ +O(R
n−1−α−α−

0 ) . (1.2.58b)
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Because Lorentz transformations commute with the antipodal map (1.2.42) the
boundary conditions (1.2.35) and (1.2.43) are preserved under them, and con-
vergence of the Poincaré charges of S for transformations of the form (1.2.47)
with aµ = 0 follows. In order to establish point 2., still for aµ = 0, we use
Stokes’ theorem on a set TR defined as

TR = {r = R, 0 ≤ t ≤ −(Λ0
0)−1Λ0

ix
i} ∪ {r = R, 0 ≥ t ≥ −(Λ0

0)−1Λ0
ix
i} ,

(1.2.59)
so that the boundary ∂TR has two connected components, the set S0∩{r = R}
and the set S ∩ {r = R}. This leads to

∫

S∩{r=R}
U
αβdSαβ = 2

∫

TR

∇̊βUαβdSα +

∫

S0∩{r=R}
U
αβdSαβ , (1.2.60)

The boundary conditions ensure that the integral over TR vanishes in the limit
R→∞ (for pµ this is again straightforward, while for Jµν this follows again by
parity considerations), so that

H(X,S ) = H(X,S0) . (1.2.61)

We consider finally a translation; Stokes’ theorem on the n–dimensional region

{yµ = xµ + saµ , s ∈ [0, 1] , xµ ∈ S , r(xµ) = R}

leads again — in the limit R → ∞ — to (1.2.61), in particular H(X,S )
converges. The transformation law (1.2.48) follows now from (1.2.61) by the
following calculation:

Jµν(S ) := H(yµ
∂
∂yν − yν ∂

∂yµ ,S , )

= H(yµ
∂
∂yν − yν ∂

∂yµ ,S0, )

= H((Λµ
αxα + aµ)Λν

β ∂
∂xβ
− (Λν

αxα + aν)Λµ
β ∂
∂xβ

,S0) .

✷

It is sometimes convenient to have an (n+1)-decomposed version of (1.2.49),
in the asymptotically flat vacuum case this is easily implemented as follows:
Let (S ,K, g) be an asymptotically flat vacuum initial data set, if the data are
sufficiently differentiable there exists a vacuum development (M, n+1g) of the
data so that S can be isometrically identified with a hypersurface t = 0 in M ,
with K corresponding to the second fundamental form of S in (M, n+1g). We
can introduce Gauss coordinates around S to bring n+1g to the form

n+1g = −dt2 + gt

where gt is a family of Riemannian metrics on S with g0 = g. We then set

b = −dt2 + e ,

where e is the Euclidean flat metric equal to diag(+1, . . . ,+1) in asymptotically
flat coordinates on S . Let nb be the future directed b-unit normal to S and let
(Y,N) be the KID determined on S by the b-Killing vector X; by definition,

X = Nnb + Y , b(nb, Y ) = 0 along S . (1.2.62)
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Since the future pointing g-unit normal to S , say ng, coincides with nb, we
also have

X = Nng + Y , g(ng, Y ) = 0 . (1.2.63)

We define the Poincaré charges Q by the formula

Q((Y,N), (K, g)) := H(V N + Y,S ) . (1.2.64)

Expressing the integrand of (1.2.64) in terms of K, g, as well as the first
derivatives of g, one obtains

∫

{x0=0,r=R}
U
αβdSαβ =

∫

{x0=0,r=R0}
U
αβdSαβ

+
1

8π

∫

{x0=0,R0≤r≤R}

(
Y iJi +Nρ+ q

)
dµg ,

(1.2.65)

where q is a quadratic form in gij− δij, ∂kgij , and Kij, with uniformly bounded
coefficients whenever gij and gij are uniformly bounded. This follows imme-
diately from (1.2.53)-(1.2.54), together with the n + 1 decomposition of the
energy-momentum tensor density (1.2.45), and of the error term in (1.2.54).
One can also work directly with the n + 1 equivalents of the boundary inte-
grals in (1.2.65) — cf., e.g., [24] — but those are somewhat cumbersome when
studying behavior of the charges under Lorentz transformations.

1.3 Mass of asymptotically anti-de Sitter space-times

We review here the Hamiltonian definition of mass in asymptotically anti-de
Sitter space-times of [69, 70]; see [112] for an alternative Hamiltonian treatment
of that case. Such space-times require the cosmological constant Λ to be strictly
negative, which is assumed throughout this section.

Let S be an n-dimensional spacelike hypersurface in a (n+ 1)-dimensional
Lorentzian space-time (M , g). Suppose that M contains an open set U which is
covered by a finite number of coordinate charts (t, r, vA), with r ∈ [R,∞), and
with (vA) — local coordinates on some compact (n − 1)-dimensional manifold
N , such that S ∩ U = {t = 0}. Assume that the metric g approaches a
background metric b of the form

b = −a−2(r)dt2 + a2(r)dr2 + r2h , h = hAB(vC)dvAdvB , (1.3.1)

with a(r) = 1/
√
r2/ℓ2 + k, where k = 0,±1, h is a Riemannian Einstein metric

on N with Ricci scalar n(n−1)k, and ℓ is a strictly positive constant related to
the cosmological constant Λ by the formula 2Λ = −n(n− 1)/ℓ2. For example,
if h is the standard round metric on S2 and k = 1, then b is the anti-de Sitter
metric. It seems that the most convenient way to make the approach rates
precise is to introduce an orthonormal frame for b,

e0 = a(r)∂t , e1 =
1

a(r)
∂r , eA =

1

r
βA , (1.3.2)
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with βA — an h-orthonormal frame on (N,h), so that bab = b(ea, eb) = ηab —
the usual Minkowski matrix diag(−1,+1, · · · ,+1). We then require that the
frame components gab of g with respect to the frame (1.3.2) satisfy

eab = O(r−β) , ea(e
bc) = O(r−β) , babe

ab = O(r−γ) , (1.3.3)

where eab = gab − bab, with

β > n/2 , γ > n . (1.3.4)

(The (n + 1)-dimensional generalizations of the Kottler metrics (sometimes
referred to as “Schwarzschild-anti de Sitter” metrics) are of the form (1.3.1)
with

a(r) = 1/
√
r2/ℓ2 + k − 2η/r

for a constant η, and thus satisfy (1.3.3) with β = n, and with γ = 2n.) One can
check (cf. [70]) that we have the following asymptotic behaviour of the frame
components of the b-Killing vector fields,

Xa = O(r) , ∇̊aXb = O(r) .

Assuming that LXp
λ
µν and LXg

µν have the same asymptotic behaviour as
δpλµν and δgµν (which is equivalent to requiring that the dynamics preserves the
phase space), it is then easily seen that under the asymptotic conditions (1.3.3)-
(1.3.4) the volume integrals appearing in Equations (1.2.22)-(1.2.23) are con-
vergent, the undesirable boundary integral in the variational formula (1.2.23)
vanishes, so that the integrals (1.2.49) do indeed provide Hamiltonians on the
space of fields satisfying (1.3.3)-(1.3.4). (Assuming (1.3.3)-(1.3.4) and X = ∂t,
the numerical value of the integral (1.2.49) coincides with that of an expres-
sion proposed by Abbott and Deser [1]). This singles out the charges (1.2.49)
amongst various alternative expressions because Hamiltonians are uniquely de-
fined, up to the addition of a constant, on each path connected component of
the phase space. The key advantage of the Hamiltonian approach is precisely
this uniqueness property, which does not seem to have a counterpart in the
Noether charge analysis [176] (cf., however [121, 181]), or in Hamilton-Jacobi
type arguments [41].

To define the integrals (1.2.49) we have fixed a model background metric b,
as well as an orthonormal frame as in (1.3.2); this last equation required the
corresponding coordinate system (t, r, vA) as in (1.3.1). Hence, the background
structure necessary for our analysis consists of a background metric and a back-
ground coordinate system. This leads to a potential coordinate dependence of
the integrals (1.2.49): let g be any metric such that its frame components gab

tend to ηab as r tends to infinity, in such a way that the integrals H(S ,X, b)
given by (1.2.49) converge. Consider another coordinate system (t̂, r̂, v̂A) with
the associated background metric b̂:

b̂ = −a−2(r̂)dt̂2 + a2(r̂)dr̂2 + r̂2ĥ , ĥ = hAB(v̂C)dv̂Adv̂B ,

together with an associated frame êa,

ê0 = a(r̂)∂t̂ , ê1 =
1

a(r̂)
∂r̂ , êA =

1

r̂
β̂A , (1.3.5)
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and suppose that in the new hatted coordinates the integrals defining the Hamil-
tonians H(Ŝ , X̂, b̂) converge again. An obvious way of obtaining such coordi-
nate systems is to make a coordinate transformation

t→ t̂ = t + δt , r → r̂ = r + δr , vA → v̂A = vA + δvA , (1.3.6)

with (δt, δr, δvA) decaying sufficiently fast:

t̂ = t+O(r−1−β) , ea(t̂) = ℓ δ0a +O(r−1−β) ,

r̂ = r +O(r1−β) , ea(r̂) = δ1a
ℓ +O(r1−β) ,

v̂A = vA +O(r−1−β) , ea(v̂
A) = δAa +O(r−1−β) , (1.3.7)

and with analogous conditions on second derivatives; this guarantees that the
hatted analogue of Equations (1.3.3) and (1.3.4) will also hold. In [70] the
following is proved:

• All backgrounds satisfying the requirements above and preserving S (so
that t̂ = t) differ from each other by a coordinate transformation of the
form (1.3.7). Equivalently, coordinate transformations compatible with
our fall-off conditions are compositions of (1.3.7) with an isometry of the
background. (This is the most difficult part of the work in [70].)

• Under the coordinate transformations (1.3.7) the integrals (1.2.49) remain
unchanged:

H(S ,X, b) = H(Ŝ , X̂, b̂) .

Here, if X = Xµ(t, r, vA)∂µ, then the vector field X̂ is defined using the
same functions Xµ of the hatted variables.

• The conditions (1.3.4) are optimal4, in the sense that allowing β = n/2
leads to a background-dependent numerical value of the Hamiltonian.

• For some topologies of N , isometries of b lead to interesting, non-trivial
transformation properties of the mass integrals H(S ,X, b), which have
to be accounted for when defining a single number called mass. More
precisely, if N is negatively curved, a geometric invariant is obtained by
setting

m = H(S , ∂t, b) . (1.3.8)

If N is a flat torus, then any choice of normalization of the volume of N
leads again to an invariant via (1.3.8). If N = Sn−1, then the group G of
isometries of b preserving {t = 0} is the Lorentz group O(n, 1), which acts
on the space K ⊥ of b-Killing vectors normal to {t = 0} through its usual
defining representation, in particular K ⊥ is equipped in a natural way
with a G-invariant Lorentzian scalar product η(µ)(ν). Choosing a basis
X(µ) of K ⊥ and setting

m(µ) = H(S ,X(µ), b) , (1.3.9)

the invariant mass is obtained by calculating the Lorentzian norm of m(µ):

m2 := |η(µ)(ν)m(µ)m(ν)| . (1.3.10)

4Strictly speaking, it is the Riemannian counterpart of (1.3.4) that is optimal, see [63].
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1.4 The mass of asymptotically hyperboloidal Rie-
mannian manifolds

As seen above, in the asymptotically flat case the mass is an object that can
be defined purely in Riemannian terms, i.e., without making any reference to a
space-time. This remains true in the asymptotically hyperboloidal case. How-
ever, the situation is somewhat more delicate there, because the transcription
of the notion of a space-time background Killing vector field in a purely Rie-
mannian setting requires more care. The Riemannian information carried by
space-time Killing vector fields of the form X = V e0, where e0 is a unit normal
to the hypersurface S , is encoded in the function V , which for static vacuum
backgrounds satisfies the set of equations

∆bV + λV = 0 , (1.4.1)

D̊iD̊jV = V (Ric(b)ij − λbij) , (1.4.2)

where D̊ is the Levi-Civita covariant derivative of b and λ is a constant. We
can forget now that S is a hypersurface in some space-time, and consider an
n-dimensional Riemannian manifold (S , g) together with the set, denoted by
Nb, of solutions of (1.4.1)-(1.4.2); we shall assume that Nb 6= ∅. If one imposes
boundary conditions in the spirit of Equations (1.3.2)-(1.3.4) on the Riemannian
metric g, except that the condition there on the space-time trace babg

ab is not
needed any more, then well defined global geometric invariants can be extracted
— in a way similar to that discussed at the end of the previous section — from
the integrals

H(V, b) := lim
R→∞

∫

r=R
U
i(V )dSi (1.4.3)

where V ∈ Nb and [63]

U
i(V ) := 2

√
det g

(
V gi[kgj]lD̊jgkl +D[iV gj]k(gjk − bjk)

)
. (1.4.4)

If N is an (n − 1)-dimensional sphere, and if the manifold S admits a spin
structure, then a positive energy theorem holds [2, 63, 102, 185, 189]; this isn’t
true anymore for general N ’s, cf., e.g., [117].

1.5 Quasi-local mass

The purpose of this section is to give a very succint review of the question
of localisation of mass in general relativity. This has a long history, with no
unanimously accepted candidate emerging so far, see [173, 176] and references
therein. There are at least two strategies which one might adopt here: trying
to isolate a mathematically interesting object, or trying to find a physically
relevant one. In the best of the worlds the same quantity would result, but no
such thing has been found yet.
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1.5.1 Hawking’s quasi-local mass

An early proposal for a definition of quasi-local mass is due to Hawking. This
definition turned out to play a key role in the Geroch-Huisken-Ilmanen proof
of the Penrose inequality [99, 119, 120]. The definition can be described as
follows: Consider a spacelike two dimensional surfaces S in a four-dimensional
Lorentzian manifold (M,g). At each point p ∈ S there exist exactly two null
directions orthogonal to S, spanned on null future directed vectors n+ and n−.
Both n+ and n− are defined only up to a multiplicative factor, but half of this
freedom can be gotten rid of by requiring that

g(n+, n−) = −2 . (1.5.1)

Let θ± denote the divergences of the null hypersurfaces emanating from S
tangentially to n±. When n+ is replaced by fn+, for a function f , then θ+ is
multiplied by f ; similarly for θ−. However, the product θ+θ− remains invariant
under such rescalings as long as the normalisation (1.5.1) is maintained. It
follows that the Hawking mass mH(S),

mH(S) =

√
A

16π

(
1− 1

16π

∫

S
θ−θ+d2µ

)
, (1.5.2)

is a well defined geometric invariant of S.

In the special case when S lies within a spacelike hypersurface S with
vanishing extrinsic curvature, (1.5.2) reduces to

mH(S) =

√
A

16π

(
1− 1

16π

∫

S
H2d2µ

)
, (1.5.3)

with H the mean extrinsic curvature of S within S . When S = Sr is a coor-
dinate sphere of radius r in an asymptotically flat region, u passing with r to
infinity one recovers the ADM mass.

1.5.2 Kijowski’s quasi-local mass

From a physical point of view the strongest case can be made for definitions
obtained by Hamiltonian methods. Recall that the geometric symplectic frame-
work of Kijowski and Tulczyjew [127], briefly described in Section 1.2.2, has
been applied to general relativity by Kijowski and collaborators [53, 64, 124–
126]. The framework allows a systematic treatment of boundary terms, to-
gether with associated Hamiltonians, at least at a formal level5. One of the
Hamiltonians that emerges in this way is the following [126]: Consider a three
dimensional initial data set (M,g,K) in a four-dimensional space-time (M ,4g).

5Kijowski’s analysis leads to symplectic structures on spaces of fields with prescribed
boundary data. To obtain a bona fide Hamiltonian system one should prove that the re-
sulting initial-boundary value problems are well posed, which has not been done so far for
boundaries at finite distance. It would be of interest to analyse how the Friedrich-Nagy [90]
initial-boundary value problems fits into this framework.
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Let Σ be a two dimensional surface within M and suppose that the mean
extrinsic curvature vector κ of Σ is spacelike. Let

λ :=
√

4g(κ, κ)

be the 4g-length of κ. Assuming that the dominant energy condition holds in
(M ,4g), it follows from the embedding equations that the Gauss curvature of the
metric induced by 4g on Σ is positive. One can then invoke the Weyl embedding
theorem [148, 156] to isometrically embed (Σ,4g|Σ) into R

3. We shall denote
by λ0 the associated λ as calculated using the flat metric in R

3 ⊂ R
3,1. Let mK

be the Kijowski mass of Σ;

mK =
1

8π

∫

Σ
(λ0 − λ)d2µ . (1.5.4)

A surprising theorem of Liu and Yau [134] asserts that

mK ≥ 0 ,

with equality if and only if (M,g,K) is a subset of Euclidean R
3 ⊂ R

3,1. The key
to the proof is a similar result by Shi and Tam [166], which is the Riemannian
analogue of this statement: Shi and Tam prove that for manifolds of positive
scalar curvature, the mean curvature H of a convex surface bounding a compact
set satisfies

mBY =
1

8π

∫

Σ
(H0 −H)d2µ ≥ 0 . (1.5.5)

Here H0 is the mean curvature of an isometric embedding of ∂M into R
3,

thus H0 coincides with λ0. (This “quasi-local mass” has been introduced by
Brown and York [40, 41].) Liu and Yau show that positivity of Kijowski’s mass
(1.5.4) can be reduced to the Shi-Tam inequality using Jang’s equation, in a
way somewhat similar to the transition from the “Riemannian” to the “full”
Schoen-Yau positive mass theorems [163, 164].

In [143] O’Murchadha, Szabados and Tod show that mK 6= 0 for some
surfaces in Minkowski space-time, showing that the normalisation in (1.5.4) is
not optimal. This issue has been adressed in [182, 183], the reader is referred
to those works as well as [48, 184] for further information and results.

1.5.3 Bartnik’s quasi-local mass

Yet another definition of quasi-local mass mB(Ω) has been given by Bartnik
in [11], a variation of this definition due to Huisken-Ilmanen [120] proceeds as
follows: Consider a compact manifold (Ω, g) with smooth boundary and with
nonnegative scalar curvature. Let PMo be the set of complete asymptotically
flat manifolds (M,g) with nonnegative scalar curvature such that M contains no
compact minimal surfaces except perhaps at its boundary. For (M,g) ∈ PMo,
let us write Ω ⊂⊂ M to mean that Ω is isometrically embedded in M . Then
the Bartnik quasi-local mass mB(Ω) of Ω is defined as:

mB(Ω) = inf
M∈PMo

{mADM(M)| Ω ⊂⊂M} , (1.5.6)
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where mADM(M) is the ADM mass of (M,g). (Note that non-existence of
minimal surfaces in M guarantees that M has at most one asymptotically flat
end.)

Bartnik has suggested a list of properties that should be satisfied by a good
definition mql of quasi-local mass:

1. Positivity: mql ≥ 0.

2. Rigidity: mql(Ω) = 0 if and only if (Ω, g) is flat.

3. Monotonicity: mql(Ω) ≤ mql(Ω
′) whenever Ω ⊂⊂ Ω′.

4. Spherical mass: mql should agree with the spherical mass m(r), as defined
in Section 2.1 (see (2.1.5) and (2.1.12)), on spherically symmetric balls or
annuli.

5. ADM limit: mql should be asymptotic to the ADM mass.

For simplicity let us assume that n ≤ 7, so that the positive energy theo-
rem, in its version with boundary, holds. Then points 1 and 3 for mB follows
immediately from the definition. It is highly non-trivial to show rigidity for
mB, this has been done in [120]. Similarly points 4 and 5 follow from the work
there.

A lower bound on mB(Ω) in terms of other quantities of geometric interest
has been proved in [167].

It is an open question whether the infimum in (1.5.6) is realised; this is the
contents of a conjecture by Bartnik (see [12]):

Conjecture 1.5.1 (Bartnik’s conjecture) Consider (Ω, g) for which there ex-
ists at least one (M̊ , g̊) ∈ PMo satisfying Ω ⊂⊂ M̊ . Then there exists (M̂ , ĝ) ∈
PMo on which the infimum is attained. The metric ĝ is static outside of Ω,
Lipschitz continuous across ∂Ω, with inner and outer mean curvatures of ∂Ω
coinciding.



Chapter 2

Non-spinorial positive energy
theorems

In this chapter we will prove positivity of energy under various restrictive con-
ditions — spherical symmetry, axial symmetry, small data, etc. We will also
review several positivity proofs under less restrictive conditions. Witten’s pos-
itive energy proof, which requires spinors, is deferred to the next chapter.

2.1 Spherically symmetric positive energy theorem

We suppose that we are given a three-dimensional Riemannian manifold with
a metric with positive scalar curvature; this will be the case if, e.g., the mat-
ter energy density is positive and the trace of the extrinsic curvature tensor
vanishes.

We start with the simplest case possible — that of spherical symmetry.
By definition, the metric is invariant under an effective action of G = SO(3),
with two-dimensional principal orbits. The orbit space M/G is diffeomorphic
to R, or [0,∞), or [0, 1]. The last case is excluded if we restrict attention to
asymptotically flat manifolds. If M/G = R, we have two asymptotic ends, with
M diffeomorphic to R×S2. (The alternative possibility R×P 2, where P 2 is the
two-dimensional projective space, is excluded by the requirement of existence
of an asymptotically flat region.) The model metric is the space part of the
Schwarzschild metric with m > 0; in “isotropic coordinates”:

g =

(
1 +

m

2|x|

)4
(

n∑

1=1

(dxi)2

)
, |x| > 0 . (2.1.1)

If M has no boundary, and if M/G = [0,∞) there are two possible topologies:
the first is R

3, with the usual action of SO(3) by rotations, the model metric
being the standard flat metric. The second is ([0,∞) × S2)/ ∼, where the
equivalence relation ∼ identifies (0, p), p ∈ S2, with (0, Pp), where P is the
antipodal map from S2 into itself. In this case a geodesic segment γ(s) normal to
the orbits of the isometry group of the form, say, γ(s) = (s, p) with s decreasing
from one to zero, is smoothly continued by a geodesic segment (s, Pp), with s

49
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now increasing from, say zero to one. A model metric is provided again by
(2.1.1) with |x| ≥ m/2: the reader might wish to check that the set |x| = m/2
is totally geodesic, and that the metric g defines a smooth metric on the quotient
manifold.

If M has a boundary, the only possible asymptotically flat topology is
[0,∞) × S2.

One can always use the distance ρ between the orbits of SO(3) as a coordi-
nate on M . Because there are no non-trivial rotation-invariant vector fields on
S2, the metric is then necessarily of the form

g = dρ2 + f(ρ)dΩ2 , (2.1.2)

where dΩ2 is the unit round metric on S2.
It is a common abuse of terminology to say that a hypersurface S is minimal

if the trace of the extrinsic curvature of S vanishes; with this terminology, S
could actually be a maximum, or a saddle point, of the area functional. As an
example, an orbit ρ = ρ0 is minimal in the metric (2.1.2) if and only if

f ′(ρ0) = 0

(compare (2.1.10) below). We have the following:

Theorem 2.1.1 Consider a complete, asymptotically flat, spherically symmet-
ric, boundaryless Riemannian manifold (M,g) with

R(g) ≥ 0 ,

and with ADM mass m. Then
m ≥ 0 , (2.1.3)

with equality if and only if M = R
3 with g – the Euclidean metric. Further-

more, if M contains a spherically symmetric minimal sphere then (2.1.3) can
be strengthened to

m ≥
√
|Sr0 |
16π

, (2.1.4)

where |Sr0 | denotes the area of the outermost1 minimal sphere Sr0 := {r = r0}.
Equality in (2.1.4) holds if and only if the metric is the space Schwarzschild
metric (2.1.1) in the region enclosing Sr0.

Equation (2.1.4) is the spherically symmetric case of the Penrose inequality .
The Schwarzschild metric with m < 0 shows that the hypothesis of com-

pleteness is necessary in the theorem.

Remark 2.1.2 The proof below works directly when Sr0 is an outermost min-
imal boundary. Alternatively, the case of a complete manifold with a minimal
boundary S can be reduced to the boundaryless case by doubling M across S;
spherical symmetry ensures that the resulting metric is at least C2, which is
enough for the result at hand.

1This means that there are no minimal spherically symmetric spheres enclosing Sr0 .
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Proof: It is convenient to start with a form of the metric that is somewhat
more flexible than (2.1.2):

g = e2β(r)dr2 + e2γ(r)(dθ2 + sin2 θdϕ2) . (2.1.5)

The curvature scalar R = R(g) is calculated in Appendix A.17 (see (A.17.28)
there), with the result

R = −4(γ′e−β+γ)′e−β−γ + 2(e−2γ − (γ′)2e−2β) . (2.1.6)

Now, by definition, a sphere is minimal if its area increases under deformations.
In particular its area should be a minimum under radial deformations, which is
equivalent to

γ′ = 0 , (2.1.7)

provided the coordinate system of (2.1.5) is well behaved. Now, for the problem
at hand, it is convenient to use coordinate systems which are singular precisely
at the minimal sphere, so a more geometric version of this equation is needed.
Note, first that the area of the symmetry orbits is 4πeγ , which shows that eγ

is a smooth function on the manifold for smooth actions on the open dense set
covered by orbits of principal type. Then a geometric version of the equation
γ′ = 0 is that

ni∂iγ = 0 , (2.1.8)

where n = ni∂i is the field of unit normals to the orbits of symmetry group. In
our case

ni∂i = e−β∂r ,

and so minimality is equivalent to

e−β∂rγ = 0 . (2.1.9)

It follows that Sr0 is minimal if and only if γ′(r0) = 0 or e−β = 0. We emphasise
that the second possibility can occur only if the coordinate r becomes singular
at Sr0 .

Another common definition of a minimal sphere Sr0 is that the trace of the extrinsic
curvature tensor of Sr0 vanishes. This last trace equals

Din
i =

1√
det gℓm

∂i(
√

det gℓmn
i) ,

where ni is the field of unit normals to the level sets of r. To see that, recall that
in adapted coordinates xi = (x1, xA) such that a family of submanifolds is given by
the equations {x1 = const}, the extrinsic curvature tensor is defined as

KAB =
1

2
(DAnB +DBnA) ,

where ni∂i is the field of unit normals. Its trace, with respect to the induced metric
γAB = gAB ≡ gAB − nAnB, is

trK = γABKAB = (gij − ninj)Kij = (gij − ninj)Dinj = Din
i − 1

2
niDi(n

jnj︸︷︷︸
1

)

︸ ︷︷ ︸
0

,
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hence trK = Din
i, as desired. For the metric (2.1.5) we have

ni∂i = e−β∂r ,
√

det gℓm = e2γ+β sin θ ,

so that
Din

i = e−2γ−β(e2γ)′ = 2e−βγ′ , (2.1.10)

and one recovers (2.1.9).

Now, for large distances, it follows from asymptotic flatness that the area of
the orbits behaves as in Euclidean space-time, and thus γ′ has no zeros there.
Since the manifold is complete, we can shoot inwards geodesics normal to the
orbits, and either reach an outermost minimal sphere at r = r0, or the centre
of symmetry at r = r0. In either case γ′ has no zeros for r ≥ r0. We conclude
that either globally, or at least for r ≥ r0, we can choose a new radial variable
ρ so that

eγ(r) = ρ . (2.1.11)

The coordinate so defined is often called the area coordinate, since the area of
the isometry-invariant spheres equals 4πe2γ(r) = 4πρ2.

We rewrite the metric in the new coordinate system (ρ, θ, ϕ), and change
the name of the new variable ρ to r, keeping the old symbol β for the new
function β appearing in the metric. It is then convenient to define yet another
function m(r) by the equation

e−β(r) =

√
1− 2m(r)

r
⇐⇒ m(r) :=

r

2
(1− e−2β(r)) . (2.1.12)

In other words, we have brought the metric to the form

g =
dr2

1− 2m(r)
r

+ r2dΩ2 .

Note that from (2.1.12) we necessarily have

m(r) ≤ r

2
, (2.1.13)

with equality if and only if Sr is minimal by (2.1.10). Further

r ≥ 0 ,

by (2.1.12), with equality possible only if M = R
3, and r = 0 corresponding to

the fixed point of the action of SO(3). At the center of symmetry, elementary
regularity considerations show that we have eβ = 1, hence m(r) = o(r) for r
near zero. (In fact, one must have m(r) = O(r3) for small r when the metric is
C2, but this is irrelevant for the current considerations.)

It is remarkable that the seemingly complicated formula (2.1.12) together
with (2.1.6) lead to a very simple form of R:

R =
4m′

r2
. (2.1.14)
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If there are no minimal surfaces we set r0 = infp∈M r(p), otherwise we let r0
be the value of r corresponding to the outermost minimal surface Sr0 . Viewing
(2.1.14) as defining the derivative of m, one obtains

m(r) = m(r0) +
1

4

∫ r

r0

Rr2dr . (2.1.15)

Passing to the limit r →∞ we therefore conclude that, for R ≥ 0,

m = m(r0) +
1

4

∫ ∞

r0

Rr2dr ≥ m(r0) . (2.1.16)

Now, r0 > 0 is only possible if there are minimal spheres: this is due to
the fact that in the absence of minimal spheres the function eβ is uniformly
bounded on any compact set [r0, r1], so that the geodesics normal to the orbits
of SO(3) reach Sr0 in a finite distance. For a complete boundaryless manifold
this occurs only if Sr0 is a totally geodesic P 2, hence minimal. Thus, without
minimal spheres we must have r0 = 0, but then m(r0) = 0. Further, (2.1.16)
together with R ≥ 0 show that m = 0 if and only if R ≡ 0, then m(r) = 0 by
(2.1.15) for all r, so that β ≡ 0, and g is the Euclidean metric, as claimed.

Suppose, finally, that Sr0 is minimal, Equations (2.1.10)-(2.1.12) show that
this is possible with eγ(r) = r only if 0 < r0 = 2m(r0), so that m(r0) > 0 and

|Sr0 | = 4πr20 = 16π(m(r0))2 ,

proving (2.1.4). If equality holds in (2.1.4) then R vanishes, and m(r) =
m(r0) = m for all r ∈ [r0,∞) by (2.1.15). We have thus proved that for
r ≥ r0 the metric g takes the Schwarzschild form

g =
dr2

1− 2m
r

+ r2dΩ2 , m′ = 0 ,

compare (1.1.10), and the argument is complete. ✷

Remark 2.1.3 In dimension n, consider a metric of the form

g =
dr2

λr2 + k − 2m(r)
rn−2

+ r2h , (2.1.17)

where k, λ ∈ {−1, 0, 1} and h is a (r–independent) metric with Ricci scalar satisfying
R(h) = k(n − 1)(n − 2). As before, the obstruction to the introduction of this
coordinate system is the existence of minimal surfaces. Vincent Bonini pointed out
to me that Equation (2.1.14) becomes now

R(g) + λn(n− 1) =
(n− 1)m′

rn−1
. (2.1.18)

This leads to mass inequalities, and rigidity statements, as in Theorem 2.1.1, pro-
vided that R(g) + λn(n − 1) ≥ 0. This last condition is precisely the positivity
condition for the energy density of matter fields in the presence of a cosmological
constant Λ = −n(n− 1)λ/2.
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2.2 Axi-symmetry

In [38] Brill proved a positive energy theorem for a certain class of maximal,
axi-symmetric initial data sets on R

3. Brill’s analysis has been extended in-
dependently by Moncrief (unpublished), Dain (unpublished), and Gibbons and
Holzegel [104] to the following class of metrics:

g = e−2U+2α
(
dρ2 + dz2

)
+ ρ2e−2U (dϕ+ ρBρdρ+Azdz)

2 . (2.2.1)

All the functions are assumed to be ϕ–independent.

The above form of the metric, together with Brill’s formula for the mass,
are the starting points of the work of Dain [77], who proves an upper bound
for angular momentum in terms of the mass for a class of maximal, vacuum,
axi-symmetric initial data sets with a metric of the form above.

In this section we prove the energy positivity for a class of axi-symmetric
metrics, following [59]. We start by proving that any sufficiently differentiable
axially symmetric metric on a simply connected manifold with a finite number
of asymptotically flat ends can be written in the form (2.2.1). In general the
functions appearing in (2.2.1) will not satisfy the fall-off conditions imposed
in [77, 104], but we verify that the proof extends to the more general situation.

It is conceivable that, regardless of simple-connectedness and isotropy sub-
groups conditions, axi-symmetric metrics on manifolds obtained by blowing-up
a finite number of points in a compact manifold can be represented as in (2.2.1),
with the coordinates (ρ, z) ranging over a subset Ω of R2, and with identifica-
tions on ∂Ω, but this remains to be seen; in any case it is not clear how to
adapt the arguments leading to the mass and angular-momentum inequalities
to such situations.

2.2.1 Axi-symmetric metrics on simply connected asymptoti-
cally flat three dimensional manifolds

Let us start with a general discussion of Riemannian manifolds (M,g) with a
Killing vector η with periodic orbits; without loss of generality we can assume
that the period of principal orbits is 2π.

Let M/U(1) denote the collection of the orbits of the group of isometries
generated by η, and let π : M →M/U(1) be the canonical projection. An orbit
p ∈M/U(1) will be called non-degenerate if it is not a point in M . Recall that
near any p ∈ M/U(1) which lifts to an orbit of principal type there exists a
canonical metric q defined as follows: let X,Y ∈ Tp(M/U(1)), let p̂ ∈M be any
point such that πp̂ = p, and let X̂, Ŷ ∈ Tp̂M be the unique vectors orthogonal

to η such that π∗X̂ = X and π∗Ŷ = Y . Then

q(X,Y ) := g(X̂, Ŷ ) . (2.2.2)

(The reader will easily check that the right-hand-side of (2.2.2) is independent
of the choice of p̂ ∈ π−1({p}).)

There exists an open dense set of the quotient manifold M/U(1) which can,
at least locally, be conveniently modeled on smooth submanifolds (perhaps with
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boundary), say N , of M , which meet orbits of η precisely once; these are called
cross-sections of the group action. (For metrics of the form (2.2.1) there actually
exists a global cross-section N , meeting all orbits precisely once.) The manifold
structure of M/U(1) near p is then, by definition, the one arising from N . For

p ∈ N̊ := N \ {η = 0}

and for X,Y ∈ TpN̊ set

q(X,Y ) = g(X,Y )− g(η,X)g(η, Y )

g(η, η)
. (2.2.3)

One easily checks that this coincides with our previous definition of q.

The advantage of (2.2.3) is that it allows us to read-off properties of q
directly from those of g near N . On the other hand, the abstract definition
(2.2.2) makes clear the Riemannian character of q, and does not require any
specific transverse submanifold. This allows to use different N ’s, adapted to
different problems at hand, to draw conclusions about M/U(1); this freedom
will be made use of in what follows.

Clearly all the information about g is contained in q and in the one-form
field

η♭ := g(η, ·) ,
since we can invert (2.2.3) using the formula, valid for any X,Y ∈ TM ,

g(X,Y ) = q(PηX,PηY ) +
g(η,X)g(η, Y )

g(η, η)
, (2.2.4)

where Pη : TM → TN̊ is the projection from TM to TN̊ along η. (Recall that
Pη is defined as follows: since η is transverse to TN̊ , every vector X ∈ TM can
be uniquely written as X = αη+ Y , where Y ∈ TN̊ , then one sets PηX := Y .)
In order to establish (2.2.4) note, first, that this is only a rewriting of (2.2.3)
when both X and Y are tangent to N̊ . Next, (2.2.4) is an identity if either X
or Y is proportional to η, and the result easily follows.

Let xA, A = 1, 2 be any local coordinates on N̊ , propagate them off N̊ by
requiring that Lηx

A = 0, and let ϕ be a coordinate that vanishes on N̊ and
satisfies Lηϕ = 1. Then η = ∂ϕ, and Pη(X

A∂A + Xϕ∂ϕ) = XA∂A, so that
(2.2.4) can be rewritten as

g = qAB dx
AdxB︸ ︷︷ ︸
q

+g(η, η)(dϕ+ θ̃Adx
A

︸ ︷︷ ︸
=:θ̃

)2 , (2.2.5)

with

∂ϕqAB = ∂ϕθ̃A = ∂ϕ(g(η, η)) = 0 .

2.2.2 Global considerations

So far our considerations were completely general, but local. Suppose, however,
that M is simply connected, with or without boundary, and satisfies the usual
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condition that it is the union of a compact set and of a finite number of asymp-
totically flat ends. Then every asymptotic end can be compactified by adding
a point, with the action of U(1) extending to the compactified manifold in the
obvious way. Similarly every boundary component has to be a sphere [111,
Lemma 4.9], which can be filled in by a ball, with the action of U(1) extending
in the obvious way, reducing the analysis of the group action to the boundary-
less case. Existence of asymptotically flat regions implies (see, e.g., [22]) that
the set of fixed points of the action is non-empty. It is then shown in [157] that,
after the addition of a ball to every boundary component if necessary, M is
homeomorphic to R

3, with the action of U(1) conjugate, by a homeomorphism,
to the usual rotations of R3. On the other hand, it is shown in [150] that the
actions are classified, up to smooth conjugation, by topological invariants. It
follows that the action is in fact smoothly conjugate to the usual rotations of R3.
In particular there exists a global cross-section N̊ for the action of U(1) away
from the set of fixed points A , with N̊ diffeomorphic to an open half-plane,
with all isotropy groups trivial or equal to U(1), and with A diffeomorphic to
R.2

Somewhat more generally, the above analysis applies whenever M can be
compactified by adding a finite number of points or balls. A nontrivial exam-
ple is provided by manifolds with a finite number of asymptotically flat and
asymptotically cylindrical ends, as is the case for the Cauchy surfaces for the
domain of outer communication of the extreme Kerr solution.

2.2.3 Regularity at the axis

In the coordinates of (2.2.1) the rotation axis

A := {g(η, η) = 0}

corresponds to the set ρ = 0, which for asymptotically flat metrics is never
empty, see, e.g., the proof of Proposition 2.4 in [22].

In order to study the properties of q near A /U(1) ≈ A , recall that A is a
geodesic in M . It is convenient to introduce normal coordinates (x̂, ŷ, ẑ) : U →
R
3 defined on an open neighborhood U of A , where ẑ is a unit-normalized

affine parameter on A , and (x̂, ŷ) are geodesic coordinates on exp((TA )⊥).
Without loss of generality we can assume that U is invariant under the flow of
η.

As is well known, we have (recalling that orbits of principal type form an
open and dense set of M , as well as our normalization of 2π–periodicity of the
principal orbits)

η = x̂∂ŷ − ŷ∂x̂ .

If we denote by φt the flow of η, on U the map φπ is therefore the symmetry
across the axis A :

φπ(x̂, ŷ, ẑ) = (−x̂,−ŷ, ẑ) .

2I am grateful to João Lopez Costa and Allen Hatcher for discussions and comments on
the classification of U(1) actions.
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This formula has several useful consequences. First, it follows that the manifold
with boundary

N := {x̂ ≥ 0, ŷ = 0} ⊂ U

is a cross-section for the action of U(1) on U . This shows that near zeros of
η the quotient space M/U(1) can be equipped with the structure of a smooth
manifold with boundary. The analysis of the behavior of q near ∂N ≈ A

requires some work because of the factor 1/g(η, η) appearing in (2.2.3).
For further use we note that the manifold

Ñ := {ŷ = 0} ⊂ U (2.2.6)

provides, near A , a natural doubling of N across its boundary A .
In order to understand the smoothness of q on N and Ñ , we start by con-

sidering the function
f(x̂, ẑ) := g(η, η)(x̂, 0, ẑ) .

Then f(−x̂, ẑ) = f(x̂, ẑ) because g(η, η) ◦ φπ = g(η, η). It follows that all odd
x–derivatives of f vanish at x̂ = 0. It is then standard to show, using Borel’s
summation lemma (cf., e.g., [58, Proposition C1, Appendix C]), that there
exists a smooth function h(s, ẑ) such that

f(x̂, ẑ) = x̂2h(x̂2, ẑ) .

Letting ρ̂ =
√
x̂2 + ŷ2, invariance of g under φt allows us to conclude that

g(η, η)(x̂, ŷ, ẑ) = g(η, η)(ρ̂, 0, ẑ) = ρ̂2h(ρ̂2, ẑ) . (2.2.7)

Define ϕ̂ via the equations

x̂ = ρ̂ cos ϕ̂ , ŷ = ρ̂ sin ϕ̂ ,

so that
η = ∂ϕ̂ .

Considerations similar to those leading to (2.2.7) (see Lemma 5.1 of [58]) show
that there exist functions α, β, γ, δ, µ and gẑẑ, which are smooth with respect
to the arguments ρ̂2 and ẑ,3 with

µ(0, ẑ) = 1 , gẑẑ(0, ẑ) = 1 ,

such that

g = gẑẑdẑ
2 + 2αρ̂dẑdρ̂+ 2βρ̂2dẑdϕ̂+ γρ̂2dρ̂2 + 2δρ̂3dρ̂dϕ̂+ µ(dρ̂2 + ρ̂2dϕ̂2)

=
(
gẑẑ −

β2ρ̂2

µ

)
dẑ2 + 2

(
α− δβρ̂2

µ

)
ρ̂dẑdρ̂+

(
µ+ γρ̂2 − δ2ρ̂2

µ

)
dρ̂2

︸ ︷︷ ︸
q

+µρ̂2
(
dϕ̂+

δ

µ
ρ̂dρ̂+

β

µ
dẑ

︸ ︷︷ ︸
θ̃

)2
. (2.2.8)

3By this we mean that α(s, ẑ) is a smooth function of its arguments, and enters (2.2.8) in
the form α(ρ̂2, ẑ), etc.
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We say that N̂ is a doubling of a manifold N across a boundary Ṅ if N̂
consists of two copies of N with points on Ṅ identified in the obvious way.
From what has been said, by inspection of (2.2.8) it follows that:

Proposition 2.2.1 The quotient space M/U(1) has a natural structure of man-
ifold with boundary near A . The metric q and the one-form θ̃ are smooth up-
to-boundary, and extend smoothly across A by continuity to themselves when
M/U(1) is doubled at A .

For further use we note the formula

g(η, η) = ρ̂2 +O(ρ̂4) , (2.2.9)

for small ρ̂, which follows from (2.2.8), where ρ̂ is either the geodesic distance
from A , or the geodesic distance from A on exp((TA )⊥) (the latter being, for
small ρ̂, the restriction to exp((TA )⊥) of the former).

2.2.4 Axisymmetry and asymptotic flatness

We will consider Riemannian manifolds (M,g) with asymptotically flat ends, in
the usual sense that there exists a region Mext ⊂M diffeomorphic to R

3\B(R),
where B(R) is a coordinate ball of radius R, such that in local coordinates on
Mext obtained from R

3 \ B(R) the metric satisfies the fall-off conditions, for
some k ≥ 1,

gij − δij = ok(r−1/2) , (2.2.10)

∂kgij ∈ L2(Mext) , (2.2.11)

Rijkℓ = o(r−5/2) , (2.2.12)

where we write f = ok(r
α) if f satisfies

∂k1 . . . ∂kℓf = o(rα−ℓ) , 0 ≤ ℓ ≤ k .

As shown in Theorem 1.1.12, (2.2.10)-(2.2.11) together with R(g) ≥ 0 or R(g) ∈
L1, where R(g) is the Ricci scalar of g, guarantees a well-defined ADM mass
(perhaps infinite). On the other hand, the condition (2.2.12) (which follows
in any case from (2.2.10) for k ≥ 2) is useful when analyzing the asymptotic
behavior of Killing vector fields.

We will use (2.2.10)-(2.2.12) to construct the coordinate system of (2.2.4),
and also to derive the asymptotic behavior of the fields appearing in (2.2.4).
We start by noting that the arguments of [21, Appendix C] with N ≡ 0 there
show that there exists a rotation matrix ω such that in local coordinates on
Mext we have

ηi = ωijx
j + ok(r

1/2) , (2.2.13)

where ωij is anti-symmetric. It will be clear from the proof below (see (2.2.24))
that this equation provides the information needed in the region

x2 + y2 ≥ z2 , x2 + y2 + z2 ≥ R2 . (2.2.14)



2.2. AXI-SYMMETRY 59

However, near the axis a more precise result is required, and we continue by
constructing new asymptotically flat coordinates which are better adapted to
the problem at hand. The difficulties arise from the need to obtain decay
estimates on q − δ, where δ is the Euclidean metric on R

2, and on θ̃ as defined
in (2.2.8), which are uniform in r up to the axis A .

Let (x̂i) ≡ (x̂, ŷ, ẑ) be coordinates on R3\B(R), obtained by a rigid rotation
of xi, such that ωij x̂

j = ŷ∂x̂ − x̂∂ŷ. Set

x :=
x̂− x̂ ◦ φπ

2
, y :=

ŷ − ŷ ◦ φπ
2

, z :=
1

2π

∫ 2π

0
ẑ ◦ φs ds . (2.2.15)

Using the techniques in [21, 22] one finds

φs(x̂
i) = (cos(s)x̂−sin(s)ŷ+zx̂(s, x̂i), sin(s)x̂+cos(s)ŷ+zŷ(s, x̂i), ẑ+zẑ(s, x̂i)) ,

with zi satisfying
zi = ok+1(r

1/2) .

We then have

∂z

∂ẑ
= 1 +

1

2π

∫ 2π

0

∂zẑ(φs(x̂
i))

∂ẑ
ds = 1 + ok(r

−1/2) ,

Further,

∂z

∂x̂
=

1

2π

∫ 2π

0

∂zẑ(φs(x̂
i))

∂x̂
ds = ok(r

−1/2) ,

similarly

∂z

∂ŷ
= ok(r

−1/2) .

The estimates for the derivatives of x and y are straightforward, and we conclude
that

∂xi

∂x̂i
= δij + ok(r−1/2) ,

where, by an abuse of notation, we write again xi for the functions (x, y, z).
Standard considerations based on the implicit function theorem show that, in-
creasing R if necessary, the xi’s form a coordinate system on R

3\B(R) in which
(2.2.10)-(2.2.12) hold. Subsequently, (2.2.13) holds again.

From (2.2.15) one clearly has

∀ s ∈ R z ◦ φs = z ,

which shows that the planes

Pτ := {z = τ} , τ ∈ R , |τ | ≥ R ,

are invariant under the flow of η; equivalently,

ηz = 0 .
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Moreover,
x ◦ φπ = −x , y ◦ φπ = −y , (2.2.16)

so that all points with coordinates x = y = 0 are fixed points of φπ, and that
these are the only such points in Mext. Equation (2.2.16) further implies that
φπ maps the surfaces {x = 0} and {y = 0} into themselves. Since φπ is an
isometry, we obtain

gab(0, y, z) = gab(0,−y, z) , gzz(0, y, z) = gzz(0,−y, z) ,
gza(0, y, z) = −gza(0,−y, z) ; (2.2.17)

similarly

gab(x, 0, z) = gab(−x, 0, z) , gzz(x, 0, z) = gzz(−x, 0, z) ,
gza(x, 0, z) = −gza(−x, 0, z) . (2.2.18)

Equation (2.2.17) leads to

∂2ℓ+1gab
∂y2ℓ+1

(0, 0, z) = 0 ,
∂2ℓ+1gzz
∂y2ℓ+1

(0, 0, z) = 0 ,
∂2ℓgaz
∂y2ℓ

(0, 0, z) = 0 (2.2.19)

for ℓ ∈ N (or at least as far as the differentiability of the metric allows). The
analogous implication of (2.2.18) allows us to conclude that

∂gab
∂xc

(0, 0, z) = 0 ,
∂gzz
∂xa

(0, 0, z) = 0 , gaz(0, 0, z) = 0 . (2.2.20)

Incidentally, the last two equations in (2.2.20) show that {x = y = 0} is a
geodesic; this follows in any case from the well-known fact that the set of fixed
points of an isometry is totally geodesic.

Consider a point p lying on the axis of rotation A , then φt(p) = p for all t,
in particular φπ(p) = p. From what has been said we obtain that

A ∩Mext ⊂ {x = y = 0} . (2.2.21)

Recall, again, that every connected component of the axis of rotation A is an
inextendible geodesic in (M,g). Since the set at the right-hand-side of (2.2.21)
is a geodesic ray, we conclude that equality holds in (2.2.21). Hence

ηi(0, 0, z) = 0 (2.2.22)

and, for |z| ≥ R, the origin is the only point within the plane Pz at which η
vanishes.

We are ready now to pass to the problem at hand, namely an asymptotic
analysis of the fields g(η, η), q and θ̃ as in (2.2.5); we start with q. For ρ
sufficiently large the hypersurface {y = 0} is transverse to η (for small ρ we will
return to this issue shortly) and therefore the coordinates

(xA) := (x, z)

on this hypersurface, with x ≥ 0, can be used as local coordinates on M/U(1).
The contribution of gAB to qAB is of the form gAB = δAB + ok(r−1/2), which
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is manifestly asymptotically flat in the usual sense. Next, from (2.2.10) and
(2.2.13) we obtain

g(η, η) = ρ2 + ok(r3/2) ; (2.2.23)

here, as elsewhere, ρ2 = x2 + y2. Further

gAiη
igBjη

j

g(η, η)
dxAdxB =

(
δAi + ok(r−1/2)

)(
ωiax

a + ok(r1/2)
)
×

(
δBj + ok(r

−1/2)
)(
ωjbx

b + ok(r
1/2)

)

ρ2 + ok(r3/2)
dxAdxB

=
ok(r1/2)dxAdxB

ρ2 + ok(r3/2)
, (2.2.24)

because ωiax
aωjbx

bdxidxj = (xdy− ydx)2, which vanishes when pulled-back to
{y = 0}. In the region (2.2.14) we thus obtain

qAB = δAB + ok(r−1/2) , (2.2.25)

which is the desired estimate. However, near the zeros of η this calculation is
not precise enough to obtain uniform estimates on q and its derivatives.

In fact, it will be seen in the remainder of the proof that we need uniform
estimates for derivatives up to second order. Since g(η, η) vanishes quadratically
at the origin we need uniform control of the numerator of (2.2.24) up to terms
O(ρ4), in a form which allows the division to be performed without losing
uniformity.

So in the region {ρ ≤ |z|} ∩Mext, in which |z| is comparable with r, we
proceed as follows: Let

λab ≡ λab(z) :=
∂ηa

∂xb
(0, 0, z) , λab := gac(0, 0, z)λ

c
b ;

note that λab = ωab + ok−1(|z|−1/2) = ωab + ok−1(r
−1/2), similarly for λab. The

Killing equations imply that λab is anti-symmetric, hence

λxx = λyy = 0 , λxy = −λyx = 1 + ok−1(|z|−1/2) = 1 + ok−1(r
−1/2) .

From (2.2.22) we further obtain

∂iη
z = 0 =⇒ ∇iηz|A = 0 =⇒ ∇iηz|A = ∇zηi|A = ∇zηi|A = 0 .

Recall the well known consequence of the Killing equations (see (A.16.5),
p. 231 below),

∇i∇jηk = Rℓijkηℓ ,

which implies, at A ,

0 = ∇a∇bηc = ∂a∂bηc , (2.2.26)

0 = ∇a∇bηz = ∂a∇bηz − Γcazλbc = ∂a∂bηz − 2Γcazλbc . (2.2.27)
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From (2.2.13) we obtain, by integration of third derivatives of ηa along rays
from the origin x = y = 0 within the planes z = const,

∂2ηa
∂xb∂xc

= ok−3(|z|−5/2)xc = ok−3(r
−5/2)xc ,

and then successive such integrations give

∂ηa
∂xb

= λab + ok−3(|z|−5/2)xcxd = λab + ok−3(r
−5/2)xcxd ,

ηa = λabx
b + ok−3(r

−5/2)xcxdxe . (2.2.28)

At y = 0 we conclude that

ηx = ok−3(r
−5/2)xcxdxe .

Similarly we have ∇i∇jηk = Rℓij
kηℓ, hence ∇a∇bηc = ∂a∂bη

c = 0 at A , and
we conclude that

ηa = λabx
b + ok−3(r

−5/2)xcxdxe . (2.2.29)

This allows us to prove transversality of η to the plane {y = 0}. Indeed, from
(2.2.29) at y = 0 we have

ηy = (1 + o(r−1/2))x + o(r−5/2)x3 = (1 + o(r−1/2))x

which has no zeros for x 6= 0 and r ≥ R if R is large enough. Recall that we have
been assuming that |x| ≤ |z| in the current calculation; however, we already
know that η is transverse for |z| ≥ |x|, and transversality follows. Increasing
the value of the radius R defining Mext if necessary, we conclude that {y =
0, x ≥ 0} ∩Mext provides a global cross-section for the action of U(1) in Mext.

Using (2.2.27), a similar analysis of ηz gives

ηz = − Γcaz|A︸ ︷︷ ︸
ok−1(r−3/2)

λbcx
axb + ok−3(r

−5/2)xcxdxe .

We are now ready to return to (2.2.23),

g(η, η) = ηiη
i = ηaη

a = ρ̂2 + ok−3(r
−5/2)xaxbxcxd , (2.2.30)

where, at y = 0,

ρ̂2 := g̊abλ
a
cx
cλbdx

d = (1 + ok−1(r
−1/2))x2 ;

it follows that the last equality also holds for g(η, η) with k − 1 replaced by
k − 3. Instead of (2.2.24) we write

gAiη
igBjη

j

g(η, η)
dxAdxB =

ηAηBdx
AdxB

(1 + ok−3(r−1/2))x2

=
η2x dx

2 + 2ηxηzdx dz + η2z dz
2

(1 + ok−3(r−1/2))x2

=
ok−3(r

−3)x2dxAdxB

(1 + ok−3(r−1/2))

= ok−3(r
−1)dxAdxB . (2.2.31)
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We conclude that (2.2.25) holds throughout {y = 0} ∩Mext with k replaced by
k − 3.

To analyse the fall-off of Bρ and Az, note first that the discussion in the
paragraph before (2.2.5) shows that it suffices to do this at one single surface
transverse to the flow of the Killing vector field η; unsurprisingly, we choose

N := {y = 0 , x > 0 , x2 + z2 ≥ R2} ,

with R sufficiently large to guarantee transversality. Next, from (2.2.1) we find

ηidx
i = g(η, ·) = g(∂ϕ, ·) = g(η, η)(dϕ + ρBρdρ+Azdz) ,

which will allow us to relate Bρ and Az to ηi if we determine, say ∂iϕ and ∂iρ
on N . For the sake of clarity of intermediate calculations it is convenient to
denote by z̄ the coordinate z appearing in (2.2.1), we thus seek a coordinate
transformation

(x, y, z)→ (ρ, ϕ, z̄) , with z̄ = z everywhere and ρ = x on N,

which brings the metric to the form (2.2.1), with z there replaced by z̄. We
wish to show that, on N ,

J :=




∂x
∂ρ

∂x
∂ϕ

∂x
∂z̄

∂y
∂ρ

∂y
∂ϕ

∂y
∂z̄

∂z
∂ρ

∂z
∂ϕ

∂z
∂z̄


 =




1 ηx 0
0 ηy 0
0 0 1


 . (2.2.32)

The second column is immediate from

ηx∂x + ηy∂y + ηz∂z = η = ∂ϕ =
∂x

∂ϕ
∂x +

∂y

∂ϕ
∂y +

∂z

∂ϕ
∂z .

Similarly the third row follows immediately from dz = dz̄. It seems that the
remaining entries require considering J−1. Now, ϕ is a coordinate that vanishes
on N , so that ∂xϕ = ∂zϕ = 0 there. From ηi∂iϕ = 1 we thus obtain ∂yϕ = 1/ηy .
Next, ρ = x on N , giving ∂xρ = 1 and ∂zρ = 0 there. The equation ηi∂iρ = 0
gives then ηx + ηy∂yρ = 0, so that ∂yρ = −ηx/ηy . The derivatives of z̄ are
straightforward, leading to

J−1 =




∂ρ
∂x

∂ρ
∂y

∂ρ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∂z̄
∂x

∂z̄
∂y

∂z̄
∂z


 =




1 −ηx/ηy 0
0 1/ηy 0
0 0 1


 .

Inverting J−1 leads to (2.2.32).
From now on we drop the bar on z̄. From (2.2.32) one immediately has on

N

Az =
ηz

g(η, η)
=

{
ok−1(r

−3/2) + ok−3(r
−5/2)x, |x| ≤ |z|,

ok(r
−3/2), otherwise,

= ok−3(r
−3/2) . (2.2.33)



64 CHAPTER 2. NON-SPINORIAL POSITIVE ENERGY THEOREMS

Similarly, again on N ,

Bρ =
ηi

ρg(η, η)

∂xi

∂ρ
=

ηx
xg(η, η)

=

{
ok−3(r

−5/2), |x| ≤ |z|,
ok(r

−5/2), otherwise,

= ok−3(r
−5/2) . (2.2.34)

Finally, we note that

e−2U :=
g(η, η)

ρ2
=

{
1 + ok−1(r

−1/2) + ok−3(r
−5/2)x2, |x| ≤ |z|,

1 + ok(r−1/2), otherwise,

= 1 + ok−3(r
−1/2) . (2.2.35)

In summary:

Proposition 2.2.2 Under (2.2.10) with k ≥ 3 the metric q is asymptotically
flat. In fact, there exist coordinates (x, y, z) satisfying (2.2.10) and a constant
R ≥ 0 such that the plane {y = 0} ∩ {r ≥ R} is transverse to η except at
x = z = 0 where η vanishes and, setting xA = (x, z) we have

qAB − δAB = ok−3(r
−1/2) . (2.2.36)

Furthermore (2.2.33)-(2.2.35) hold.

2.2.5 Isothermal coordinates

We will use the same symbol q for the metric on the manifold obtained by
doubling M/U(1) across the axis.

We start by noting the following:

Proposition 2.2.3 Let q be an asymptotically flat metric on R
2 in the sense

of (2.2.36) with k ≥ 5. Then q has a global representation

q = e2u(dv2 + dw2) , with u −→√
v2+w2→∞ 0 . (2.2.37)

In fact, u = ok−4(r
−1/2).

Remark 2.2.4 The classical justification of the existence of global isothermal
coordinates proceeds by constructing the coordinate v of (2.2.37) as a solution
of the equation ∆qv = 0. A more careful version of the arguments in the spirit
of [190, Lemma 2.3] shows that v has no critical points. However, the approach
here appears to be simpler.

Proof: Let q̃AB = e−2uqAB, then q̃ is flat if and only if u satisfies the equation

∆qu = −R(q)

2
, (2.2.38)

where R(q) is the scalar curvature of q. For asymptotically flat metrics q, with
asymptotically Euclidean coordinates (x, z), this equation always has a solution
such that

u+ µ ln(
√
x2 + z2) −→√

x2+z2→∞ 0 , where µ =
1

4π

∫

R2

R(q) dµq , (2.2.39)

where dµq is the volume form of q. More precisely, we have the following:
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Lemma 2.2.5 Consider a metric q on R
2 satisfying

qAB − δAB = oℓ(r
−1/2)

for some ℓ ≥ 2, with (xA) = (x, z). For any continuous function R = oℓ−2(r
−5/2)

there exists û = oℓ−1(r
−1/2) and a solution of (2.2.38) such that

u = û− µ ln(
√
x2 + z2) ,

with µ as in (2.2.39).

Proof: We start by showing that (2.2.38) can be solved for |x| large. Indeed,
consider the sequence vi of solutions of (2.2.38) on the annulus

Γ(ρ, ρ+ i) := D(0, ρ+ i) \D(0, ρ) ,

with zero boundary values. Here ρ is a constant chosen large enough so that the
functions ±C|x|−1/2, with C = 8‖R|x|5/2‖L∞ , are sub- and super-solutions of
(2.2.38). Shifting by a constant if necessary, the usual elliptic estimates (com-
pare [57]) show that a subsequence can be chosen which converges, uniformly
on compact sets, to a solution v = Oℓ−1(r−1/2) of (2.2.38) on R

2 \D(0, ρ). In

the notation of [57] we have in fact v ∈ Cℓ−1,λ
−1/2,0 for any λ ∈ (0, 1). Furthermore,

using the techniques in [57] one checks that v = oℓ−1(r
−1/2).

We extend v in any way to a Cℓ−1,λ function on R
2, still denoted by v. Let

q̂ := e−2vq, then q̂ is flat for |x| ≥ ρ. Let êA be any q̂–parallel orthonormal co-
frame on R

2\D(0, ρ), performing a rigid rotation of the coordinates if necessary
we will have êA = dxA +

∑
B oℓ−1(|x|−1/2)dxB for |x| large. Let x̂A be any

solutions of the set of equations dx̂A = êA. By the implicit function theorem
the functions x̂A cover R

2 \D(0, ρ̂), for some ρ̂, and form a coordinate system
there, in which q̂AB = δAB .

Since (2.2.38) is conformally covariant, we have reduced the problem to one
where R has compact support, and q is a Cℓ−1,λ metric which is flat outside of
a compact set. This will be assumed in what follows.

Let us use the stereographic projection, say ψ, to map R
2 to a sphere, then

(2.2.38) becomes an equation for û := (u− v) ◦ψ−1 on S2 \{i0}, where i0 is the
north pole of S2, of the form

∆hû = |x|4f , (2.2.40)

where hAB := |x|−4qAB is a Cℓ−1,λ metric on S2, similarly f is a Cℓ−2 function
on S2 supported away from the north pole. In fact, in a coordinate system

yA = xA/|x|2 (2.2.41)

near i0 = {yA = 0}, where the xA’s are the explicitly flat coordinates on
R
2 \D(0, R) for the metric q, we have

hAB = δAB .
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Let Hk(S
2) be the usual L2-type Sobolev space of functions on S2 and set

Hk =
{
χ ∈ Hk(S

2) |
∫

S2

χdµh = 0
}
, (2.2.42)

where dµh is the measure associated with the metric h. We have

Proposition 2.2.6 Let h be a twice-differentiable metric on S2, then ∆h :
H2 → H0 is an isomorphism.

Proof: Injectivity is straightforward. To show surjectivity, let X ⊂ L2 be the
image of H2 by ∆h, by elliptic estimates X is a closed subspace of L2(S2). Let
ϕ ∈ L2 be orthogonal to X, then

∀χ ∈ H2

∫
ϕ∆hχdµh = 0 .

Thus ϕ is a weak solution of ∆hϕ = 0, by elliptic estimates ϕ ∈ H2. But setting
χ = ϕ and integrating by parts one obtains dϕ = 0, hence ϕ is constant, which
shows that X = H0. ✷

Returning to the proof of Lemma 2.2.5, we have seen that (2.2.38) can be
reduced to solving the problem

∆h̄ū = f̄ , (2.2.43)

where h̄ is flat outside of a compact set. Let

µ := − 1

2π

∫

R2

f̄ dµh̄ ,

then
∫

R2

∆h̄

(
µ ln

√
1 + x2 + z2

)
dµh̄ = lim

ρ→∞
µ

∮

C(0,ρ)
D
(

ln
√

1 + x2 + z2
)
· n

= 2πµ = −
∫

R2

f̄ dµh̄

Thus (2.2.43) is equivalent to the following equation for the function ũ :=
ū+ µ ln

√
1 + x2 + z2:

∆h̄ũ = f̄ + ∆h̄

(
µ ln

√
1 + x2 + z2

)
,

and the right-hand-side has vanishing average. Transforming to a problem on
S2 as in (2.2.40), we can solve the resulting equation by Proposition 2.2.6.
Transforming back to R

2, and shifting u by a constant if necessary, the result
follows. ✷

Returning to the proof of Proposition 2.2.3, we claim that µ = 0; that is,

∫

R2

R(q) dµq = 0 . (2.2.44)
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This is the simplest version of the Gauss-Bonnet theorem, we give the proof for
completeness: consider any metric on R

2 satisfying

qAB − δAB = o1(1) , R(q) ∈ L1 .

Let θ̃a, a = 1, 2, be an orthonormal co-frame for q obtained by a Gram–
Schmidt procedure starting from (dx1, dx2), with connection coefficients ωab.
Then ωab = o(r−1). It is well known that, for a metric defined on an open
subset of R2,

R(q) dµq = 2dω1
2 , (2.2.45)

as follows from Cartan’s second structure equation (A.17.20); see (A.17.22)).
Equation (2.2.44) immediately follows by integration on B(R), using Stokes’
theorem, and passing to the limit R→∞.

To finish the proof, note that the metric q̃ is a complete flat metric on R
2,

and the Hadamard–Cartan theorem shows the existence of global manifestly
flat coordinates, say (v,w) so that q can be written as in (2.2.37). ✷

Returning to the problem at hand, recall that the metric q on R
2 has been

obtained by doubling M/U(1) across A . Let us denote by φ the corresponding
isometry; note that in Mext/U(1), in the coordinates (x, z) constructed in Sec-
tion 2.2.4, the isometry φ is the symmetry around the z-axis: φ(x, z) = (−x, z).
Similarly, in geodesic coordinates centred on A , φ(x, z) = (−x, z).

As φ is an isometry of q, preserving the boundary conditions satisfied by u,
uniqueness of solutions of (2.2.38) implies that u ◦ φ = u. This, together with
smoothness of u on the doubled manifold, shows that on A the gradient ∇u
has only components tangential to A . This implies that A is totally geodesic
both for q and q̃.

Choose any point p on A . By a shift of (v,w) we can arrange to have
(v(p), w(p)) = (0, 0). Let (ρ, z) be coordinates obtained by a rigid rotation of
(v,w) around the origin so that the vector tangent to A at p coincides with ∂z.
Then the axis {(0, z)}z∈R is a geodesic of q̃, sharing a common direction at p
with A , hence

A ≡ {(0, z)}z∈R .
Since φ is an isometry of q̃ which is the identity on A , it easily follows that

φ(ρ, z) = (−ρ, z) ,

so that M/U(1) = {ρ ≥ 0}. We have thus obtained the representation (2.2.1)
of g.

The reader might have noticed that the function u constructed in this section
is a solution of a Neumann problem with vanishing Neumann data on the axis.

For further use, we note that from (2.2.1), on exp((TA )⊥) the geodesic
distance ρ̂ from the origin equals

ρ̂ = e−(U−α)(0,z)ρ+O(ρ3) ,

and comparing with (2.2.9) we obtain

α(0, z) = 0 . (2.2.46)
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Now, the function u = ok−4(r
−1/2) of Proposition 2.2.3 equals u = 2(α −

U) (compare (2.2.1)). By (2.2.46) and an analysis of Taylor expansions as in
Section 2.2.4 we infer that, at {y = 0},

α = ok−5(r
−3/2)x . (2.2.47)

From Proposition 2.2.2 we conclude:

Theorem 2.2.7 Let k ≥ 5. Any Riemannian metric on R
3 invariant under

rotations around a coordinate axis and satisfying

gij − δij = ok(r
−1/2) (2.2.48)

admits a global representation of the form (2.2.1), with the functions U , α, Bρ
and Az satisfying

Az = ok−3(r
−3/2) ; Bρ = ok−3(r

−5/2) ; U = ok−3(r
−1/2) ; α = ok−4(r

−1/2) .
(2.2.49)

Furthermore (2.2.47) holds.

Remark 2.2.8 The decay rate o(r−1/2) in (2.2.48) has been tailored to the
requirement of a well-defined ADM mass; the result remains true with decay
rates o(r−α) or O(r−α) for any α ∈ (0, 1), with the decay rate carrying over to
the functions appearing in (2.2.1) in the obvious way, as in (2.2.49).

Several asymptotically flat ends

The above considerations generalize to several asymptotically flat ends:

Theorem 2.2.9 Let k ≥ 5, and consider a simply connected three-dimensional
Riemannian manifold (M,g) which is the union of a compact set and of N
asymptotically flat ends, and let Mext denote the first such end. If g is invariant
under an action of U(1), then g admits a global representation of the form
(2.2.1), where the coordinates (z, ρ) cover (R×R+)\{~ai}Ni=2, with the punctures
~ai = (0, ai) lying on the z-axis, each ~ai representing “a point at infinity” of the
remaining asymptotically flat regions. The functions U , α, Bρ and Az satisfy
(2.2.49) in Mext.

If we set
ri =

√
ρ2 + (z − ai)2 ,

then we have the following asymptotic behavior near each of the punctures

U = 2 ln ri + ok−4(r
1/2
i ) , α = ok−4(r

1/2
i ) , (2.2.50)

where f = oℓ(r
1/2
i ) means that ∂A1 . . . ∂Ajf = oℓ−j(r

1/2−j
i ) for 0 ≤ j ≤ ℓ.

Finally, (2.2.47) holds.

Proof: As discussed in Section 2.2.2, M is diffeomorphic to R
3 minus a finite

set of points and, after perfoming a diffeomorphism if necessary, the action of
the group is that by rotations around a coordinate axis of R3. As in the proof of
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Theorem 2.2.7 there exists a function v = ok−4(r
−1/2) so that the metric e−2vq

is flat for |x| large enough in each of the asymptotic regions. Equation (2.2.38)
is then equivalent to the following equation for u− v,

∆e−2vq(u− v) = −e2v
(R(q)

2
+ ∆qv

)
, (2.2.51)

where the right-hand-side is compactly supported on M/U(1). Let Mext/U(1)
be the orbit space associated to the first asymptotically flat region and let ψ
be any smooth strictly positive function on M/U(1) which coincides with |~y|−4

in each of the remaining asymptotically flat regions of M/U(1), where the yA’s
are the manifestly flat coordinates there, with ψ equal to one in Mext/U(1).
Then (2.2.51) is equivalent to

∆ψe−2vq(u− v) = −ψ−1e2v
(R(q)

2
+ ∆qv

)
. (2.2.52)

Both the metric ψe−2vq and the source term extend smoothly through the
origins, say i0j , 2 = 1, . . . , N , of each of the local coordinate systems xA :=

yA/|~y|2. Simple connectedness of the two-dimensional manifold

N := M/U(1) ∪ {i0j}Nj=2

implies that N ≈ R
2, so that (2.2.52) is an equation to which Lemma 2.2.5

applies. We thus obtain a solution, say w, of (2.2.52), and subsequently a
solution v+w of (2.2.38) which tends to a constant in each of the asymptotically
flat regions (possibly different constants in different ends), except (as will be
seen shortly) in Mext where it diverges logarithmically. Note that at large
distances in each of the asymptotically flat regions the function w is harmonic
with respect to the Euclidean metric, hence approaches its asymptotic value
as |y|−1, with gradient falling-off one order faster. Similarly v has controlled
asymptotics there, as in the proof of Lemma 2.2.5. Integrating (2.2.38) over
M/U(1) one finds that the coefficient of the logarithmic term is again as in
(2.2.39).

In order to determine that coefficient, we note that since N ≈ R
2 there

exists a global orthonormal coframe for g, e.g. obtained by a Gram–Schmidt
procedure from a global trivialization of T ∗

R
2. As a starting point for this

procedure one can, and we will do so, use a holonomic basis dxA with the
coordinate functions xA equal to the manifestly flat coordinates in Mext/U(1).
Furthermore, after a rigid rotation of the yA’s if necessary, where the yA’s are
the manifestly flat coordinates for the metric e−2(w+v)q in the asymptotically
flat regions other than Mext/U(1), we can also assume that the dxA’s coincide
with d(yA/|~y|2) near each i0j . By (2.2.45) and by what is said in the paragraph
following that equation we have

µ =
1

4π

∫

M/U(1)
R(q)dµq =

N∑

j=2

lim
ǫ→0

1

2π

∮

C(i0j ,ǫ)
ω1

2 .
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where the C(i0j , ǫ)’s are circles of radius ǫ centred at the i0j ’s. Near each i0j
the metric q takes the form e2(v+w)δABdy

AdyB = e2(v+w)|~x|−4δABdx
AdxB. The

co-frame θ̃A is given by θ̃A = e(v+w)|~x|−2dxA, leading to

ω1
2 =

2

|~x|2 (x1dx2 − x2dx1) + o(|~x|−1/2)dxA ,

so that

lim
ǫ→0

∮

C(i0j ,ǫ)
ω1

2 = 4π .

We note that we have proved:

Proposition 2.2.10 Let q be a Riemannian metric on a simply connected two-
dimensional manifold which is the union of a compact set and N ends which
are asymptotically flat in the sense of (2.2.36), then

µ :=
1

4π

∫
R(q)dµq = 2(N − 1) .

✷

Since µ 6= 0, the function v + w obtained so far needs to be modified to
get rid of the logarithmic divergence. In order to do that for j = 2, . . . , N we
construct functions uj, q-harmonic on M/U(1), such that, in coordinates xA

which are manifestly conformally flat in each of the asymptotic regions,

uj =





ln |~x|+ o(1), in Mext/U(1);
− ln |~x|+O(1), in the AF coordinates in the j’th asymptotic region;
O(1), in the remaining asymptotic regions.

(2.2.53)
This can be done as follows: let ûj be any smooth function which in local
manifestly conformally flat coordinates both near i0j and on Mext/U(1) equals
ln |~x|, and which equals one at large distances in the remaining asymptotically
flat regions. Let ψ be as in (2.2.52), then ∆ψe−2(v+w)qûj is compactly supported
in M/U(1). Further

∫

M/U(1)
∆ψe−2(v+w)qûj dµψe−2(v+w)q

=

∫

M/U(1)
∆ψe−2vqûj dµψe−2vq

= lim
R→∞

∫

C(0,ρ)
D ln |~x| · n− lim

ǫ→0

∫

C(0,ǫ)
D ln |~x| · n

= 0 .

We can therefore invoke Lemma 2.2.5 to conclude that there exists a uniformly
bounded function v̂, approaching zero as one recedes to infinity in Mext/U(1),
such that

∆ψe−2(v+w)qv̂ = −∆ψe−2(v+w)qûj .

Subsequently the function uj := ûj + v̂ is q–harmonic and satisfies (2.2.53).
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The function

u := v + w + 2
N∑

j=2

uj + α ,

where α is an appropriately chosen constant (compare [57]), defines the desired
conformal factor approaching one as one tends to infinity in Mext/U(1) so that
e−2uq is flat. This conformal factor further compactifies each of the asymptotic
infinities except the first one to a point, so that e−2uq extends by continuity to a
flat complete metric on the simply connected manifold N . By the Hadamard–
Cartan theorem there exists on N a global manifestly flat coordinate system
for e−2uq. The axis of rotation can be made to coincide with a coordinate axis
as in the proof of Theorem 2.2.7. It should be clear that the points at infinity
i0j lie on that axis.

In order to prove (2.2.50), note that the construction above gives directly.

U − α = u = Ci + 2 ln ri + ok−4(r
1/2
i ) ,

Next, U can be determined by applying an inversion

yA 7→ (ρ, z − ai) = (xA) = (yA/|~y|2) (2.2.54)

to (2.2.35),

ρ2e−U = g(η, η) =
ρ2

(ρ2 + (z − ai)2)2

(
1 + ok−3((ρ

2 + (z − ai)2)1/4)
)
.

Since α vanishes on the axis (y1)2 +(y2)2 = 0 in each of the asymptotic regions,
we conclude that Ci = 0, and (2.2.50) follows. ✷

2.2.6 ADM mass

Let m be the ADM mass of g,

m := lim
R→∞

1

16π

∫

SR

(gij,j − gjj,i)dSi ,

where dSi = ∂i⌋(dx∧dy∧dz). This has to be calculated in a coordinate system
satisfying (2.2.10). Typically one takes SR to be a coordinate sphere S(R) of
radius R; however, as is well-known, under (2.2.10) SR can be taken to be any
piecewise differentiable surface homologous to S(R) such that

inf{r(p)|p ∈ SR} →R→∞ ∞ . (2.2.55)

We will exploit this freedom in our calculation to follow.

We introduce new coordinates x and y so that ρ and ϕ in (2.2.1) become
the usual polar coordinates on R

2:

x = ρ cosϕ , y = ρ sinϕ .
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This implies

ρdρ = 1
2d(ρ2) = xdx+ ydy ,

ρ2dϕ = xdy − ydx ,
ρ2dϕ2 = dx2 + dy2 − dρ2 .

Inserting the above in (2.2.1) one obtains

g = e−2U (dx2 + dy2)︸ ︷︷ ︸
dρ2+ρ2dϕ2

+
e−2U (e2α − 1)

ρ2
(xdx+ ydy)2︸ ︷︷ ︸

ρ2dρ2

+e−2U+2αdz2

+2e−2U (xdy − ydx)
(
Bρ(xdx+ ydy) +Azdz

)

+ terms quadratic in (Bρ, Az) . (2.2.56)

This will satisfy (2.2.10) if we assume that

U ,
(e2α − 1)x2

ρ2
,

(e2α − 1)xy

ρ2
,

(e2α − 1)y2

ρ2
= o1(r

−1/2) , (2.2.57)

Bρx
2 , Bρxy , Bρy

2 , Azx , Azy = o1(r−1/2) , (2.2.58)

consistently with Theorem 2.2.7. Then the terms occurring in the last line of
(2.2.56) will not give any contribution to the mass integral. We rewrite g as

g = e−2U
(
dx2 + dy2

)
︸ ︷︷ ︸

(a)

+
e2α − 1

ρ2
(xdx+ ydy)2

︸ ︷︷ ︸
(b)

+ e−2U+2αdz2︸ ︷︷ ︸
(c)

+ 2(xdy − ydx)
(
Bρ(xdx+ ydy) +Azdz

)

︸ ︷︷ ︸
(d)

+o1(r−1)dxidxj . (2.2.59)

Let us denote by xa the variables x, y. As an example, consider the contribution
of (c) to the mass integrand:

(c) −→ gzz,zdSz − gzz,idSi = −gzz,adSa =
(

2(U − α),a + o(r−2)
)
dSa .

A similar calculation of (a) easily leads to

(a) + (c) −→ (4U,i + o(r−2))dSi − 2α,adSa .

The contribution of (b) to the mass integrand looks rather uninviting at first
sight:

(b) −→
[(e2α − 1

ρ2

)
,y
xy −

(e2α − 1

ρ2

)
,x
y2 +

e2α − 1

ρ2
x
]
dSx

+
[(e2α − 1

ρ2

)
,x
xy −

(e2α − 1

ρ2

)
,y
x2 +

e2α − 1

ρ2
y
]
dSy

−
(e2α − 1

ρ2

)
,z

(x2 + y2)dSz .
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Fortunately, things simplify nicely if SR is chosen to be the boundary of the
solid cylinder

CR := {−R ≤ z ≤ R , 0 ≤ ρ ≤ R} . (2.2.60)

Then SR is the union of the bottom BR = {z = −R , 0 ≤ ρ ≤ R}, the lid
LR = {z = R , 0 ≤ ρ ≤ R}, and the wall WR = {−R ≤ z ≤ R , ρ = R}. On
the bottom and on the lid we only have a contribution from dSz, which equals

−
(

2α,z + o(r−2)
)
dx ∧ dy

on the lid, and minus this expression on the bottom. On the wall dSz gives no
contribution, while

dSx|WR
= (dy∧dz)|WR

= x|WR
dϕ∧dz , dSy|WR

= −(dx∧dz)|WR
= y|WR

dϕ∧dz .

Surprisingly, the terms in (b)|WR
containing derivatives of α drop out, leading

to

(b)|WR
−→

(
2α+ o(r−2)

)
dϕ ∧ dz .

We continue with the contribution of Bρ to (d):

[ (
(x2 − y2)Bρ

)
,y

︸ ︷︷ ︸
(1)

− (2xyBρ),x︸ ︷︷ ︸
(2)

]
dSx +

[ (
(x2 − y2)Bρ

)
,x

︸ ︷︷ ︸
(3)

+ (2xyBρ),y︸ ︷︷ ︸
(4)

]
dSy .

It only contributes on the wall WR, giving however a zero contribution there:

[(
(x2 − y2)(x∂y + y∂x)︸ ︷︷ ︸

(1)+(3)

+ 2xy(y∂y − x∂x)︸ ︷︷ ︸
(4)+(2)

)
Bρ

]
dϕ ∧ dz

=
[
(x2 + y2) (x∂y − y∂x)Bρ︸ ︷︷ ︸

=0

]
dϕ ∧ dz = 0 .

Finally, Az produces the following boundary integrand:

−y∂zAzdSx + x∂zAzdSy +
[

(x∂y − y∂x)Az︸ ︷︷ ︸
=0

]
dSz ,

and one easily checks that the dSx and dSy terms cancel out when integrated
upon WR, while giving no contribution on the bottom and the lid.

Collecting all this we obtain

m = lim
R→∞

1

16π

[
4

∫

SR

∂iUdSi + 2

∫

WR

(α− xa

ρ
∂aα) dϕdz

−2

∫

LR

∂zαdx dy + 2

∫

BR

∂zα dx dy
]

= lim
R→∞

1

4π

[ ∫

SR

∂i(U −
1

2
α)dSi +

1

2

∫

WR

α dϕdz
]
.
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We have the following formula for the Ricci scalar (3)R of the metric (2.2.1)
(the details of the calculation can be found in [104]):4

−e
−2U+2α

4
(3)R = −∆δ(U −

1

2
α) +

1

2
(DU)2− 1

2ρ

∂α

∂ρ
+
ρ2e−2α

8
(ρBρ,z −Az,ρ)2 .

(2.2.61)
The Laplacian ∆δ and the gradient D are taken with respect to the flat metric
δ on R

3.

Exercice 2.2.11 Let us verify (2.2.61) in the special case

g = e−2(U−α)
(
dρ2 + dz2

)
+ ρ2e−2Udϕ2 .

We choose the obvious coframe,

θρ = F dρ , θz = F dz , θϕ = Gdϕ ,

with F := e−(U−α) and G := ρe−U . Recall Cartan’s first structure equation, with
ωab = ω[ab]:

dθa = −ωa
b ∧ θb .

This gives

∂zF

F 2
θρ ∧ θz = ωρ

ϕ ∧ θϕ + ωρ
z ∧ θz ,

∂ρF

F 2
θρ ∧ θz = ωρ

z ∧ θρ + ωϕ
z ∧ θϕ ,

1

FG

(
(∂ρG) θρ ∧ θϕ − (∂zG) θϕ ∧ θz

)
= ωρ

ϕ ∧ θρ − ωϕ
z ∧ θz .

The following form of the connection one-forms is compatible with the above:

ωρ
ϕ = ᾱ θϕ , ωρ

z = δ̄ θρ + γ̄ θz , ωϕ
z = β̄ θϕ .

A comparison of the coefficients gives

ᾱ = −∂ρG
FG

=
∂ρU − 1

ρ

F
,

β̄ =
∂zG

FG
= −∂zU

F
,

γ̄ = −∂ρF
F 2

=
∂ρ(U − α)

F
,

δ̄ =
∂zF

F 2
= −∂z(U − α)

F
.

The curvature two-forms are calculated using the second structure equation,

Ωa
b = dωa

b + ωa
c ∧ ωc

b .

We have

Ωρ
z = dωρ

z + ωρ
ϕ ∧ ωϕ

z

4In the time-symmetric case (2.2.61) can be viewed as a PDE for U given the remaining
functions and the matter density. Assuming that this equation can indeed be solved, this
allows us to prescribe freely the functions α, Bρ and Az. In such a rough analysis there does
not seem to be any constraints on α, Bρ and Az (in particular they can be chosen to satisfy
(2.2.57)-(2.2.58)), while U , and hence its asymptotic behavior, is determined by (2.2.61).



2.2. AXI-SYMMETRY 75

= d
(
δ̄Fdρ+ γ̄Fdz

)
+ ᾱ θϕ ∧ β̄ θϕ

= ∂z(δ̄F ) dz ∧ dρ+ ∂ρ(γ̄F ) dρ ∧ dz

=
1

F

(
∂ρ(γ̄F )− ∂z(δ̄F )

)
θρ ∧ θz .

Similarly,

Ωρ
ϕ =

(
∂ρ(Gᾱ)

GF
− δ̄β̄

)
θρ ∧ θϕ +

(
γ̄β̄ − ∂z(Gᾱ)

GF

)
θϕ ∧ θz ,

Ωϕ
z =

(
∂ρ(Gβ̄)

GF
+ ᾱδ̄

)
θρ ∧ θϕ −

(
∂z(Gβ̄)

GF
+ ᾱβ̄

)
θϕ ∧ θz .

To calculate the scalar curvature R we only need some components of the Riemann
tensor:

R = gabRab = gabRc
acb = 2Rρϕ

ρϕ + 2Rρz
ρz + 2Rϕz

ϕz .

We find (in a potentially misleading notation, where all indices are frame indices)

Rρ
zρz =

∂ρ(F γ̄)− ∂z(F δ̄)

F 2
=

1

F 2

(
∂2ρ(U − α) + ∂2z (U − α)

)

=
∆δ(U − α)− 1

ρ∂ρ(U − α)

F 2
,

Rϕ
zϕz = −

(
∂zβ̄

F
+ ᾱγ̄

)
=

1

FG
∂z

(
∂zG

FG
G

)
+
∂zG

FG

∂ρF

F 2

=
1

F 2

(
∂2zU − (∂zU)(∂zα)− (∂ρU)2 + (∂ρU)(∂ρα) +

∂ρ(U − α)

ρ

)
,

Rρ
ϕρϕ =

∂ρ(Gᾱ)

FG
− β̄δ̄ =

1

FG
∂ρ

(
−∂ρG
FG

G

)
− ∂zF

F 2

∂zG

FG

=
1

F 2

(
∂ρU

ρ
+ ∂2ρU +

∂ρα

ρ
− (∂zU)2 + (∂zU)(∂zα)− (∂ρU)(∂ρα)

)
.

In Rρ
ϕρϕ +Rϕ

zϕz most terms cancel out, and there remains

Rρ
ϕρϕ +Rϕ

zϕz =
(∂2ρ + ∂2z )U + 2

ρ∂ρU − (∂ρU)2 − (∂zU)2

F 2

=
∆δU + 1

ρ∂ρU − (DU)2

F 2
,

keeping in mind that in cylindrical coordinates

∆δf =
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2
.

We conclude that

F 2

2
R = ∆δU +

1

ρ
∂ρU − (DU)2 + ∆δ(U − α)− 1

ρ
∂ρ(U − α)

= ∆δ(2U − α) +
1

ρ
∂ρα− (DU)2 ,

which is indeed (2.2.61) when Bρ and Az vanish. ✷
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Now,

lim
R→∞

1

4π

[ ∫

SR

∂i(U −
1

2
α)dSi +

1

2

∫

WR

α dϕdz
]

= lim
R→∞

[ 1

4π

∫

CR

[∆δ(U −
α

2
) +

1

2ρ

∂α

∂ρ
] d3x +

1

4

∫ R

−R
α(ρ = 0, z)dz

]
.

(2.2.62)

The last integral vanishes by (2.2.46). Equations (2.2.61)-(2.2.62) and the dom-
inated convergence theorem yield now

m =
1

16π

∫ [
(3)R+

1

2
ρ2e−4α+2U (ρBρ,z −Az,ρ)2

]
e2(α−U)d3x

+
1

8π

∫
(DU)2 d3x . (2.2.63)

Since (3)R = 16πµ+KabK
ab ≥ 0 for initial data sets satisfying trgK = 0, where

µ is the energy density (not to be confused with the constant µ in (2.2.39)),
this proves positivity of mass for initial data sets as considered above.

Suppose that m = 0 with (3)R ≥ 0, then (2.2.63) gives

(3)R = ρBρ,z −Az,ρ = DU = 0 . (2.2.64)

The last equality implies U ≡ 0, and from (2.2.61) we conclude that

∆δα−
1

2ρ

∂α

∂ρ
= 0 .

The maximum principle applied on the set

B(R) \ {ρ ≤ 1/R}

gives α ≡ 0 after passing to the limit R → ∞. The before-last equality in
(2.2.64) shows that the form ρBρdρ+Azdz is closed, and simple-connectedness
implies that there exists a function λ such that ρBρdρ + Azdz = dλ, bringing
the metric (2.2.1) to the form

dρ2 + dz2 + ρ2 (d(ϕ+ λ))2 . (2.2.65)

Hence g is flat. One could now attempt to analyse ϕ + λ near the axis of
rotation to conclude that (ρ, ϕ + λ, z) provide a new global polar coordinate
system, and deduce that g is the Euclidean metric. However, it is simpler to
invoke the Hadamard–Cartan theorem to achieve that conclusion.

Summarizing, we have proved:

Theorem 2.2.12 Consider a metric of the form (2.2.1) on M = R
3, where

(ρ, ϕ, z) are polar coordinates, with Killing vector ∂ϕ, and suppose that the
decay conditions (2.2.57)-(2.2.58) hold. If

3R ≥ 0
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then 0 ≤ m ≤ ∞. Furthermore, we have m <∞ if and only if

3R ∈ L1(R3) , DU, ρBρ,z −Az,ρ ∈ L2(R3) .

Finally, m = 0 if and only if g is the Euclidean metric. ✷

Remark 2.2.13 Theorem 2.2.7 shows that the coordinates required above exist
for a general asymptotically flat axisymmetric metric on R

3 if (2.2.10) holds
with k = 6.

2.2.7 Several asymptotically flat ends

Theorem 2.2.12 proves positivity of mass for axi-symmetric metrics on R
3. More

generally, one has the following:

Theorem 2.2.14 Let (M,g) be a simply connected three dimensional Rieman-
nian manifold which is the union of a compact set and of a finite number of
asymptotic regions Mi, i = 1, . . . , N , which are asymptotically flat in the sense
of (2.2.10)-(2.2.11) with k ≥ 6. If g is invariant under an action of U(1), and
if

3R ≥ 0 ,

then the ADM mass mi of each of the ends Mi satisfies 0 < mi ≤ ∞, with
mi <∞ if and only if

3R ∈ L1(Mi) , DU, ρBρ,z −Az,ρ ∈ L2(Mi) .

Proof: The result follows immediately from the calculations in this section
together with Theorem 2.2.9: Indeed, one can integrate (2.2.61) on a set

ĈR := CR \ C1/R = {−R ≤ z ≤ R , 1/R ≤ ρ ≤ R} ,

where CR is as in (2.2.60). The asymptotics (2.2.50) implies that the boundary
integrals over the boundary of C1/R give zero contribution in the limit R→∞,
so that (2.2.63) remains valid by the monotone convergence theorem in spite of
the (mildly) singular behavior at the punctures ~ai of the functions appearing
in the metric. ✷

2.2.8 Nondegenerate instantaneous horizons

In order to motivate the boundary conditions in this section, recall that in
Weyl coordinates the Schwarzschild metric takes the form (cf., e.g., [172, Equa-
tion (20.12)])

g = −e2USchwdt2 + e−2USchwρ2dϕ2 + e2λSchw (dρ2 + dz2) , (2.2.66)

where

USchw = ln ρ− ln
(
m sin θ̃ +

√
ρ2 +m2 sin2 θ̃

)
(2.2.67)
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=
1

2
ln

[√
(z −m)2 + ρ2 +

√
(z +m)2 + ρ2 − 2m√

(z −m)2 + ρ2 +
√

(z +m)2 + ρ2 + 2m

]
, (2.2.68)

λSchw = −1

2
ln

[
(rSchw −m)2 −m2 cos2 θ̃

r2Schw

]
(2.2.69)

= −1

2
ln




4
√

(z −m)2 + ρ2
√

(z +m)2 + ρ2
(

2m +
√

(z −m)2 + ρ2 +
√

(z +m)2 + ρ2
)2


 .(2.2.70)

In (2.2.67) the angle θ̃ is a Schwarzschild angular variable, with the relations

2m cos θ̃ =
√

(z +m)2 + ρ2 −
√

(z −m)2 + ρ2 ,

2(rSchw −m) =
√

(z +m)2 + ρ2 +
√

(z −m)2 + ρ2 ,

ρ2 = rSchw(rSchw − 2m) sin2 θ̃ , z = (rSchw −m) cos θ̃ ,

where rSchw is the usual Schwarzschild radial variable such that e2USchw = 1 −
2m/rSchw. As is well known, and in any case easily seen, USchw is smooth on
R
3 except on the set {ρ = 0,−m ≤ z ≤ m}. From (2.2.67) we find, at fixed z

in the interval −m < z < m and for small ρ,

USchw(ρ, z) = ln ρ− ln(2
√

(m+ z)(m− z)) +O(ρ2) (2.2.71)

(with the error term not uniform in z). This justifies our definition: an interval
[a, b] ⊂ A will be said to be a nondegenerate instantaneous horizon if for fixed
z ∈ (a, b) and for small ρ we have

U(ρ, z) = ln ρ+ Ů(z) + o(1) , ∂U(ρ, z) = ∂ ln ρ+ ∂Ů (z) + o(1) , (2.2.72)

for a smooth function Ů . As in the Schwarzschild case the function U − α
is assumed to be smooth across I. Thus, to compensate for the logarithmic
singularity of U , we further assume, again for fixed z ∈ (a, b) and for small ρ,
that there exists a function λ̊(z) such that

α(ρ, z) = U(ρ, z) + λ̊(z) + o(1) . (2.2.73)

Under those conditions the calculation of the mass formula proceeds as follows.
For k = 1, . . . , N let

Ik = [ck, dk] ⊂ A

be pairwise disjoint intervals at which the nondegenerate instantaneous horizon
boundary conditions hold. Denote by Ũ the function, harmonic on R

3 \ ∪kIk,
which is the sum of Schwarzschild potentials USchw as in (2.2.68), each with
mass (dk − ck)/2 and a logarithmic singularity at Ik. As in [104], the term
|DU |2 in (2.2.61) is rewritten as:

|DU |2 = |D(U − Ũ + Ũ)|2 = |D(U − Ũ)|2 +Di

[
(2U − Ũ)DiŨ

]
.

Denote by Iǫ the set of points which lie a distance less than or equal to ǫ from
the singular set ∪kIk:

Iǫ = {p | d(p,∪kIk) ≤ ǫ} .
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By inspection of the calculations so far one finds that (2.2.63) becomes now

m =
1

16π

∫ [
(3)R+

1

2
ρ2e−4α+2U (ρBρ,z −Az,ρ)2

]
e2(α−U)d3x

+
1

8π

∫ (
D(U − Ũ)

)2
d3x

+
1

8π
lim
ǫ→0

∫

∂Iǫ

[
Di(2U − α)− (2U − Ũ)DiŨ + α

Diρ

ρ

]
nid

2S . (2.2.74)

In the last line of (2.2.74) the normal ni, taken with respect to the flat metric,
has been chosen to point away from Iǫ.

Away from the end points of the intervals Ik the logarithmic terms in U , Ũ
and α cancel out, leaving a contribution

1

4

∑

k

(
|Ik|+

∫

Ik

(̊λ+ β̊)dz

)
,

where |Ik| is the length of Ik, and where we have denoted by β̊ the limit at ∪kIk
of Ũ − U ,

β̊(z) := lim
ρ→0 , z∈∪kIk

(
Ũ(ρ, z)− U(ρ, z)

)
.

As already pointed out, the error term in (2.2.71) is not uniform in z, and
therefore it is not clear whether or not there will be a separate contribution
from the end points of Ik to the limit as ǫ tends to zero of the integral over
∂Iǫ. Assuming that no such contribution arises5, we conclude that the following
formula for the mass holds:

m =
1

16π

∫ [
(3)R+

1

2
ρ2e−4α+2U (ρBρ,z −Az,ρ)2

]
e2(α−U)d3x

+
1

8π

∫ (
D(U − Ũ)

)2
d3x

+
1

4

∑

k

(
|Ik|+

∫

Ik

(̊λ+ β̊)dz

)
. (2.2.75)

In the Schwarzschild case the volume integrals vanish, β̊ = 0, for z ∈ (−m,m)
the function λ̊ equals

λ̊(z) = −1

2
ln

[
(m− z)(z +m)

(2m)2

]
,

and one can check (2.2.75) by a direct calculation of the integral over I1.

5Note that this assumption, asymptotic flatness, finiteness of the volume integral in
(2.2.74), and the boundary condition (2.2.72) on U essentially enforce the boundary condition
(2.2.73) on α.
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2.2.9 Conical singularities

So far we have assumed that the metric is smooth across the rotation axis A .
However, in some situations this might not be the case. One of the simplest
examples is the occurrence of conical singularities, when the regularity condition
(2.2.46) fails to hold. It is not clear what happens with the construction of the
coordinates (2.2.1) in such a case, and therefore it appears difficult to make
general statements concerning such metrics. Nevertheless, there is at least
one instance where conical singularities occur naturally, namely in the usual
construction of stationary axisymmetric solutions: here one assumes at the
outset that the space-time metric takes a form which reduces to (2.2.1) after
restriction to slices of constant time; and the components of the metric are
then obtained by various integrations starting from a solution of a harmonic
map equation; cf., e.g., [84, 145, 186].

So consider a metric of the form (2.2.1) on R
3 \ {~ai}, where each punc-

ture ~ai corresponds to either an asymptotically flat region or to asymptotically
cylindrical regions (which, typically, correspond to degenerate black holes). As-
suming that dα is bounded at the axis and does not give any supplementary
contribution at the punctures, (2.2.63) becomes instead

m =
1

16π

∫

R3\{~ai}

[
(3)R+

1

2
ρ2e−4α+2U (ρBρ,z −Az,ρ)2

]
e2(α−U)d3x

+
1

8π

∫

R3\{~ai}
(DU)2 d3x +

1

4

∫

A \{~ai}
α̊ dz , (2.2.76)

where α̊ denotes the restriction of α to A .
Using (2.2.76) and (2.2.75), the reader will easily work out a mass formula

when both conical singularities and nondegenerate instantaneous horizons oc-
cur.

2.2.10 A lower bound on the mass of black-holes

An alternative to Weyl coordinates, in which event horizons are not subsets of
the axis of rotation, is provided by the following result proved in [71]:

Theorem 2.2.15 Let (M,g) be a three-dimensional smooth simply connected
manifold with a smooth connected compact boundary ∂M and assume that
(M,g) admits a Killing vector field with periodic orbits. Furthermore, assume
that (M,g) has one asymptotically flat end where it satisfies (2.2.10) for some
k ≥ 5. Then there exists a unique real number m1 > 0 such that M is diffeo-
morphic to R

3 \B(0, m1
2 ) and, in cylindrical-type coordinates (ρS , zS , ϕ) on R

3,
g takes the form

g = e−2US+2αS (dρ2S + dz2S) + ρ2S e
−2US(dϕ + ρS B̄S dρS + ĀS dzS)2 , (2.2.77)

where ∂ϕ is the rotational Killing vector field, US, αS, B̄S and ĀS are smooth
functions on M which are ϕ-independent and satisfy αS = 0 whenever ρS = 0
and

US = ok−3(r
−1/2
S ) , αS = ok−4(r

−1/2
S ) , B̄S = ok−3(r

−5/2
S ) ,
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ĀS = ok−3(r
−3/2
S ) for rS =

√
ρ2S + z2S →∞ . (2.2.78)

✷

The main result of [71] is stated as follows:

Theorem 2.2.16 Under the hypotheses of Theorem 2.2.15, ifM has non-negative
scalar curvature and if the mean curvature of ∂M with respect to the normal
pointing towards M is non-positive, then the ADM mass of (M,g) satisfies

m >
π

4
m1 , (2.2.79)

where m1 is given by Theorem 2.2.15.

Even though the constant m1 is uniquely determined, it should be admitted
that it is not easy to determine m1 if the metric is not given directly in the
coordinate system (2.2.77). In the general case, one needs to solve a certain
PDE on M , and then m1 can be read off from the asymptotic behaviour of the
solution at infinity, the reader is referred to [71] for details.

Note that the simple-connectedness of M would be a consequence of the
topological censorship theorem of [96] if M were a Cauchy hypersurface for
J+(M) ∩ J−(I +).

A satisfactory generalisation of the above to degenerate horizons would re-
quire a thorough understanding of the behaviour of the metric near such hori-
zons, a problem which is widely unexplored.

The Schwarzschild metric shows that the inequality (2.2.79) is not sharp.
One expects that the sharp inequality is

m ≥ m1 , (2.2.80)

with equality if and only if M is a time-symmetric Cauchy hypersurface for the
d.o.c. of the Schwarzschild-Kruskal-Szekeres space-time.

2.3 The Bartnik-Witten rigidity theorem

A simple proof of positivity of mass can be given when one assumes that the
Ricci tensor of (M,g) is non-negative:

Theorem 2.3.1 (“Non-existence of gravitational instantons” (Witten [187], Bartnik [10]))
Let (M,g) be a complete Riemannian manifold with an asymptotically flat end,
in the sense of (1.1.57)-(1.1.58) with decay rate α > (n − 2)/2, and suppose
that the Ricci tensor of g is non-negative definite:

∀ X Ric(X,X) ≥ 0 . (2.3.1)

Then

0 ≤ m ≤ ∞ ,

with m = 0 if and only if (M,g) = (Rn, δ).
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Proof: If R(g) 6∈ L1(M), the result follows from point 2 of Theorem 1.1.4.
From now on we therefore assume that the Ricci scalar of g is integrable over
M .

We start by deriving the so-called Bochner identity. Suppose that

∆f = 0 , (2.3.2)

set
ϕ := |Df |2 = DkfDlf .

We have

∆ϕ = DiDi(D
kfDkf)

= 2
(
DiDkfDiDkf +Dkf DiDiDkf︸ ︷︷ ︸

=DiDkDif=Dk∆f+Ri
ji

kDjf

)

= 2
(
|Hess f |2 + Ric(Df,Df)

)
. (2.3.3)

This shows that ∆ϕ ≥ 0 when (2.3.1) holds.
We shall for simplicity assume that (M,g) has only one asymptotic end,

the general case requires some technicalities which are not interesting from the
point of view of this work. We will use (2.3.3) with f = yi, where yi is a solution
of the Laplace equation (2.3.2) with the asymptotic condition

yi − xi = O(r1−α) . (2.3.4)

The existence of such functions is plausible, but a complete proof requires some
work, we refer the reader to [10] for details. The results there also show that
the functions yi form an admissible coordinate system, at least for large r, and
Theorem 1.1.12 implies that we can use those coordinates to calculate the mass.
We denote by ϕi the corresponding ϕ function, ϕi = |Dyi|2.

In the y–coordinate system we have

ϕi := gkl∂ky
i∂ly

i = gii (no summation over i),

so that

Dkϕi = gkl∂lg
ii = −∂kgii +O(r−2α−1) (no summation over i). (2.3.5)

Integrating (2.3.3) with ϕ replaced by ϕi over (M,g) one has
∫

S∞

DkϕidSk =

∫

M
∆ϕi = 2

∫

M
(|Hess yi|+ Ric(Dϕi,Dϕi)) ≥ 0 , (2.3.6)

and (2.3.5) gives

−
∑

i

∫

S∞

∂kgiidSk ≥ 0 . (2.3.7)

It remains to relate this to the ADM mass. Since the coordinates yi are har-
monic we have

0 = ∆yi =
1√

det g
∂k(
√

det ggkl∂ly
i) =

1√
det g

∂k(
√

det ggki) ,
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so that

0 = ∂k(
√

det ggki) =
1

2
∂igjj − ∂kgki +O(r−1−2α) ,

which leads to

m =
1

16π

∫

S∞

(∂igik − ∂kgii)dSk = − 3

32π

∫

S∞

∂kgiidSk ≥ 0 (2.3.8)

by (2.3.7). This establishes non-negativity of m. Now, if the mass vanishes, then
(2.3.6) enforces Hess yi = 0 for all i. It follows that the one forms Y (i) := dyi

are covariantly constant,

DY (i) = Ddyi = Hess yi = 0 .

This implies

0 = D[iDj]Y
(k) =

1

2
Rℓkij∂ℓ

so that the Riemann tensor vanishes. Let M̂ be the universal covering space
of M with the metric obtained by pull-back from the projection map, the
Hadamard-Cartan theorem (see, e.g., [149, Theorem 22, p. 278]) shows that
the exponential map of any point p ∈ M̂ is a global diffeomorphism from M̂ to
R
n. It follows that M is a quotient of Euclidean R

n by a subgroup G of the
Euclidean group. The existence of an asymptotically flat region in M , diffeo-
morphic to R

n \ B(R), shows that G must be trivial, and the result follows.
✷

2.4 Small data positive energy theorem

One of the results of Bartnik in [10] is the proof of positivity of energy under
the hypothesis that the space-metric is near the Euclidean one; a closely related
analysis has been previously carried out by Brill, Choquet-Bruhat and Deser [39,
50]. The result follows from the striking fact that, for metrics near the flat one,
in harmonic coordinates the L2 norm of the derivatives of the metric is estimated
by the mass: see (2.4.3) below.

In order to state the result in an optimal form we need to introduce some
notation. Set

σ(x) := (1 + |x|2)
1
2 .

The weighted Sobolev space W k,q,−τ is defined using the following norm:

‖f‖W k,q,−τ =

k∑

i=0

( ∫

Rn

|Dif |qσ(τ+i)q−ndnx
) 1

q
. (2.4.1)

To gain some insight into those spaces suppose that f behaves as (or equals)
rα for r ≥ 1, then finiteness of ‖f‖W k,q,−τ is governed by the finiteness, as R
tends to infinity, of the integrals
∫ R

1
rq(α−i)r(τ+i)q−nrn−1dr =

∫ R

1
rq(α+τ)−1dr

=

{
1

q(α+τ)(R
q(α+τ) − 1), q(α+ τ) 6= 0;

lnR, otherwise.
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It follows that a function such as, e.g., f = (1 + r)α will be in W k,q,−τ if and
only if α < −τ . So the index τ governs the decay rate of the functions in
W k,q,−τ : Indeed, for kq > n the weighted Sobolev embeddings proved in [10]
show that any function f ∈W k,q,−τ satisfies f = o(r−τ ) for large r.

We have the following [10]:

Theorem 2.4.1 Let q > 3, τ > (n − 2)/2. There exists ǫ = ǫ(n, q, τ) > 0 such
that for any metric g on M = R

n satisfying

‖g − δ‖W 2,q,−τ ≤ ǫ (2.4.2)

there exists a global harmonic coordinate system on M . If R(g) ∈ L1(M) or if
R(g) ≥ 0, in any such coordinate system one has

∫

R3

(
R(g) +

1

8
|∂g|2g

)
dnx ≤ 16π

3
m . (2.4.3)

In particular m ≥ 0 if R(g) ≥ 0, with equality if and only if gij = δij .

Remark 2.4.2 Readers who do not feel at ease with weighted Sobolev spaces
can, instead of (2.4.2), assume the stronger condition

|gij − δij | ≤ ǫ (1 + r)−α , |∂kgij | ≤ ǫ (1 + r)−α−1 , |∂ℓ∂kgij | ≤ ǫ (1 + r)−α−2 ,
(2.4.4)

with some α > (n − 1)/2, and reach the same conclusion. These conditions
guarantee existence of a harmonic coordinate system in which the first two
conditions in (2.4.4) will still hold, with ǫ replaced by Cǫ for some constant C.
The last inequality in (2.4.4) might fail in the new coordinates, but the first
two suffice for the remaining arguments of the proof.

Proof: We start by noting that the weighted Sobolev embedding alluded to
above garantees that the conditions for a well defined mass (perhaps infinite, if
R 6∈ L1) are met. Next, it is shown in [10] that if ǫ is small enough, then one
can introduce global harmonic coordinates on R

3, with (2.4.2) holding with ǫ
replaced by Cǫ for some constant C.

Let us write |g| for det gij . The harmonic coordinate condition,

∆xi =
1√
|g|
∂i(
√
|g|gij) = 0 ,

can be rewritten as

∂i ln |g| = −2gik∂jg
jk . (2.4.5)

A somewhat lengthy calculation shows that in harmonic coordinates we have

−1

2
∆g(log |g|) = R(g) +

1

4
gijgkℓgpq∂igkp∂jgℓq︸ ︷︷ ︸

=:|∂g|2g

−1

2
gkℓ∂ig

jk∂jg
iℓ . (2.4.6)
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To establish (2.4.6) we start by noting that, for any function f ,

∆gf = gijDiDjf = gij(∂i∂jf − Γk
ij∂kf ,

and setting f = xℓ this gives

0 = ∆gx
ℓ = −gijΓℓ

ij =: −Γℓ .

So, harmonicity is equivalent to the vanishing of the Γℓ’s. Further, in harmonic
coordinates, we conclude that for any f it holds that

∆gf = gij∂i∂jf − gijΓk
ij︸ ︷︷ ︸

0

∂kf = gij∂i∂jf ,

Next, we will use the identity

Γi
ij =

1

2
∂j ln |g| .

The calculation proceeds now as follows: by the formula (A.12.4) for the Riemann
tensor we have

Rij = Rk
ikj

= ∂kΓk
ij − ∂jΓk

ik + Γk
ℓkΓℓ

ij − Γk
ℓjΓ

ℓ
ik , (2.4.7)

and so

R = gijRij

= gij∂kΓk
ij − gij∂jΓk

ik + Γk
ℓk g

ijΓℓ
ij︸ ︷︷ ︸

0

−gijΓk
ℓjΓ

ℓ
ik

= ∂k(gijΓk
ij︸ ︷︷ ︸

0

)− Γk
ij ∂kg

ij

︸ ︷︷ ︸
−giℓgjm∂kgℓm

−gij∂j Γk
ik︸︷︷︸

1
2
∂i ln |g|

−gijΓk
ℓjΓ

ℓ
ik

= giℓgjm∂kgℓmΓk
ij −

1

2
∆g ln |g| − gijΓk

ℓjΓ
ℓ
ik

= gij(gℓm∂kgmi − Γℓ
ik)Γk

ℓj −
1

2
∆g ln |g|

=
1

2
gijgℓm(∂kgmi − ∂igmk + ∂mgik)Γk

ℓj −
1

2
∆g ln |g| . (2.4.8)

It remains to express Γk
ℓj in terms of partial derivatives of g and carry out the

product. Each of the nine resulting terms coincides with one of the last two terms
appearing in (2.4.6); summing gives the result.

It might be useful to note that the norm

|∂g|2g = gijgkℓgpq∂igkp∂jgℓq

used in (2.4.6) is equivalent to

|∂g|2δ = δijδkℓδpq∂igkp∂jgℓq =
n∑

i,k,p=1

|∂igkp|2 .

In fact, since gij − δij = O(ǫ), possibly in an integral sense, we have for some
constant c

(1− cǫ)|∂g|2g ≤ |∂g|2δ ≤ (1 + cǫ)|∂g|2g ,
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possibly in an integral sense. Similarly,
Equation (2.4.5) further implies

∆g ln |g| = gij∂i∂j ln |g| = −2∂j∂kg
jk +

1

2
|D ln |g||2g .

Inserting into (2.4.6) we obtain

∂j∂kg
jk = R(g) +

1

4
|D ln |g||2g +

1

4
|∂g|2g −

1

2
gkℓ∂ig

jk∂jg
iℓ . (2.4.9)

Similarly to (2.3.8), the integral of the left-hand-side over R
n (with respect

to the Euclidean measure) will give a contribution equal to 16πm/3, compare
(2.4.5). To finish the proof one needs to do something with the last term, the
sign of which is not clear. This is handled as follows:

gkℓ∂ig
jk∂jg

iℓ = (gkℓ − δkℓ)∂igjk∂jgiℓ + ∂ig
jℓ∂jg

iℓ

= (gkℓ − δkℓ)∂igjk∂jgiℓ + ∂i(g
jℓ∂jg

iℓ − giℓ∂jgjℓ)
+∂ig

iℓ∂jg
jℓ .

The first term in the before last-line can be estimated by Cǫ|∂g|2g/2, for some
constant C. The term in the last line can be rewritten as

∂ig
ik∂jg

jℓ(δkℓ − gkℓ + gkℓ) = ∂ig
ik∂jg

jℓ(δkℓ − gkℓ)︸ ︷︷ ︸
≤Cǫ/2

+
1

4
|D ln |g||2g .

Hence

|gkℓ∂igjk∂jgiℓ − ∂i(gjℓ∂jgiℓ − giℓ∂jgjℓ)| ≤ Cǫ|∂g|2g +
1

4
|D ln |g||2g .

Now,

∂i

(
gjℓ∂jg

iℓ−giℓ∂jgjℓ
)

= ∂i

(
(gjℓ−δjℓ)∂jgiℓ−(giℓ−δiℓ)∂jgjℓ

)
= ∂i

(
O(r−1−2τ )

)
,

which, after integration, will give a vanishing boundary contribution since τ >
(n− 2)/2. If ǫ is such that

Cǫ

2
≤ 1

8
,

(2.4.3) follows by straightforward algebra. ✷

2.4.1 Negative mass metrics

So far we have been studying manifolds with asymptotic regions which resemble
that of Euclidean space. For some purposes it might be of interest to consider
asymptotically locally Euclidean (ALE) manifolds, where the asymptotic end
has the topology of a discrete quotient of R

n \ B(R) by a subgroup of the
orthogonal group, with the metric asymptotically approaching the quotient of
the Euclidean metric. For one, such manifolds provide examples of complete
metrics with a well-defined negative mass.
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Indeed, in this setting, LeBrun [129] presented the first known examples of
well-behaved scalar-flat ALE spaces of negative mass. The metrics take the
form

g =
dr2

1 +Ar−2 +Br−4
+ r2

[
σ21 + σ22 + (1 +Ar−2 +Br−4)σ23

]
, (2.4.10)

where r is a radial coordinate, {σ1, σ2, σ3} is a left-invariant coframe on S3 =
SU(2), and A = n − 2, B = 1 − n, with n ∈ N. After redefining the radial
coordinate to be r̂2 = r2 − 1, and taking a quotient by Zn, the metric extends
smoothly across r̂ = 0, and is ALE at infinity. When suitably normalised, the
mass is computed to be −4π2(n − 2), which is non-positive when n > 2. For
n = 1, this construction yields the Burns metric. For n = 2, this space is Ricci-
flat, and is exactly the metric of Eguchi-Hanson. There is a close connection
with the hyperbolic monopole metrics of [130], compare [180].

2.5 Schoen and Yau’s positive energy theorem

In [164] Schoen and Yau gave the first general proof of positivity of energy.
There they consider initial data sets on a manifold M which is the union of a
compact set and a finite number of ends Mi ≈ R

3 \B(Ri) on which the metric
behaves as

gij = δij +O3(r
−1) , (2.5.1)

where we use the symbol f = Ok(r
α) if ∂jf = O(rα−j) for 0 ≤ j ≤ k. The

extrinsic curvature tensor Kij is further assumed to satisfy

Kij = δij +O2(r
−1) , (2.5.2)

but its trace is assumed to fall-off faster:

trgK = O(r−3) . (2.5.3)

This condition can be removed when, say, vacuum space-times are considered,
by deforming the initial data surface in space-time [16], but this is a restrictive
condition in general.

We then have the following:

Theorem 2.5.1 (Schoen and Yau [164]) Under the conditions above, suppose
further that

|J |g ≤ R− |K|2 + (trgK)2 = O1(r−4) , (2.5.4)

where
J i := 2Dj(K

ij − trKgij) .

Then the ADM mass of each asymptotic end Nk is non-negative. If one of the
masses is zero and if (2.5.1) is strengthened to

gij = δij +O5(r
−1) , (2.5.5)

then the initial data set is vacuum, and (S , g) can be isometrically embedded
into Minkowski space-time, with Kij corresponding to the extrinsic curvature
tensor of the embedding.
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As emphasised in [162], the proof generalises to asymptotically flat manifolds
of dimension n ≤ 7. The obstruction in higher dimensions arises because of the
singularities of minimal surfaces that arise for n ≥ 8. Christ and Lohkamp
have announced a proof in all dimensions [51], but details have not been made
available by the time of our writing. An alternative strategy for a proof in
all dimensions has been presented by Schoen at the Mittag-Leffler Institute in
November 2008, but no written account of that work exists so far.

A strengthening of the positivity theorem to m ≥ |~p|, using techniques in
the spirit of [164], again in dimensions n ≤ 8, has been presented in [80, 81].

2.6 A Lorentzian proof

The positivity results proved so far do not appear to have anything to do with
Lorentzian geometry. In this section, based on [62], we prove energy positivity
using purely Lorentzian techniques, albeit for a rather restricted class of ge-
ometries; it seems that in practice our proof only applies to stationary (with
or without black holes) space-times. This is a much weaker statement than the
theorems in [164, 187] and their various extensions [14, 28, 102, 113, 120], but
the proof below is of interest because the techniques involved are completely
different and of a quite elementary nature. Using arguments rather similar in
spirit to those of the classical singularity theorems [109], the proof here is a
very simple reduction of the problem to the Lorentzian splitting theorem [94].

In lieu of the Lorentzian splitting theorem, one can impose the “generic condition”
[109, p. 101], thereby making the proof completely elementary. However, it is
not clear how “generic” the generic condition is, when, e.g., vacuum equations are
imposed, so it is desirable to have results without that condition.

The approach taken here bares some relation to the Penrose-Sorkin-Woolgar [155]
argument for positivity of mass. One can only regret that the attractive ar-
gument in [155] has never materialized into a full proof under the generality
claimed.

2.6.1 Galloway’s timelike splitting theorem

The results presented in this section will play a key role in the proof of energy
positivity, as presented in Section 2.6.2 below.

In Riemannian geometry a line is defined to be a complete geodesic which
is minimising between each pair of its points. A milestone theorem of Cheeger
and Gromoll [46] asserts that a complete Riemannian manifold (M,g) with
non-negative Ricci curvature which contains a line splits as a metric product

M = R×N , g = dx2 + h , (2.6.1)

where x is a coordinate along the R factor, while h is an (x-independent) com-
plete metric on N . This result is known under the name of Cheeger-Gromoll
splitting theorem.

It turns out that there is a corresponding result in Lorentzian geometry,
with obvious modifications: First, a line is defined by changing “minimising”
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to “maximising” in the definition above. Next, in the definition of “splitting”
one replaces (2.6.1) with

M = R×N , g = −dt2 + h , (2.6.2)

where we use now t to denote the coordinate along the R factor. One has the
following:

Theorem 2.6.1 Let (M , g) be a space-time satisfying the timelike focusing con-
dition,

Ric(X,X) ≥ 0 ∀ X timelike . (2.6.3)

Suppose that M contains a timelike line and either

1. (M , g) is globally hyperbolic, or

2. (M , g) is timelike geodesically complete.

Then (M , g) splits as in (2.6.2), for some complete metric h on N .

Remark 2.6.2 The “geodesically complete version” of Theorem 2.6.1 was known
as Yau’s splitting conjecture before its proof by Newman [147]. The globally hy-
perbolic version was proved by Galloway [93]. The result assuming both timelike
geodesic completeness and global hyperbolicity had previously been established by
Eschenburg [85], see also [92, 94, 95].

2.6.2 The proof of positivity

For m ∈ R, let gm denote the n + 1 dimensional, n ≥ 3, Schwarzschild metric
with mass parameter m; in isotropic coordinates [152],

gm =

(
1 +

m

2|x|n−2

) 4
n−2

(
n∑

1=1

dx2i

)
−
(

1−m/2|x|n−2

1 +m/2|x|n−2

)2

dt2 . (2.6.4)

We shall say that a metric g on R× (Rn \B(0, R)), Rn−2 > m/2, is uniformly
Schwarzchildian if, in the coordinates of (2.6.4),

g − gm = o(|m|r−(n−2)) , ∂µ (g − gm) = o(|m|r−(n−1)) . (2.6.5)

(Here o is meant at fixed g and m, uniformly in t and in angular variables, with
r going to infinity.) It is a flagrant abuse of terminology to allow m = 0 in this
definition, and we will happily abuse; what is meant in this case is that g = g0,
i.e., g is flat 6, for r > R.

Some comments about this notion are in order. First, metrics as above
have constant Trautman-Bondi mass and therefore do not contain gravitational
radiation; one expects such metrics to be stationary if physically reasonable
field equations are imposed. Next, every metric in space-time dimension four
which is stationary, asymptotically flat and vacuum or electro-vacuum in the

6The asymptotic conditions for the case m = 0 of our theorem are way too strong for a
rigidity statement of real interest, even within a stationary context. So it is fair to say that
our result only excludes m < 0 for stationary space-times.
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asymptotically flat region is uniformly Schwarzschildian there when m 6= 0 (cf.,
e.g., [169]).

The hypotheses here are compatible with stationary black hole space-times
with non-degenerate Killing horizons.

We say that the matter fields satisfy the timelike convergence condition if
the Ricci tensor Rµν , as expressed in terms of the matter energy-momentum
tensor Tµν , satisfies the condition

RµνX
µXν ≥ 0 for all timelike vectors Xµ. (2.6.6)

We define the domain of outer communications of M as the intersection of
the past J−(Mext) of the asymptotic region Mext = R× (Rn \B(0, R)) with its
future J+(Mext).

We need a version of Hawking’s weak asymptotic simplicity [109] for uni-
formly Schwarzschildian spacetimes. We shall say that a spacetime (M , g) is
weakly asymptotically regular if every null line starting in the domain of outer
communications (d.o.c.) either crosses an event horizon (if any), or reaches
arbitrarily large values of r in the asymptotically flat region. By definition, a
null line in (M , g) is an inextendible null geodesic that is globally achronal;
a timelike line is an inextendible timelike geodesic, each segment of which is
maximal. Finally, we shall say that the d.o.c. is timelike geodesically regular
if every timelike line in M which is entirely contained in the d.o.c., and along
which r is bounded, is complete.

The main result of this section is the following:

Theorem 2.6.3 Let (M n+1 = M , g) be an (n+1)-dimensional space-time with
matter fields satisfying the timelike convergence condition (2.6.6), and suppose
that M contains a uniformly Schwarzschildian region

Mext = R× (Rn \B(0, R)) . (2.6.7)

Assume that (M , g) is weakly asymptotically regular and that the domain of
outer communications is timelike geodesically regular. If the domain of outer
communications of M has a Cauchy surface S , the closure of which is the
union of one asymptotic end and of a compact interior region (with a smooth
boundary lying at the intersection of the future and past event horizons, if any),
then

m > 0

unless (M , g) isometrically splits as R×S with metric g = −dτ2+γ, L∂τγ = 0,
and (S , γ) geodesically complete. Furthermore, the last case does not occur if
event horizons are present.

Before passing to the proof, we note the following Corollary:

Corollary 2.6.4 In addition to the hypotheses of Theorem 2.6.3, assume that

Tµν ∈ L1 (Rn \B(0, R)) , ∂ν∂µg = O(r−α) , α > 1 +
n

2
. (2.6.8)

Then m > 0 unless M is the Minkowski space-time.
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Proof of Theorem 2.6.3: The idea is to show that for m ≤ 0 the domain of
outer communications contains a timelike line, and the result then follows from
Galloway’s splitting theorem 2.6.1, Section 2.6.1.

From (2.6.4) and (2.6.5) we have Γµνρ = o(|m|r−(n−1)) except for

Γk00 = Γ0
k0 = Γ0

0k = (n−2)m
rn−1

xk

r + o(|m|r−(n−1)) , (2.6.9)

Γkij = m
rn−1

(
δij

xk

r − δjk x
i

r − δik x
j

r

)
+ o(|m|r−(n−1)) . (2.6.10)

This shows that the Hessian Hess r = ∇dr of r is given by

Hess r = − m

rn−1

(
(n− 2)dt2 − dr2 + r2 h

)
+ r h+ o(r−(n−1)) , (2.6.11)

where h is the canonical metric on Sn−1, and the size of the error terms refers
to the components of the metric in the coordinates of (2.6.4). Note that when
m < 0, Hess r, when restricted to the hypersurfaces of constant r, is strictly
positive definite for r ≥ R1, for some sufficiently large R1. Increasing R1 if
necessary, we can obtain that ∂t is timelike for r ≥ R1. If m = 0 we set R1 = R.
Let p±k denote the points t = ±k, ~x = (0, 0, R1); by global hyperbolicity there
exists a maximal future directed timelike geodesic segment σk from p−k to p+k.
We note, first, that the σk’s are obviously contained in the domain of outer
communications and therefore cannot cross the event horizons, if any. If m = 0
then σk clearly cannot enter {r > R1}, since timelike geodesics in that region
are straight lines which never leave that region once they entered. It turns out
that the same occurs for m < 0: suppose that σk enters {r > R1}, then the
function r ◦ σk has a maximum. However, if s is an affine parameter along σk
we have

d2(r ◦ σk)
ds2

= Hess r(σ̇k, σ̇k) > 0

at the maximum if m < 0, since dr(σ̇k) = 0 there, which is impossible. It
follows that all the σk’s (for k sufficiently large) intersect the Cauchy surface
S in the compact set S \ {r > R1}. A standard argument shows then that
the σk’s accumulate to a timelike or null line σ through a point p ∈ S . Let
{pk} = σk ∩S ; suppose that p ∈ ∂S , then the portions of σk to the past of pk
accumulate at a generator of the past event horizon J̇+ (Mext), and the portions
of σk to the future of pk accumulate at a generator of the future event horizon
J̇− (Mext). This would result in σ being non-differentiable at p, contradicting
the fact that σ is a geodesic. Thus the pk’s stay away from ∂S , and p ∈ S . By
our “weak asymptotic regularity” hypothesis σ cannot be null (as it does not
cross the event horizons, nor does it extend arbitrarily far into the asymptotic
region). It follows that σ is a timelike line in M entirely contained in the
globally hyperbolic domain of outer communications D , with r ◦ σ bounded,
and hence is complete by the assumed timelike geodesic regularity of D . Thus,
one may apply Galloway’s splitting theorem 2.6.1 to conclude that (D , g|D ) is
a metric product,

g = −dτ2 + γ , (2.6.12)

for some τ–independent complete Riemannian metric γ. The completeness of
this metric product implies D = M (and in particular excludes the existence
of event horizons). ✷
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Proof of Corollary 2.6.4: The vector field ∂τ is a static Killing vector
in Mext, and the usual analysis of groups of isometries of asymptotically flat
space-times shows that the metric γ in (2.6.12) is asymptotically flat.

The lapse function N associated with a Killing vector field on a totally
geodesic hypersurface S with induced metric γ and unit normal n satisfies the
elliptic equation

∆γN − Ric(n, n)N = 0 .

From (2.6.12) we have N = 1 hence Ric(n, n) = 0, and the Komar mass of
S vanishes. By a theorem of Beig [19] (originally proved in dimension four,
but the result generalises to any dimensions under (2.6.8)) this implies the
vanishing of the ADM mass. Let ea, a = 0, . . . , n, be an orthonormal frame
with e0 = ∂τ . The metric product structure implies that R0i = 0. Thus, by the
energy condition, for any fixed i we have

0 ≤ Ric(e0 + ei, e0 + ei) = R00 +Rii = Rii .

But again by the product structure, the components Rii of the space-time Ricci
tensor equal those of the Ricci tensor RicS of γ. It follows that RicS ≥ 0.
A generalisation by Bartnik [10] of an argument of Witten [187] shows that
(S , γ) is isometric to Euclidean space, see Section 2.3; we repeat the proof
in a nutshell here, to make clear its elementary character: Let yi be global
harmonic functions forming an asymptotically rectangular coordinate system
near infinity. Let Ki = ∇yi; then by Bochner’s formula,

∆|Ki|2 = 2|∇Ki|2 + 2RicS (Ki,Ki) .

Integrating the sum over i = 1, . . . , n of this gives the ADM mass as boundary
term at infinity. But this mass is zero, so we conclude that the ∇yi’s are all
parallel. Since S is simply connected at infinity, it must be Euclidean space.
✷

We close this section by showing that the conditions on geodesics in Theo-
rem 2.6.3 are always satisfied in stationary domains of outer communications.

Proposition 2.6.5 Let the domain of outer communications D of (M , g) be
globally hyperbolic, with a Cauchy surface S such that S is the union of a finite
number of asymptotically flat regions and of a compact set (with a boundary
lying at the intersection of the future and past event horizons, if any). Suppose
that there exists on M a Killing vector field X with complete orbits which is
timelike, or stationary-rotating7 in the asymptotically flat regions. Then the
weak asymptotic regularity and the timelike regularity conditions hold.

Remark 2.6.6 We note that there might exist maximally extended null geodesics
in (D , g) which are trapped in space within a compact set (as happens for the
Schwarzschild metric), but those geodesics will not be achronal.

7See [74] for the definition.
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Proof: By [74, Propositions 4.1 and 4.2] we have D = R ×S , with the flow
of X consisting of translations along the R axis:

g = αdτ2 + 2βdτ + γ , X = ∂τ , (2.6.13)

where γ is a Riemannian metric on S and β is a one-form on S . (We emphasise
that we do not assume X to be timelike, so that α = g(X,X) can change sign.)
Let φt denote the flow of X and let σ(s) = (τ(s), p(s)) ∈ R×S be an affinely
parameterized causal line in D , then for each t ∈ R the curve φt(σ(s)) =
(τ(s) + t, p(s)) is also an affinely parameterized causal line in D . Suppose that
there exists a sequence si such that p(si) → ∂S , setting ti = −τ(si) we have
τ(φti(σ(si)) = 0, then the points {pki} = φti(σ)∩S accumulate at ∂S , which
is not possible as in the proof of Theorem 2.6.3. Therefore there exists an open
neighborhood K of ∂S such that σ ∩ (R×K ) = ∅. This implies in turn
that σ meets all the level sets of τ . Standard considerations using the fact
that D is a stationary, or stationary-rotating domain of outer communications
(cf., e.g., [74]) show that for every p, q ∈ S there exists T > 0 and a timelike
curve from (0, p) to (T, q). The constant T can be chosen independently of
p and q within the compact set S \ (K ∪ {r > R1}), with R1 = supσ r. It
follows that an inextendible null geodesic which is bounded in space within a
compact set cannot be achronal, so that σ has to reach arbitrarily large values
of r, and weak asymptotic regularity follows. Similarly, if σ is a timelike line
bounded in space within a compact set, then there exists s1 > 0 such that for
any point (τ(s), p(s)) with s = s1 + u, u > 0 one can find a timelike curve
from (0, p(0)) to (τ(s), p(s)) by going to the asymptotic region, staying there
for a time u, and coming back. The resulting curve will have Lorentzian length
larger than u/2 if one went sufficiently far into the asymptotic region, and since
σ is length-maximising it must be complete. ✷

The key point in the proof of Proposition 2.6.5 is non-existence of observer
horizons contained in the d.o.c. Somewhat more generally, we have the following
result, which does not assume existence of a Killing vector:

Proposition 2.6.7 Suppose that causal lines σ, with r ◦ σ bounded, and which
are contained entirely in D , do not have observer horizons extending to the
asymptotic region Mext (see (2.6.7)):

J̇±(σ; D) ∩Mext = ∅ . (2.6.14)

Then the weak asymptotic regularity and the timelike regularity conditions hold.

Proof: It follows from (2.6.14) that for any u > 0 and for any s1 there exists
s2 and a timelike curve Γu,s1 from σ(s1) to σ(s2) which is obtained by following
a timelike curve from σ(s1) to the asymptotic region, then staying there at
fixed space coordinate for a coordinate time u, and returning back to σ along
a timelike curve. One concludes as in the proof of Proposition 2.6.5. ✷

2.7 The Riemannian Penrose Inequality

An important generalization of the Positive Mass Theorem is given by the
Riemannian Penrose Inequality:
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Theorem 2.7.1 Let (S , g) be a complete, smooth, asymptotically flat 3-manifold
with nonnegative scalar curvature with total mass m and which has an outer-
most minimal surface Σ0 of area A0. Then

m ≥
√

A0

16π
, (2.7.1)

with equality if and only if (S , g) is isometric to the Schwarzschild metric
(R3 \ {0}, (1 + m

2|x|)
4δ) outside their respective outermost minimal surfaces.

Theorem 2.7.1 was first proved by Huisken and Ilmanen [120] defining in-
stead A0 to be the area of the largest connected component of Σ0. The proof of
the version above, using completely different methods, is due to Bray [29]. The
proofs are beautiful applications of geometric flows to a fundamental problem in
relativity. A number of accessible reviews has been written on these important
results, to which we refer the interested reader [30–32, 37, 137]. A generalization
of Theorem 2.7.1 to dimensions n ≤ 7 has been established in [36].

One expects that some form of (2.7.1) holds for general relativistic ini-
tial data sets (g,K) satisfying the dominant energy condition. A suggestion
how one could prove this has been put forward by Bray and Khuri in [34, 35],
compare [33, 45, 86, 138]. A Riemannian inequality in the spirit of (2.7.1), but
involving some further geometric constants, has been proved by Herzlich [113].



Chapter 3

Spinors, and Witten’s positive
energy theorem

The aim of this chapter is to present Witten’s proof [187] of positivity of the
ADM mass. This makes use of spinors, which we introduce in the first section.
As it turns out, the notion of a spinor field on a manifold is somewhat involved,
and a proper understanding requires a certain amount of background material.
(See [178] for a historical overview of the subject.) The approach in Section 3.1.1
is aimed at a reader interested in a minimal amount of information, as needed
to be able to proceed with the calculations. This reader can skip the remaining
material in Section 3.1 and proceed directly to the positivity proof in section 3.2.
We refer to [25, 42, 91, 128, 154, 178] for extensive treatments of spinors.

3.1 Spinors: a working approach

Our goal in this section is to explain what spinor fields are, and to present the
formula for the canonical covariant derivative operator for spinors.

3.1.1 Introductory remarks

Spinor fields are, by definition, “sections of a vector bundle associated to a
spin-principal bundle over M , which moreover 1 carries a representation of
the Clifford algebra”. We will make those notions precise in the subsequent
sections. However, none of this is needed if one is mainly interested in gaining
working computational skills with spinors. Then, one can view spinor fields
as certain vector-valued functions associated to orthonormal frames, modulo

1Some authors find it convenient to call “spinor field” sections of any bundle associated
to the spin group. This by itself does not guarantee the existence of a representation of the
Clifford algebra; cf., e.g., [44]. However, in all applications known to us the Clifford algebra
plays a key role, therefore we will assume that a representation thereof exists on the bundle
under consideration. In this terminology, Penrose’s two component spinors are not spinors
from a space-time point of view, as they do not carry a representation of the Clifford algebra
associated to the space-time metric. On the other hand they are “space spinors”, since carry
a representation of the Clifford algebra associated to the positive-definite three-dimensional
scalar product.

95
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a sign ambiguity. This sign ambiguity arises as follows: by definition, the
spinor fields transform in a specific way (which will be explained below) under
changes of frames. Because the orthogonal groups are not simply connected,
there exist closed paths in the set of orthonormal frames such that, if you apply
the transformation rule for spinors along the path, you will end up with the
negative of the initial spinor after having gone around the loop. One way out
of this problem would be to work with equivalence classes of objects, defined
up to a sign. However, this would prevent one to be able to add spinors in a
consistent way, so this is not a good solution.

Now, the problem with such closed loops does not arise if one works on
subsets of the bundle of orthonormal frames which are of the form π−1U , where
U is a coordinate ball on the manifold M , and π is the canonical projection
on the bundle of frames. Hence, there exist many subsets of M where the
ambiguities can be resolved.

So, consider a subset U of the manifold M with a globally defined field
of orthonormal frames ea; U can be taken as M if the bundle of orthonormal
frames is trivial. Having chosen a field of orthonormal frames ea over U , a
spinor field is then a function on U valued in a finite-dimensional, complex
or real, vector space V . As long as one does not need to make changes of
frames, one can ignore the frame dependence. Further, no ambiguities arise for
frames which are “not too far from ea”, in the following sense: if all the frames
e′a over U can be obtained from ea by group elements in a fixed sufficiently
small neighborhood of the origin in SO0(p, q), where SO0(p, q) is the connected
component of the identity in SO(p, q), then one can determine the value of
the spinor field at this frame using the transformation rule (3.1.11) below. In
practice, one simply chooses a frame adapted to the problem at hand, and the
determination of the values of a spin or field in an other frame is rarely needed.

To get rid of the ambiguity in sign which arises if one needs to consider
all possible frames, one introduces a double cover of the bundle of orthonormal
frames, with spinor fields being V -valued functions on this new bundle. The
double cover allows to take care of the sign ambiguity, at least locally: a closed
path in the set of orthonormal frames along which the spinor field changes
sign is not closed in the double cover anymore, ending on a different branch
of the double cover instead. Now, to carry this out we need to assume that
we are able to synchronize the sign ambiguity over the whole manifold, which
is not always possible. (However, this is always possible in dimension three,
or in globally hyperbolic four-dimensional Lorentzian manifolds [97, 98]). We
say that the manifold is spin if such a global synchronisation exists. Whenever
the manifold is spin, some choices might have to be made when synchronising
between distinct sets U and V as in the previous paragraph. This choice is
called the choice of a spin structure. Sometimes only one choice is possible
(e.g., for simply connected spin manifolds), sometimes many, sometimes none;
this depends upon the topology of the manifold.

Given the above general remarks, let us give some more details. So, let U

be as above and let ea be a field of orthonormal frames defined over U . Let V
be a finite dimensional vector space over R or C, carrying a representation of
the Clifford algebra: this can be understood as a set {γa} of endomorphisms of
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V satisfying
γaγb + γbγa = −2gab . (3.1.1)

Given a vector field X = Xaea tangent to M and defined over U , we assign
to X a function Xaγa on U with values in the space of endomorphisms of V .
This gives a precise sense in which the γa’s are Clifford-representing the ea’s.

(Strictly speaking, we should write

γaγb + γbγa = −2gabIdV , (3.1.2)

where IdV is the identity matrix of V , but the identity matrix will always be
taken for granted.)

We can now think of spinor fields on U as “functions on U with values in V
once an orthonormal frame ea has been chosen”. The case of main interest for
the positive-energy theorem is when the metric g is Riemannian. It is shown
in Appendix A.18, in the Riemannian case, that V can be equipped with a
hermitian product (in the complex case) or scalar product (in the real case) so
that the γa’s are anti-hermitian or anti-symmetric,

γ†a = −γa , (3.1.3)

and we will always assume, again in the Riemannian case, that some such scalar
product has been chosen. The reader is warned that (3.1.3) will not hold for
spinors associated to metrics with other signatures. However, in the Lorentzian
case we can always choose a representation so that (3.1.3) holds for spacelike

elements of the basis, while γ†0 = γ0 (compare (3.3.4a) below).
Some more information about Clifford algebras can be found in Appendix A.18.

3.1.2 The spinorial connection

Note that so far the γa’s have been assumed to be fixed maps from V to V , in
particular they do not depend upon p ∈ U . Now, a proper way of understanding
spinors is that they are sections of a vector bundle, the fibers of which are
modeled on V = K

N , for some N , where K = R or C. This means that
a representation of a spinor field as N functions with values in K requires a
choice of trivialisation of the bundle; equivalently, a choice of a local basis for
the bundle. Under changes of trivialisations the basis-transformation-matrices
will typically depend upon the points in U , so that the γa’s, when represented
as matrices in the new basis, will not have constant entries, but will depend
upon p ∈ U . This will not affect (3.1.1), but this means that there is no good
reason to assume that the γa’s, when represented as matrices, have constant
entries. Nevertheless, it is a fundamental consequence of the construction of
spinor bundles as associated bundles (outlined in Section 3.1.5 below) that, for
such bundles, near every point we can find a (perhaps point dependent) basis of
V so that the matrices satisfying (3.1.1) will have constant entries, assuming
of course that the gab’s are constants. In such a basis, if we think of ϕ as a
function on the bundle of frames with values in K

N , we have the fundamental
formula for the spinor connection:

DXϕ = X(ϕ) − 1

4
ωab(X)γaγbϕ , (3.1.4)
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where the ωab’s are the connection coefficients associated with the frame ea, cf.
(A.17.3), Appendix A.17, while

γa = gabγb .

Further, X(ϕ) should be understood as the element of the vector space V
obtained by acting with X on the components of ϕ with respect to the basis of
V in which the γa’s have constant entries.

In line with our conventions elsewhere in this work, in a Riemannian context
we will write D for the covariant derivative of spinors, and use ∇ when a
Lorentzian metric is considered.

For many purposes, including the proof of the positive energy theorem that
we are about to present, formulae (3.1.1) and (3.1.4) are all that is needed to
carry-out calculations involving spinors.

3.1.3 Transformation law

When manipulating spinors the following two healthy rules apply:

1. never change tetrads unless you absolutely have too, and

2. always use bases in which the γa’s have constant entries, so that (3.1.4)
holds.

Should the reader ever have to change ea after all, let us present the rule how
to do that, regardless of the signature of the metric. The transformation rule
arises from the fact, that spinors transform according to a certain representation
of the Spin(p, q) group, which is a double-covering group of the group SO(p, q),
the group of linear transformations preserving a pseudo-Riemannian metric g
of signature (p, q).

Remark 3.1.1 To dispel confusion with terminology and notation,2 following [18,
178] we define the group Pin(p, q) to be the double cover of O(p, q) realized as the
group of elements in the Clifford algebra of the form u = x1 · · · · xk, k ∈ N, where
the xi’s are vectors of length 1 or -1. The subgroup Spin(p, q) ⊂ Pin(p, q) is then
the corresponding cover of SO(p, q) ⊂ O(p, q).

The covering map λ : Pin(p, q)→ O(p, q) is given by

λ(x1 · · · · xk) := Sx1
◦ · · · ◦ Sxk

,

where Sx : Rp+q → Rp+q, for x a vector of length one or minus one, denotes the
reflection on the hyperplane x⊥.

For special signatures (p, q) this double cover is in fact universal. This is exactly
the case if the fundamental group of SO0(p, q) is Z2, then Pin0(p, q) is simply
connected. For p ≤ q this happens exactly when (here p denotes the number of
minus signs and q the number of plus signs in the signature)

1. p = 0, q ≥ 3, which corresponds to Riemannian manifolds of dimension
greater than or equal to three, and

2. p = 1, q ≥ 3, which are Lorentzian manifolds of dimension greater than or
equal to four.

2I am grateful to Helga Baum for clarifying this point.
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For all other signatures with p ≤ q the double cover λ : Pin(p, q)→ O(p, q) fails
to be universal.

For example, SO(2) is connected, smoothly homomorphic to U(1) ≈ S1, its
double cover is again homomorphic to S1 but its universal cover is homomorphic to
R. ✷

In order to continue we need, first, to make a detour through the Lie algebra
so(p, q) of the group SO(p, q).

It is a fundamental fact from the theory of Lie groups that any map Λ ∈
SO0(p, q) can be written as exp(λ), where the matrix (λab) representing λ in
some ON basis is anti-symmetric after raising or lowering its indices:

λab := gbcλac = −λca , λab := gbcλ
c
a = −λba .

The map so(p, q) ⊃ V ∋ λ 7→ exp(λ) ∈ SO(p, q) is a diffeomorphism between
a neighborhood V of zero in so(p, q) and a neighborhood of the identity in
SO(p, q). However, it is not a bijection from so(p, q) to SO(p, q), which is at the
origin of the discussion that follows.

For any two vectors X and Y let X ∧ Y be the linear map defined as

(X ∧ Y )(Z) = g(Y,Z)X − g(X,Z)Y . (3.1.5)

(The symbol ∧ is of course closely related to, but should not be confused with,
the exterior product, which maps forms to forms; here we have mapped two
vectors in W to a linear map from W to itself.)

Note that adding to Y any multiple of X does not change X ∧Y , so to understand
X ∧ Y one can without loss of generality assume that X is orthogonal to Y . Then

(X ∧ Y )(Z) =





g(Y, Y )X, Z = Y ;
−g(X,X)Y, Z = X ;
0, Z ∈ {X,Y }⊥.

(3.1.6)

In particular if X = e1 and Y = e2 are the first two vectors of an ON basis, then
X ∧ Y is represented by the matrix

(
(X ∧ Y )ab

)
=




0 g(Y, Y ) 0 · · · 0
−g(X,X) 0 0 · · · 0

0 0 0
...

...
. . .

...
0 0 · · · 0




.

(By hypothesis, both g(X,X) g(Y, Y ) are in {−1, 1}). After lowering an index, this
becomes

(
gac(X ∧ Y )cb

)
= g(X,X) g(Y, Y )




0 1 0 · · · 0
−1 0 0 · · · 0
0 0 0
...

...
. . .

...
0 0 · · · 0




, (3.1.7)

which is antisymmetric. Hence X ∧ Y is an element of the Lie algebra so(p, q) for
all X and Y .
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Set
ǫ := −g(X,X) g(Y, Y ) ∈ {−1, 1} .

Iterating (3.1.6), again for X orthogonal to Y , we find

(X ∧ Y )2n(Z) =

{
ǫnZ, Z = X or Z = Y ;
0, Z ∈ {X,Y }⊥,

(3.1.8)

which gives

exp(θX ∧ Y )(Z) =

∞∑

m=0

1

(2m)!
(θX ∧ Y )2m(Z) +

∞∑

m=0

1

(2m+ 1)!
(θX ∧ Y )2m+1(Z)

=

{ ∑∞
m=0

ǫmθ2m

(2m)! Z +
∑∞

m=0
ǫmθ2m+1

(2m+1)! (X ∧ Y )(Z), Z = X or Z = Y ;

Z, Z ∈ {X,Y }⊥,

When X has length-squared equal to minus one and Y has length one this equals

exp(θX ∧ Y )(Z) =





cosh(θ)Y + sinh(θ)X, Z = Y ;
cosh(θ)X + sinh(θ)Y, Z = X ;
Z, Z ∈ {X,Y }⊥.

(3.1.9)

So X ∧ Y generates a boost with velocity parameter θ in the (X,Y ) plane.
On the other hand, if X and Y both have length one, we obtain

exp(θX ∧ Y )(Z) =





cos(θ)Y + sin(θ)X, Z = Y ;
cos(θ)X − sin(θ)Y, Z = X ;
Z, Z ∈ {X,Y }⊥.

(3.1.10)

Thus the map X ∧ Y generates a rotation by angle −θ in the (X,Y ) plane.

Given an ON basis ea, it follows from (3.1.7) that ea ∧ eb is just a fancy
notation for the anti-symmetric matrix which, up to an overall sign, equals plus
one in the a’th row and b’th column, minus one in the b’th row and a’th column,
and has zeros elsewhere. So, in such a basis, any λ ∈ so(p, q) is represented
uniquely by the matrix

λ =
1

2
λabea ∧ eb =

∑

a<b

λabea ∧ eb ,

for some anti-symmetric matrix λab. Matrices λ where only one summand above
is non-zero generate rotations or boosts, see (3.1.9)-(3.1.10).

Consider an orthonormal basis e′a given by

e′a = Λbaeb , with Λab = (exp(θλ))ab .

Then, for |θ| < π, the rule for calculating the spinor ϕ′ associated to the frame
e′a from the spinor ϕ, associated to the frame ea, is:

ϕ′ = exp
(
− 1

4θλ
abγaγb

)
ϕ . (3.1.11)

There is a problem when one attempts to extend this formula beyond θ = π:
equation (3.1.12), that we are about to derive, shows that

exp(−π
2
X · Y ·) = cos

(π
2

)
− sin

(π
2

)
X · Y · = −X · Y · ,
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while

exp(−π
2
X · Y ·) = cos

(
− π

2

)
− sin

(
− π

2

)
X · Y · = X · Y · ,

This is, however, incompatible with the fact that a rotation by π along an axis
equals a rotation by −π: exp(πX ∧ y) = exp(−πX ∧ Y ).

However, for all θ ∈ [−π, π] the above formula can be used up to a sign.
This sign ambiguity can only be resolved when invoking the group Spin(p, q),
which is a double cover of SO(p, q), see Remark 3.1.1 and Section 3.1.5.

Remark 3.1.2 Should a reader already familiar with the subject be perplexed by
the minus sign in (3.1.11), we note that, in the Riemannian case, with our definitions
exp(θea∧eb) is a rotation around the axis orthogonal to the plane spanned by {ea, eb}
with angle −θ, adopting the usual convention that a rotation by +π/2 rotates ea
to eb. ✷

The factor 1/2 in (3.1.11) is at the origin of the sign problem seen above, the
calculation proceeds as follows: Suppose that λ = θX ∧ Y , where X and Y are any
two unit orthogonal vectors. Then Λ := exp(θX ∧ Y ) is a rotation of angle −θ in
the plane Vect{X,Y }, in particular Λ is the identity if θ = 2π. Let X = X iei, and

let us write X · for X iγi.

Thus, X · denotes the linear map from V to V associated with the vector X within
the given representation of the Clifford algebra. We have

X · Y · = X iY jγiγj = X iY j(−γjγi − 2gij) = −Y ·X · −2 g(X,Y )︸ ︷︷ ︸
=0

= −Y ·X · , (3.1.12)

X ·X · = X iXj
︸ ︷︷ ︸

symmetric in i and j

γiγj = X iXj 1
2 (γiγj + γjγi) = −g(X,X) = −1 ,

similarly Y ·Y · = −1. (Alternatively, we could have chosen a basis in which X = e1
and Y = e2, and we would obtained the last two equations directly from (3.1.1);
but this argument assumes that if (3.1.1) holds in one ON basis, then it will hold
in any other one, which might not be clear at this stage.)

Now, since λ = X [iY j]ei ∧ ej in our case, in view of (3.1.12) equation (3.1.11)
becomes

ϕ′ = exp
(
− θ

2
X [iY j]γiγj

)
ϕ = exp

(
− θ

2
X · Y ·

)
ϕ . (3.1.13)

We have

(X · Y ·)2 = X · Y ·X ·︸ ︷︷ ︸
=−X·Y ·

Y · = X ·X · Y · Y = −1 ,

so that

(X · Y ·)2n =
(

(X · Y ·)2
)n

= (−1)n , (X · Y ·)2n+1 = (−1)nX · Y · ,

which gives

exp(−θ
2
X · Y ·) =

∞∑

n=0

1

n!

(
− θ

2
X · Y ·

)n



102CHAPTER 3. SPINORS, ANDWITTEN’S POSITIVE ENERGY THEOREM

=

∞∑

n=0

1

(2n)!

(
− θ

2
X · Y ·

)2n
+

∞∑

n=0

1

(2n+ 1)!

(
− θ

2
X · Y ·

)2n+1

=
∞∑

n=0

(−1)n

(2n)!

(θ
2

)2n
−

∞∑

n=0

(−1)n

(2n+ 1)!

(θ
2

)2n+1

X · Y ·

= cos
(θ

2

)
− sin

(θ
2

)
X · Y · . (3.1.14)

We see in particular that ϕ′ = −ϕ when θ = 2π, even though Λ = exp(2πλ) is the
identity map.

The transformation rule (3.1.11) stems from the fact, that every representa-
tion of the Clifford algebra naturally induces a representation of the Lie algebra
associated with the corresponding orthonormal group. This proceeds via the
map

X ∧ Y 7→ −1

2
(X · Y · −Y ·X·) . (3.1.15)

To simplify calculations, we can and will assume that vectors appearing in a
wedge product are mutually orthogonal, in which case the above simplifies to

X ∧ Y 7→ −1

2
X · Y · . (3.1.16)

We claim that this map, defined on pairs of orthogonal vectors, extends by
linearity to an isomorphism of the corresponding Lie algebras. To prove this,
it is convenient to start by checking that Span{X ∧ Y } forms a Lie algebra;
equivalently, we need to check that Span{X ∧Y } is closed under commutation:

[X ∧ Y, V ∧W ](Z) = (X ∧ Y ) (V ∧W )(Z))− ((V,W )←→ (X,Y ))

= (X ∧ Y )(g(W,Z)V − g(V,Z)W ) − ((V,W )←→ (X,Y ))

= g(W,Z)g(Y, V )X − g(W,Z)g(X,V )Y − g(V,Z)g(Y,W )X

+g(V,Z)g(X,W )Y − ((V,W )←→ (X,Y ))

= g(Y, V ) g(W,Z)X︸ ︷︷ ︸
(X∧W )(Z)+g(X,Z)W

−g(X,V ) g(W,Z)Y︸ ︷︷ ︸
(Y ∧W )(Z)+g(Y,Z)W

−g(Y,W ) g(V,Z)X︸ ︷︷ ︸
(X∧V )(Z)+g(X,Z)V

+g(X,W ) g(V,Z)Y︸ ︷︷ ︸
(Y ∧V )(Z)+g(Y,Z)V

−
(
g(Y,Z)g(W,X)V − g(Y,Z)g(X,V )W − g(X,Z)g(Y,W )V

+g(X,Z)g(V, Y )W
)

=
(
g(Y, V )X ∧W − g(X,V )Y ∧W − g(Y,W )X ∧ V

+g(X,W )Y ∧ V
)

(Z) .

Thus

[X ∧ Y, V ∧W ] = g(Y, V )X ∧W − g(X,V )Y ∧W − g(Y,W )X ∧ V
+g(X,W )Y ∧ V . (3.1.17)
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Similarly, the collection Span{X · Y ·} of linear combinations of endomor-
phisms of V of the form X · Y · forms a Lie algebra:

[X · Y ·, V ·W ·] = X · Y · V ·︸ ︷︷ ︸
−2g(Y,V )−V ·Y ·

W · −V ·W ·X · Y ·

= −2g(Y, V )X ·W · −X · V · Y ·W ·︸ ︷︷ ︸
−2g(Y,W )−W ·Y ·

−V ·W ·X · Y ·

= −2g(Y, V )X ·W ·+2g(Y,W )X · V ·
+ X · V ·︸ ︷︷ ︸

−2g(V,X)−V ·X·

W · Y · −V ·W ·X · Y ·

= −2g(Y, V )X ·W ·+2g(Y,W )X · V · −2g(V,X)W · Y ·
−V · X ·W ·︸ ︷︷ ︸

−2g(X,W )−W ·X·

Y · −V ·W ·X · Y · ,

hence

[
1

2
X · Y ·, 1

2
V ·W ·] = −g(Y, V )

1

2
X ·W ·+g(Y,W )

1

2
X · V · −g(V,X)

1

2
W · Y ·

+g(X,W )
1

2
V · Y · . (3.1.18)

Comparing with (3.1.17), we see that the factor −1/2 is precisely what is needed
in (3.1.16) to obtain the desired isomorphism of Lie algebras.

For further reference, if we set γa := ea·, then (3.1.18) can be rewritten as

[γ[aγb], γ[cγd]] = −2gbcγ[aγd] + 2gbdγ[aγc] − 2gacγ[dγb] + 2gadγ[cγb] . (3.1.19)

This can be seen by first noting that both sides of (3.1.19) with a = b or c = d
are zero so there is nothing to check. Hence to obtain (3.1.19) it suffices to
apply (3.1.18) with a 6= b and c 6= d using an orthonormal basis, in which case
γ[aγb] = γaγb = ea · eb·, etc..)

An alternative justification of (3.1.19) proceeds by first writing down a general
formula compatible with the symmetries of the left-hand side, and then checking
the coefficients by applying the formula to sufficiently general sets of indices. In
this case it suffices to check that both sides of (3.1.19) are equal in an ON frame
with abcd = 1213 and abcd = 1234: indeed, any other nontrivial possibilities can be
reduced to those by a renaming of basis vectors. But then, for example,

γ1 γ2γ1︸︷︷︸
−γ1γ2

γ3 = −γ1γ1︸ ︷︷ ︸
1

γ2γ3 = γ2γ3 ,

by symmetry

γ1γ3γ1γ2 = γ3γ2 ,

and the difference coincides with the right-hand side of (3.1.19) in this case. The
checking of the second possibility proceeds by a similar calculation.
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Example 3.1.3 A truthful representation of the Lie algebra of SO(3) is provided
by linear combination of the three vector fields defined as3

Ji = −ǫijkxj∂k . (3.1.20)

Here we use the summation convention even though the indices are in the same
position. The Lie bracket is

[Ji, Jj ] = ǫijkJk . (3.1.21)

For example,

[J1, J2] = [−y∂z + z∂y,−z∂x + x∂z ] = y∂x − x∂y = J3 ,

from which one can infer (3.1.21) by invariance of both sides of that equation under
orthogonal maps. Alternatively, a brute-force calculation proceeds as follows:

[Ji, Jj] = ǫiℓmǫjrs [xℓ∂m, x
r∂s]︸ ︷︷ ︸

xℓδrm∂s−xrδℓs∂m

= ǫiℓrǫjrs︸ ︷︷ ︸
−δji δ

s
ℓ
+δsi δ

j

ℓ

xℓ∂s − ǫiℓmǫjrℓ︸ ︷︷ ︸
−δji δ

r
m+δri δ

j
m

xr∂m

= −δji xs∂s + xj∂i + δji x
m∂m − xi∂j = xj∂i − xi∂j

= (δmi δ
ℓ
j − δℓi δmj )xℓ∂m = −ǫijkǫkℓmxℓ∂m

= ǫijkJk .

The Lie algebra isomorphism (3.1.16) is then provided by the formula

Ji 7→
1

4
ǫijkγ

jγk .

More precisely, we claim that the linear map defined on the basis elements by the
last equation is compatible with the Lie algebra structures of Span{J1, J2, J3} and
Span{ 12γ2γ3, 12γ3γ1, 12γ1γ2}. Indeed, the above reads

J1 7→
1

4
(γ2γ3 − γ3γ2) =

1

2
γ2γ3 , J2 7→

1

2
γ3γ1 , J3 7→

1

2
γ1γ2 ,

which is compatible with the commutation relations (3.1.21): for example,

[J1, J2] ←→
[

1

2
γ2γ3,

1

2
γ3γ1

]
=

1

4

(
γ2 γ3γ3︸︷︷︸

−1

γ1 − γ3 γ1γ2γ3︸ ︷︷ ︸
γ3γ1γ2

)

=
1

4

(
−γ2γ1 + γ1γ2

)
=

1

2
γ1γ2

←→ J3 ,

as desired. The general formula follows by renaming coordinates.

Let us show that the connection defined above satisfies the Leibniz rule with
respect to Clifford multiplication:

DX(Y · ϕ) = (DXY ) · ϕ+ Y ·DXϕ . (3.1.22)

3Some readers might find the minus sign in (3.1.20) perplexing, since a positively oriented
rotation by angle θ around the i-th axis defines a family of curves with tangent vector ǫijkx

j∂k.
One way of understanding the sign is that elements g of the rotation group define naturally
vector fields through the representation g 7→ (gf)(x) := f(g−1x). The g−1 in the argument of
f leads then to the minus sign. Another thing to keep in mind that the quantum mechanical
commutation relation [Ji, Jj ] = ~ǫijkJk involves the momentum operators pi = −√−1~∂i,
while the differential-geometric definitions of Ji do not involve a square root of minus one.
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Indeed, keeping in mind that the γa’s are assumed to be matrices with constant
entries,

DX(Y · ϕ) = DX(Y aγaϕ) = X(Y aγaϕ)− 1

4
ωabcX

cγaγbY dγdϕ

= Y aγa X(ϕ)︸ ︷︷ ︸
DXϕ+

1
4
ωabcXcγaγbϕ

+( X(Y a)︸ ︷︷ ︸
DXY a−ωa

cdXdY c

γa −
1

4
ωabcX

cY dγaγbγd)ϕ

= Y ·DXϕ+DXY · ϕ
+

1

4
Y dXcωabc(γdγ

aγb − 4δbdγ
a − γaγbγd)ϕ .

We claim that the second line above vanishes, which establishes (3.1.22):

γdγ
a

︸︷︷︸
−2δad−γaγd

γb = 2δadγ
b − γa γdγ

b

︸︷︷︸
−2δbd−γbγd

= −2δadγ
b + 2δbdγ

a + γaγbγd ;

antisymmetrising in a and b gives the desired result.
For further reference we summarise the last calculation as

[γd, γ
aγb] = −2δadγ

b + 2δbdγ
a . (3.1.23)

If we set

ω(X) = −1

4
ωab(X)γaγb , (3.1.24)

then (3.1.23) gives

[ω(X), γd] =
1

4
ωab(X)(−2δadγ

b + 2δbdγ
a) = ωad(X)γa . (3.1.25)

In the γ matrices notation, using the Leibniz rule for triple products one has

DX(Y aγaϕ) = (DXY
a)γaϕ+ Y a(DXγa)ϕ+ Y aγaDXϕ .

Equation (3.1.22) has thus the interpretation that the γ matrices are covariantly
constant:

Da(γbϕ) = γbDaϕ , Da(γbϕ) = γbDaϕ . (3.1.26)

3.1.4 Spinor curvature

We continue by calculating the curvature of the connection (3.1.4), defined
through the usual formula:

R(X,Y )ϕ := DXDY ϕ−DYDXϕ−D[X,Y ]ϕ .

For this we write

DXϕ = X(ϕ) + ω(X)ϕ , ω(X) := −1

4
ωabγ

aγb ≡ −1

4
ωabγ

[aγb] ,

DXDY ϕ = X(DY ϕ) + ω(X)DY ϕ

= X(Y (ϕ) + ω(Y )ϕ) + ω(X)(Y (ϕ) + ω(Y )ϕ)

= X(Y (ϕ)) +X(ω(Y ))ϕ + ω(Y )X(ϕ) + ω(X)Y (ϕ) + ω(X)ω(Y )ϕ

D[X,Y ]ϕ = X(Y (ϕ))− Y (X(ϕ)) + ω([X,Y ])ϕ .
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After obvious simplifications we find

R(X,Y )ϕ = (X(ω(Y ))− Y (ω(X)) − ω((X,Y ]) + [ω(X), ω(Y )])ϕ

= (dω(X,Y ) + [ω(X), ω(Y )])ϕ .

In a frame in which the γa’s are point-independent it holds that

dω(X,Y ) = −1

4
dωab(X,Y )γaγb .

Next, in view of (3.1.19) the commutator term equals

[ω(X), ω(Y )] =
1

16
ωab(X)ωcd(Y )[γ[aγb], γ[cγd]]

=
1

16
ωab(X)ωcd(Y )

(
−2gbcγ[aγd] + 2gbdγ[aγc] − 2gacγ[dγb] + 2gadγ[cγb]

)

= −1

2
ωab(X)ωbd(Y )γ[aγd]

= −1

4
(ωab(X)ωbd(Y )− ωab(Y )ωbd(X))γaγd

= −1

4
(ωab ∧ ωbd)(X,Y )γaγd .

We thus have

DXDY ϕ−DYDXϕ−D[X,Y ]ϕ = −1

4
Ωab(X,Y )γaγbϕ , (3.1.27)

where

Ωab = dωab + ωac ∧ ωcb ,
and we recognize the curvature two-form (A.17.20) of Appendix A.17.

3.1.5 The origin of the spinorial connection

In this section we will justify that the operation defined by (3.1.4) maps spinors
to spinors.4

Recall that we defined a spinor field ϕ as a function valued in a vector space
V defined over patches U of a manifold on which an orthonormal frame ea
has been given. We further required a specific transformation law of ϕ under
changes of frames. A fancy way of saying this is that spinor fields are sections
of a bundle associated to a covering bundle of the bundle of orthonormal frames
of (M , g). Here the qualification “covering bundle” is related to the change of
sign of spinors after 2π-rotations.

Lie groups and their representations

To understand (3.1.4), some facts from the theory of Lie groups will be needed.
Recall that a Lie group is a group which is also a manifold. The Lie algebra

4I am very grateful to Helmuth Urbantke for enlightning discussions concerning this ques-
tion.
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G of a Lie group G can be defined as the tangent space of G at the the unity
element e of G, equipped with a Lie bracket structure which we will define
shortly. Thus, each a ∈ G can be represented by the tangent at zero to a curve
g(t) ∈ G such that g(0) = e:

a =
dg

dt
(0) .

We will often use the following: Let g(t) be a curve in G such that g(0) = 0,
with corresponding tangent a. Let b denote the tangent to the curve g(t)−1.
Differentiating the identity g(t)−1g(t) = e at t = 0 one finds

b :=
d(g(t)−1)

dt
|t=0 = −dg(t)

dt
|t=0 =: −a .

Given any a ∈ G represented by the tangent to a curve t 7→ g(t), and given
any h ∈ G, the curve t 7→ h−1g(t)h also passes through e at t = 0, and therefore
defines an element of G, called Adha. In this way we obtain an action of G on
its Lie algebra,

G ∋ h 7→ Adh ∈ End(G) ,

called the adjoint action.
In this section we are essentially interested in groups of matrices, where the

composition is the matrix multiplication. Then the elements of the Lie algebra
are also matrices, with

Adha = h−1ah ,

all products being again matrix multiplications.

Example 3.1.4 Let g be a quadratic form of signature (p, q) over a vector space
W . The group SO(p, q) is defined as the group of matrices Λ of determinant one
which preserve g: in a basis:

gabΛ
a
cΛ

b
d = gcd . (3.1.28)

If t 7→ Λ(t) is a curve of such matrices with Λ(t) = Id, the identity matrix, set

λab :=
d

dt
Λa

b

∣∣
t=0

.

Differentiating (3.1.28) with respect to t, with Λ there replaced by Λ(t), one finds

0 = gab(λ
a
cδ

b
d + δacλ

b
d) = λcd + λdc ,

so the Lie algebra so(p, q) of SO(p, q) is contained in the collection of matrices which
are anti-symmetric after lowering the first index.

To show that any such matrix λab belongs to so(p, q), let ea be an ON basis
of W , and define Λa

b(t) to be the matrix whose rows, say f(t)a, are obtained by
applying a Gram-Schmidt orthonormalisation to the basis ea + tλbaeb, for t small.
We leave it as an exercise to the reader to check that d

dtΛ
a
b(t)|t=0 = λab.

Consider, now, an element b of G represented by the tangent at zero to a
curve t 7→ h(t). The Lie-bracket [a, b] is then defined as

[a, b] :=
d

dt

(
h(t)−1ah(t)

)
|t=0 .
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For a matrix group, this is clearly the usual commutator of matrices,

[a, b] = ab− ba ,

and therefore is anti-symmetric, and satisfies the Jacobi identity

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 .

A representation of G is a pair (V, ρ), where V is a vector space and ρ is a
map from G to the group End(V ) of endomorphisms of V such that

ρ(gh) = ρ(g)ρ(h) .

This easily implies

ρ(e) = IdV , ρ(g−1) = ρ(g)−1 ,

where IdV is the identity map of V .

If V has dimension N < ∞, End(V ) is a Lie group, which can be thought
of as the group of all invertible N × N matrices. Its Lie algebra is then the
collection of all N ×N matrices.

A representation ρ of G is a smooth map between manifolds, and so the
push-forward map ρ∗ is a map between their tangent spaces. Since ρ maps the
identity element e of G to the identity element IdV of End(V ), ρ∗|e maps the
Lie algebra G of G to the Lie algebra of End(V ). We will simply write ρ∗ for
ρ∗|e when ambiguities are unlikely to occur.

The tangent map ρ∗ preserves the Lie bracket: indeed, let a = ġ(0), and
b = ḣ(0). From the representation property we have

ρ(h(s)−1g(t)h(s)) = ρ(h(s))−1ρ(g(t))ρ(h(s)) .

Differentiating with respect to t at t = 0 gives

ρ∗(h(s)−1ah(s)) = ρ(h(s))−1ρ∗(a) ρ(h(s)) ,

and differentiating with respect to s at s = 0 one obtains

ρ∗([a, b]) = [ρ∗(a), ρ∗(b)] .

Associated bundles

To continue, it is convenient to recall various descriptions of the collection of
vectors tangent to an n-dimensional manifold. The first approach is to use local
coordinate patches, with vector fields being collections of n functions which,
under coordinate transformations xi 7→ yj(xi) transform as

Xi 7→ X̄i = Xj ∂y
i

∂xj
.
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The second point of view, routinely used in this work, is to identify vectors with
partial differential operators

X = Xi∂i .

Invoking orthonormal frames ea = ec
i∂i, partial differential operators can also

be written as
X = Xaea , (3.1.29)

with the collection of numbers Xa transforming via SO(p, q) matrices under
changes of frame:

ea 7→ Λbaeb =⇒ Xa 7→ ΛabX
b . (3.1.30)

The associated bundle point of view forgets about the identification of vectors
with partial differential operators as in (3.1.29), but adopts (3.1.30) as the
defining property of a vector: vectors are elements of an N -dimensional vector
space W associated to a local frame ea. Under a change of frame as in (3.1.30),
vectors transform under the fundamental defining representation of SO(p, q):

Xa 7→ X̄a = ΛabX
b . (3.1.31)

This last point of view conveniently generalises to encompass spinors: the only
thing which needs changing above is the use of a spinorial representation of
Spin(p, q), where Spin(p, q) denotes a double covering group of SO(p, q), instead
of the defining one (universal covering in Lorentzian or Riemannian signature).

The need to consider the group Spin(p, q) instead of SO(p, q) leads to a
subtlety, which is irrelevant for almost all purposes, but needs to be mentioned:
when defining spinor fields, instead of considering ON frames one needs to
introduce the notion of spin frames: by definition, a spin frame is an ON frame
“which knows about the ambiguity of sign related to the definition of spinors”.
As the Lie algebras of Spin(p, q) and SO(p, q) are identical, the collection of spin
frames is locally identical to that of ON frames. In Riemannian or Lorentzian
signature the bundle of spin frames forms a double cover of the bundle of frames:
a 2π rotation around a fixed axis will not take us back to the original spin
frame, we need to rotate by 4π to return where we started. For parallelisable
manifolds, or locally, this whole discussion is essentially irrelevant, since then
we can choose a global frame once and for all and treat spinor fields on our
manifold as fields with values in R

N for some convenient N .
Now, let ρ be any representation of Spin(p, q) on a vector space V , and let

h ∈ Spin(p, q). We shall say that a field ϕ with values in V is of type ρ if, under
a change of frame spin frame ea 7→ Λba(h)eb, where Λ(h) = (Λba(h)) ∈ SO(p, q),
the field ϕ transforms as

ϕ 7→ ρ(h)ϕ .

So, for example, vectors are such objects: ρ in this case is the composition of
the defining representation of the group SO(p, q) on vectors with the projection
map from Spin(p, q) to SO(p, q).

Another example is provided by a space V carrying a representation of the
Clifford algebra as discussed in Section 3.1.3. There we have defined a repre-
sentation of the algebra spin(p, q) = so(p, q). In the Riemannian or Lorentzian
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case, where Spin(p, q) is simply connected, a fundamental theorem of the theory
of representations of Lie groups and algebras asserts that each such a represen-
tation defines a unique representation on V of the group Spin(p, q), such that
the map (3.1.16) is the corresponding tangent map ρ∗.

In what follows we will need the following two identities:

ρ∗(Λ−1dΛ) = ρ(Λ)−1d (ρ(Λ)) , (3.1.32)

and

∀ a ∈ g ρ∗(Λ−1aΛ) = ρ(Λ−1)ρ∗(a)ρ(Λ) . (3.1.33)

To prove (3.1.33), let h(t) be a curve such that ḣ(0) = a, since ρ is a
representation we have ρ(Λ−1h(t)Λ) = ρ(Λ)−1ρ(h(t))ρ(Λ); differentiation and
the definition of ρ∗ provide the result.

For (3.1.32), let Λ(t) be any curve such that Λ(0) = Λ, then Λ−1Λ(t) is a
curve that defines the Lie algebra element Λ−1Λ̇(0). Its image by ρ is

ρ(Λ−1Λ(t)) = ρ(Λ)−1ρ(Λ(t)) ,

which defines in End(V ) the Lie algebra element

ρ∗(Λ
−1Λ̇(0)) = ρ(Λ)−1 d(ρ(Λ(t)))

dt
|t=0 ,

as desired.

After those preliminaries, we are ready now to address the question of con-
struction of a connection on spinor fields. The starting point is the Levi-Civita
connection on the tangent bundle. We adopt the associated-bundle point of
view, with X = (Xa) denoting a field with values in a given vector space W .
Given a differential operator Y , we will write Y (X) for the collection of deriva-
tives (Y (Xa)). We will also write

DYX = Y (X) + ω(Y )X ,

for the covariant derivative. For example, if X is a vector field on a manifold
(M , g), then ω(Y )X stands for the vector with components ωab(Y )Xb, the
ωab(X)’s being the connection coefficients defined in Appendix A.17. Because
this case plays a distinguished role, and by visual analogy with the Christoffel
symbols, we shall write Γ instead of ω:

DYX = Y (X) + Γ(Y )X when X is a vector field .

Suppose, now, that X is a field of type ρ, then under a change of frame we
will have

X 7→ X̄ = ρ(Λ)X , (3.1.34)

where ρ(Λ)X denotes matrix multiplication of the vector X by the matrix ρ(Λ).
For example, ρ(Λ) = Λ if one uses the defining representation of SO(p, q). By an
abuse of notation, we will also write ρ(Λ) = Λ when the group is Spin(p, q) but



3.1. SPINORS: A WORKING APPROACH 111

the covering ambiguities are irrelevant. By definition of covariant derivative,
DYX should also be of type ρ, so it holds that

DYX 7→ DYX ≡ DY X̄ = ρ(Λ)DYX .

Writing
DY X̄ = Y (X̄) + ω̄(Y )X̄ ,

we have

Y (X̄) + ω̄(Y )X̄ = Y (ρ(Λ)X) + ω̄(Y )ρ(Λ)X

= Y (ρ(Λ))X + ρ(Λ)Y (X) + ω̄(Y )ρ(Λ)X

= ρ(Λ)DYX

= ρ(Λ)Y (X) + ρ(Λ)ω(Y )X .

Comparing the second and last lines, the string of equalities will hold for all X
if

ω(Y ) = ρ(Λ)−1Y (ρ(Λ)) + ρ(Λ)−1ω̄(Y )ρ(Λ)

which is often written as, in hopefully obvious notation:

ω̄ = ρ(Λ)−1d (ρ(Λ)) + ρ(Λ)−1ωρ(Λ) . (3.1.35)

Now, the point is that we know that this equation holds when ρ(Λ) = Λ
and ω equals the connection-form Γ arising from the Levi-Civita connection:

Γ̄ = Λ−1dΛ + Λ−1ΓΛ . (3.1.36)

So if we set
ω = ρ∗Γ , (3.1.37)

then (3.1.35) will hold by (3.1.36), (3.1.32) and (3.1.33).
To justify our formula for the spinorial connection it remains to show that

(3.1.37) coincides with (3.1.4),

DXϕ = X(ϕ) − 1

4
ωab(X)γaγbϕ , (3.1.38)

Since the tangent map ρ∗ has been defined in formula (3.1.16) on the basis
vectors ea ∧ eb

ρ∗(ea ∧ eb) = −1

2
γaγb , (3.1.39)

we need to decompose the connection form ωab in terms of this basis. From the
definition (3.1.5) we have

(ec ∧ ed(X))a = θa(Xdec −Xced) = Xdδ
a
c −Xcδ

a
d = 2δa[cXd] ,

which gives

ωabX
b = ωcdδacXd =

1

2
ωcdδa[cXd] =

1

2
θa(ωcdec ∧ ed(X)) ,

so

Γ(Y )X =
1

2
ωcd(Y )ec ∧ ed(X) ,

and

ρ∗Γ(Y ) = −1

4
ωcd(Y )γcγd ,

as desired.
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3.2 Witten’s positivity proof

The positive mass theorem asserts that the mass of an asymptotically Euclidean
Riemannian manifold with non-negative scalar curvature is non-negative. There
exist by now at least four different proofs of this result, the first one due to
Schoen and Yau [163], shortly followed by a spinor-based proof by Witten [187].
Another argument has been given by Lohkamp [135], while positivity of mass
can also be obtained from the proof of the Penrose inequality of Huisken and
Ilmanen [120]. From all those proofs the simplest one by far is that of Witten,
and this is the one which we will present here. An advantage thereof is that
it can be adapted to provide further global inequalities; some such inequalities
will be presented in Section 3.3.

Witten’s proof of positivity of mass can be broken into three steps, as fol-
lows:

Step 1: Write the ADM mass m in terms of spinors.

Step 2: Use the Schrödinger-Lichnerowicz identity to write m as a volume inte-
gral, which is manifestly positive if the spinor field satisfies a Dirac-type
equation.

Step 3: Prove existence of spinors satisfying the Dirac equation of Step 2.

We start with the simplest version of the theorem; various extensions will
be presented in Section 3.3.

Let D be the standard spin connection for spinor fields which, locally, are
represented by fields with values in a real vector space V . (A hermitian scalar
product over a complex vector space is also a scalar product over the same space
viewed as a real vector space, so this involves no loss of generality, and avoids
the nuisance of taking the real part of the scalar product in several calculations.
It also saves us the trouble of discussing complex bundles over a real manifold.)
We shall also use the symbol D for the usual Levi-Civita derivative associated
to the metric g acting on tensors, etc. The matrices γi stand for cg(ei), with cg
— the canonical injection of TM into the representation under consideration
on V of the Clifford algebra associated with the metric Riemannian metric g,
and are D-covariantly constant,

Diγj = 0 .

Step 1: Let /D be the Dirac operator associated with g,

/D := γiDi ,

we will show that under natural asymptotic conditions the ADM mass m equals

m = αn

∫
U

idSi , (3.2.1)

U i = 〈φ,Diφ+ γi /Dφ〉 , (3.2.2)

where αn is a dimension-dependent constant, and φ is a spinor field which
asymptotes to a constant spinor at an appropriate rate.
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We will have to defer a complete justification of (3.2.1) until the notion
of “appropriate rate” has been clarified, but some preliminary analysis is in
order. We thus start by considering a non-zero spinor field ϕ̊ with constant
entries, ei(ϕ̊) = 0, in a given spin frame (which will be specified later). From
the definition of the covariant derivative of a spinor we then have

Deiϕ̊ = −1

4
ωjkiγ

jγkϕ̊ = −1

4
ωjkiγ

[jγk]ϕ̊ ,

so that

Ui = −1

4
〈ϕ̊, (ωjki + ωjkℓγiγ

ℓ)γjγkϕ̊〉 . (3.2.3)

Since for any A we have

〈ϕ̊, Aϕ̊〉 = 〈Aϕ̊, ϕ̊〉 = 〈ϕ̊, Atϕ̊〉 =
1

2
〈ϕ̊, (A+At)ϕ̊〉 ,

we calculate the transpose of γjγk. We assume that (V, 〈·, ·〉) and the γi have
been chosen so that

(γi)t = −γi ;

this is always possible provided that the manifold is spin. This gives

γjγk + (γjγk)t = γjγk + γkγj = −2gjk . (3.2.4)

Anti-symmetry of ωjki implies that the term ωjkiγ
jγk gives no contribution in

(3.2.3):
ωjkiγ

jγk + (ωjkiγ
jγk)t = −2ωjkig

jk = 0 .

Consider, next, the terms γiγℓγjγk; again by antisymmetry only j 6= k
matters. If i = ℓ one has γiγℓγjγk = −γjγk, giving no contribution as before,
thus it remains to consider the cases i 6= ℓ. If i = j one obtains γiγℓγjγk =
−γℓγiγjγk = γℓγk, and (3.2.4) implies a contribution 〈ϕ̊, γiγℓγjγkϕ̊〉 = −gijgℓk|ϕ̊|2
from such terms. The case i = k differs from the last one by a sign and an in-
terchange of j and k. The only terms which have not been accounted for so far
are those in which all indices are distinct, which does not occur in dimension
three, so in this dimension we obtain

U
i =

1

2
gijgkℓωjkℓ|ϕ̊|2 . (3.2.5)

For further reference, it follows from what has been said so far that

〈φ, γiγjγ[kγℓ]φ〉 = (giℓgjk − gikgjℓ)|φ|2 + 〈φ, γ[iγjγkγℓ]φ〉 . (3.2.6)

Indeed, (3.2.6) has been established when two indices coincide, since the last term
at the right-hand side is then zero. On the other hand, the first two-terms in (3.2.6)
vanish in an ON frame when all indices are distinct, but then γ[iγjγkγℓ] = γiγjγkγℓ,
whence the result.

In the coordinate system of (1.1.57)-(1.1.58), p. 19, consider the collection
of vector fields e̊i defined as

e̊i = ∂i −
1

2

∑

j

hij∂j . (3.2.7)
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The e̊i’s have been chosen to be “orthonormal to leading order”:

g(̊ei, e̊j) = δij +O(r−2α) .

If we perform a Gram-Schmidt orthonormalization starting from the e̊i’s we
will therefore obtain an ON basis ei such that

ei = e̊i +O(r−2α) , ∂kei = ∂ke̊i +O(r−2α−1) . (3.2.8)

We can use (A.17.9), Appendix A.17, to calculate the connection coefficients
with respect to this frame:

ωjkℓ =
1

2

(
g(eℓ, [ej , ek])− g(ek, [eℓ, ej ])− g(ej , [ek, eℓ])

)
. (3.2.9)

Inserting this into (3.2.5) and using symmetry in k and ℓ, in space-dimension
three one obtains

U
i =

1

2
gijgℓkg(eℓ, [ej , ek])|ϕ̊|2 . (3.2.10)

From (3.2.7)-(3.2.8) the commutators are, whatever the dimension,

[ej , ek] =
1

2

∑

s

(∂khsj − ∂jhsk)es +O(r−2α−1) ,

leading to

g(eℓ, [ej , ek]) =
1

2

∑

s

g(eℓ, (∂khsj − ∂jhsk)es) +O(r−2α−1)

=
1

2
(∂khℓj − ∂jhℓk) +O(r−2α−1) . (3.2.11)

It follows that

U
i =

1

4

∑

i,ℓ

(∂ℓhℓi − ∂ihℓℓ)|ϕ̊|2 +O(r−2α−1) .

We choose ϕ̊ so that |ϕ̊|2 = 1, though any non-zero asymptotic value will work.
Equation (1.1.65) shows that

∫
S∞

U idSi is indeed proportional to the ADM
mass in dimension three, provided that α > 1/2.

In higher dimensions it remains to show that the terms

〈ϕ̊, ωjkℓγiγℓγjγkϕ̊〉
in (3.2.3) with all indices distinct give a vanishing contribution. The commu-
tation properties of the γi’s give

∑

ℓ,j,k distinct

〈ϕ̊, ωjkℓγiγℓγjγkϕ̊〉 = 〈ϕ̊, ωjkℓγiγ[ℓγjγk]ϕ̊〉 = 〈ϕ̊, ω[jkℓ]γiγ
ℓγjγkϕ̊〉 .

From (3.2.9) we obtain

ω[jkℓ] =
1

2

(
g(e[ℓ, [ej , ek]])− g(e[k, [eℓ, ej]])− g(e[j , [ek, eℓ]])︸ ︷︷ ︸

=g(e[ℓ,[ej,ek]])

)

= −1

2
g(e[k, [eℓ, ej]]) . (3.2.12)
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Equation (3.2.11) shows that ω[jkℓ] vanishes, finishing the proof of this step in
higher dimensions.

Step 2: We calculate the divergence of U as defined by (3.2.2):

Di〈φ,Diφ〉 = |Dφ|2 + 〈φ,DiD
iφ〉 ,

Di〈φ, γi /Dφ〉 = Di〈φ, γiγjDjφ〉
= −| /Dφ|2 + 〈φ, /D2φ〉 ,

so that, adding, we obtain

DiU
i = |Dφ|2 − | /Dφ|2 (3.2.13a)

+〈φ, (DiD
i + /D2)φ〉 . (3.2.13b)

The last term can be rewritten using the Schrödinger-Lichnerowicz identity:

〈φ, (DiD
i + /D2)φ〉 =

1

4
R|φ|2 , (3.2.14)

which is justified as follows:

(DiD
i + /D2)φ = (gijDiDj + γiDiγ

jDj)φ

= (gij + γiγj)DiDjφ

= (gij + γiγj)(D(iDj) +D[iDj])φ

= γiγjD[iDj]φ . (3.2.15)

From the definitions

Dkφ = ek(φ)− 1

4
ωijkγ

iγjφ ,

ωijk = g(ei,Dekej) ,

DekX
i = ek(Xi) + ωijkX

k ,

RiℓjkX
ℓ = DejDekX

i −DekDejX
i −D[ej ,ek]X

i ,

one readily finds (see Section 3.1.4)

D[iDj]φ = −1

8
Rijkℓγ

kγℓφ . (3.2.16)

From (3.2.6) we have

−1

8
Rijkℓ〈φ, γiγjγkγℓφ〉 = −1

8
Rijkℓ((g

iℓgjk − gikgjℓ)|φ|2 + 〈φ, γ[iγjγkγℓ]φ〉)

=
1

4
R|φ|2 , (3.2.17)

since the last term vanishes identically in dimension three, and is zero by the
Bianchi identity Ri[jkℓ] = 0 in the remaining dimensions. This establishes
(3.2.14).



116CHAPTER 3. SPINORS, ANDWITTEN’S POSITIVE ENERGY THEOREM

In fact, it holds directly that

Rijkℓγ
iγjγkγℓ = −2R , (3.2.18)

which can be seen as follows: First,

Rijkℓγ
iγjγkγℓ = (Ri(jk)ℓγ

iγjγkγℓ + Ri[jk]ℓ︸ ︷︷ ︸
= 1

2
(Rijkℓ−Rikjℓ)=

1
2
(Rijkℓ+Rikℓj)=− 1

2
Riℓjk

γiγjγkγℓ)

= Ri(jk)ℓγ
iγ(jγk)γℓ − 1

2
Riℓjkγ

iγjγkγℓ

= −Ri(jk)ℓγ
igjkγℓ − 1

2
Riℓjkγ

iγjγkγℓ

= Riℓγ
iγℓ − 1

2
Riℓjkγ

iγjγkγℓ

= −R− 1

2
Riℓjkγ

iγjγkγℓ . (3.2.19)

Next,

Riℓjkγ
iγjγkγℓ = Riℓjkγ

iγj(−2gkℓ − γℓγk)

= −2Rijγ
iγj −Riℓjkγ

iγjγℓγk

= 2R−Riℓjkγ
i(−2gjℓ − γℓγj)γk

= 2R− 2Rikγ
iγk +Riℓjkγ

iγℓγjγk

= 4R+Rijkℓγ
iγjγkγℓ .

Inserting this into (3.2.19) leads to (3.2.18).

Suppose, thus, that R ≥ 0; (3.3.7b)-(3.2.14) show that DiU
i ≥ 0 if ϕ

satisfies the Dirac equation,
/Dϕ = 0 . (3.2.20)

This gives

lim
r→∞

∫

Sr

U
idSi = lim

r→∞

∫

Br

DiU
i dµg ≥ 0 ,

where Sr is a coordinate sphere in Mext, which establishes Step 2.

Step 3: Let ϕ̊ be a differentiable spinor field which has constant entries in the
frame ei constructed in Step 1 for r ≥ 2R, and which vanishes away from the
region r ≥ R; we want to show existence of solutions ϕ of (3.2.20) of the form

ϕ = ϕ̊+ ψ ,

with ψ in an appropriate functional space so that (3.2.1) holds. Clearly (3.2.20)
is equivalent to

/Dψ = χ , χ := − /Dϕ̊ . (3.2.21)

Note that if the connection coefficients are in L2(Rn \ B(0, R)) (which will be
the case if α > (n − 2)/2 in (1.1.57)-(1.1.58); compare Exercice 1.1.6), then
χ ∈ L2(M). We will show that the existence of solutions of (3.2.21) with any

χ ∈ L2(M)
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is a simple consequence of elementary Hilbert space theory together with the
Schrödinger-Lichnerowicz identity (3.2.14). We start by defining

‖ψ‖2H :=

∫

M
|Dψ|2 +

R

4
|ψ|2 (3.2.22)

for ψ ∈ C1
c , where Ckc denotes the set of Ck compactly supported spinor fields,

compactly supported spinor fields. This provides a norm if R ≥ 0: indeed, in
this last case, ‖ψ‖H = 0 implies Dψ = 0, hence ψ is covariantly constant. It
follows that

d|ψ|2 = 2〈ψ,Dψ〉 = 0

so that ψ has constant norm. If ψ is compactly supported and the manifold is
not compact (which is the case here) we obtain |ψ| = 0, so ψ = 0 as desired.

We set

H = ‖ · ‖H − completion of C1
c . (3.2.23)

Theorem 3.2.1 Let (M,g) be a complete Riemannian manifold with a W 1,∞
loc

metric and positive scalar curvature, and suppose that M contains an asymp-
totic region Mext := R

n \ B(0, R) in which the metric satisfies the asymptotic
flatness conditions (1.1.57)-(1.1.58), for some α > (n − 2)/2. Then the Dirac
operator is an isomorphism from H to L2.

Proof: The starting element of the proof is a weighted Poincaré inequality :

Definition 3.2.2 We say that the covariant derivative D on E over M admits
a weighted Poincaré inequality if there is a weight function w ∈ L1

loc(M) with
ess infΩw > 0 for all relatively compact Ω ⋐ M , such that for all u ∈ C1

c (M)
we have ∫

M
|u|2 w dvM ≤

∫

M
|Du|2 dvM . (3.2.24)

We show in Appendix B that (3.2.24) holds for manifolds with an asymp-
totically flat end, see Proposition B.0.5.

We note that the weighted Poincaré inequality (3.2.24), together with the
positivity of R, leads to the implication

‖ψ‖H = 0 =⇒ ψ = 0 ,

giving an alternative proof of the fact that ‖ · ‖H is a norm on C1
c .

By construction, H is a Hilbert space with the obvious scalar product in-
herited from C1

c ,

〈ψ,χ〉H =

∫

M
〈Dψ,Dχ〉+

R

4
〈ψ,χ〉 . (3.2.25)

Now, H is obtained by the standard process of completing a metric space,
yielding a somewhat abstract set of objects. Anticipating, to prove the isomor-
phism property we will need to invoke elliptic regularity; for that, the objects
involved have to be spinor fields, rather than some abstract equivalence classes
of Cauchy sequences. So, our next step is to prove that elements of H can be
identified with spinor fields on M :



118CHAPTER 3. SPINORS, ANDWITTEN’S POSITIVE ENERGY THEOREM

Lemma 3.2.3 Suppose that the weighted Poincaré inequality holds. Then any
ψ ∈ H can be represented by a spinor field in H1

loc, with (3.2.24), as well as
(3.2.25), holding for ψ. Moreover, convergence of a sequence ψn to ψ in H
implies convergence of Dψn to Dψ in L2, as well as convergence of ψn to ψ in
H1(Ω) for any conditionally compact domain Ω ⊂M .

Proof: Let ψn ∈ C1
c be Cauchy in H; since R ≥ 0, by (3.2.25) we have

∫

M
|Dψn −Dψm|2 < ǫ .

By hypothesis there exists a measurable strictly positive function w such that
the last inequality implies

∫

M
|ψn − ψm|2w dvM < ǫ .

Completeness of L2(w dvM ) implies that ψn converges in L2(w dvM ) to some
ψ ∈ L2(w dvM ).

Similarly completeness of L2(dvM ) shows that Dψn converges in L2(dvM )
to some θ ∈ L2(dvM ). For any χ ∈ C1

c , we have the identity
∫

K
〈D∗χ,ψn〉 =

∫

K
〈χ,Dψn〉 ,

for any compact set K containing the support of χ. Since ψn converges to ψ in
L2(K, dvM ) we can pass to the limit in this equation, obtaining

∫

K
〈D∗χ,ψ〉 =

∫

K
〈χ, θ〉 .

This shows that θ = Dψ in the sense of distributions, hence

ψ ∈ H1
loc .

weighted Poincaré inequality for ψ ∈ H follows by passing to the limit:
∫

M
|ψ|2 w dvM ←−

∫

M
|ψn|2 w dvM ≤

∫

M
|Dψn|2 dvM −→

∫

M
|Dψ|2 dvM .

Finally, both the left-hand-side and (from what has been said) the first term
of the right-hand-side (3.2.25) are continuous on H, therefore the second term
of the right-hand-side (3.2.25) also is; passing to the limit one thus finds that
(3.2.25) holds on H. ✷

Returning to the proof of Theorem 3.2.1, note that if ψ ∈ C1
c , and if we

integrate (3.2.13) over M and use (3.2.14) we obtain (since the boundary term
vanishes)

‖ψ‖2H =

∫

M
| /Dψ|2 . (3.2.26)

It follows that the map

H ⊃ C1
c ∋ ψ → /Dψ ∈ L2
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is continuous, and so extends by continuity to a continuous map from H to L2

(in fact, an isometry), with (3.2.26) holding on H. In particular /D maps H to
L2, and is injective on H. By polarisation, or by continuity,

〈ψ,χ〉H = 〈 /Dψ, /Dχ〉L2 . (3.2.27)

For θ ∈ L2 and ψ ∈ H define

Fθ(ψ) =

∫

M
〈 /Dψ, θ〉 . (3.2.28)

By (3.2.26) we have

|Fθ(ψ)| ≤ ‖ /Dψ‖L2‖θ‖L2 = ‖ψ‖H‖θ‖L2 ,

showing continuity of Fθ. By the Riesz representation theorem, and by (3.2.27),
there exists ϕ ∈ H such that

Fθ(ψ) = 〈ψ,ϕ〉H = 〈 /Dψ, /Dϕ〉L2 .

In particular, for all ψ ∈ C1
c we have

∫

M
〈 /Dψ, /Dϕ− θ〉 = 0 .

Since /D is formally self-adjoint, we obtain that

χ := /Dϕ− θ ∈ L2 (3.2.29)

is a weak solution of the equation

/Dχ = 0 . (3.2.30)

We claim:

Lemma 3.2.4 Let (M,g) be complete with positive scalar curvature, then the
L2–kernel of /D is trivial.

Remark 3.2.5 The hypothesis of completeness of M guarantees that there ex-
ists on M an increasing sequence of compactly supported functions ϕn ∈W 1,∞

such that 0 ≤ ϕn ≤ 1, |dϕn| ≤ C and M = ∪n∈N{p : ϕn(p) = 1}. The Lemma
remains true whenever this last property is satisfied.

Proof: Let χ ∈ L2 be in the kernel of /D, thus for any ψ ∈ C1
c we have

∫

M
〈 /Dψ,χ〉 = 0 . (3.2.31)

Let ϕ ∈ C∞(R) be a smooth function such that 0 ≤ ϕ ≤ 1, ϕ = 1 on [0, 1], and
ϕ = 0 on [2,∞). Choose any q ∈M and let σq(p) be the distance function from
q. By the triangle inequality σq is Lipschitz with Lipschitz constant one, hence
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differentiable almost everywhere by Rademacher’s theorem, with |Dσq| = 1
wherever defined. Set

ϕn(p) = ϕ(σq(p)/n) .

By elliptic regularity we have χ ∈ H1
loc. As (M,g) is complete, the Hopf-

Rinow theorem implies that metrics balls are compact, hence ϕnχ ∈ H. By the
dominated convergence theorem we have ϕnχ → χ in L2. Equation (3.2.31)
with ψ replaced by ϕnψ gives

∫

M
〈 /Dψ,ϕnχ〉+ ei(ϕn)〈γiψ,χ〉 = 0 ,

so that
/D(ϕnχ) = ei(ϕn)γiχ

in the sense of distributions. As χ ∈ H1
loc this equality remains true in L2.

Since dϕn is supported in B(2n) \B(n) we have

∫

M
|ei(ϕn)γiχ|2 =

∫

B(2n)\B(n)
|ei(ϕn)γiχ|2 ≤ |dϕ|L∞

∫

B(2n)\B(n)
|χ|2 →n→∞ 0

(again by dominated convergence), so /D(ϕnχ) tends to zero in L2. Equa-
tion (3.2.26) shows that ϕnχ tends to zero in H, hence χ = 0. ✷

Lemma 3.2.4 together with (3.2.29)-(3.2.30) shows that /Dϕ = θ, establishing
that /D is surjective, which finishes the proof of Theorem 3.2.1. ✷

Return to Step 1: We are ready now to finish the analysis of (3.2.1)-(3.2.2).
Recall that to prove positivity we need to use a spinor field ϕ of the form

ϕ = ϕ̊+ ψ ,

where ϕ̊ be a differentiable spinor field which has constant entries in the frame
ei, and ψ ∈ H. We start be rewriting the Schrödinger-Lichnerowicz identity in
an integral form,

∫

Ω
|Dϕ|2 − | /Dϕ|2 +

R

4
|ϕ|2 =

∮

∂Ω
U

idSi . (3.2.32)

with a spinor field ϕ = ϕ̊+ ψ, with ψ differentiable and compactly supported,
while ∂Ω = SR, a coordinate sphere of radius R in the exterior region, with
R large enough so that ψ vanishes there. Passing to the limit R → ∞, our
previous calculations of Step 1 give

∫

M
|Dϕ|2 − | /Dϕ|2 +

R

4
|ϕ|2 = αnm , (3.2.33)

still for C1 compactly supported ψ’s. Let F (ψ) denote the left-hand-side of
Equation (3.2.33) with ϕ = ϕ̊+ ψ there

F (ψ) =

∫

M
|Dϕ̊+Dψ|2 − | /Dϕ̊+ /Dψ|2 +

R

4
|ϕ̊+ ψ|2 . (3.2.34)
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We want to show that F is continuous on H. In order to do that, suppose that
ψi ∈ H converges in H to ψ ∈ H. We have

F (ψ) − F (ψi) = ‖ψ‖2H − ‖ψi‖2H + 2

∫

M
〈Dkϕ̊ ,Dk(ψ − ψi)〉

−2

∫

M
〈 /Dϕ̊ , /D(ψ − ψi)〉+

1

2

∫

M
R〈ϕ̊ , (ψ − ψi)〉 .

The first two terms at the right-hand-side of this equation converge to zerom
as i → ∞ by continuity of the norm. The third term converges to zero, using
Cauchy-Schwarz in L2(M), because Dϕ̊ ∈ L2(M) while Dψi converges to Dψ
in L2 by Lemma 3.2.3. The convergence of the last term can be justified by
applying the Cauchy-Schwarz inequality as follows:

∣∣∣∣
∫

M
R〈ϕ̊ , ψ − ψi〉

∣∣∣∣ =

∣∣∣∣
∫

M
〈
√
Rϕ̊ ,

√
R(ψ − ψi)〉

∣∣∣∣

≤
(∫

M
R〈ϕ̊ , ϕ̊〉

)1/2(∫

M
R〈ψ − ψi, ψ − ψi〉

)1/2

≤ C(‖R‖L1(Mext
)‖ψ − ψi‖H ,

which tends to zero if ‖R‖L1(Mext
<∞ Now, since the ψi’s are compactly sup-

ported we have F (ψi) = F (0) = αnm, and density (which holds by construction
of H) implies that (3.2.33) remains true for any ϕ of the form ϕ̊+ψ, with ψ ∈ H.

If m = 0 then clearly R = Dϕ = 0 by (3.2.33) when /Dϕ = 0 and R ≥ 0,
showing that vanishing mass implies existence of a covariantly constant spinor.
Summarising, we have proved:

Theorem 3.2.6 Let (M,g) be a complete Riemannian manifold with a W 1,∞
loc

metric, dimM ≥ 3. Suppose that M contains an asymptotic region Mext :=
R
n \ B(0, R) in which the metric satisfies the asymptotic flatness conditions

(1.1.57)-(1.1.58), for some α > 1/2. If

0 ≤ R ∈ L1(Mext) ,

then
m ≥ 0 ,

with equality if and only if R = 0 and there exists a non-trivial covariantly
constant spinor field on M .

3.3 Generalised Schrödinger-Lichnerowicz identities

Consider, now, a connection ∇i of the form

∇i = Di +Ai , (3.3.1)

where Di is the standard spin connection for spinor fields which, locally, are
represented by fields with values in V . As elsewhere, space-dimension n is
assumed unless explicitly indicated otherwise. In this section we also use the
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symbol Di for the usual Levi-Civita derivative associated to the metric g acting
on tensors, etc. The matrices γi stand for cg(ei) ≡ ei·, with cg — the canonical
injection of TM into the representation under consideration on V of the Clifford
algebra associated with a Riemannian metric g, and are D-covariantly constant,

Diγµ = 0 .

We will shortly need a matrix γ0 with constant entries satisfying

γt0 = γ0 , γ20 = 1 , γiγ0 = −γ0γi , Diγ0 = 0 . (3.3.2)

When the manifold M is a spacelike hypersurface in a spin Lorentzian manifold
(M , γ), γ0 can be obtained by setting

γ0 := cγ(N) ,

where N is the field of unit normals to M , and cγ is the canonical injection of
TM into the representation under consideration on V of the Clifford algebra
associated with the Lorentzian metric γ.

If, however, the desired γ0 ∈ End(V ) does not exist, we proceed as follows:
Let S denote the bundle, over M , of spinors under consideration (thus the
fibers of S are isomorphic to V ). Let S′ = S ⊕ S be the direct sum of two
copies of S, equipped with the direct sum metric 〈·, ·〉⊕:

〈(ψ1, ψ2), (ϕ1, ϕ2)〉⊕ := 〈ψ1, ϕ1〉+ 〈ψ2, ϕ2〉 . (3.3.3)

We set, for X ∈ TM ,

γ0(ψ1, ψ2) := (ψ2, ψ1) , (3.3.4a)

X · (ψ1, ψ2) := (X · ψ1,−X · ψ2) , (3.3.4b)

DX(ψ1, ψ2) := (DXψ1,DXψ2) . (3.3.4c)

One readily verifies that (3.3.4b) defines a representation of the Clifford algebra
on S′, and that (3.3.2) holds.

We set
γ0 := −γ0 .

We want to derive divergence identities involving the Dirac operator asso-
ciated with ∇i. For this we define,

/∇ := γi∇i , /D := γiDi ,

and we calculate

Di〈φ,∇iφ〉 = |∇φ|2 + 〈φ,DiD
iφ〉

+〈φ,Di(A
iφ)〉 − 〈Aiφ, (Di +Ai)φ〉 , (3.3.5)

Di〈φ, γi /∇φ〉 = Di〈φ, γiγj∇jφ〉
= −| /∇φ|2 + 〈φ, /D2φ〉

+〈φ, γiγjDi(Ajφ)〉+ 〈γiAiφ, γj(Dj +Aj)φ〉 . (3.3.6)
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Adding we obtain

DiU
i := Di〈φ,

(
∇i + γi /∇

)
φ〉 (3.3.7a)

= |∇φ|2 − | /∇φ|2 (3.3.7b)

+〈φ, (DiD
i + /D2)φ〉 (3.3.7c)

+〈φ,
[
Ai − (Ai)t + γiγjAj + (γjAj)

tγi
]
Diφ〉 (3.3.7d)

+〈φ,
[
DiA

i + γiγjDiAj
]
φ〉 (3.3.7e)

+〈φ,
[
(γiAi)

tγjAj − (Ai)tAi
]
φ〉 . (3.3.7f)

The term (3.3.7c) is independent of the Ai’s, and is the one that arises in the
original Schrödinger-Lichnerowicz identity (3.2.14):

〈φ, (DiD
i + /D2)φ〉 =

1

4
R|φ|2 . (3.3.8)

In order to work out the remaining terms in (3.3.7), an explicit form of the
Ai’s is needed.

3.3.1 A connection involving extrinsic curvature

Suppose, first, that ∇ is the “space-time spin connection”:

Ai =
1

2
Ki

jγjγ0 , (3.3.9)

where Kij is a symmetric tensor field on M . Ai is then symmetric and we have,
by symmetry of Kjk,

Ai − (Ai)t + γiγjAj + (γjAj)
tγi =

1

2
Kjk

(
γiγjγkγ0 + γ0γ

kγjγi
)

= −1

2
trgK

(
γiγ0 + γ0γ

i
)

= 0 , (3.3.10)

so that there is no contribution from (3.3.7d). We set

µ := R− |K|2 + (trK)2 , (3.3.11a)

νj := 2Di(K
ij − trKgij) (3.3.11b)

(the reader will recognize the right-hand-sides as occurring in the general rela-
tivistic constraint equations.) Next,

DiAi + γjγiDjAi =
1

2

(
DiKijγ

j +DjKikγ
jγiγk

)
γ0

=
1

2

(
DiKijγ

j −DjtrgKγ
j
)
γ0

=
1

4
νjγ

jγ0 , (3.3.12)
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with ν as in Equation (3.3.11); this gives the contribution from (3.3.7e). Using
symmetry of KijK

i
k we further have

(Ai)tAi =
1

4
KijK

i
kγ

jγ0γ
kγ0

= −1

4
KijK

i
kγ

jγk

= −1

8
KijK

i
k(γjγk + γkγj)

=
1

4
|K|2g .

From
γiAi = −trgKγ0/2 = (γiAi)

t (3.3.13)

one obtains

(γiAi)
tγjAj − (Ai)tAi =

1

4

(
−|K|2g + (trgK)2

)
.

Collecting all this we are led to

Di〈φ,
(
∇i + γi /∇

)
φ〉 = |∇φ|2 − | /∇φ|2 +

1

4
〈φ, (µ + νjγ

jγ0)φ〉 , (3.3.14)

where µ is given by Equation (3.3.11a).
Consider, now, the vector field U i defined by (3.3.7a):

U
i = 〈φ,

(
∇i + γi /∇

)
φ〉 = 〈φ,

(
Di + γi /D

)
φ〉+ 〈φ,

(
Ai + γiγjAj

)
φ〉 .

We have, using (3.3.13),

Ai + γiγjAj =
1

2
(Kijγ

j − trgKγ
i)γ0

=
1

2
(trgKg

ij −Kij)γ0γj ,

which integrated upon a coordinate sphere SR in Mext gives

lim
R→∞

∮

S(R)
〈φ∞,

(
Ai + γiγjAj

)
φ∞〉dSi

=

(
lim
R→∞

1

2

∮

S(R)
(trgKg

ij −Kij)dSi

)
〈φ∞, γ0γjφ∞〉

= ωnp
i〈φ∞, γ0γiφ∞〉 = ωnpi〈φ∞, γiγ0φ∞〉 , (3.3.15)

with pi — the (suitable normalised) ADM momentum of Mext (recall that
γ0 = −γ0). Here φ∞ is a covariantly constant spinor field of the Euclidean
metric associated to the natural coordinates on Mext. Combining this with the
calculations in Section 3.2 we obtain

lim
R→∞

∮

S(R)
U

idSi = 4πpµ〈φ∞, γµγ0φ∞〉 . (3.3.16)

Modulo the question of weak differentiability conditions on the metric, which
has been addressed in detail in [14, 15], the algebra above together with the
analytic arguments of the previous section give:
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Theorem 3.3.1 Let (M,g,K) be initial data for the Einstein equations with
g ∈ W 2,2

loc , K ∈ W
1,2
loc , with (M,g) complete (without boundary). Suppose that

M contains an asymptotically flat end and let pα = (m, ~p) be the associated
ADM four-momentum.5 If

µ ≥ |ν|g , (3.3.17)

then
m ≥ |~p|δ , (3.3.18)

with equality if and only if m vanishes. Further, in that last case there exists a
non-trivial covariantly constant (with respect to the space-time spin connection)
spinor field on M.

Remark 3.3.2 Under the supplementary assumption of smoothness of g and
K, it has been shown in [21] that the existence of a covariantly constant spinor
implies that the initial data can be isometrically embedded into Minkowski
space-time, cf. also [188]. We expect this result to remain true under the
current hypotheses, but we have not attempted to prove this.

As pointed out by Yvonne Choquet-Bruhat [49], the choice

Ak =
1

2

√
−1Kk

jγj (3.3.19)

leads to a similar identity

Di〈φ,
(
∇i + γi /∇

)
φ〉 = |∇φ|2 − | /∇φ|2 +

1

4
〈φ, (µ +

√
−1νjγ

j)φ〉 . (3.3.20)

(The calculations are essentially identical, except that transpositions have to
be replaced by hermitian conjugations.) The drawback of (3.3.19) is that the
resulting Dirac-type operator /∇ is not formally self-adjoint any more. However,
the formal adjoint of /∇ differs from /∇ by a change of sign of the Kij term, and
the existence theory for such an operator can be repeated without essential
changes. Note that (3.3.19) does not require introducing the matrix γ0, leading
to a certain economy in the argument.

3.3.2 Maxwell fields

We consider an initial data set (M,g,K) on which a Maxwell field F = (E,B)
is given. Thus, E = Eidx

i is the electric field on M related to the space-time
Maxwell tensor field F = Fµνdx

µdxν through the equation Ei = Fiµn
µ, where

nµ is the future-pointing unit normal to M considered as a hypersurface in
space-time. Similarly the magnetic field B = Bidx

i on M is defined as Bi =
∗4Fiµnµ, where ∗4 is the space-time Hodge dual. (Here, we use a coordinate
system so that M = {t = 0}.) Note that those definitions require space-time

5There is a signature-dependent ambiguity in the relationship between p0, p0 and the mass
m: in the space-time signature (−,+,+,+) used in this work this sign is determined by the
fact that p0, obtained by Hamiltonian methods, is usually positive in Lagrangean theories on
Minkowski space-time such as the Maxwell theory, while the mass m is a quantity which is
expected to be positive.
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dimension four. However, one can work in any space dimension using Ei, and
either Bi or Fij as the fundamental objects. (In higher dimensions this leads
of course to different theories.) In space-dimension three we note the relations

Bi = 1
2ǫi

jkFjk ⇐⇒ Fij = ǫijkB
k ,

∗4Fij = ǫijk0F
k0 = ǫijkE

k ,

where ǫijk is completely antisymmetric and equals
√

det g for ijk = 123.

Following Gibbons and Hull [105], when n = 3 we set

Ai =
1

2
Kijγ

jγ0
︸ ︷︷ ︸
Ai(K)

−1

2
Ekγkγiγ0

︸ ︷︷ ︸
Ai(E)

−1

4
ǫjkℓB

jγkγℓγi
︸ ︷︷ ︸

Ai(B)

. (3.3.21)

For n > 4 we could drop the term involving B, and hope for the best. But
we will shortly see that the electric field will give undesirable terms in the
divergence identity in space-dimension different from n = 3.

We return to (3.3.7). The contribution of K to the linear terms (3.3.7d)
and (3.3.7e) has already been worked out, so it remains to evaluate that of E
and B. We have:

Ai(E)t = −1

2
Ekγ0γiγk = −1

2
Ekγiγkγ0 = −1

2
Ek (−γkγi − 2gki) γ0

= −Ai(E) + Eiγ0 , (3.3.22a)

γjAj(E) = −1

2
Ekγjγkγjγ0 = −1

2
Ek
(
−γkγj − 2δjk

)
γjγ0 = −1

2
Ek (nγk − 2γk) γ0

= −(n− 2)

2
Ekγkγ0 , (3.3.22b)

(γjAj(E))t = γjAj(E) . (3.3.22c)

This gives

Ai(E)− (Ai(E))t + γiγjAj(E) + (γjAj(E))tγi

= −Ek
(

γkγi︸︷︷︸
−gki+γ[kγi]

+
(n− 2)

2
(γiγk − γkγi)

)
γ0 − Eiγ0

=
(n− 3)

2
Ekγ

[kγi]γ0 .

So we see that this unwanted term will drop out only if n = 3. From now on
we assume that this last property holds.

We continue with the observation that

A1(B) = −1

2

[
B1γ2γ3 +B2γ3γ1 +B3γ1γ2

]
γ1

= −1

2

[
B1γ

1γ2γ3 −B2γ3 +B3γ2
]

= −1

2

[
B1γ

1γ2γ3 − ǫ1jkBjγk
]
, (3.3.23)
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so, since the e1 direction can be chosen at will,

Ai(B) =
1

2

[
ǫijkB

jγk −Biγ1γ2γ3
]
. (3.3.24)

Now

(γ1γ2γ3)t = (γ3)t(γ2)t(γ1)t = −γ3γ2γ1 = −γ2γ1γ3 = γ1γ2γ3 , (3.3.25)

γiγ1γ2γ3 = −1
2ǫ
ijkγjγk , (3.3.26)

γi 12ǫjkℓB
jγkγℓ = Biγ1γ2γ3 + ǫijkBjγk , (3.3.27)

where the last two equations have been obtained by a calculation similar to
that of Equation (3.3.23). This leads to

Ai(B)t = −1

2

[
ǫijkB

jγk +Biγ
1γ2γ3

]
, (3.3.28a)

γiAi(B) =
1

2

[
ǫijkB

jγiγk +
1

2
ǫijkBiγjγk

]

= −1

4
ǫijkB

iγjγk , (3.3.28b)

(γjAj(B))t = −γjAj(B) , (3.3.28c)

γiγjAj(B) = −1

2

[
Biγ1γ2γ3 + ǫijkBjγk

]

= (Ai(B))t , (3.3.28d)

(γjAj(B))tγi = −Ai(B) . (3.3.28e)

Here (3.3.28d) follows from (3.3.27) and (3.3.28b), while (3.3.28e) is obtained
by comparing minus (3.3.28b) multiplied from the right by γi, as justified by
(3.3.28c), with the definition (3.3.21) of Ai(B). Using (3.3.28d) and (3.3.28e)
we conclude that

Ai(B)− (Ai(B))t + γiγjAj(B) + (γjAj(B))tγi

= Ai(B)− (Ai(B))t + (Ai(B))t −Ai(B)

= 0 , (3.3.29)

which shows that the contribution (3.3.7d) to (3.3.7) vanishes. We consider
next (3.3.7e):

DjA
j(E) + γiγjDiAj(E) = −1

2
DiE

k{γkγi + γi γjγk︸︷︷︸
−γkγj−2δjk

γj}γ0

= −1

2
DiEk{γkγi + 3γiγk − 2γiγk}γ0

= DiE
iγ0 =: div(E)γ0 . (3.3.30)

To analyse the contribution of Ai(B) to (3.3.7e) it is convenient to use (3.3.24),
which gives

DiA
i(B) + γiγjDiAj(B) =

1

2
DiBk[ǫjkℓ(δijγℓ + γiγjγℓ)− (gik + γiγk)γ1γ2γ3] .

(3.3.31)
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Fortunately it is not necessary to evaluate this expression in detail, because any
antisymmetric matrix appearing above gives a zero contribution after insertion
into (3.3.7e). This follows immediately from the fact that for any linear map F
we have

〈φ, Fφ〉 = 〈φ, F tφ〉 = 〈φ, 1

2
(F + F t)φ〉 . (3.3.32)

Now, by Clifford algebra rules, the right-hand-side of (3.3.31) will be a linear
combination of γi’s and of γ1γ2γ3; the γi’s are antisymmetric and can thus be
ignored, and it remains to work out the coefficient in front of the symmetric
matrix γ1γ2γ3. The first term gives no such contribution, the second one will
contribute when i equals k, producing then a contribution −2gikγ1γ2γ3,. The
only possible contribution from the last two terms could occur when i = k, but
then they cancel out each other. We are thus led to

DiA
i(B) + γiγjDiAj(B) = −DiB

iγ1γ2γ3 + antisymmetric

=: −div(B)γ1γ2γ3 + antisymmetric . (3.3.33)

Let us, finally, consider the quadratic term (3.3.7f); from Equations (3.3.13),
(3.3.22b) and (3.3.28b) together with (3.3.26) we have

γiA
i = −1

2
(trgK + Eiγi)γ0 −

1

4
ǫijkB

iγjγk

= −1

2

[
(trgK +Eiγi)γ0 −Biγiγ

1γ2γ3
]
. (3.3.34)

It follows that

(γiA
i)t = −1

2

[
(trgK + Eiγi)γ0 +Biγiγ

1γ2γ3
]
, (3.3.35)

and

(γiA
i)tγjA

j =
1

4

[
(trgK + Eiγi)γ0 +Biγiγ

1γ2γ3
] [

(trgK + Ejγj)γ0 −Bjγjγ
1γ2γ3

]

=
1

4

{
(trgK + Eiγi)γ0(trgK + Ejγj)γ0 −BiBjγiγ

1γ2γ3γjγ
1γ2γ3

−EiBj
[
γiγ0γjγ

1γ2γ3 − γjγ1γ2γ3γiγ0
] }

=
1

4

{
(trgK + Eiγi)(trgK − Ejγj)−BiBjγiγj(γ

1γ2γ3)2

−EiBj [γiγj − γjγi] γ1γ2γ3γ0
}

=
1

4

{
(trgK)2 + |E|2g + |B|2g + 2ǫijkE

iBjγkγ0

}
. (3.3.36)

Next, from the definition (3.3.21) together with (3.3.22a) and (3.3.28a) we ob-
tain

(Ai)
t =

1

2

[
(Kijγ

j + 2Ei + Ekγkγi)γ0 − ǫijkBjγk −Biγ1γ2γ3
]
. (3.3.37)

Using the form (3.3.24) of Ai(B) one has

(Ai)
tAi =

1

4

[
(Kijγ

j + 2Ei + Ekγkγi)γ0 − ǫijkBjγk −Biγ1γ2γ3
]

×
[
(Ki

jγ
j − Ekγkγi)γ0 + ǫijkBjγk −Biγ1γ2γ3

]
. (3.3.38)
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Again, we do not need to calculate all the terms above, only the symmetric part
matters. It is straightforward to check that the following symmetry properties
hold:

symmetric : γ0 , γiγ0 , γ1γ2γ3 , (3.3.39a)

antisymmetric : γi , γiγj and γiγjγ0 both with i 6= j , γ1γ2γ3γ0 . (3.3.39b)

For example,

(γ1γ2γ3γ0)t = γt0(γ1γ2γ3)t = γ0γ
1γ2γ3 = −γ1γ2γ3γ0 , (3.3.40)

the remaining claims in (3.3.39) being proved similarly, cf. also (3.3.25). Using
(3.3.39), Equation (3.3.38) can be manipulated6 as follows

(Ai)
tAi =

1

4

{
(Kiℓγ

ℓ + 2Ei +Eℓγℓγi)γ0

×
[
(Ki

jγ
j − Ekγkγi)γ0 + ǫijkBjγk −Biγ1γ2γ3

]

−ǫiℓmBℓγm
[
(Ki

jγ
j − Ekγkγi)γ0 + ǫijkBjγk −Biγ1γ2γ3

]

−Biγ1γ2γ3
[
(Ki

jγ
j − Ekγkγi)γ0 + ǫijkBjγk −Biγ1γ2γ3

]}

=
1

4

{
(Kiℓγ

ℓ + 2Ei +Eℓγℓγi)

×
[
−Ki

jγ
j − Ekγkγi − ǫijkBjγkγ0 +Biγ1γ2γ3γ0

]

−ǫiℓmBℓγm(Ki
jγ
j − Ekγkγi)γ0 + ǫiℓmB

ℓǫijmBj

−Biγ1γ2γ3
[
−Ekγkγiγ0 −Biγ1γ2γ3

]}
+ antisymmetric

=
1

4

{
(Kiℓγ

ℓ
[
−Ki

jγ
j − Ekγkγi − ǫijkBjγkγ0

]

+2Ei

[
−Ekγkγi − ǫijkBjγkγ0

]

+Eℓγℓγi

[
−Ki

jγ
j − Ekγkγi − ǫijkBjγkγ0 +Biγ1γ2γ3γ0

]

+ ǫiℓmB
ℓKim

︸ ︷︷ ︸
0

+ BℓEkǫiℓm︸ ︷︷ ︸
antisym. in i,m

(−γmδik − δmk γi)︸ ︷︷ ︸
sym. in i,m︸ ︷︷ ︸

0

γ0 + 2|B|2g

+ǫikℓB
iEkγℓγ0 + |B|2g

}
+ antisymmetric

=
1

4

{
|K|2g −KiℓEkǫ

ℓki

︸ ︷︷ ︸
0

γ1γ2γ3 + ǫijkKikBj︸ ︷︷ ︸
0

γ0

+2|E|2g − 2ǫijkEiBjγkγ0

−EℓEkγℓ (−2gik − γkγi)γi︸ ︷︷ ︸
γk

− ǫijkBjEℓ(−gℓiγk + gkℓγi)γ0︸ ︷︷ ︸
−2ǫijkEiBjγkγ0

+ǫijkB
iEjγkγ0

6The calculation here can be somewhat simplified by noting at the outset that there is no
symmetric nonzero matrix which can be built by contraction with K, E, and the γ-matrices
with no indices left, similarly for K and B, hence the contributions from Ai(K) and that of
Ai(E) + Ai(B) can be computed separately.
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+2|B|2g
+ǫijkB

iEjγkγ0 + |B|2g
}

+ antisymmetric

=
1

4

{
|K|2g + 3|E|2g + 3|B|2g − 2ǫijkEiBjγkγ0

}
, (3.3.41)

where the last equality is justified by the fact that all the antisymmetric ma-
trices have to cancel out, since the matrix at the left-hand-side of the first line
of (3.3.41) is symmetric. Subtracting (3.3.41) from (3.3.36) we thus find the
following formula for the term (3.3.7f):

〈φ,
{

(γiAi)
tγjAj − (Ai)tAi

}
φ〉 =

1

4
〈φ,
{
|K|2g − (trgK)2 + 2|E|2g + 2|B|2g − 4ǫijkEiBjγkγ0

}
φ〉 . (3.3.42)

Summarising, Equations (3.3.7), (3.3.8), (3.3.10), (3.3.12), (3.3.23), (3.3.29),
(3.3.30), (3.3.33) and (3.3.42) lead to

Di〈φ, (∇i + γiγj∇j)φ〉 = |∇φ|2 − | /∇φ|2

+
1

4
〈φ,
{
µ+ (νiγ

i + 4div(E))γ0 − 4div(B)γ1γ2γ3
}
φ〉 , (3.3.43)

where

µ := R− |K|2g + (trgK)2 − 2|E|2g − 2|B|2g , (3.3.44a)

νj = 2Di(K
ij − trKgij)− 4ǫjkℓE

kBℓ . (3.3.44b)

We turn now our attention to the electromagnetic field contribution to the
boundary integrand 〈φ, (∇i + γiγj∇j)φ〉:

Ai(E) + γiγjAj(E) = Eiγ0 + antisymmetric , (3.3.45a)

Ai(B) + γiγjAj(B) = −1

2
Biγ1γ2γ3 − 1

4
ǫjkℓB

jγiγkγℓ + antisymmetric

= −Biγ1γ2γ3 + antisymmetric , (3.3.45b)

and Equation (3.3.16) gives

lim
R→∞

∮

S(R)
U

idSi = 4π〈φ∞,
[
pµγ

µγ0 +Qγ0 − Pγ1γ2γ3
]
φ∞〉 . (3.3.46)

Our algebraic and analytic considerations so far lead to (see [72] for the
analysis of the equality case):

Theorem 3.3.3 Let (M,g,K) be a smooth three-dimensional initial data set,
with (M,g) complete, and with an asymptotically flat end Mext, and with ∂M
weakly outer trapped, if not empty. Suppose, further, that we are given on S

two smooth vector fields Ê and B satisfying

4πρB := DiB
i ∈ L1(S ) , 4πρE := DiE

i ∈ L1(S ) .
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Set

4πQE := lim
R→∞

∫

r=R
EidSi , 4πQB := lim

R→∞

∫

r=R
BidSi .

Let R be the Ricci scalar of g and assume

0 ≤ R− |K|2 + (trK)2 − 2g(Ê, Ê)− 2g(B,B) =: 16πρm ∈ L1(Mext) . (3.3.47)

If
ρ2E + ρ2B + |J |2g ≤ ρ2m , (3.3.48)

where
16πJ i = 2Dj(K

ij − trKgij)− 4ǫikℓE
kBℓ , (3.3.49)

then the ADM mass m of Mext satisfies

m ≥
√
|~p|2 + (QE)2 + (QB)2 . (3.3.50)

If the equality is attained in (3.3.50) then (3.3.48) is also an equality, and
there exists on M a ∇-parallel spinor field. Furthermore, the associated space-
time metric is, locally, an Israel-Wilson-Perjes (not necessarily electro-vacuum)
metric.

3.3.3 Cosmological constant

Let us turn our attention now to the hyperbolic case: let α ∈ R, we set

Ai = Ai +
α
√
−1

2
γi

︸ ︷︷ ︸
Ai(α)

, ∇i = Di + Ai , (3.3.51)

with Ai as in Equation (3.3.21). (This is the standard way of taking into
account a cosmological constant when no Maxwell field is present [102].) Here√
−1 : V → V is any map satisfying

(
√
−1)2 = −idV ,

√
−1γi = γi

√
−1 , (

√
−1)t = −

√
−1 . (3.3.52)

(If V is a complex vector space understood as a vector space over R, with the
real scalar product 〈·, ·〉 arising from a sesquilinear form 〈·, ·〉C, then

√
−1 can

be taken as multiplication by i. On the other hand, if no such map
√
−1 exists

on V , one can always replace V by its complexification VC := V ⊗ C, with
new matrices γµ ⊗ idC, and use multiplication by idV ⊗ (i idC) on VC as the
desired map.) We consider again Equation (3.3.7), with A there replaced by
A . Now, the terms (3.3.7d) and (3.3.7e) are linear in A , and they have already
been shown to vanish when α = 0; thus, to show that they vanish for α 6= 0 it
suffices to show that they do so when Ai = Ai(α). This is obvious for (3.3.7e),
while for (3.3.7d) we have

(Ai(α))t = Ai(α) ,

γiAi(α) = −3
α
√
−1

2
, (γiAi(α))t = 3

α
√
−1

2
,



132CHAPTER 3. SPINORS, ANDWITTEN’S POSITIVE ENERGY THEOREM

Ai(α)−(Ai(α))t+γiγjAj(α)+(γjAj(α))tγi =
α
√
−1

2

(
γi + (γi)t − 3

2
γi +

3

2
γi
)

= 0 .

It follows that the only new terms that can perhaps occur in Equations (3.3.7c)-
(3.3.7f) arise from (3.3.7f). We calculate

(
γiAi + γiAi(α)

)t (
γjAj + γjAj(α)

)
=

(
(γiAi)

t + 3
α
√
−1

2

)(
γjAj − 3

α
√
−1

2

)

= (γiAi)
tγjAj +

9α2

4

+3
α
√
−1

2

(
γjAj − (γiAi)

t
)
, (3.3.53)

(
Ai +Ai(α)

)t
(Ai +Ai(α)) =

(
(Ai)t +

α
√
−1

2
γi
)(

Ai +
α
√
−1

2
γi

)

= (Ai)tAi +
3α2

4
+
α
√
−1

2
×

( (Ai)
tγi︸ ︷︷ ︸

−(Ai)t(γi)t=−(γiAi)t

+γjAj) , (3.3.54)

so that

(γiAi)
tγjAj − (A i)tAi = (γiAi)

tγjAj − (Ai)tAi +
3α2

2

+α
√
−1
(
γjAj − (γiAi)

t
)
. (3.3.55)

Equations (3.3.34)-(3.3.35) show that

α
√
−1
(
γjAj − (γiAi)

t
)

= α
√
−1Biγiγ

1γ2γ3 , (3.3.56)

so that we obtain

Di〈φ, (∇i + γiγj∇j)φ〉 = |∇φ|2 − | /∇φ|2

+
1

4
〈φ,
{
µ+ 6α2 + (νiγ

i − div(E))γ0 +
(
4α
√
−1Biγi − div(B)

)
γ1γ2γ3

}
φ〉 ,

(3.3.57)

where µ, ν is as in (3.3.44), div(E) is the divergence of E and div(B) that of B.
Somewhat surprisingly, the term Biγiγ

1γ2γ3 occurring above does not seem to
combine in any obvious way with the remaining ones to yield a useful identity
except when B vanishes. In any case the identity (3.3.57) can then be used
to prove a mass-charge inequality in an asymptotically hyperboloidal setting,
in the spirit of Theorem 3.3.3 with B ≡ 0 there, or if the positive terms there
dominate the undesirable B term.



Chapter 4

The Trautman-Bondi mass

4.1 Introduction

In 1958 Trautman [175] (see also [177]) has introduced a notion of energy suit-
able for asymptotically Minkowskian radiating gravitational fields, and proved
that it is monotonically decreasing; this mass has been further studied by Bondi
et al. [108] and Sachs [160]. Several other definitions of mass have been given
in the radiation setting, and it is convenient to start with a general overview of
the subject. Our presentation follows closely [65].

First, there are at least seven methods for defining energy-momentum (“mass”
for short) in the current context:

1. The already-mentioned definition of Trautman [175], based on the Freud
integral [87], that involves asymptotically Minkowskian coordinates in
space-time. The definition stems from a Hamiltonian analysis in a fixed
global coordinate system.

2. A definition of Bondi et al. [108], also alluded-to above, which uses space-
time “Bondi coordinates”.

3. A definition of Abbott-Deser [1], originally introduced in the context of
space-times with negative cosmological constant, which (as we will see)
is closely related to the problem at hand. The Abbott-Deser integrand
turns out to coincide with the linearisation of the Freud integrand, up to
a total divergence [70].

4. The space-time “charge integrals”, derived in a geometric Hamiltonian
framework [53, 64, 69, 112]. A conceptually distinct, but closely related,
variational approach, has been presented in [40].

5. The “initial data charge integrals”, presented below, expressed in terms
of data (g,K) on an initial data manifold.

6. The Hawking mass and its variations such as the Brown-York mass, using
two-dimensional spheres.
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7. A purely Riemannian definition, that provides a notion of mass for asymp-
totically hyperbolic Riemannian metrics [63, 185].

Each of the above typically comes with several distinct variations.
Those definitions have the following properties:

1. The Bondi mass, say mB, requires in principle a space-time on which
Bondi coordinates can be introduced. However, a null hypersurface ex-
tending to future null infinity suffices. Neither analysis is directly adapted
to an analysis in terms of usual spacelike initial data sets. The mass mB is
an invariant under Bondi-van der Burg-Metzner-Sachs coordinate trans-
formations.

The Bondi mass mB has been shown to be the unique functional, within
an appropriate class, which is non-increasing with respect to deformations
of the section to the future [66].

A formulation of that mass in terms of “quasi-spherical” foliations of null
cones has been recently given in [13] under rather weak differentiability
conditions.

The question, whether mB is uniquely defined by the asymptotic structure
of the space-time is not clear, because there could exist Bondi coordinates
which are not related to each other by a Bondi-van der Burg-Metzner-
Sachs coordinate transformation.

2. Trautman’s definition, say mT , requires existence of a certain class of
asymptotically Minkowskian coordinates, with mT being invariant under
a class of coordinate transformations that arise naturally in this con-
text [175]. The definition is obtained by evaluating the Freud integral
in Trautman’s coordinates. Asymptotically Minkowskian coordinates as-
sociated with the Bondi coordinates belong to the Trautman class, and
the definition is invariant under a natural class of coordinate transforma-
tions. Trautman’s conditions for existence of mass are less stringent, at
least in principle1, than the Bondi ones. Bondi’s mass mB equals Traut-
man’s mass mT of the associated quasi-Minkowskian coordinate system,
whenever both mB and mT can be simultaneously defined.

Uniqueness is not clear, because there could exist Trautman coordinates
which are not related to each other by the coordinate transformations
analyzed by Trautman.

3. The Hawking mass, and its variations, are a priori highly sensitive to the
way that a family of spheres approaches a cut of conformal null infinity I .
(This is one of the major problems which one faces when trying to gener-
alise the proof of the Penrose inequality to a hyperboloidal setting [146].)
It is known that those masses converge to the Trautman-Bondi mass when

1It is difficult to make a clear cut statement here because existence theorems that lead to
space-times with Trautman coordinates seem to provide Bondi coordinates as well (though
perhaps in a form that is weaker than required in the original definition of mass, but still
compatible with an extension of Bondi’s definition).
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evaluated on Bondi spheres, but this result is useless in a Cauchy data
context, as general initial data sets will not be collections of Bondi spheres.

4. From a Cauchy problem point of view, a suitable framework for discussing
the mass in the radiation regime is provided by “hyperboloidal initial data
sets”. Such data sets are in general relativity in two different contexts: as
hyperboloidal hypersurfaces in asymptotically Minkowskian space-times
on which K approaches a multiple of g as one recedes to infinity, or as
spacelike hypersurfaces in space-times with a negative cosmological con-
stant on which |K|g approaches zero as one recedes to infinity. This
indicates that the Abbott-Deser integrals, which arose in the context
of space-times with non-zero cosmological constant, could be related to
the Trautman-Bondi mass. It follows from our analysis below that these
masses do, in fact, coincide with the initial data charge integrals under
certain strong decay conditions.

In space-times with a cosmological constant, the strong decay conditions
are satisfied on hypersurfaces which are, roughly speaking, orthogonal to
high order to the conformal boundary, but will not be satisfied on more
general hypersurfaces.

5. The Abbott-Deser definition of mass is based on the analysis of the lin-
earized field equations. It proceeds through a linearized version of bound-
ary integrals in the spirit of that of Freud, introduced in Section 1.2.
Hence the need to understand the relation between such integrals and
their linearisations. We will show that the linearisation of the Freud inte-
gral coincides with the linearisation of the initial data “charge integrals”.

6. However, we will see that the linearisation of the Freud integral does not
coincide in general with the Freud integral for radiating metrics. Nev-
ertheless, the resulting numbers which are assigned to hypersurfaces co-
incide when decay conditions, referred to as strong decay conditions, are
imposed. The strong decay conditions turn out to be incompatible with
existence of gravitational radiation.

7. We will show that a version of the Brown-York mass, as well as the Hawk-
ing mass, evaluated on a specific foliation within a hyperboloidal initial
data set, converges to the Trautman-Bondi mass.

This will be used to show that the Freud integrals coincide with the initial
data charge integrals, for asymptotically CMC initial data sets on which
a space-equivalent of Bondi coordinates can be constructed.

8. It has been shown in [63] that the strong decay conditions on g, mentioned
above, are necessary for a well defined Riemannian definition of mass and
of momentum. This appears to be paradoxical at first sight, since the
strong decay conditions are incompatible with gravitational radiation; on
the other hand one expects the Trautman-Bondi mass to be well defined
even if there is gravitational radiation. It turns out that the initial data
charge integrals involve delicate cancelations between the metric g and
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the extrinsic curvature tensor K, leading to a well defined notion of mass
of initial data sets without the stringent restrictions of the Riemannian
definition (which does not involve K).

The definition of the Trautman-Bondi mass presented here requires a con-
formal completion at null infinity of our space-time. We assign a mass, which
we denote by mTB, to sections of the conformal boundary I using Bondi co-
ordinates. Now, there is a potential ambiguity arising from the possibility of
existence of non-equivalent conformal completions of a Lorentzian space-time
(see [52] for an explicit example). From a physical point of view, sections of
Scri represent the asymptotic properties of a radiating system at a given mo-
ment of retarded time. Thus, one faces the curious possibility that two different
masses could be assigned to the same state of the system, at the same retarded
time, depending upon which of the conformally inequivalent completions one
chooses. We show that the Trautman-Bondi mass of a section S of I + is a
geometric invariant, in a sense which is made precise in Section 4.6.2 below.
(See [60, Section 5.1] for an alternative proof within the frameworks of [6, 101],
under the supplementary hypothesis of existence of a strongly causal conformal
completion at I .)

The proof of positivity of mTB can be found in Theorems 4.6.4 and 4.6.7
below; see [118, 136, 159, 165] for alternative arguments. The reader is warned
that some of the proofs available in the literature prove positivity of something
which might be different from the TB mass, or are not detailed enough to be
able to assert correctedness, or are incomplete, or wrong.

An interesting property of the Trautman-Bondi mass is that it can be given
a Hamiltonian interpretation [64]. Now, from a Hamiltonian point of view, it
is natural to assign a Hamiltonian to an initial data set (S , g,K), where S is
a three-dimensional manifold, without the need of invoking a four-dimensional
space-time. If there is an associated conformally completed space-time in which
the completion S̃ of S meets I + in a sufficiently regular, say differentiable,
section S, then mTB(S ) can be defined as the Trautman-Bondi mass of the
section S. For the purposes of this chapter, hypersurfaces satisfying the above
will be called hyperboloidal.

Our main approach to the mass does not involve any space-time construc-
tions. This has several advantages. First, for non-vacuum initial data sets an
existence theorem for an associated space-time might be lacking. Further, the
initial data might not be sufficiently differentiable to guarantee existence of an
associated space-time using known evolution theorems. Next, there might be a
loss of differentiability arising from evolution theorems which will not allow one
to perform the space-time constructions needed for the space-time definition
of mass. Finally, a proof of uniqueness of the definition of mass of an initial
data set could perhaps be easier to achieve than the space-time one. Last but
not least, most proofs of positivity use three-dimensional hypersurfaces anyway.
For all those reasons it is of interest to obtain a definition of mass, momentum,
etc., in an initial data setting.

The final (3 + 1)-dimensional formulae for the Hamiltonian charges turn
out to be rather complicated. We close this chapter by deriving a considerably
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simpler expression for the charges in terms of the geometry of “approximate
Bondi spheres” near I +, Equations (4.7.1)-(4.7.2) below. The expression is
similar in spirit to that of Hawking and of Brown, Lau and York [40]. It applies
to mass as well as momentum, angular momentum and centre of mass.

It should be said that our three-dimensional and two-dimensional versions
of the definitions do not cover all possible hyperboloidal initial hypersurfaces,
because of a restrictive assumption on the asymptotic behavior of gijKij , see
(4.10.1). This condition arises from the need to reduce the calculational com-
plexity of our problem; without (4.10.1) the calculations needed seem to exceed
the limit of what one can calculate by hand with a reasonable degree of confi-
dence in the final formulae. However, the results obtained are sufficient to prove
positivity of mTB(S) for all smooth sections of I + which bound some smooth
complete hypersurface S , because then S can be deformed in space-time to a
hypersurface which satisfies (4.10.1), while retaining the same conformal bound-
ary S; compare Theorem 4.6.7 below.

Let us expand on our comments above concerning the Riemannian definition
of mass: consider a CMC initial data set with trgK = −3 and Λ = 0, corre-
sponding to a hyperboloidal hypersurface in an asymptotically Minkowskian
space-time as constructed in [3], so that the g-norm of Kij +gij tends to zero as
one approaches I +. It then follows from the vacuum constraint equations that
R(g) approaches −6 as one recedes to infinity, and one can enquire whether
the metric satisfies the conditions needed for the Riemannian definition of mass
for such metrics [63]. Now, one of the requirements in [63] is that the back-
ground derivatives ∇̊g of g be in L2(M). A simple calculation (see Section 4.5
below) shows that for smoothly compactifiable (S , g) this will only be the case
if the extrinsic curvature χ of the conformally rescaled metric vanishes at the
conformal boundary ∂S . It has been shown in [64, Appendix C.3] that the
u-derivative of χ coincides with the Bondi “news function”, and therefore the
Riemannian definition of mass can not be used for families of hypersurfaces in
space-times with non-zero flux of Trautman-Bondi energy, yielding an unaccept-
able restriction. Clearly one needs a definition which would allow less stringent
conditions than the ones in [63, 69], but this seems incompatible with the ex-
amples in [69] which show sharpness of the conditions assumed. The answer to
this apparent paradox turns out to be the following: in contradistinction with
the asymptotically flat case, in the hyperboloidal one the definition of mass
does involve the extrinsic curvature tensor K in a non-trivial way. The leading
behavior of the latter combines with the leading behavior of the metric to give
a well defined, convergent, geometric invariant. It is only when K (in the Λ < 0
case) or K + g (in the Λ = 0 case) vanishes to sufficiently high order that one
recovers the purely Riemannian definition; however, because the leading order
of K, or K+ g, is coupled to that of g via the constraint equations, one obtains
– in the purely Riemannian case – more stringent conditions on the difference
between the metric g and its asymptotic value.

We will analyse invariance and finiteness properties of the charge integrals
in any dimension under asymptotic conditions analogous to those in [63, 69].
However, the analysis under boundary conditions appropriate for existence of
gravitational radiation will only be done in space-time dimension four.
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4.2 Bondi mass

The starting point of the Bondi-Sachs definition of mass is the existence of a
suitable coordinate system: We shall suppose that there exists an open subset
of the space-time M on which Bondi–Sachs coordinates can be introduced; by
definition, these are coordinates in which the metric takes the form

g = −V
r

e2βdu2 − 2e2βdudr + r2hAB(dxA − UAdu)(dxB − UBdu) , (4.2.1)

∂(det hAB)

∂r
= 0 , (4.2.2)

r ∈ (r0,∞) , u ∈ (u−, u+) , (xA) — local coordinates on S2 .

One is then interested in the behaviour of the gravitational field as r tends to
infinity, at constant u.

It follows from (4.5.2) that the area of spheres of constant r is proportional
to r2. The coordinate r is therefore called area coordinate.

For example, in Minkowski space-time we replace t by u = t−r, which leads
to

η = −dt2 + dr2 + r2dΩ2 = −(du+ dr)2 + dr2 + r2dΩ2

= −du2 − 2 du dr + r2dΩ2 .

As another example, consider the Schwarzschild metric, and replace t by
u = t− r − 2m ln(r − 2m):

g = −(1− 2m

r
)dt2 +

dr2

1− 2m
r

+ r2dΩ2

= −(1− 2m

r
)(du+

dr

1− 2m
r

)2 +
dr2

1− 2m
r

+ r2dΩ2

= −(1− 2m

r
)du2 − 2 du dr + r2dΩ2 .

We will ignore the question, how general are the metrics which can be
brought to the form (4.2.1)-(4.2.2). The reader is referred to [26, 68, 174] for
constructions under suitable conditions.

It is convenient to replace the area coordinate r by its inverse,

x = 1/r ∈ (0, 1/r0) ,

and use the coordinate system (u, xA, x) for small x to describe the asymptotic
behaviour of the gravitational field. Then

g =
1

x2

(
−V x3e2βdu2+2e2βdu dx+hAB(dxA−UAdu)(dxB−UBdu)

)
. (4.2.3)

Bondi et al. require that in the coordinate system (u, xA, x) the functions
V , β, the S2-vector fields UA, and the S2-Riemannian metrics hAB extend
smoothly by continuity to the boundary

I
+ := {x = 0} .
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It is also required that

lim
x→0

hAB = h̆AB ,

where h̆AB is the standard round metric on the sphere,

h̆ABdx
AdxB = dθ2 + sin2 θ dϕ2 .

The conformal completionM of M is defined as

M ≡M ∪I
+ ,

with the obvious differential structure defined by the coordinate system(u,xA,x).
Equation (4.2.3) shows that the conformally rescaled metric

g̃ := Ω2g ,

where

Ω ≡ x ,
extends smoothly as a Lorentzian metric across the conformal boundary I +.

The above construction of I + andM is equivalent [174] to the geometric
approach of Penrose [153] as far as local considerations near I + are concerned.

The vacuum Einstein equations lead to the following expansions for the
coefficients of the metric (the formulae below are taken from [66]; they are
essentially due to [179], cf. also [26]):

hAB = h̆AB

(
1 +

1

4r2
χCDχCD

)
+
χAB(v)

r
+O(r−3) , (4.2.4)

β = − h̆
ABh̆CDχACχBD

32r2
+O(r−3) ,

UA = − D̆Bχ
AB

2r2
+

2NA(v)

r3
+
D̆A

(
χCDχCD

)

16r3

+
χAB D̆CχBC

2r3
+O(r−4) , (4.2.5)

V = r − 2M(v) +
D̆BχAB D̆CχAC − 4D̆ANA

4r

+
χCDχCD

16r
+O(r−2) . (4.2.6)

Here v ≡ (u, xA), and D̆A is the covariant derivative operator associated with
the metric h̆AB on S2. Indices A, B, etc., take values 1 and 2, and are raised
and lowered with h̆AB . The tensor field χAB is trace-free with respect to the
metric h̆:

h̆ABχAB = 0 . (4.2.7)

Further, the functions M and NA satisfy the following evolution equations

∂M

∂u
= −1

8
h̆AC h̆BD∂uχAB∂uχCD +

1

4
D̆A D̆B∂uχAB , (4.2.8)
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3
∂NA

∂u
= −D̆AM +

1

4
ǫAB D̆Bλ̃−KA , (4.2.9)

KA ≡ 3

4
χAB D̆C∂uχBC +

1

4
∂uχ

CD D̆DχAC ,

λ̃ ≡ h̆BDǫAC D̆C D̆BχDA .

Here ǫAB is an anti-symmetric tensor field on S2 defined by the formula

sin θ dθ ∧ dϕ =
1

2
ǫAB dx

A ∧ dxB .

If we fix some u0 ∈ I, then the Einstein equations do not impose any local
restrictions on the function M(u0, θ, ϕ), and on the vector field NA(u0, θ, ϕ)
on S2, or on the u-dependent family of tensor fields χCD(u, θ, ϕ) on S2.

The function M is called mass aspect, while the tensor field χAB is called
Bondi news. The Bondi mass mB is defined as

mB(u) =
1

4π

∫

S2

M(u, θ, ϕ) sin θ dθ dϕ . (4.2.10)

It follows from (4.2.8) that

∂mB

∂u
= − 1

32π

∫

S2

h̆AC h̆BD∂uχAB∂uχCD sin θ dθ dϕ . (4.2.11)

Hence mB is monotonically decreasing. Equation (4.2.11) is known as the Bondi
mass-loss formula.

4.3 Global charges of initial data sets

4.3.1 The charge integrals

Let g and b be two Riemannian metrics on an n-dimensional manifold M , n ≥ 2,
and let V be any function there. We set

eij := gij − bij . (4.3.1)

We denote by D̊ the Levi-Civita connection of b and by Rf the scalar curvature
of a metric f . In [63] the following identity has been proved:

√
det g V (Rg −Rb) = ∂i

(
U
i(V )

)
+
√

det g (s+Q) , (4.3.2)

where

U
i(V ) := 2

√
det g

(
V gi[kgj]lD̊jgkl +D[iV gj]kejk

)
, (4.3.3)

s := (−VRic(b)ij + D̊iD̊jV −∆bV bij)g
ikgjℓekℓ , (4.3.4)

Q := V (gij − bij + gikgjℓekℓ)Ric(b)ij +Q′ . (4.3.5)
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Brackets over a symbol denote anti-symmetrisation, with an appropriate nu-
merical factor (1/2 in the case of two indices).2 The symbol ∆f denotes the
Laplace operator of a metric f . The result is valid in any dimension n ≥ 2.
Here Q′ denotes an expression which is bilinear in eij and D̊keij, linear in V , dV
and HessV , with coefficients which are uniformly bounded in a b-ON frame, as
long as g is uniformly equivalent to b. The idea behind the calculation leading
to (4.3.2) is to collect all terms in Rg that contain second derivatives of the
metric in ∂iU

i; in what remains one collects in s the terms which are linear in
eij , while the remaining terms are collected in Q; one should note that the first
term at the right-hand-side of (4.3.5) does indeed not contain any terms linear
in eij when Taylor expanded at gij = bij .

We wish to present a generalisation of this formula — Equation (4.3.11)
below — which takes into account the physical extrinsic curvature tensor K
and its background equivalent K̊; this requires introducing some notation. For
any scalar field V and vector field Y we define

Åkl ≡ Akl(b, K̊) := £Y bkl − 2V K̊kl , (4.3.6)

A ≡ A(g,K) := V
(
Rg −KklKkl + (trgK)2

)

︸ ︷︷ ︸
=ρ(g,K)

−2Y kDl

(
K l

k − δlktrgK
)

︸ ︷︷ ︸
=−Jk(g,K)/2

= −2G0µXµ

√
det g

= 2Gµνn
µXν . (4.3.7)

The symbol L denotes a Lie derivative. If we were in a space-time context, then
Gλµ would be the Einstein tensor density, Gµν would be the Einstein tensor,
while nµ would be the future directed normal to the initial data hypersurface.
Finally, an associated space-time vector field X would then be defined as

X = V nµ∂µ + Y k∂k =
V

N
∂0 + (Y k − V

N
Nk)∂k , (4.3.8)

where N and Nk are the lapse and shift functions. However, as far as possible
we will forget about any space-time structures. It should be pointed out that
our ρ here can be interpreted as the energy-density of the matter fields when
the cosmological constant Λ vanishes; it is, however, shifted by a constant in
the general case.

We set
P kl := gkltrgK −Kkl , trgK := gklKkl ,

with a similar definition relating the background quantities K̊ and P̊ ; indices
on K and P are always moved with g while those on K̊ and P̊ are always moved
with b.

We shall say that (V, Y ) satisfy the (background) vacuum Killing Initial
Data (KID) equations if

Aij(b, K̊) = 0 = Skl(b, K̊) , (4.3.9)

2In general relativity a normalising factor 1/16π, arising from physical considerations, is
usually thrown in into the definition of Ui. From a geometric point view this seems purposeful
when the boundary at infinity is a round two dimensional sphere; however, for other topologies
and dimensions, this choice of factor does not seem very useful, and for this reason we do not
include it in U

i.
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where

S̊kl ≡ Skl(b, K̊) := V

(
2P̊mlP̊m

k − 3

n− 1
trbP̊ P̊

kl + Ric(b)kl −Rbbkl
)

−£Y P̊
kl + ∆bV b

kl − D̊kD̊lV . (4.3.10)

Vacuum initial data with this property lead to space-times with Killing vectors,
see [141] (compare [23]). We will, however, not assume at this stage that we
are dealing with vacuum initial data sets, and we will do the calculations in the
general case.

We have the following counterpart of Equation (4.3.2):

∂i
(
U
i(V ) + V

i(Y )
)

=
√

det g
[
V
(
ρ(g,K) − ρ(b, K̊)

)
+ s′ +Q′′

]

+Y k
√

det g
(
Jk(g,K) − Jk(b, K̊)

)
,

(4.3.11)

where

V
l(Y ) := 2

√
det g

[
(P lk − P̊ lk)Y k − 1

2
Y lP̊mnemn +

1

2
Y kP̊ lkb

mnemn

]
.

(4.3.12)
Further, Q′′ contains terms which are quadratic in the deviation of g from b
and its derivatives, and in the deviations of K from K̊, while s′, obtained by
collecting all terms linear or linearised in eij , except for those involving ρ and
J , reads

s′ = (S̊kl + B̊kl)ekl + (P kl − P̊ kl)Åkl ,

B̊kl :=
1

2

[
bklP̊mnÅmn − bmnÅmnP̊ kl

]
. (4.3.13)

We postpone the derivation of (4.3.11) to Section 4.8.

4.4 Initial data sets with rapid decay

4.4.1 The reference metrics

Consider a manifold M which contains a region Mext ⊂ M together with a
diffeomorphism

Φ−1 : Mext → [R,∞)×N , (4.4.1)

where N is a compact boundaryless manifold. Suppose that on [R,∞)×N we
are given a Riemannian metric b0 of a product form

b0 :=
dr2

r2 + k
+ r2h̆ , (4.4.2)

as well as a symmetric tensor field K0; conditions on K0 will be imposed later
on. We assume that h̆ is a Riemannian metric on N with constant scalar
curvature Rh̆ equal to

Rh̆ =

{
(n− 1)(n − 2)k , k ∈ {0,±1} , if n > 2,
0 , k = 1 , if n = 2.

(4.4.3)
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In (4.4.2) the coordinate r runs along the [R,∞) factor of [R,∞) × N . As
such, the dimension of N equals to n− 1; we will later on specialise to the case
n + 1 = 4 but we allow a general n in this section. There is some freedom in
the choice of k when n = 2, associated with the range of the angular variable
ϕ on N = S1, and we make the choice k = 1 which corresponds to the usual
form of the two-dimensional hyperbolic space. When (N, h̆) is the unit round
(n− 1)–dimensional sphere (Sn−1, gSn−1), then b0 is the hyperbolic metric.

Pulling-back b0 using Φ−1 we define on Mext a reference metric b,

Φ∗b = b0 . (4.4.4)

Equations (4.4.2)–(4.4.3) imply that the scalar curvature Rb of the metric b is
constant:

Rb = Rb0 = n(n− 1)k .

Moreover, the metric b will be Einstein if and only if h̆ is. We emphasise that
for all our purposes we only need b on Mext, and we continue b in an arbitrary
way to M \Mext whenever required.

Anticipating, the “charge integrals” will be defined as the integrals of U+V

over “the boundary at infinity”, cf. Proposition 4.4.2 below. The convergence of
the integrals there requires appropriate boundary conditions, which are defined
using the following b-orthonormal frame {fi}i=1,n on Mext:

Φ−1
∗ fi = rǫi , i = 1, . . . , n− 1 , Φ−1

∗ fn =
√
r2 + k ∂r , (4.4.5)

where the ǫi’s form an orthonormal frame for the metric h̆. We moreover set

gij := g(fi, fj) , Kij := K(fi, fj) , (4.4.6)

etc., and throughout this section only tetrad components will be used.

4.4.2 The charges

We start by introducing a class of boundary conditions for which convergence
and invariance proofs are particularly simple. We emphasise that the asymp-
totic conditions of Definition 4.4.1 are too restrictive for general hypersurfaces
meeting I in anti-de Sitter space-time, or – perhaps more annoyingly – for
general radiating asymptotically flat metrics. We will return to that last case
in Section 4.6; this requires considerably more work.

Definition 4.4.1 (Strong asymptotic decay conditions) We shall say that the
initial data (g,K) are strongly asymptotically hyperboloidal if:

∫

Mext


∑

i,j

(
|gij − δij |2 + |Kij − K̊ij |2

)
+
∑

i,j,k

|fk(gij)|2

+
∑

i,j

(
|S̊ij + B̊ij |2 + |Åij |2

)
+
∑

k

|Jk(g,K) − Jk(b, K̊)|

+ |ρ(g,K) − ρ(b, K̊)|
)
r ◦Φ dµg <∞ , (4.4.7)
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∃ C > 0 such that C−1b(X,X) ≤ g(X,X) ≤ Cb(X,X) . (4.4.8)

Of course, for vacuum metrics g and b (with or without cosmological con-
stant) and for background KIDs (V, Y ) (which will be mostly of interest to us)
all the quantities appearing in the second and third lines of (4.4.7) vanish.

For hyperboloids in Minkowski space-time, or for static hypersurfaces in
anti de Sitter space-time, the V ’s and Y ’s associated to the translational Killing
vectors satisfy

V = O(r) ,
√
b#(dV, dV ) = O(r) , |Y |b = O(r) , (4.4.9)

where b# is the metric on T ∗M associated to b, and this behavior will be
assumed in what follows.

Let Nb0,K̊0
denote3 the space of background KIDs:

Nb0,K̊0
:= {(V0, Y0) | Aij(b0, K̊0) = 0 = Skl(b0, K̊0)} , (4.4.10)

compare Equations (4.3.6) and (4.3.10), where it is understood that V0 and Y0
have to be used instead of V and Y there. The geometric character of (4.3.6)
and (4.3.10) shows that if (V0, Y0) is a background KID for (b0, K̊0), then

(V := V0 ◦Φ−1, Y := Φ∗Y0)

will be a background KID for (b = (Φ−1)∗b0, K̊ = (Φ−1)∗K̊0). The intro-
duction of the (V0, Y0)’s provides a natural identification of KIDs for different
backgrounds ((Φ−1

1 )∗b0, (Φ
−1
1 )∗K̊0) and ((Φ−1

2 )∗b0, (Φ
−1
2 )∗K̊0) . We have

Proposition 4.4.2 Let the reference metric b on Mext be of the form (4.4.4),
suppose that V and Y satisfy (4.4.9), and assume that Φ is such that Equations
(4.4.7)-(4.4.8) hold. Then for all (V0, Y0) ∈ Nb0,K̊0

the limits

HΦ(V0, Y0) := lim
R→∞

∫

r◦Φ−1=R

(
U
i(V0 ◦ Φ−1) + V

i(Φ∗Y0)
)
dSi (4.4.11)

exist, and are finite.

The integrals (4.4.11) will be referred to as the Riemannian charge integrals,
or simply charge integrals.

Proof: We work in coordinates on Mext such that Φ is the identity. For any
R1, R2 we have

∫

r=R2

(Ui +V
i)dSi =

∫

r=R1

(Ui +V
i)dSi +

∫

[R1,R2]×N
∂i(U

i +V
i) dnx , (4.4.12)

and the result follows from (4.3.11)-(4.3.13), together with (4.4.7)-(4.4.8) and
the Cauchy-Schwarz inequality, by passing to the limit R2 →∞. ✷

3We denote by K̊ the background extrinsic curvature on the physical initial data manifold
M , and by K̊0 its equivalent in the model manifold [R,∞)×N , K̊0 := Φ∗K̊.
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In order to continue we need some more restrictions on the extrinsic cur-
vature tensor K̊. In the physical applications we have in mind in this section
the tensor field K̊ will be pure trace, which is certainly compatible with the
following hypothesis:

|K̊i
j −

trb0 K̊

n
δij |b0 = o(r−n/2) . (4.4.13)

Under (4.4.13) and (4.4.15) one easily finds from (4.3.12) that

lim
R→∞

∫

r◦Φ−1=R
V
i(Y )dSi = 2 lim

R→∞

∫

r◦Φ−1=R

√
det b

[
(P lk − P̊ lk)Y k

]
dSi ,

(4.4.14)
which gives a slightly simpler expression for the contribution of P to HΦ.

Under the conditions of Proposition 4.4.2, the integrals (4.4.11) define a
linear map from Nb0,K̊0

to R. Now, each map Φ used in (4.4.4) defines in general
a different background metric b on Mext, so that the maps HΦ are potentially
dependent4 upon Φ. (It should be clear that, given a fixed h̆, (4.4.11) does
not depend upon the choice of the frame ǫi in (4.4.5).) It turns out that this
dependence can be controlled:

Theorem 4.4.3 Under (4.4.13), consider two maps Φa, a = 1, 2, satisfying
(4.4.7) together with

∑

i,j

(
|gij − δij |+ |P ij − P̊ ij |

)
+
∑

i,j,k

|fk(gij)| =

=

{
o(r−n/2) , if n¿2,
O(r−1−ǫ) , if n=2, for some ǫ > 0.

(4.4.15)

Then there exists an isometry A of b0, defined perhaps only for r large enough,
such that

HΦ2(V0, Y0) = HΦ1

(
V0 ◦A−1, A∗Y0

)
. (4.4.16)

Remark 4.4.4 The examples in [70] show that the decay rate (4.4.15) is sharp
when P̊ij = 0, or when Y i = 0, compare [63].

Proof: When K̊ = 0 the result is proved, using a space-time formalism, at the
beginning of Section 4 in [70]. When Y = 0 this is Theorem 2.3 of [63]. It turns
out that under (4.4.13) the calculation reduces to the one in that last theorem,
and that under the current conditions the integrals of U and V are separately
covariant, which can be seen as follows: On Mext we have three pairs of fields:

(g,K) ,
(

(Φ−1
1 )∗b0, (Φ

−1
1 )∗K̊0

)
, and

(
(Φ−1

2 )∗b0, (Φ
−1
2 )∗K̊0

)
.

Pulling back everything by Φ2 to [R,∞)×N we obtain there

(
(Φ2)

∗g, (Φ2)∗K
)
,
(

(Φ−1
1 ◦ Φ2)

∗b0, (Φ
−1
1 ◦Φ2)∗K̊0

)
, and (b0, K̊0) .

4Note that the space of KIDs is fixed, as Nb0,K̊0
is tied to (b0, K̊0) which are fixed once

and for all.
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Now, (Φ2)
∗g is simply “the metric g as expressed in the coordinate system

Φ2”, similarly for (Φ2)
∗K, and following the usual physicist’s convention we

will instead write

(g,K) , (b1, K̊1) :=
(

(Φ−1
1 ◦Φ2)∗b0, (Φ

−1
1 ◦Φ2)

∗K̊0

)
, and (b2, K̊2) = (b0, K̊0) ,

which should be understood in the sense just explained.

As discussed in more detail in [63, Theorem 2.3], there exists an isometry
A of the background metric b0, defined perhaps only for r large enough, such
that Φ−1

1 ◦Φ2 is a composition of A with a map which approaches the identity
as one approaches the conformal boundary, see (4.4.21)-(4.4.22) below. It can
be checked that the calculation of the proof of [63, Theorem 2.3] remains valid,
and yields

HΦ2(V0, 0) = HΦ1(V0 ◦ A−1, 0) . (4.4.17)

(In [63, Theorem 2.3] Equation (4.3.10) with Y = 0 has been used. However,
under the hypothesis (4.4.13) the supplementary terms involving Y in (4.4.13)
cancel out in that calculation.) It follows directly from the definition of HΦ

that

HΦ1◦A(0, Y0) = HΦ1 (0, A∗Y0) . (4.4.18)

Since

HΦ(V0, Y0) = HΦ(V0, 0) +HΦ(0, Y0) ,

we need to show that

HΦ2(0, Y0) = HΦ1 (0, A∗Y0) . (4.4.19)

In order to establish (4.4.19) it remains to show that for all Y0 we have

HΦ1◦A(0, Y0) = HΦ2(0, Y0) . (4.4.20)

Now, Corollary 3.5 of [70] shows that the pull-back of the metrics by Φ1 ◦A has
the same decay properties as that by Φ1, so that — replacing Φ1 by Φ1 ◦ A —
to prove (4.4.20) it remains to consider two maps Φ−1

1 = (r1, v
A
1 ) and Φ−1

2 =
(r2, v

A
2 ) (where vA denote abstract local coordinates on N) satisfying

r2 = r1 + o(r
1−n

2
1 ), (4.4.21)

vA2 = vA1 + o(r
−(1+n

2
)

1 ), (4.4.22)

together with similar derivative bounds. In that case one has, in tetrad com-
ponents, by elementary calculations,

P ij − P̊1
i
j = P ij − P̊2

i
j + o(r−n) , (4.4.23)

leading immediately to (4.4.20). We point out that it is essential that P ij
appears in (4.4.23) with one index up and one index down. For example, the
difference

Pij − P̊ij = o(r−n/2) ,



4.5. PROBLEMSWITH THE EXTRINSIC CURVATUREOF THE CONFORMAL BOUNDARY147

transforms as

Pij − P̊1ij = Pij − P̊2ij − trb1P̊1Lζb1 + o(r−n) ,

where

ζ = (r2 − r1)
∂

∂r1
+
∑

A

(vA2 − vA1 )
∂

∂vA1
.

✷

4.5 Problems with the extrinsic curvature of the con-
formal boundary

Consider a vacuum space-time (M , g), with cosmological constant Λ = 0, which
possesses a smooth conformal completion (M ,4 g) with conformal boundary
I +. Consider a hypersurface S such that its completion S̃ in M is a
smooth spacelike hypersurface intersecting I + transversally, with S̃ ∩ I +

being smooth two-dimensional sphere; no other completeness conditions upon
M , M , or upon I + are imposed. In a neighborhood of S̃ ∩ I + one can
introduce Bondi coordinates [174], in terms of which g takes the form

g = −xV e2β du2 + 2e2βx−2 du dx + x−2hAB
(
dxA − UA du

) (
dxB − UB du

)
.

(4.5.1)
(The usual radial Bondi coordinate r equals 1/x, compare Section 4.2.) One
has

hAB = h̆AB + xχAB +O(x2) , (4.5.2)

where h̆ is the round unit metric on S2, and the whole information about
gravitational radiation is encoded in the tensor field χAB . It has been shown
in [64, Appendix C.3] that the trace-free part of the extrinsic curvature of
S̃ ∩I within S is proportional to χ. In coordinate systems on S of the kind
used in (4.4.2) this leads to a 1/r decay of the tensor field e of (4.3.1), so that
the decay condition (4.4.7) is not satisfied. In fact, (4.3.1) “doubly fails” as
the K − K̊ contribution also falls off too slowly for convergence of the integral.
Thus the decay conditions of Definition 4.4.1 are not suitable for the problem
at hand.

Similarly, let S be a space-like hypersurface in a vacuum space-time (M , g)
with strictly negative cosmological constant Λ, with a smooth conformal com-
pletion (M̃,4 g) and conformal boundary I , as considered e.g. in [73, Section 5].
Then a generic smooth deformation of S at fixed conformal boundary S̃ ∩I

will lead to induced initial data which will not satisfy (4.4.7).

As already mentioned, in some of the calculations we will not consider the
most general hypersurfaces compatible with the set-ups just described, because
the calculations required seem to be too formidable to be performed by hand.
We will instead impose the following restriction:

d(trgK) vanishes on the conformal boundary. (4.5.3)
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In other words, trgK is constant on S̃ ∩I , with the transverse derivatives of
trgK vanishing there as well.

Equation (4.5.3) is certainly a restrictive assumption. We note, however,
the following:

1. It holds for all initial data constructed by the conformal method, both if
Λ = 0 [3] and if Λ < 0 [122], for then d(trgK) is zero throughout S .

2. One immediately sees from the equations in [64, Appendix C.3] that in
the case Λ = 0 Equation (4.5.3) can be achieved by deforming S in M ,
while keeping S̃ ∩I + fixed, whenever an associated space-time exists. It
follows that for the proof of positivity of m in space-times with a conformal
completion it suffices to consider hypersurfaces satisfying (4.5.3).

4.6 Convergence, uniqueness, and positivity of the

Trautman-Bondi mass

From now on we assume that the space dimension is three, and that

Λ = 0 .

An extension to higher dimension would require studying Bondi expansions in
n+ 1 > 4, which appears to be quite a tedious undertaking. On the other hand
the adaptation of our results here to the case Λ < 0 should be straightforward,
but we have not attempted such a calculation.

The metric g of a Riemannian manifold (M,g) will be said to be Ck com-
pactifiable if there exists a compact Riemannian manifold with boundary (M ≈
M ∪∂∞M ∪∂M, g̃), where ∂M = ∂M ∪∂∞M is the metric boundary of (M, g̃),
with ∂M — the metric boundary of (M,g), together with a diffeomorphism

ψ : intM →M

such that
ψ∗g = x−2g̃ , (4.6.1)

where x is a defining function for ∂∞M (i.e., x ≥ 0, {x = 0} = ∂∞M , and dx is
nowhere vanishing on ∂∞M), with g̃ — a metric which is Ck up–to–boundary on
M . The triple (M, g̃, x) will then be called a Ck conformal completion of (M,g).
Clearly the definition allows M to have a usual compact boundary. (M,g) will
be said to have a conformally compactifiable end Mext if M contains an open
submanifold Mext (of the same dimension that M) such that (Mext, g|Mext) is
conformally compactifiable, with a connected conformal boundary ∂∞Mext.

In the remainder of this chapter we shall assume for simplicity that the
conformally rescaled metric g̃ is polyhomogeneous and C1 near the conformal
boundary; this means that g̃ is C1 up-to-boundary and has an asymptotic ex-
pansion with smooth expansion coefficients to any desired order in terms of
powers of x and of lnx. (In particular, smoothly compactifiable metrics belong
to the polyhomogeneous class; the reader unfamiliar with polyhomogeneous ex-
pansions might wish to assume smoothness throughout.) It should be clear that
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the conditions here can be adapted to metrics which are polyhomogeneous plus
a weighted Hölder or Sobolev lower order term decaying sufficiently fast. In
fact, a very conservative estimate, obtained by inspection of the calculations
below, shows that relative Oln∗ x(x4) error terms introduced in the metric be-
cause of matter fields or because of sub-leading non-polyhomogeneous behavior
do not affect the validity of the calculations below, provided the derivatives of
those error term behave under differentiation in the obvious way (an x deriva-
tive lowers the powers of x by one, other derivatives preserve the powers). (We
use the symbol f = Oln∗ x(xp) to denote the fact that there exists N ∈ N and a
constant C such that |f | ≤ Cxp(1 + | lnx|N ) .)

An initial data set (M,g,K) will be said to be Ck(M)×Cℓ(M) conformally
compactifiable if (M,g) is Ck(M) conformally compactifiable and if K is of the
form

Kij = x3Lij +
trgK

3
gij , (4.6.2)

with the trace-free tensor Lij in Cℓ(M), and with trgK in Cℓ(M), strictly
bounded away from zero on M . We note that (4.4.15) would have required
|L|g̃ = o(x1/2), while we allow |L|g̃ = O(1). The slower decay rate is necessary
in general for compatibility with the constraint equations if the trace-free part
of the extrinsic curvature tensor of the conformal boundary does not vanish
(equivalently, if the tensor field χAB in (4.5.2) does not vanish); this follows
from the calculations in Section 4.10 below.

4.6.1 The Trautman-Bondi four-momentum of asymptotically
hyperboloidal initial data sets – the four-dimensional
definition

The definition (4.4.11) of global charges requires a background metric b, a back-
ground extrinsic curvature tensor K̊, and a map Φ. For initial data which are
vacuum near I + all these objects will now be defined using Bondi coordinates,
as follows: Let (S , g,K) be a hyperboloidal initial data set, by [67, 132] the
associated vacuum space-time (M , g) has a conformal completion I +, with
perhaps a rather low degree of differentiability. One expects that (M , g) will
indeed be polyhomogeneous, but such a result has not been established so far.
However, the analysis of [68] shows that one can formally determine all the
expansion coefficients of a polyhomogeneous space-time metric on S , as well
as all their time-derivatives on S . This is sufficient to carry out all the cal-
culations here as if the resulting completion were polyhomogeneous. In all our
calculations from now on we shall therefore assume that (M , g) has a poly-
homogeneous conformal completion, this assumption being understood in the
sense just explained.

In (M , g) we can always [68] introduce a Bondi coordinate system (u, x, xA)
such that S is given by an equation

u = α(x, xA) , with α(0, xA) = 0 , α,x(0, x
A) > 0 , (4.6.3)

where α is polyhomogeneous. There is exactly a six-parameter family of such
coordinate systems, parameterised by the Lorentz group (the supertranslation
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freedom is gotten rid of by requiring that α vanishes on S̃ ∩I ). We use the
Bondi coordinates to define the background 4b:

4b := − du2 + 2x−2 du dx + x−2h̆AB dx
A dxB . (4.6.4)

This Lorentzian background metric 4b is independent of the choice of Bondi
coordinates as above. One then defines the Trautman-Bondi four-momentum
pµ of the asymptotically hyperboloidal initial data set we started with as the
Trautman-Bondi four-momentum of the cut u = 0 of the resulting I +; the
latter is defined as follows: Let X be a translational Killing vector of 4b, it is
shown e.g. in [64, Section 6.1, 6.2 and 6.10] that the integrals

H(S ,X, g, 4b) := lim
ǫ→0

∫

{x=ǫ}∩S

W
νλ(X, g, 4b)dSνλ

converge. Here W
νλ(X, g, 4b) is given by (4.9.2). Choosing an ON basis Xµ for

the X’s one then sets

pµ(S ) := H(S ,Xµ, g,
4b) .

(The resulting numbers coincide with the Trautman-Bondi four-momentum; we
emphasise that the whole construction depends upon the use of Bondi coordi-
nates.)

4.6.2 Geometric invariance

The definition just given involves two arbitrary elements: the first is the choice
of a conformal completion, the second is that of a Bondi coordinate system.
While the latter is easily taken care of, the first requires attention. Suppose, for
example, that a prescribed region of a space-time (M , g) admits two completely
unrelated conformal completions, as is the case for the Taub-NUT space-time.
In such a case the resulting pµ’s might have nothing to do with each other.
Alternatively, suppose that there exist two conformal completions which are
homeomorphic but not diffeomorphic. Because the objects occurring in the
definition above require derivatives of various tensor fields, one could a priori
again obtain different answers. In fact, the construction of the approximate
Bondi coordinates above requires expansions to rather high order of the metric
at I +, which is closely related to high differentiability of the metric at I +, so
even if we have two diffeomorphic completions such that the diffeomorphism is
not smooth enough, we might still end up with unrelated values of pµ.

It turns out that none of the above can happen. The key element of the
proof is the following result, which is essentially Theorem 6.1 of [63]; the proof
there was given for C∞ completions, but an identical argument applies under
the hypotheses here:

Theorem 4.6.1 Let (M,g) be a Riemannian manifold endowed with two Ck,
k ≥ 1 and polyhomogeneous conformal compactifications (M1, g̃1, x1) and
(M2, g̃2, x2) with compactifying maps ψ1 and ψ2. Then

ψ−1
1 ◦ ψ2 : intM2 → intM1
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extends by continuity to a Ck and polyhomogeneous conformal up-to-boundary
diffeomorphism from (M2, g̃2) to (M1, g̃1), in particularM1 andM2 are diffeo-
morphic as manifolds with boundary.

We are ready now to prove definitional uniqueness of four-momentum. Some
remarks are in order:

1. It should be clear that the proof below generalises to matter fields near
I + which admit a well posed conformal Cauchy problem à la Friedrich,
e.g. to Einstein-Yang-Mills fields [88].

2. The differentiability conditions below have been chosen to ensure that the
vacuum conformal Cauchy problem of Friedrich [89] is well posed; we have
taken a very conservative estimate for the differentiability thresholds, and
for simplicity we have chosen to present the results in terms of classical
rather than Sobolev differentiability. One expects that C1(M) × C0(M )
and polyhomogeneous CMC initial data (g̃, L) will lead to existence of a
polyhomogeneous I +; such a theorem would immediately imply a corre-
sponding equivalent of Theorem 4.6.2.

3. It is clear that there exists a purely three-dimensional version of the proof
below, but we have not attempted to find one; the argument given seems
to minimise the amount of calculations needed. Such a three-dimensional
proof would certainly provide a result under much weaker asymptotic
conditions concerning both the matter fields and the requirements of dif-
ferentiability at I +.

Theorem 4.6.2 Let (M,g,K) be a C7(M)×C6(M) and polyhomogeneous con-
formally compactifiable initial data set which is vacuum near the conformal
boundary, and consider two C7(M) and polyhomogeneous compactifications thereof
as in Theorem 4.6.1, with associated four-momenta paµ, a = 1, 2. Then there
exists a Lorentz matrix Λµ

ν such that

p1µ = Λµ
νp2ν .

Proof: By the results of Friedrich (see [89] and references therein) the maxi-
mal globally hyperbolic development (M , g) of (M,g,K) admits C4 conformal
completions (M a, g̃a), a = 1, 2 with conformal factors Ωa and diffeomorphisms
Ψa : int M a →M such that

Ψ∗
a(g) = Ω−2

a g̃a , Ψa|M = ψa .

The uniqueness-up-to-conformal-diffeomorphism property of the conformal equa-
tions of Friedrich together with Theorem 4.6.1 show that Ψ−1

2 ◦Ψ1 extends by
continuity to a C4-up-to-boundary map from a neighborhood of Ψ−1

a (M) ⊂M 1

to M 2. Let ba be the Minkowski background metrics constructed near the re-
spective conformal boundaries I +

a as in Section 4.6.1, we have
(
Ψ1 ◦Ψ−1

2

)∗
b2 = b1 ,

so that
(
Ψ1 ◦Ψ−1

2

)∗
defines a Lorentz transformation between the translational

Killing vector fields of b1 and b2, and the result follows e.g. from [64, Sec-
tion 6.9]. ✷
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4.6.3 The Trautman-Bondi four-momentum of asymptotically
CMC hyperboloidal initial data sets – a three-dimensional
definition

Consider a conformally compactifiable initial data set (M,g,K) as defined in
Section 4.6, see (4.6.2). We shall say that (M,g,K) is asymptotically CMC if
trgK is in C1(M ) and if

the differential of trgK vanishes on ∂∞Mext . (4.6.5)

The vacuum scalar constraint equation (ρ = 0 in (4.3.7)) shows that, for
C1(M) × C1(M) (or for C1(M ) × C0(M) and polyhomogeneous) conformally
compactifiable initial data sets, Equation (4.6.5) is equivalent to

the differential of the Ricci scalar R(g) vanishes on ∂∞Mext . (4.6.6)

We wish, now, to show that for asymptotically CMC initial data sets one
can define a mass in terms of limits (4.4.11). The construction is closely related
to that presented in Section 4.6.1, except that everything will be directly read
off from the initial data: If a space-time as in Section 4.6.1 exists, then we
define the Riemannian background metric b on S as the metric induced by
the metric 4b of Section 4.6.1 on the hypersurface u = α, and K̊ is defined as
the extrinsic curvature tensor, with respect to 4b, of that hypersurface. The
map Φ needed in (4.4.11) is defined to be the identity in the Bondi coordinate
system above, and the metric b0 is defined to coincide with b in the coordinate
system above. The four translational Killing vectors Xµ of 4b induce on S four
KIDs (V, Y )µ, and one can plug those into (4.4.11) to obtain a definition of
four-momentum. However, the question of existence and/or of construction of
the space-time there is completely circumvented by the fact that the asymptotic
development of the function α, and that of b, can be read off directly from g and
K, using the equations of [64, Appendix C.3]. The method is then to read-off
the restrictions x|S and xA|S of the space-time Bondi functions x and xA to S

from the initial data, and henceforth the asymptotic expansions of all relevant
Bondi quantities in the metric, up to error terms Oln∗ x(x4) (order O(x4) in the
smoothly compactifiable case); equivalently, one needs an approximation of the
Bondi coordinate x on S up to error terms Oln∗ x(x5). The relevant coefficients
can thus be recursively read from the initial data by solving a finite number
of recursive equations. The resulting approximate Bondi function x induces
a foliation of a neighborhood of the conformal boundary, which will be called
the approximate Bondi foliation. The asymptotic expansion of α provides an
identification of S with a hypersurface u = α in Minkowski space-time with the
flat metric (4.6.4). The Riemannian background metric b is defined to be the
metric induced by 4b on this surface, and Φ is defined to be the identity in the
approximate Bondi coordinates. As already indicated, the KIDs are obtained
on S from the translational Killing vector fields of 4b. The charge integrals
(4.4.11) have to be calculated on the approximate Bondi spheres x = ǫ before
passing to the limit ǫ→ 0.

The simplest question one can ask is whether the linearisation of the in-
tegrals (4.4.11) reproduces the linearisation of the Freud integrals under the
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procedure above. We will show in Section 4.9 that this is indeed the case. We
also show in that section that the linearisation of the Freud integrals does not re-
produce the Trautman-Bondi four-momentum in general, see Equation (4.9.21).
On the other hand that linearisation provides the right expression for pµ when
the extrinsic curvature χ of the conformal boundary vanishes. Note that under
the boundary conditions of Section 4.4 the extrinsic curvature χ vanishes, and
the values of the charge integrals coincide with the values of their linearised
counterparts for translations, so that the calculations in Section 4.9 prove the
equality of the 3 + 1 charge integrals and the Freud ones for translational back-
ground KIDs under the conditions of Section 4.4.

The main result of this section is the following:

Theorem 4.6.3 Consider an asymptotically CMC initial data set which is C1

and polyhomogeneously (or smoothly) conformally compactifiable. Let Φ be de-
fined as above and let (V, Y )µ be the background KIDs associated to space-time
translations ∂µ. Then the limits (4.4.11) HΦ ((V, Y )µ) taken along approximate
Bondi spheres {x = ǫ} ⊂ S exist and are finite. Further, the numbers

pµ := HΦ ((V, Y )µ) (4.6.7)

coincide with the Trautman-Bondi four-momentum of the associated cut in the
Lorentzian space-time, whenever such a space-time exists.

Proof: We will show that Ux+V
x coincides with (4.7.2) below up to a complete

divergence and up to lower order terms not contributing in the limit, the result
follows then from (4.7.3)-(4.7.4). It is convenient to rewrite the last two terms
in (4.3.12) as

−1

2
Y xP̊mne

m
n +

1

2
Y kP̊ xkb

mnemn , (4.6.8)

so that we can use (4.12.3)-(4.12.4) with M = χAB = β = NA = 0 there. We
further need the following expansions (all indices are coordinate ones)

ekl := bkm(gml − bml) ,
exx = 2β + x3α,xM +Oln∗ x(x4) ,

exA =
1

4
x2χAC

||C +
α,A
2α,x

− x3NA −
1

32
x3(χCDχCD)||A +Oln∗ x(x4) ,

eAx =
1

2
x2α,xχ

AC
||C + α,A − 2x3α,x

(
NA +

1

32
(χCDχCD)||A

)
+Oln∗ x(x4) ,

eAB = xχAB +
1

4
x2χCDχCDδ

A
B + x3ξAB +Oln∗ x(x4) ,

with || denoting a covariant derivative with respect to h̆. One then finds

−1

2
Y xP̊mnemn +

1

2
Y kP̊ xkb

mnemn = Y x ·Oln∗ x(x4) + Y B · Oln∗ x(x5) ,

−1

2
Y AP̊mnemn +

1

2
Y kP̊Akb

mnemn = Y x ·Oln∗ x(x5) + Y B · Oln∗ x(x4) .
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This shows that for Y i which are O(1) in the (x, xA) coordinates, as is the case
here (see Section 4.13), the terms above multiplied by

√
det g = O(x−3) will

give zero contribution in the limit, so that in (4.3.12) only the first two terms
will survive. Those are clearly equal to the first two terms in (4.7.2) when a
minus sign coming from the change of the orientation of the boundary is taken
into account.

On the other hand U
x does not coincide with the remaining terms in (4.7.2),

instead with some work one finds

2(λk − λ̊̊k)V − U
x = V

[√
det g · 2gABgxmD̊AgmB

+2
(√ bxx

gxx
− 1
)
λ̊̊k + 2

√
det g(2gAB − 2bAB )̊ΓxAB

]

−2
√

det gD[xV gj]kejk

= V
√
h̆
(x

4
χAB ||AB +O(x2)

)
, (4.6.9)

where 2gABgBC = δAC and similarly for 2bAB . However, integration over S2

yields equality in the limit; here one has to use the fact that V is a linear
combination of ℓ = 0 and 1 spherical harmonics in the relevant order in x (see
Section 4.13), so that the trace-free part of V ||AB is O(x). ✷

4.6.4 Positivity

We pass now to the proof of positivity of the Trautman-Bondi mass:

Theorem 4.6.4 Suppose that (M,g) is geodesically complete without boundary.
Assume that (M,g,K) contains an end which is C4 × C3, or C1 and polyho-
mogeneously, compactifiable and asymptotically CMC. If

√
gijJ iJ j ≤ ρ ∈ L1(M) , (4.6.10)

then pµ is timelike future directed or vanishes, in the following sense:

p0 ≥
√∑

p2i . (4.6.11)

Further, equality holds if and only if there exists a ∇-covariantly constant spinor
field on M .

Remark 4.6.5 We emphasise that no assumptions about the geometry or the
behavior of the matter fields except geodesic completeness of (M,g) are made
on M \Mext.

Remark 4.6.6 In vacuum one expects that equality in (4.6.11) is possible only
if the future maximal globally hyperbolic development of (M,g,K) is isometri-
cally diffeomorphic to a subset of the Minkowski space-time; compare [21] for
the corresponding statement for initial data which are asymptotically flat in
space-like directions. When K is pure trace one can use a result of Baum [17]
to conclude that (M,g) is the three-dimensional hyperbolic space, which implies
the rigidity result. A corresponding result with a general K is still lacking.
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Before passing to the proof of Theorem 4.6.4, we note the following variation
thereof, where no restrictions on trgK are made:

Theorem 4.6.7 Suppose that (M,g) is geodesically complete without boundary.
If (M,g,K) contains an end which is C4 × C3, or C1 and polyhomogeneously,
compactifiable and which is vacuum near the conformal boundary, then the con-
clusions of Theorem 4.6.4 hold.

Proof: It follows from [64, Eq. (C.84)] and from the results of Friedrich that
one can deform M near I + in the maximal globally hyperbolic vacuum devel-
opment of the initial data there so that the hypotheses of Theorem 4.6.4 hold.
The Trautman-Bondi four-momentum of the original hypersurface coincides
with that of the deformed one by [64, Section 6.1]. ✷

Proof of Theorem 4.6.4: The proof follows the usual argument as pro-
posed by Witten. While the method of proof is well known, there are tedious
technicalities which need to be taken care of to make sure that the argument
applies.

Let D be the covariant-derivative operator of the metric g, let ∇ be the
covariant-derivative operator of the space-time metric g, and let /∇ be the Dirac
operator associated with ∇ along M ,

/∇ψ = γi∇iψ

(summation over space indices only). Recall the Sen-Witten identity of Sec-
tion 3.3.1, Equation (3.3.14), p. 124, as rewritten in the current notation:
∫

M\{r≥R}
‖∇ψ‖2g + 〈ψ, (ρ+ J iγiγ0)ψ〉ngle−‖ /∇ψ‖2g =

∫

SR

Bi(ψ)dSi , (4.6.12)

where the boundary integrand is

Bi(ψ) = 〈∇iψ + γi /∇ψ,ψ〉ngleg . (4.6.13)

We have the following:

Lemma 4.6.8 Let ψ be a Killing spinor for the space-time background metric b,
and let Aµ∂µ be the associated translational Killing vector field Aµ = ψ†γµψ.
We have

lim
R→∞

∫

S(R)
< ψ,∇iψ + γiγj∇jψ > dSi =

1

4π
pµA

µ . (4.6.14)

Proof: For Aµ∂µ = ∂0 the calculations are carried out in detail in Section 4.10.
For general Aµ the result follows then by the well known Lorentz-covariance of
pµ under changes of Bondi frames (see e.g. [64, Section 6.8] for a proof under
the current asymptotic conditions). ✷

Lemma 4.6.9 Let ψ be a spinor field on M which vanishes outside of Mext, and
coincides with a Killing spinor for the background metric b for R large enough.
Then

∇ψ ∈ L2(M) .
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Proof: In Section 4.11 we show that

/∇ψ ∈ L2 . (4.6.15)

We then rewrite (4.6.12) as
∫

M\{r≥R}
‖∇ψ‖2g + 〈ψ, (ρ+ J iγiγ0)ψ〉 =

∫

M\{r≥R}
‖ /∇ψ‖2g +

∫

SR

Bi(ψ)dSi .

(4.6.16)
By the dominant energy condition (4.6.10) the function 〈ψ, (ρ+J iγi)ψ〉 is non-
negative. Passing with R to infinity the right-hand-side is bounded by (4.6.15)
and by Lemma 4.6.8. The result follows from the monotone convergence theo-
rem. ✷

Lemmata 4.6.8 and 4.6.9 are the two elements needed to establish positivity
of the right-hand-side of (4.6.14) whatever Aµ, see e.g. [4, 63] for a detailed
exposition in a related setting, or Section 3.2 in the asymptotically flat context.
For instance, Lemma 4.6.9 justifies the right-hand-side of the implication [63,
Equation (4.17)], while Lemma 4.6.8 replaces all the calculations that follow [63,
Equation (4.18)]. The remaining arguments in [63] require only trivial modifi-
cations. ✷

One also has a version of Theorem 4.6.4 with trapped boundary, using
solutions of the Dirac equation with the boundary conditions of [103] (com-
pare [114]):

Theorem 4.6.10 Let (M,g) be a geodesically complete manifold with compact
boundary ∂M , and assume that the remaining hypotheses of Theorem 4.6.4 or of
Theorem 4.6.7 hold. If ∂M is either outwards-past trapped, or outwards-future
trapped, then pµ is timelike future directed:

p0 >

√∑

i

p2i .

✷

4.7 The mass of approximate Bondi foliations

The main tool in our analysis so far was the foliation of the asymptotic region
by spheres arising from space-times Bondi coordinates adapted to the initial
data surface. Such foliations will be called Bondi foliations. The aim of this
section is to reformulate our definition of mass as an object directly associated
to this foliation. The definition below is somewhat similar to that of Brown,
Lau and York [40], but the normalisation (before passing to the limit) used here
seems to be different from the one used by those authors.

Let us start by introducing some notation (for ease of reference we collect
here all notations, including some which have already been introduced else-
where): Let gµν be a metric of a spacetime which is asymptotically flat in null
directions. Let gij be the metric induced on a three-dimensional surface S with
extrinsic curvature Kij . We denote by 3Γijk the Christoffel symbols of gij .
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We suppose that we have a function x > 0 the level sets x = const. of
which provide a foliation of S by two-dimensional submanifolds, denoted by
Sx, each of them homeomorphic to a sphere. The level set “{x = 0}” (which
does not exist in S ) should be thought of as corresponding to I +. The metric
gij induces a metric 2gAB on each of these spheres, with area element λ =√

det 2gAB . By kAB we denote the extrinsic curvature of the leaves of the x-
foliation, kAB = 3ΓxAB/

√
gxx, with mean curvature k = 2gABkAB . (The reader

is warned that in this convention the outwards extrinsic curvature of a sphere in
a flat Riemannian metric is negative.) There are also the corresponding objects
for the background (Minkowski) metric 4bµν , denoted by letters with a circle.

Let X be a field of space-time vectors defined along S . Such a field can
be decomposed as X = Y + V n, where Y is a field tangent to S , n — the
unit (n2 = −1), future-directed vector normal to S . Motivated by (4.6.9), we
define the following functional depending upon various objects defined on the
hypersurface S and on a vector field X:

1

16π
lim
x→0

∫

Sx

F(X) d2x , (4.7.1)

where

F(X) = 2
√

det g(P̊ xi − P xi)Y i + 2(̊λ̊k − λk)V. (4.7.2)

So far the considerations were rather general, from now on we assume that
the initial data set contains an asymptotically CMC conformally compactifi-
able end and that x provides an approximate Bondi foliation, as defined in
Section 4.6.3. (To avoid ambiguities, we emphasise that we do impose the re-
strictive condition (4.6.5), which in terms of the function α of (4.10.2) translates
into Equation (4.10.3).) We then have λ = λ̊ up to terms which do not affect
the limit x → 0 (see Section 4.12.1) so that the terms containing λ above can
also be written as λ̊(̊k − k) or λ(̊k − k). We will show that in the limit x → 0
the functional (4.7.1) gives the Trautman-Bondi mass and momentum, as well
as angular momentum and centre of mass, for appropriately chosen fields X
corresponding to the relevant generators of Poincaré group.

To study the convergence of the functional when x → 0 we need to cal-
culate several objects on S . We write the spacetime metric in Bondi-Sachs
coordinates, as in (4.10.8) and use the standard expansions for the coefficients
of the metric (see eg. [64, Equations (5.98)-(5.101)]). The covariant derivative
operator associated with the metric h̆AB is denoted by ||A. Some intermediate
results needed in those calculations are presented in Section 4.12.1, full details
of the calculations can be found5 in [133]. Using formulae (4.12.2)-(4.12.5) and
the decomposition of Minkowski spacetime Killing vectors given in Section 4.13
we get (both here and in Section 4.13 all indices are coordinate ones):

F(Xtime) =
√
h̆[4M − χCD ||CD +O(x)] ,

F(Xtrans) = −v
√
h̆[4M − χCD ||CD +O(x)] ,

5The reader is warned that F there is −F here.
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F(Xrot) = −
√
h̆

[
εAB

(
−
χCA||C
x

+
3(χCDχCD)||A

16

+ 6NA +
1

2
χACχ

CD
||D

)
v,B +O(x)

]
,

F(Xboost) = −
√
h̆

[
−
χCA||Cv

,A

x
+

1

8
χCDχCDv

+

(
3

16
(χCDχCD)||A + 6NA +

1

2
χACχ

CD
||D

)
v,A +O(x)

]
.

The underlined terms in integrands corresponding to boosts and rotations di-
verge when x tends to zero, but they yield zero when integrated over a sphere.
In the formulae above we set u − α equal to any constant, except for the last
one where u− α = 0. Moreover, v is a function on the sphere which is a linear
combination of ℓ = 1 spherical harmonics and εAB is an antisymmetric tensor
(more precise definitions are given in Section 4.13).

In particular we obtain:

ETB =
1

16π
lim
x→0

∫

Sx

F(Xtime) d
2x , (4.7.3)

PTB =
1

16π
lim
x→0

∫

∂SR

F(Xtrans) d
2x , (4.7.4)

where the momentum is computed for a space-translation generator correspond-
ing to the function v (see Section 4.13). It follows that the integrals of F(X)
are convergent for all four families of fields X.

4.7.1 Polyhomogeneous metrics

In this section we consider polyhomogeneous metrics. More precisely, we will
consider metrics of the form (4.5.1) for which the V, β, UA and hAB have
asymptotic expansions of the form

f ≃
∑

i

Ni∑

j=1

fij(x
A)xi logj x ,

where the coefficients fij are smooth functions. This means that f can be
approximated up to terms O(xN ) (for any N) by a finite sum of terms of the
form fij(x

A)xi logj x, and that this property is preserved under differentiation
in the obvious way.

As mentioned in [64, Section 6.10], allowing a polyhomogeneous expansion
of hAB of the form

hAB = h̆AB + xχAB + x log xDAB + o(x)

is not compatible with the Hamiltonian approach presented there because the
integral defining the symplectic structure diverges. (For such metrics it is still
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possible to define the Trautman-Bondi mass and the momentum [66].) It is also
noticed in [64, Section 6.10], that when logarithmic terms in hAB are allowed
only at the x3 level and higher, then all integrals of interest converge. It is
therefore natural to study metrics for which hAB has the intermediate behavior

hAB = h̆AB + xχAB + x2ζAB(log x) +O(x2) , (4.7.5)

where ζAB(log x) is a polynomial of order N in log x with coefficients being
smooth, symmetric tensor fields on the sphere. Under (4.7.5), for the F func-
tional we find:

F(Xtime) =
√
h̆[4M − χCD||CD +O(x logN+1 x)] ,

F(Xtrans) = −v
√
h̆[4M − χCD ||CD +O(x logN+1 x)] .

The only difference with the power-series case is that terms with O(x logN+1 x)
asymptotic behavior appear in the error term, while previously we had O(x).
Thus F reproduces the Trautman-Bondi four-momentum for such metrics as
well.

In [64] no detailed analysis of the corresponding expressions for the remain-
ing generators (i.e., Xrot and Xboost) was carried out, except for a remark in
Section 6.10, that the asymptotic behavior (4.7.5) leads to potentially divergent
terms in the Freud potential, which might lead to a logarithmic divergence for
boosts and rotations in the relevant Hamiltonians, which then could cease to
be well defined. Here we check that the values F(Xrot) and F(Xboost) remain
well defined for certain metrics of the form (4.7.5). Supposing that hAB is of
such form one finds (see [64, Appendix C.1.2])

∂uζAB = 0 ,

UA = −1

2
x2χAC ||C + x3WA(log x) +O(x) ,

β = − 1

32
x2χCDχCD +O(x3 log2N x) ,

V =
1

x
− 2M +O(x logN+1 x) ,

where WA(log x) is a polynomial of order N + 1 in log x with coefficients being
smooth vector fields on the sphere. The WA’s can be calculated by solving
Einstein equations (which are presented in convenient form in [68]).

The calculation in case of polyhomogeneous metrics is very similar to the one
in case of metrics allowing power-series expansion (see Section 4.12.2), leading
to

F(Xrot) = −
√
h̆

[
εAB

(
−
χCA||C
x

− 3WA − xWA≀x

)
v,B +O(1)

]
,

F(Xboost) = −
√
h̆

[(
−
χCA||C
x

− 3WA − xWA≀x

)
v,A +O(1)

]
,



160 CHAPTER 4. THE TRAUTMAN-BONDI MASS

where ≀x denotes derivation at constant u. As in the previous section, the
underlined terms tend to infinity for x→ 0, but give zero when integrated over
the sphere. However some potentially divergent terms remain, which can be
rewritten as

1

x2
εAB(x3WA)≀xv,B ,

1

x2
(x3WA)≀xv

,A .

To obtain convergence one must therefore have:

lim
x→0

∫

Sx

1

x2
εAB(x3WA)≀xv,B

√
h̆ d2x = 0

and

lim
x→0

∫

Sx

1

x2
(x3WA)≀xv

,A
√
h̆ d2x = 0

for any function v which is a linear combination of the ℓ = 1 spherical harmon-
ics.6 It turns out that in the simplest case N = 0 those integrals are identically
zero when vacuum Einstein equations are imposed [68].

4.7.2 The Hawking mass of approximate Bondi spheres

One of the objects of interest associated to the two dimensional surfaces Sx is
their Hawking mass,

mH(Sx) =

√
A

16π

(
1− 1

16π

∫

Sx

θ−θ+d2µ

)

=

√
A

16π

(
1 +

1

16π

∫

Sx

λ

(
P xx

gxx
− k
)(

P xx

gxx
+ k

)
d2x

)
.(4.7.6)

We wish to show that for asymptotically CMC initial data the Hawking mass
of approximate Bondi spheres converges to the Trautman Bondi mass. In fact,
for a = (aµ) let us set

v(a)(θ, ϕ) = a0 + ai
xi

r
,

where xi has to be expressed in terms of the spherical coordinates in the usual
way, and

pH(a,Sx) = pµHaµ

= − 1

16π

√
A

16π

∫

Sx

v(a)

(
16π

A
− θ−θ+

)
d2µ

= − 1

16π

√
A

16π

∫

Sx

v(a)

(
16π

A
+

(
P xx

gxx

)2

− k2
)
d2µ ,

with d2µ = λd2x. Up to the order needed to calculate the limit of the integral,
on approximate Bondi spheres satisfying (4.10.3) we have (see Sections 4.12.1
and 4.12.2)

P xx

gxx
= P xx +O(x4) , λ =

√
h̆

x2
+O(x3) ,

6See Section 4.13.
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and
(P xx
gxx

)2
=

2

α,x
− 4β

α,x
− 3x2(1− 2Mx)− x3χCD ||CD +Oln∗ x(x4) ,

k2 =
2

α,x
− 4β

α,x
+ x2(1− 2Mx) + x3χCD||CD +Oln∗ x(x4) .

Therefore

λ

((P xx
gxx

)2
− k2

)
= −4

√
h̆+

√
h̆[2x(4M − χCD ||CD) +Oln∗ x(x2)] ,

which, together with

A =
4π

x2
+O(x3) ,

√
A

16π
=

1

2x
+O(x4) ,

yields

pH(a,Sx) = − 1

16π

∫

Sx

v(a)[
√
h̆(4M − χCD ||CD) +Oln∗ x(x)] d2x .

Passing to the limit x→ 0 the χCD ||CD term integrates out to zero, leading to
equality of the Trautman-Bondi four-momentum pTB(a,S ) with the limit of
pH(a,Sx) defined above.

4.8 Proof of (4.3.11)

From

2Dl(Y
kP lk) = P klÅkl + Y kJk(g,K) + P kl

(
2V K̊kl + £Y ekl

)
(4.8.1)

we get

V Rg + 2Dl(Y
kP lk) = V ρ(g,K) + Y kJk(g,K) + P klÅkl

−V
(
P̊mnP̊mn −

1

n− 1
(trbP̊ )2

)
+ P̊ kl£Y ekl

+V ekl

(
2P̊mlP̊mk −

2

n− 1
P̊ kltrbP̊

)
+Q2 ,

(4.8.2)

where, here and below, we use the symbol Qi to denote terms which are
quadratic or higher order in e and P − P̊ . Moreover, we have

P̊ kl£Y ekl = −ekl£Y P̊
kl +Dm(Y mP̊ klekl)− P̊ kleklDmY

m , (4.8.3)

DmY
m =

1

2
gkl(Åkl + £Y ekl) + V (gkl − bkl)K̊kl + V trgK̊

=:
1

2
gklÅkl +

V

n− 1
trbP̊ + L1 , (4.8.4)

2Dl(Y
kP̊ lk) = P̊ klÅkl + Y kJk(b, K̊)− 2V

(
P̊mnP̊mn −

1

n− 1
(trbP̊ )2

)

+Dl

(
Y kP̊ lkb

mnemn

)
− bmnemnD̊l(Y

kP̊ lk) +Q1 . (4.8.5)
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(The term L1 in (4.8.4) is a linear remainder term which, however, will give a
quadratic contribution in equations such as (4.8.7) below.) Using

−D̊l(Y
kP̊ lk) = V

(
P̊mnP̊mn −

1

n− 1
(trbP̊ )2

)
− 1

2
P̊ klÅkl −

1

2
Y kJk(b, K̊)

= V Rb − V ρ(b, K̊)− 1

2
P̊ klÅkl −

1

2
Y kJk(b, K̊) (4.8.6)

and (4.8.2)-(4.8.5) we are led to

V (Rg −Rb) = V
(
ρ(g,K) − ρ(b, K̊)

)
+ Y k

(
Jk(g,K) − Jk(b, K̊)

)
− ∂lV

l

√
det g

+V

[
2P̊mlP̊m

k − 3

n− 1
trbP̊ P̊

kl −
(
P̊mnP̊mn −

1

n− 1
(trbP̊ )2

)
bkl
]
ekl

−ekl£Y P̊
kl +

1

2
ekl

[
bkl
(
P̊mnÅmn + Y mJm(b, K̊)

)
− bmnÅmnP̊ kl

]

+(P kl − P̊ kl)Åkl +Q3 , (4.8.7)

where

V
l(Y ) := 2

√
det g

[
(P lk − P̊ lk)Y k − 1

2
Y lP̊mnemn +

1

2
Y kP̊ lkb

mnemn

]
.

(4.8.8)
Inserting Equation (4.3.2) into (4.8.7) one obtains the following counterpart of
Equation (4.3.2)

∂i
(
U
i(V ) + V

i(Y )
)

=
√

det g
[
V
(
ρ(g,K) − ρ(b, K̊)

)

+Y k
√

det g
(
Jk(g,K) − Jk(b, K̊)

)
+ s′ +Q′′

]
,

(4.8.9)

where Q′′ contains terms which are quadratic in the deviation of g from b and its
derivatives, and in the deviations of K from K̊, while s′, obtained by collecting
all terms linear or linearised in eij, except for those involving ρ and J , reads

s′ = (S̊kl + B̊kl)ekl + (P kl − P̊ kl)Åkl ,

B̊kl :=
1

2

[
bklP̊mnÅmn − bmnÅmnP̊ kl

]
. (4.8.10)

4.9 3 + 1 charge integrals vs the Freud integrals

In this section we wish to show that under the boundary conditions of Sec-
tion 4.4 the numerical value of the Riemannian charge integrals coincides with
that of the Hamiltonians derived in a space-time setting in [53, 69]:

Hµ ≡ pµαβ£Xg
αβ −XµL = ∂αW

µα +
1

8π
G
µ
β(Λ)Xβ , (4.9.1)

W
νλ = W

νλ
βX

β − 1

8π

√
|det gρσ |gα[νδλ]β Xβ

;α , (4.9.2)
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W
νλ
β =

2|det bµν |
16π

√
|det gρσ|

gβγ

( |det gρσ|
|det bµν |

gγ[λgν]κ
)

;κ

= 2gβγ

(
gγ[λgν]κ

)
;κ

= 2gµ[νp
λ]
µβ − 2δ

[ν
β p

λ]
µσg

µσ − 2

3
gµ[νδ

λ]
β p

σ
µσ , (4.9.3)

where a semi-colon denotes the covariant derivative of the metric b, square
brackets denote anti-symmetrisation (with a factor of 1/2 when two indices are
involved), as before gβγ ≡ (gασ)−1 = 16πgβγ/

√
|det gρσ|. Further, G α

β(Λ) is
the Einstein tensor density eventually shifted by a cosmological constant,

G
α
β(Λ) :=

√
|det gρσ|

(
Rαβ −

1

2
gµνRµνδ

α
β + Λδαβ

)
(4.9.4)

(equal, of course, to the energy-momentum tensor density of the matter fields
in models with matter, and vanishing in vacuum), while

pλµν =
1

2
gµαg

λα
;ν +

1

2
gναg

λα
;µ −

1

2
gλαgσµgρνg

σρ
;α

+
1

4
gλαgµνgσρg

σρ
;α , (4.9.5)

where by gµν we denote the matrix inverse to gµν , and

L := gµν
[(

Γασµ −Bα
σµ

)
(Γσαν −Bσ

αν)−
(
Γαµν −Bα

µν

)
(Γσασ −Bσ

ασ) + rµν
]
.

(4.9.6)
Finally, Bα

µν is the connection of the background metric, and rµν its Ricci tensor
– zero in our case. For typesetting reasons in the remainder of this section we
write η for 4b, while the symbol b will be reserved for the space-part of 4b and
its inverse. While η is flat, the reader should not assume that it takes the usual
diagonal form. Let us denote by ≈ the linearisation at 4b ≡ η; we find

16πW0l
0 ≈
√−η

(
elm

;m − emm;l
)
, (4.9.7)

16πW0l
k ≈
√−η

[
δlk
(
emm

;0 − e0m;m
)

+ e0k
;l − elk ;0

]
, (4.9.8)

leading to

16πW0l
βn

β ≈
√
b
(
bknblm − bkmbln

)
emk;n , (4.9.9)

16πW0l
kY

k ≈ √−η
(
Y lbkm − Y kblm

) (
emk

;0 − e0k;m
)
. (4.9.10)

Here
eµν := gµν − ηµν ,

and in the linearised expressions of this section all space-time indices are raised
and lowered with η. Similarly,

[√−g(glαη0µ − g0αηlµ)−√−η(ηlαη0µ − η0αηlµ)
]
Xµ;α ≈

√−η
[
(ηlαη0µ − η0αηlµ)

1

2
eσσ − elαη0µ + e0αηlµ

]
Xµ;α =

√−η
(
bmnemnb

lkX0
;k − blnbmkemnX0

;k + e0mb
mkblnXn;k

)
.(4.9.11)
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We also have

X0
;k =

1

N̊

(
V,k − Y lK̊lk

)
, (4.9.12)

Xl;k = blmD̊kY
m − V K̊lk , (4.9.13)

and we have of course assumed that

X = V n+ Y

is a background Killing vector field, with Y tangent to the hypersurface of
interest, so that

blmD̊kY
m + bkmD̊lY

m = 2V K̊lk . (4.9.14)

We recall that

nµ = − η0µ√
−η00

,

which gives X0 = V
N̊

, Xk = Y k − V
N̊
N̊k, with the lapse and shift given by the

formulae N̊ = 1√
−η00

, N̊k = −η0k

η00
. We will also need the 3 + 1 decomposition

of the Christoffel symbols Bα
βγ of the four-dimensional background metric in

terms of those, denoted by Γ̊mkl(b), associated with the three-dimensional one:

Bm
kl = Γ̊mkl(b) +

N̊m

N̊
K̊lk , B0

0k = ∂k log N̊ − N̊ l

N̊
K̊lk ,

B0
kl = − 1

N̊
K̊lk , Bl

k0 = D̊kN̊
l − N̊ l

N̊
D̊kN̊ − N̊K̊ l

k +
N̊ l

N̊
N̊mK̊mk .

Linearising the equation for Kij one finds

δKkl := −1

2
N̊
(
e0k;l + e0l;k − ekl;0

)
− 1

2
(N̊ )2e00K̊kl , (4.9.15)

where the relevant indices have been raised with the space-time background
metric. This leads to the following formula for the linearised ADM momentum:

δP lk := δlkb
mnδKmn − bmlδKmk +

(
bliK̊j

k − δlkK̊ij
)
eij . (4.9.16)

A rather lengthy calculation leads then to
[√−g(glαη0µ − g0αηlµ)−√−η(ηlαη0µ − η0αηlµ)

]
Xµ;α

+16πVW
0l
βn

β + 16πW0l
kY

k ≈√
bV bijblm(D̊iejm − D̊meji) +

√
bemn(bmnblk − blnbmk)D̊kV

+
√
bD̊k

[
N̊e0m(Y lbkm − Y kblm)

]
+ 2
√
b(Y lbkm − Y kblm)δKkm

+
√
bemn

[
2Y kK̊k

mbln − Y kK̊k
lbmn − Y lK̊mn

]
=

√
bV bijblm(D̊iejm − D̊meji) +

√
bemn(bmnblk − blnbmk)D̊kV

+∂k

[√
bN̊e0m(Y lbkm − Y kblm)

]
+ 2
√
bY kδP lk

+
√
bemn

(
P̊ lkY

kbmn − Y lP̊mn
)
. (4.9.17)
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The integral over a sphere of (4.9.17) coincides with the linearisation of the
integral over a sphere of Ui +V

i, as the difference between those expressions is
a complete divergence.

Let us finally show that the linearised expression above does not reproduce
the Trautman-Bondi mass. It is most convenient to work directly in space-
time Bondi coordinates (u, x, xA) rather than in coordinates adapted to S .
We consider a metric of the Bondi form (4.5.1)–(4.5.2) with the asymptotic
behavior (4.10.11)–(4.10.13); we have

e00 = 1− xV + x−2hABU
AUB = 2Mx+Oln∗ x(x2) ,

e03 = x−2(e2β − 1) = O(1) ,

e0A = −x−2hABU
B =

1

2
χA

B
||B +O(x) ,

eAB = x−2(hAB − h̆AB) = x−1χAB +O(1) ,

e33 = e3A = 0 .

(Recall that h̆ denotes the standard round metric on S2.) For translational
4b-Killing vector fields Xµ we have Xµ;ν = 0, hence

W
0l = W

0l
µX

µ .

Now, taking into account (4.9.7) and (4.9.8), the linearised Freud superpotential
takes the form:

16πW03 =
√−η

[
(eAA

;3 − e3A;A)X0 + (e0A
;A − eAA;0)X3

+(e3A
;0 − e0A;3)XA

]
, (4.9.18)

The following formulae for the non-vanishing 4Bσ
βγ ’s for the flat metric (4.10.5)

are useful when working out (4.9.18):

4Bu
AB = x−1h̆AB,

4Bx
AB = xh̆AB ,

4BA
xB = −x−1δAB , (4.9.19)

4Bx
xx = −2x−1, 4BA

BC = Γ̆ABC(h̆) . (4.9.20)

The Killing field corresponding to translations in spacetime can be characterised
by a function κ which is a linear combination of the ℓ = 0 and ℓ = 1 spherical
harmonics:

X0 = κ , X3 = −1

2
x2△κ , XA = −xh̆ABκ,B .

With some work one finds the following formula for the linearised superpotential
for time translations (κ = 1)

16πW03 =
√−η(eAA

;3 − e3A;A)

= sin θ

[
4M − 1

2
χAB ||AB + χCD∂uχCD +Oln∗ x(x)

]
.

The resulting integral reproduces the Trautman-Bondi mass if and only if the
χCD∂uχCD term above gives a zero contribution after being integrated upon;
in general this will not be the case.
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4.10 Proof of Lemma 4.6.8

The object of this section is to calculate, for large R, the boundary integrand
that appears in the integral identity (4.6.12), for a class of hyperboloidal initial
data sets made precise in Theorem 4.6.4. We consider a conformally compact-
ifiable polyhomogeneous initial data set (S , g,K), such that

trgK is constant to second order at ∂S . (4.10.1)

In (M , g) we can always [68] introduce a Bondi coordinate system (u, x, xA)
such that S is given by an equation

u = α(x, xA) , with α(0, xA) = 0 , α,x(0, xA) > 0 , (4.10.2)

where α is polyhomogeneous. It follows from [64, Equation (C.83)] that (4.10.1)
is equivalent to

α,xx|x=0 = 0 . (4.10.3)

(Throughout this section we will make heavy use of the formulae of [64, Ap-
pendix C] without necessarily indicating this fact.) Polyhomogeneity implies
then

α,A = Oln∗ x(x3) , (4.10.4)

where we use the symbol f = Oln∗ x(xp) to denote the fact that there exists
N ∈ N and a constant C such that

|f | ≤ Cxp(1 + | lnx|N ) .

We also assume that this behaviour is preserved under differentiation in the
obvious way:

|∂xf | ≤ Cxp−1(1 + | lnx|N ) , |∂Af | ≤ Cxp(1 + | lnx|N ) ,

similarly for higher derivatives. The reason for imposing (4.10.1) is precisely
Equation (4.10.3). For more general α’s the expansions below acquire many
further terms, and we have not attempted to carry through the (already scary)
calculations below if (4.10.3) does not hold.

Alternatively, one can start from a space-time with a polyhomogeneous I +

and choose any space-like hypersurface S so that (4.10.2)–(4.10.3) hold. Such
an approach can be used to study the positivity properties of the Trautman-
Bondi mass, viewed as a function on the set of space-times rather than a function
on the set of initial data sets.

We use the Bondi coordinates to define the background 4b:

4b = − du2 + 2x−2 du dx + x−2h̆AB dx
A dxB , (4.10.5)

so that the components of the inverse metric read

4bux = x2 4bxx = x4 4bAB = x2h̆AB .
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The metric b induced on S takes thus the form

b = x−2

[(
h̆AB +Oln∗ x(x8)

)
dxA dxB + 2(1− x2α,x)α,A dx dxA

+2α,x

(
1− 1

2
x2α,x

)
( dx)2

]
. (4.10.6)

Let ẽa be a local orthonormal co-frame for the unit round metric h̆ on S2

(outside of the south and north pole one can, e.g., use ẽ1 = dθ, ẽ2 = sin θ dϕ),
we set

ea := x−1ẽa , e3 := x−1ẽ3 ,

where

ẽ3 :=
√
α,x (2− x2α,x) dx+

1− x2α,x√
α,x (2− x2α,x)

α,A dx
A .

Assuming (4.10.3)-(4.10.4), it follows that the co-frame ẽi is close to being
orthonormal for b:

b = x−2
[
ẽ1ẽ1 + ẽ2ẽ2 + ẽ3ẽ3 +Oln∗ x(x6)

]
= e1e1 + e2e2 + e3e3 +Oln∗ x(x4) .

(4.10.7)
Here and elsewhere, an equality f = Oln∗ x(xp) for a tensor field f means that
the components of f in the coordinates (x, xA) are Oln∗ x(xp).

Recall that in Bondi-Sachs coordinates (u, x, xA) the space-time metric takes
the form:

g = −xV e2β du2 + 2e2βx−2 du dx + x−2hAB
(
dxA − UA du

) (
dxB − UB du

)
.

(4.10.8)
This leads to the following form of the metric g induced on S

x2g = 2
[
(hABU

AUB − x3V e2β)α,xα,C + e2βα,C − hCBUBα,x
]
dxC dx

+
[
(hABU

AUB − x3V e2β)α,Dα,C − 2hCBU
Bα,D + hCD

]
dxC dxD

+
[(
hABU

AUB − x3V e2β
)

(α,x)2 + 2e2βα,x

]
( dx)2 (4.10.9)

Let γij be defined as

x2g = γAB dx
A dxB + 2γxA dx

A dx+ γxx( dx)2 , (4.10.10)

so that

γCD := hCD − 2α,(DhC)BU
B + (hABU

AUB − x3V e2β)α,Dα,C ,

γxC := (hABU
AUB − x3V e2β)α,xα,C + e2βα,C − hCBUBα,x ,

γxx :=
[(
hABU

AUBe−2β − x3V
)
α,x + 2

]
e2βα,x .

If we assume that (S , g,K) is polyhomogeneous and conformally C1 × C0-
compactifiable, it follows that

hAB = h̆AB(1 +
x2

4
χCDχCD) + xχAB + x2ζAB + x3ξAB +Oln∗ x(x4) ,
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where ζAB and ξAB are polynomials in lnx with coefficients which smoothly
depend upon the xA’s. By definition of the Bondi coordinates we have det h =
det h̆, which implies

h̆ABχAB = h̆ABζAB = 0 .

Further,

β = − 1

32
χCDχCDx

2 +Bx3 +Oln∗ x(x4) , (4.10.11)

xV = 1− 2Mx +Oln∗ x(x2) , (4.10.12)

hABU
B = −1

2
χA

B
||Bx

2 + uAx
3 +Oln∗ x(x

4) , (4.10.13)

where B and uA are again polynomials in lnx with smooth coefficients depend-
ing upon the xA’s, while || denotes covariant differentiation with respect to the
metric h̆. This leads to the following approximate formulae

(hABU
AUB − x3V e2β)α,D = Oln∗ x(x

5) , hCBU
Bα,D = Oln∗ x(x5) ,

γxA = α,A + α,x

[
1

2
χA

B
||Bx

2 − uAx3
]

+Oln∗ x(x4) , (4.10.14)

√
γxx =

√
2α,x

[
1− 1

4
(α,x +

1

8
χCDχCD)x2 +

(
1

2
α,xM +B

)
x3
]

+Oln∗ x(x4) .

(4.10.15)
Let

hab = h(ẽa, ẽb) ,

where ẽa is a basis of vectors tangent to S2 dual to ẽa, and let µab be the
symmetric root of hab,

µachabµ
b
d = δcd ,

or, in matrix notation,
tµhµ = id , (4.10.16)

where tµca = µac stands for the transpose of µ. Let f̃a, a = 1, 2, be the field of
local orthonormal co-frames for the metric hAB defined by the formula

ẽa = µabf̃
b . (4.10.17)

We set

f̃3 :=
√
γxx dx+

γxA√
γxx

dxA , (4.10.18)

so that

x2g = f̃1f̃1 + f̃2f̃2 + f̃3f̃3 +Oln∗ x(x4) . (4.10.19)

There exists a matrix Mk
l such that

ẽk = Mk
lf̃
l .

Now,

ẽ3 = (1− x2a)f̃3 − x2baµabf̃ b +Oln∗ x(x4) , (4.10.20)
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with

a := − 1

32
χCDχCD +

(
1

2
α,xM +B

)
x ,

baẽ
a = bAdx

A :=

√
α,x
2

[
1

2
χA

B
||B − uAx

]
dxA .

The matrix M is easily calculated to be

M3
3 = 1− x2a+Oln∗ x(x4) , M3

b = −x2baµab +Oln∗ x(x4) , (4.10.21)

Ma
3 = 0 , Ma

b = µab . (4.10.22)

Since

ek = x−1ẽk , fk = x−1f̃k ,

it follows that

ek = Mk
lf
l , fl = Mk

lek ,

where fl and ek stand for frames dual to f i and ei. If we choose

ẽ1 = dθ , ẽ2 = sin θ dϕ ,

then

ẽ3 :=
√
α,x (2− x2α,x) dx+

1− x2α,x√
α,x (2− x2α,x)

α,A dx
A ,

ẽ1 =
∂

∂θ
− α,θ

1− x2α,x
α,x (2− x2α,x)

∂

∂x
,

ẽ2 =
1

sin θ

[
∂

∂ϕ
− α,ϕ

1− x2α,x
α,x (2− x2α,x)

∂

∂x

]
,

ẽ3 =
1√

α,x (2− x2α,x)
∂

∂x
,

ek = xẽk , fk = xf̃k .

We also have the relation

ei = (M−1)kifk ,

with

(M−1)33 =
1

M3
3

= 1 + x2a+Oln∗ x(x4) , (M−1)ab = (µ−1)ab , (4.10.23)

(M−1)a3 = 0 , (M−1)3b = −M
3
a(µ

−1)ab
M3

3
= x2bb +Oln∗ x(x4) . (4.10.24)

Consider, now, the integrand in (4.6.12):

B3 = − < ψ,∇3ψ + γ3γi∇iψ >= − < ψ, γ3γa∇aψ > ,

where the minus sign arises from the fact that we will use a g–orthonormal
frame f̂i in which f̂3 is minus the outer-directed normal to the boundary. Here



170 CHAPTER 4. THE TRAUTMAN-BONDI MASS

ψ is assumed to be the restriction to S of a space-time covariantly constant
spinor with respect to the background metric 4b:

∇̊ψ = 0 .

It follows that

∇aψ = f̂a(ψ) +

[
−1

2
K(f̂a, f̂j)γ

jγ0 −
1

4
ωij(f̂a)γ

iγj
]
ψ (4.10.25)

=

[
−1

2

(
K(f̂a, f̂j)− K̊(f̂a, êj)

)
γjγ0 +

1

4

(
ω̊ij(f̂a)− ωij(f̂a)

)
γiγj

]
ψ .

This allows us to rewrite B3 as

B3 =
1

2

(
K(f̂a, f̂j)− K̊(f̂a, êj)

)
< ψ, γ3γaγjγ0ψ >

−1

4

(
ω̊ij(f̂a)− ωij(f̂a)

)
< ψ, γ3γaγiγjψ >

=
1

2

(
K(f̂a, f̂j)− K̊(f̂a, êj)

) (
gj3Y a − gjaY 3

)

+
1

2

(
ω̊3a(f̂a)− ω3a(f̂a)

)
W , (4.10.26)

where (W,Y i) denotes the KID7 associated to the spinor field ψ

W :=< ψ,ψ > , Y k =< ψ, γkγ0ψ > .

We use the convention in which

{γi, γj} = −2δij ,

with γ0 — anti-hermitian, and γi — hermitian. Because ψ is covariantly con-
stant, W and Y i satisfy the following equation

∂iW = KijY
j .

Let êi be an orthonormal frame for b; we will shortly see that we have the
following asymptotic behaviors,

ω̊3a(f̂a)− ω3a(f̂a) = O(x2) ,

K(f̂a, f̂j)− K̊(f̂a, êj) = O(x2) ,

Y k = O(x−1) , W = O(x−1) ,

which determines the order to which various objects above have to be expanded
when calculating B3. In particular, these equations show that some non-obvious
cancelations have to occur for the integral of B3 to converge.

Since êi is b–orthonormal, it holds that

2ω̊klj = b([êk, êl], êj) + b([êk, êj ], êl)− b([êl, êj ], êk) . (4.10.27)

7To avoid a clash of notation with the Bondi function V we are using the symbol W for
the normal component of the KID here.
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It follows from (4.10.7) that we can choose êk so that

êk = (δℓk +Oln∗ x(x6))eℓ . (4.10.28)

This choice leads to the following commutators:

[ê1, ê2] = −x cot θê2 +Oln∗ x(x3)ê1 +Oln∗ x(x
3)ê2 +Oln∗ x(x4)ê3 , (4.10.29)

[êa, ê3] = −
[
α,x(2− x2α,x)

]−1/2
êa − (

α,a
2α,x

+ x
α,xa
4αx

+Oln∗ x(x4))ê3

+Oln∗ x(x4)ê1 +Oln∗ x(x4)ê2 , (4.10.30)

[êi, êj ] = cij
kêk , (4.10.31)

c21
1 = −c121 = Oln∗ x(x3) , (4.10.32)

c21
2 = −c122 = x cot θ +Oln∗ x(x3) , (4.10.33)

c12
3 = −c213 = Oln∗ x(x4) , (4.10.34)

c3a
3 = −ca33 =

α,a

2α,x
+ x

α,xa

4αx
+Oln∗ x(x4) , (4.10.35)

c3a
b = −ca3b =

[
α,x(2− x2α,x)

]−1/2
δba +Oln∗ x(x4) . (4.10.36)

It follows from (4.10.19) that we can choose f̂j so that

f̂j = (δkj +Oln∗ x(x4))fk . (4.10.37)

Let M̂ be the transition matrix from the frame êi to the frame f̂j,

f̂k = M̂ ℓ
kêℓ ,

if we define the functions dij
k as

[f̂i, f̂j] = dij
kf̂k , (4.10.38)

then we have

dml
k = M̂ j

lM̂
i
mcij

n(M̂−1)kn + (M̂−1)kj f̂m(M̂ j
l)− (M̂−1)kj f̂l(M̂

j
m) .

(4.10.39)
Chasing through the definitions one also finds that

M̂ i
j = M i

j +Oln∗ x(x4) . (4.10.40)

This leads to

d3aa = M3
3c3aa +Oln∗ x(x4) = 2

[
α,x(2− x2α,x)

]−1/2
M3

3 +Oln∗ x(x4) .

Now,
2ω̊klj = cklj + ckjl − cljk , (4.10.41)

2ωklj = dklj + dkjl − dljk , (4.10.42)
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ω3ab = d3(ab) −
1

2
dab3 , (4.10.43)

ω3aa = d3aa , (4.10.44)

ω̊3ab =
[
α,x(2− x2α,x)

]−1/2
δab +Oln∗ x(x4) = O(1) , (4.10.45)

ω̊3a3 = Oln∗ x(x3) . (4.10.46)

Using obvious matrix notation, from (4.10.16) we obtain

µ = id− x

2
χ+ x2d+ x3w +Oln∗ x(x4) , (4.10.47)

where d and w are polynomials in lnx with coefficients which are xA–dependent
symmetric matrices. The condition that detµ = 1 leads to the relations

trχ = 0 , trd =
1

8
trχ2 , trw = −1

2
tr(χd) .

Using (µ−1)abf̂3(µ
b
a) = f̂3(detµ) = 0, the asymptotic expansions (4.10.33)-

(4.10.36) together with (4.10.23)-(4.10.24), (4.10.28) and (4.10.37) one finds

the following contribution to the first term 1
2

(
ω̊3a(f̂a)− ω3a(f̂a)

)
W in B3:

ω̊3a(f̂a)− ω3a(f̂a) = M̂ l
aω̊3al − ω3aa

= M3
aω̊3a3 + (µba − δba)ω̊3ab + ω̊3aa − ω3aa +Oln∗ x(x4)

=
x2√
2α,x

[
1

16
χABχ

AB + x

(
Mα,x + 2B − 1

2
tr(χd)

)]

+Oln∗ x(x4) . (4.10.48)

The underlined term would give a diverging contribution to the integral of B3

over the conformal boundary if it did not cancel out with an identical term
from the K contribution, except when χ = 0.

We choose now the Killing spinor ψ so that

W ∇̊+ Y =
∂

∂t

in the usual Minkowskian coordinates, where ∇̊ is the unit normal to S . This
leads to

W =
x−1

√
2α,x

[
1 +O(x2)

]
, Y x =

1

2α,x

[
1 +O(x2)

]
, Y A = O(x2) ,

Y 3 =
x−1

√
2α,x

+O(x) , Y a = O(x) .

In order to calculate the remaining terms in (4.10.26) we begin with

K(f̂a, f̂a)− K̊(f̂a, êa) = x2µcaµ
d
aK(ẽc, ẽd)− x2µcaK̊(ẽc, ẽa) +Oln∗ x(x4) ,

(4.10.49)
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Using the formulae of [64, Appendix C.3] one finds

µcaµ
d
aK(ẽc, ẽd) = hcdK(ẽc, ẽd) = hABKAB +Oln∗ x(x2) ,

ΓωAB = ΓuAB − α,xΓxAB +Oln∗ x(x3) , (4.10.50)

ΓuAB = x−1e−2β
(
hAB −

x

2
hAB,x

)
, (4.10.51)

ΓxAB = −1

2
e−2β

(
2D(AUB) + ∂uhAB − 2V x2hAB + V x3hAB,x

)
, (4.10.52)

where DA denotes the covariant derivative with respect to the metric h. It
follows that

ΓωABh
AB = x−1e−2β

[
2 + xα,x

(
UA||A − 2V x2

)]
+Oln∗ x(x3) . (4.10.53)

Further

N =
x−1

√
2α,x

[
1 + β +

1

4
x3α,xV +O(x4)

]
.

Equation (4.10.50) specialised to Minkowski metric reads

Γ̊ωAB = x−1h̆AB − xα,xh̆AB +Oln∗ x(x
3) , (4.10.54)

yielding

K̊AB = − x−2

√
2α,x

[
h̆AB

(
1− 3

4
x2α,x

)
+Oln∗ x(x4)

]
. (4.10.55)

We therefore have

x2hABKAB − x2µbaK̊ab =
1√
2α,x

[
2β +

1

8
x2χCDχ

CD − 3

2
x2α,x(1− xV )

+ xα,xU
A
||A −

x3

2
tr(χd)

]
+Oln∗ x(x4) ,(4.10.56)

which implies

(
K(f̂a, f̂a)− K̊(f̂a, êa)

)
Y 3 =

x

2α,x

[
1

16
χABχ

AB +

+ x

(
2B − 3Mα,x +

1

2
α,xχ

AB
||AB −

1

2
tr(χd)

)]
+Oln∗ x(x3) .

(4.10.57)

Here we have again underlined a potentially divergent term. Using the formulae
of [64, Appendix C] one further finds

(
K(f̂a, f̂3)− K̊(f̂a, ê3)

)
Y a = Oln∗ x(x3) ,

which will give a vanishing contribution to B3 in the limit. Collecting this
together with (4.10.57) and (4.10.48) we finally obtain

B3 =
1

4
x2
(

4M − 1

2
χAB ||AB

)
+Oln∗ x(x

3) , (4.10.58)

We have thus shown that the integral of B3 over the conformal boundary is
proportional to the Trautman-Bondi mass, as desired.
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4.11 Proof of Lemma 4.6.9

From

∇̊ψ = 0

we have

γℓ∇ℓψ = γℓf̂ℓ(ψ) + γℓ
[
−1

2
K(f̂ℓ, f̂j)γ

jγ0 −
1

4
ωij(f̂ℓ)γ

iγj
]
ψ

=

[
−1

2

(
K(f̂ℓ, f̂j)− K̊(f̂ℓ, êj)

)
γℓγjγ0

+
1

4

(
ω̊ij(f̂ℓ)− ωij(f̂ℓ)

)
γℓγiγj

]
ψ . (4.11.1)

We start by showing that

[
ω̊ij(f̂l)− ωij(f̂l)

]
γlγiγj = O(x2) .

In order to do that, note first

γiγjγk∆jki = εijk∆jkiγ
1γ2γ3 − 2gijγk∆jki ,

where

∆jki := ω̊jk(f̂i)− ωjk(f̂i) = M̂ l
iω̊jkl − ωjki .

We claim that

εijk∆jki = O(x2) , ∆jkk = O(x2) . (4.11.2)

The intermediate calculations needed for this are as follows:

[ê1, ê2] = −x cot θê2 +Oln∗ x(x4) (4.11.3)

(which follows from (4.10.29)),

[êa, ê3] = − [2α,x]−1/2 êa +Oln∗ x(x4) , (4.11.4)

[f̂1, f̂2] = −x cot θf̂2 +O(x2) , (4.11.5)

[f̂3, f̂a] = [2α,x]−1/2

(
f̂a −

1

2
xχbaf̂b

)
+O(x2) . (4.11.6)

In order to calculate ∆123 + ∆312 + ∆231, we note that

ω̊12(f̂3) + ω̊31(f̂2) + ω̊23(f̂1) = ω̊123 + µ2
aω̊31a + µ1

aω̊23a +O(x2)

= (ω̊123 + ω̊312 + ω̊231)− 1

2
x (χ2

aω̊31a + χ1
aω̊23a) +O(x2) .

From ω̊3ab = [2α,x]−1/2 δab+Oln∗ x(x3) the χ terms drops out. Equations (4.11.3)-
(4.11.4) show that

2ω̊123 + 2ω̊312 + 2ω̊231 = b([ê2, ê1], ê3) + b([ê3, ê2], ê1) + b([ê1, ê3], ê2) = O(x2) .
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Similarly it follows from (4.11.5)-(4.11.6) that

2ω123 + 2ω312 + 2ω231 = g([f̂2, f̂1], f̂3) + g([f̂3, f̂2], f̂1) + g([f̂1, f̂3], f̂2) = O(x2) ,

yielding finally

∆123 + ∆312 + ∆231 = O(x2) .

Next, ∆3kk = ∆3aa is given by (4.10.48), and is thus O(x2). We continue with
∆akk = ∆abb + ∆a33. For a = 1 one finds

ω122 + ω133 = g([f̂1, f̂2], f̂2) + g([f̂1, f̂3], f̂3) = −x cot θ +O(x2) .

Further,

ω̊11(f̂1)+ω̊12(f̂2)+ω̊13(f̂3) = ω̊133+µa
bω̊1ab+O(x2) = ω̊1kk−

1

2
xχa

bω̊1ab+O(x2) .

We have ω̊122 = −x cot θ + Oln∗ x(x3) = −x cot θ + O(x2), while ω̊1ab = O(x2)
as well, so that the χ’s can be absorbed in the error terms, leading to

∆1kk = ω̊11(f̂1) + ω̊12(f̂2) + ω̊13(f̂3)− (ω122 + ω133) = O(x2) .

For a = 2 we calculate

ω211 + ω233 = g([f̂2, f̂1], f̂1) + g([f̂2, f̂3], f̂3) = O(x2) ,

and it is easy to check now that ∆2kk = O(x2). This establishes (4.11.2).

To estimate the contribution to (4.11.1) of the terms involving K we will
need the following expansions

d3a
b =

1√
2α,x

[
δba −

1

2
xχba

]
+Oln∗ x(x2) , (4.11.7)

d3a
3 = − x2ba√

2α,x
+Oln∗ x(x3) = Oln∗ x(x

2) , (4.11.8)

dab
3 = x2cab

cbc +Oln∗ x(x3) = O(x2) . (4.11.9)

Now, it follows from [64, Appendix C.3] that

trgK − K̊(f̂i, êi) = Oln∗ x(x2) .

Next, we claim that

K̊(f̂j, êk)− K̊(f̂k, êj) = Oln∗ x(x2) .

We have the following asymptotic formulae for the connection coefficients:

Γωxx = 2x−1α,x +O(x) , ΓωxA = O(x) ,

ΓωAB = x−1h̆AB +
1

2
χAB +O(x) ,
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and for the extrinsic curvature tensor:

Kxx = −NΓωxx = −x−2
[√

2α,x +O(x2)
]

= K̊xx ,

KxA = −NΓωxA = O(1) , K̊xA = O(x) ,

KAB = −NΓωAB = − x−2

√
2α,x

[
h̆AB +

1

2
xχAB +O(x2)

]
,

K̊AB = − x−2

√
2α,x

[
h̆AB +O(x2)

]
. (4.11.10)

From the above and [64, Appendix C.3] one obtains the following formulae

K̊(êk, êl) = − 1√
2α,x

δkl +Oln∗ x(x2) , (4.11.11)

K(êk, êl) = − 1√
2α,x

[
δkl +

1

2
xχkl

]
+Oln∗ x(x2) , (4.11.12)

where we have set χ3k = 0. Further

M̂ l
k = δlk −

1

2
xχlk +Oln∗ x(x

2) ,

K̊(f̂j, êk)− K̊(f̂k, êj) = M̂ l
jK̊(êl, êk)− M̂ l

kK̊(êl, êj)

= − 1√
2α,x

(
δlj −

1

2
xχlj

)
δlk +

1√
2α,x

(
δlk −

1

2
xχlk

)
δlj +Oln∗ x(x2)

= Oln∗ x(x2) .

This, together with [64, Equation (C.83)] yields

trgK−K̊(f̂i, êi) = − 3√
2α,x

+
1√
2α,x

(
δli −

1

2
xχli

)
δli+Oln∗ x(x

2) = Oln∗ x(x2) .

We also have
[
K(f̂l, f̂j)− K̊(f̂l, êj)

]
γlγj = −K(f̂k, f̂k)− K̊(f̂l, êj)γ

lγj

= −trgK + K̊(f̂k, êk)

+
1

2

(
K̊(f̂j , êk)− K̊(f̂k, êj)

)
γkγj ,

so that [
K(f̂l, f̂j)− K̊(f̂l, êj)

]
γlγj = Oln∗ x(x2) .

Since √
det g = O(x3) , < ψ, ψ >= O(x−1) ,

we obtain √
det g

∣∣∣γk∇kψ
∣∣∣
2

= Oln∗ x(1) ∈ L1 .
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4.12 Asymptotic expansions of objects on S

Throughout this section coordinate indices are used.

4.12.1 Smooth case

Induced metric g. We write the spacetime metric in Bondi-Sachs coordi-
nates, as in (4.10.8), and use the standard expansions for the coefficients of the
metric (see e.g. [64, Equations (5.98)-(5.101)]). Let S be given by ω = const.,
where

ω = u− α(x, xA) .

Two different coordinate systems will be used: (u, x, xA) and (ω, x, xA) — co-
ordinates adapted to S . To avoid ambiguity two different symbols for partial
derivatives will be used: the comma stands for the derivative with ω = const.
and ≀ stands for the derivative with u = const. These two derivatives can be
transformed into each other:

A,x = A≀x + α≀x∂uA ,

A,A = A≀A + α≀A∂uA .

For functions not depending on u (e.g., α) the symbols mean the same. Deriva-
tions in covariant derivatives ||A and |i are with ω = const.

Three-dimensional reciprocal metric. We have the following implicit
formulae for the three dimensional inverse metric gij :

−g
xA

gxx
= 2gABgxB ,

1

gxx
= gxx +

gxA

gxx
gxA ,

gAB = 2gAB +
gxAgxB

gxx
,

where 2gAB denotes the matrix inverse to (gAB). The calculations get very
complicated in general. To simplify them we will assume a particular form of
α, i.e.,

α = const. · x+O(x3) . (4.12.1)

This choice is motivated by the form of α for standard hyperboloid t2 − r2 = 1
in Minkowski spacetime. In that case α = 1

x

√
1 + x2 − 1

x = 1
2x + O(x3). It

is further equivalent to the asymptotically CMC condition (4.5.3). With the
above assumptions we have the following asymptotic expansions:

2gAB = x2hAB +O(x7) ,

−g
xA

gxx
= α,A + x2α,x

(
χAC ||C

2
− 2NAx− (χCDχCD)||A

16
x−

χABχB
C
||C

2
x

)

+O(x4) ,
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1

gxx
=

2α,x
x2

[
1 + 2β − x2α,x

2
+Mx3α,x +O(x4)

]
= gxx ,

gxx =
x2

2α,x

[
1− 2β +

x2α,x
2
−Mx3α,x +O(x4)

]
,

1√
gxx

=

√
2α,x

x

[
1 + β − 1

4
x2α,x(1− 2Mx) +O(x4)

]
,

−gAx =
x4

2

[
χAC ||C

4
− 2xNA − x(χCDχCD)||A

16
− x

χC
AχCD ||D

2
+

α,A
x2α,x

+O(x2)

]
,

gAB = x2hAB +O(x6) .

Determinant of the induced metric 2g. The determinant of the 2-dimensional
metric induced on the Bondi spheres u = const., x = const., equals

det (
1

x2
h) = det (

1

x2
h̆) .

In our case the ω = const., x = const. spheres are not exactly the Bondi ones,
and one finds

λ :=
√

det 2g =

√
h̆

x2
+O(x3) , λ̊ :=

√
det 2b =

√
h̆

x2
+O(x6) .

We also note the following purely algebraic identities:

λ =
√
gxx ·

√
det g , λ̊ =

√
bxx ·

√
det b , (4.12.2)

Lapse and shift. The function N (the lapse) and the vector Si (the shift)
can be calculated as follows:

N =
1√−gωω ,

Si = gωi .

Hence

N =
1

x
√

2α,x

[
1 + β +

1

4
x2α,x −

1

2
x3α,xM +O(x4)

]
,

Sx =
1

x2
[
1 + 2β − x2α,x + 2x3α,xM +O(x4)

]
,

SA =
1

2
χCA||C − 2xNA −

1

16
x(χCDχCD)||A +O(x2) .



4.12. ASYMPTOTIC EXPANSIONS OF OBJECTS ON S 179

Christoffel coeficients. Using the induced metric (and the reciprocal met-
ric) we can compute the coefficients 3Γijk. The results are:

3Γxxx = −1

x
+
α,xx
2α,x

+ β≀x + α,x

(
3

2
x2M − 1

2
x + ∂uβ

)
+O(x3) ,

3ΓxxA =
1

4
x

[
χCA||C − 4xNA −

1

8
x(χCDχCD)||A −

1

2
xχACχ

CD
||D

+
2α,A
x2α,x

+
4β≀A
x

+
2α,xA
xα,x

+O(x2)

]
,

3ΓxAB =
h̆AB

2xα,x
+
χAB
4α,x

+
1

4
xh̆AB −

1

4
x∂uχAB −

βh̆AB
xα,x

+O(x2) ,

3ΓAxx =
1

2
xα,xχ

AC
||C +O(x2) ,

3ΓAxB = −1

x
δAB +

1

2
χAB +

1

2
xα,x∂uχ

A
B +

1

2
x2
(

3HA
B −

χCDχCD
4

χAB

)

+
1

4
x2α,x

(
χBC∂uχ

AC − χAC∂uχBC + χAD ||DB − χBD ||DA
)

+O(x3) ,

3ΓABC = Γ(h̆)
A
BC +O(x) .

Extrinsic curvature. The tensor field Kij can be computed as

Kij =
1

2N
(Si|j + Sj|i − ∂ugij) ,

where by A|i we denote the covariant derivative of a quantity A with respect
to gij . These covariant derivatives read:

Sx|x =
1

x3

[
−1− xα,xx

2α,x
+ xβ≀x − 2β − 1

2
x2α,x

+
5

2
x3α,xM + xα,x∂uβ +O(x4)

]
,

Sx|A =
β≀A
x2
− α,A

2x3α,x
− α,xA

2x2α,x
+

1

4x
χCA||C −NA

− 1

32
(χCDχCD)||A −

1

8
χACχ

CD
||D +O(x) ,

SA|x = −β≀A
x2
− α,A

2x3α,x
− α,xA

2x2α,x
+

1

4x
χCA||C − 3NA

− 3

32
(χCDχCD)||A −

1

8
χACχ

CD
||D

+
1

2
α,x∂u(χCA||C) +O(x) ,
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SA|B = − 1

x2

[
h̆AB

2xα,x
+
χAB
4α,x

− 1

4
xh̆AB −

1

4
x∂uχAB +O(x2)

]
.

Derivatives of gij with respect to u :

∂ugxx = 4x−2α,x∂uβ +O(x) ,

∂ugxA =
1

2
α,x∂u(χCA||C) +O(x) ,

∂ugAB = x−1∂uχAB +O(1) .

Hence the extrinsic curvature:

Kxx =

√
2α,x

x2

[
−1− xα,xx

2α,x
+ xβ≀x − β −

1

4
x2α,x

+ 2x3α,xM − xα,x∂uβ +O(x4)
]
,

KxA =

√
2α,x

2

[
1

2
χCA||C +

α,A
x2α,x

− α,xA
xα,x

− 4xNA

− 1

8
x(χCDχCD)||A −

1

4
xχACχ

CD
||D +O(x2) ] ,

KAB = −
√

2α,x

2x

[
h̆AB
xα,x

− βh̆AB
xα,x

+
χAB
2α,x

− 3

4
xh̆AB +

1

2
x∂uχAB +O(x2)

]
.

The trace trgK = Ki
i can be easily calculated more precisely as

trgK =
1

2N
[2Si|i − gij∂ugij ] ,

or after multiplying by
√

det g and changing the covariant divergence to the
ordinary one:

√
det gtrgK =

1

2N

[
2(
√

det gSi),i −
∂u(det g)√

det g

]
.

After some calculations we get

trgK = − 1√
2α,x

[
3− 3β − xβ≀x +

xα,xx
2α,x

− 3

4
x2α,x

− 1

2
x3α,xχ

CD
||CD + xα,xβ,u +O(x4)

]
.

ADM momenta. The ADM momenta can be expressed in terms of the
extrinsic curvature:

P kl = gki(giltrgK −Kil) .

Substituting the previously calculated trgK and Kij we get

P xx = − 1√
2α,x

[
2− 2β − 3

2
x2α,x(1− 2Mx)− 1

2
x3α,xχ

CD
||CD +O(x4)

]
,
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P xx − P̊ xx =
−1√
2α,x

[
−2β + 3x3α,xM −

1

2
x3α,xχ

CD
||CD +O(x4)

]
, (4.12.3)

PAB = − 1√
2α,.x

[
(2− 2β − xβ≀x +

xα,xx
2α,x

)δAB +
1

2
xχAB −

1

2
x2α,x∂uχ

A
B

]

+O(x3) ,

PAx = −1

2
x2
√

2α,xχ
AC

||C +O(x3) ,

P xA =
−x3

2
√

2α,x

[
χCA||C
x

− α,xA
x2α,x

− 6NA −
3(χCDχCD)||A

16
− 1

2
χACχ

CD
||D

]

+O(x4) ,

P xA − P̊ xA =
−x3

2
√

2α,x

[
χCA||C
x

− 6NA −
3(χCDχCD)||A

16
− 1

2
χACχ

CD
||D

]

+O(x4) . (4.12.4)

The second fundamental form kAB. The extrinsic curvature of the leaves
of the ”2+1 foliation” can be computed from the formula

kAB =
3ΓxAB√
gxx

.

Hence

kAB =

√
2α,x

2x

[
1

xα,x
h̆AB +

1

2α,x
χAB

+
1

4
xh̆AB −

1

2
x∂uχAB −

β

xα,x
h̆AB +O(x2)

]
.

We need a more accurate expansion of the trace k = 2gABkAB . The formula

kAB =
ΓxAB√
gxx
− gxωΓωAB

gωω
√
gxx

.

can be used. It is convenient to calculate 2gABΓxAB and 2gABΓωAB using the
expressions for the Christoffel symbols given in [64, Appendix C]:

ΓωAB = x−1e−2β(hAB −
1

2
xhAB≀x)− α,xΓxAB +O(x3) ,

ΓxAB = −1

2
e−2β(2D(h)(AUB) + ∂uhAB − 2V x2hAB + V x3hAB≀x) ,

where D(h)A is a covariant derivative with respect to hAB (we use the (u, x, xA)
coordinate system and all the differentiations with respect to x, xA are at
constant u). Hence:

2gABΓωAB = 2x− 4βx + x2α,x(UA||A − 2V x2) +O(x5) ,
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2gABΓxAB = −x2[UA||A − 2V x2 +O(x3)] .

After substitution of relevant asymptotic expansions:

k =
1√
gxx

[
1

4
x4χCD ||CD +

1

2
x3(1− 2Mx) +

x

α,x
− 2βx

α,x
+O(x5)

]
,

k =
√

2α,x

[
1

4
x3χCD ||CD +

1

4
x2(1− 2Mx) +

1

α,x
− β

α,x
+O(x4)

]
,

k − k̊ =
√

2α,x

[
1

4
x3χCD ||CD −

1

2
x3M − β

α,x
+O(x4)

]
. (4.12.5)

4.12.2 The polyhomogenous case

We give only the most important intermediate results which differ from the
power-series case:

gxB = −1

4
x4χAC ||C +

1

2
x5WA +O(x5) ,

SA =
1

2
χCA||C − xWA +O(x) ,

KxA =
√

2α,x[
1

4
χCA||C − xWA −

1

2
x2WA≀x +O(x)] ,

P xA = − x2

2
√

2α,x
[χCA||C − 3xWA − x2WA≀x +O(x)] .

4.13 Decomposition of Poincaré group vectors into
tangential and normal parts

The generators of Poincaré group are given after [64]:

Xtime = ∂ω = ∂u ,

Xrot = −εABα,Av,B∂ω + εABv,B∂A ,

Xtrans = (−v − xα,Av,A + x2vα,x)∂ω − x2v∂x + xv,A∂A ,

Xboost = [xv((α + ω)x+ 1)α,x − (α+ ω)v

− α,Av,A((α+ ω)x + 1)]∂ω

− xv[(α + ω)x+ 1]∂x + v,A[(α+ ω)x+ 1]∂A .

The tensor εAB is defined as

εAB =
1√
h̆
{A,B} ,
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where {1, 2} = −{2, 1} = 1 and {1, 1} = {2, 2} = 0. By v we denote a function
on the sphere which is a combination of ℓ = 1 spherical harmonics. If we
consider embedding of the sphere into R

3, then

v(xA) = vi
xi
r

and we get a bijection between functions v and vectors (vi) ∈ R
3.

Let us now decompose a vector field X into parts tangent and normal to
S :

X = Y + V n .

Y is a vector tangent to S and n is a unit (n2 = −1), future-directed normal
vector. Setting

τ = 2α,x − h̆ABα,Aα,B ,
we have the following decomposition of respective vectors :

Vtime =
1

x
√
τ

(
1− xχCDα,Cα,D

2τ
+O(x2)

)
,

Y x
time =

1

τ

(
1− xχCDα,Cα,D

τ
+O(x2)

)
,

Y A
time = −1

τ

(
a,A − xχACα,C −

xχCDα,Cα,Dα
,A

τ
+O(x2)

)
,

Vrot = −εABα,Av,B ·
1

x
√
τ

(
1− xχCDα,Cα,D

2τ
+O(x2)

)
,

Y x
rot = −εABα,Av,B ·

1

τ

(
1− xχCDα,Cα,D

τ
+O(x2)

)
,

Y A
rot = εABv,B

+ εCBα,Cv,B ·
1

τ

(
α,A − xχACα,C −

xχCDα,Cα,Dα
,A

τ
+O(x2)

)
,

Vtrans =
1

x
√
τ

(
−v − xα,Av,A + v

xχCDα,Cα,D
2τ

+O(x2)

)
,

Y x
trans =

1

τ

(
−v − xα,Av,A + v

xχCDα,Cα,D
τ

+O(x2)

)
,

Y A
trans = xv,A

− 1

τ

(
−vα,A + vxχACα,C + v

xχCDα,Cα,D
τ

α,A − xα,Cv,Cα,A +O(x2)

)
,

Vboost =
1

x
√
τ

[
− (ω + α)v + xvα,x − v,Cα,C(ωx+ αx+ 1)

+
xχCDα,Cα,D

2τ
((ω + α)v + v,Cα,C) +O(x2)

]
,
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Y x
boost = −xv +

1

τ

[
− (ω + α)v + xvα,x − v,Cα,C(ωx+ αx+ 1)

+
xχCDα,Cα,D

τ
((ω + α)v + v,Cα,C) +O(x2)

]
,

Y A
boost = v,A(ωx+ αx+ 1)

+
1

τ

[
(ω + α)vα,A − xvα,xα,A + v,Cα,Cα

,A(ωx + αx+ 1)

− x(
χCDα,Cα,Dα

,A

τ
+ χACα,C)((ω + α)v + v,Cα,C) +O(x2)

]
.



Part II

Background Material

185





Appendix A

Introduction to
pseudo-Riemannian geometry

A.1 Manifolds

Definition A.1.1 An n–dimensional manifold is a set M equipped with the
following:

1. topology: a “connected Hausdorff paracompact topological space” (think
of nicely looking subsets of R1+n, like spheres, hyperboloids, and such),
together with

2. local charts: a collection of coordinate patches (U , xi) covering M , where
U is an open subset of M , with the functions xi : U → R

n being contin-
uous. One further requires that the maps

M ⊃ U ∋ p 7→ (x1(p), . . . , xn(p)) ∈ V ⊂ R
n

are homeomorphisms.

3. compatibility: given two overlapping coordinate patches, (U , xi) and (Ũ , x̃i),
with corresponding sets V , Ṽ ⊂ R

n, the maps x̃j 7→ xi(x̃j) are smooth
diffeomorphisms wherever defined: this means that they are bijections dif-
ferentiable as many times as one wishes, with

det

[
∂xi

∂x̃j

]
nowhere vanishing .

Definition of differentiability: A function on M is smooth if it is smooth when
expressed in terms of local coordinates. Similarly for tensors.

Examples:
1. R

n with the usual topology, one single global coordinate patch.
2. A sphere: use stereographic projection to obtain two overlapping coor-

dinate systems (or use spherical angles, but then one must avoid borderline
angles, so they don’t cover the whole manifold!).

187
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3. We will use several coordinate patches (in fact, five), to describe the
Schwarzschild black hole, though one spherical coordinate system would suffice.

4. Let f : R
n → R, and define N := f−1(0). If ∇f has no zeros on

N , then every connected component of N is a smooth (n − 1)–dimensional
manifold. This construction leads to a plethora of examples. For example, if
f =

√
(x1)2 + . . .+ (xn)2 −R, with R > 0, then N is a sphere of radius R.

In this context a useful example is provided by the function f = t2 − x2 on
R
2: its zero-level-set is the light-cone t = ±x, which is a manifold except at the

origin; note that ∇f = 0 there, which shows that the criterion is sharp.

A.2 Scalar functions

Let M be an n-dimensional manifold. Since manifolds are defined using co-
ordinate charts, we need to understand how things behave under coordinate
changes. For instance, under a change of coordinates xi → yj(xi), to a function
f(x) we can associate a new function f̄(y), using the rule

f̄(y) = f(x(y)) ⇐⇒ f(x) = f̄(y(x)) .

In general relativity it is a common abuse of notation to write the same symbol f
for what we wrote f̄ , when we think that this is the same function but expressed
in a different coordinate system. We then say that a real- or complex-valued f
is a scalar function when, under a change of coordinates x→ y(x), the function
f transforms as f → f(x(y)).

In this section, to make things clearer, we will write f̄ for f(x(y)) even when
f is a scalar, but this will almost never be done in the remainder of these notes.
For example we will systematically use the same symbol gµν for the metric
components, whatever the coordinate system used.

A.3 Vector fields

Physicists often think of vector fields in terms of coordinate systems: a vector
field X is an object which in a coordinate system {xi} is represented by a
collection of functions Xi. In a new coordinate system {yj} the field X is
represented by a new set of functions:

Xi(x)→ Xj(y) := Xj(x(y))
∂yi

∂xj
(x(y)) . (A.3.1)

(The summation convention is used throughout, so that the index j has to be
summed over.)

The notion of a vector field finds its roots in the notion of the tangent to a
curve, say s→ γ(s). If we use local coordinates to write γ(s) as (γ1(s), γ2(s), . . . , γn(s)),
the tangent to that curve at the point γ(s) is defined as the set of numbers

(γ̇1(s), γ̇2(s), . . . , γ̇n(s)) .
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Consider, then, a curve γ(s) given in a coordinate system xi and let us perform
a change of coordinates xi → yj(xi). In the new coordinates yj the curve γ is
represented by the functions yj(γi(s)), with new tangent

dyj

ds
(y(γ(s))) =

∂yj

∂xi
(γ(s))γ̇i(s) .

This motivates (A.3.1).

In modern differential geometry a different approach is taken: one identifies
vector fields with homogeneous first order differential operators acting on real
valued functions f : M → R. In local coordinates {xi} a vector field X will be
written as Xi∂i, where the Xi’s are the “physicists’s functions” just mentioned.
This means that the action of X on functions is given by the formula

X(f) := Xi∂if (A.3.2)

(recall that ∂i is the partial derivative with respect to the coordinate xi). Con-
versely, given some abstract first order homogeneous derivative operator X, the
(perhaps locally defined) functions Xi in (A.3.2) can be found by acting on the
coordinate functions:

X(xi) = Xi . (A.3.3)

One justification for the differential operator approach is the fact that the
tangent γ̇ to a curve γ can be calculated — in a way independent of the coor-
dinate system {xi} chosen to represent γ — using the equation

γ̇(f) :=
d(f ◦ γ)

dt
.

Indeed, if γ is represented as γ(t) = {xi = γi(t)} within a coordinate patch,
then we have

d(f ◦ γ)(t)

dt
=
d(f(γ(t)))

dt
=
dγi(t)

dt
(∂if)(γ(t)) ,

recovering the previous coordinate formula γ̇ = (dγi/dt).

An even better justification is that the transformation rule (A.3.1) becomes
implicit in the formalism. Indeed, consider a (scalar) function f , so that the
differential operator X acts on f by differentiation:

X(f)(x) :=
∑

i

Xi∂f(x)

∂xi
. (A.3.4)

If we make a coordinate change so that

xj = xj(yk) ⇐⇒ yk = yk(xj) ,

keeping in mind that

f̄(y) = f(x(y)) ⇐⇒ f(x) = f̄(y(x)) ,
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then

X(f)(x) :=
∑

i

Xi(x)
∂f(x)

∂xi

=
∑

i

Xi(x)
∂f̄(y(x))

∂xi

=
∑

i,k

Xi(x)
∂f̄(y(x))

∂yk
∂yk

∂xi
(x)

=
∑

k

X̄k(y(x))
∂f̄ (y(x))

∂yk

=

(
∑

k

X̄k ∂f̄

∂yk

)
(y(x)) ,

with X̄k given by the right-hand-side of (A.3.1). So

X(f) is a scalar iff the coefficients Xi satisfy the transformation law of a vector.

Exercice A.3.1 Check that this is a necessary and sufficient condition.

One often uses the middle formula in the above calculation in the form

∂

∂xi
=
∂yk

∂xi
∂

∂yk
. (A.3.5)

Note that the tangent to the curve s→ (s, x2, x3, . . . xn), where (x2, x3, . . . xn)
are constants, is identified with the differential operator

∂1 ≡
∂

∂x1
.

Similarly the tangent to the curve s → (x1, s, x3, . . . xn), where (x1, x3, . . . xn)
are constants, is identified with

∂2 ≡
∂

∂x2
,

etc. Thus, γ̇ is identified with

γ̇(s) = γ̇i∂i

At any given point p ∈ M the set of vectors forms a vector space, denoted
by TpM . The collection of all the tangent spaces is called the tangent bundle
to M , denoted by TM .
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A.3.1 Lie bracket

Vector fields can be added and multiplied by functions in the obvious way.
Another useful operation is the Lie bracket, or commutator, defined as

[X,Y ](f) := X(Y (f))− Y (X(f)) . (A.3.6)

One needs to check that this does indeed define a new vector field: the simplest
way is to use local coordinates,

[X,Y ](f) = Xj∂j(Y
i∂if)− Y j∂j(X

i∂if)

= Xj(∂j(Y
i)∂if + Y i∂j∂if)− Y j(∂j(X

i)∂if +Xi∂j∂if)

= (Xj∂jY
i − Y j∂jX

i)∂if +XjY i∂j∂if − Y jXi∂j∂if︸ ︷︷ ︸
=XjY i (∂j∂if − ∂i∂jf)︸ ︷︷ ︸

0

= (Xj∂jY
i − Y j∂jX

i)∂if , (A.3.7)

which is indeed a homogeneous first order differential operator. Here we have
used the symmetry of the matrix of second derivatives of twice differentiable
functions. We note that the last line of (A.3.7) also gives an explicit coordinate
expression for the commutator of two differentiable vector fields.

The Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 .

Indeed, if we write SX,Y,Z for a cyclic sum, then

([X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]])(f) = SX,Y,Z [X, [Y,Z]](f)

= SX,Y,Z {X([Y,Z](f)) − [Y,Z](X(f))}
= SX,Y,Z {X(Y (Z(f)))−X(Z(Y (f)))− Y (Z(X(f))) + Z(Y (X(f)))} .

The third term is a cyclic permutation of the first, and the fourth a cyclic
permutation of the second, so the sum gives zero.

A.4 Covectors

Covectors are maps from the space of vectors to functions which are linear under
addition and multiplication by functions.

The basic object is the coordinate differential dxi, defined by its action on
vectors as follows:

dxi(Xj∂j) := Xi . (A.4.1)

Equivalently,

dxi(∂j) := δij :=

{
1, i = j;
0, otherwise.

The dxi’s form a basis for the space of covectors: indeed, let ϕ be a linear map
on the space of vectors, then

ϕ( X︸︷︷︸
Xi∂i

) = ϕ(Xi∂i) =︸︷︷︸
linearity

Xi ϕ(∂i)︸ ︷︷ ︸
call this ϕi

= ϕidx
i(X) =︸︷︷︸

def. of sum of functions

(ϕidx
i)(X) ,
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hence

ϕ = ϕidx
i ,

and every ϕ can indeed be written as a linear combination of the dxi’s. Under
a change of coordinates we have

ϕ̄iX̄
i = ϕ̄i

∂yi

∂xk
Xk = ϕkX

k ,

leading to the following transformation law for components of covectors:

ϕk = ϕ̄i
∂yi

∂xk
, (A.4.2)

Given a scalar f , we define its differential df as

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn .

With this definition, dxi is the differential of the coordinate function xi.

As presented above, the differential of a function is a covector by definition.
As an exercice, you should check directly that the collection of functions ϕi :=
∂if satisfies the transformation rule (A.4.2).

We have a formula which is often used in calculations

dyj =
∂yj

∂xk
dxk .

An elegant approach to the definition of differentials proceeds as follows: Given
any function f , we define:

df(X) := X(f) . (A.4.3)

(Recall that here we are viewing a vector field X as a differential operator on
functions, defined by (A.3.4).) The map X 7→ df(X) is linear under addition of
vectors, and multiplication of vectors by numbers: if λ, µ are real numbers, and X
and Y are vector fields, then

df(λX + µY ) =︸︷︷︸
by definition (A.4.3)

(λX + µY )(f)

=︸︷︷︸
by definition (A.3.4)

λX i∂if + µY i∂if

=︸︷︷︸
by definition (A.4.3)

λdf(X) + µdf(Y ) .

Applying (A.4.3) to the function f = xi we obtain

dxi(∂j) =
∂xi

∂xj
= δij ,

recovering (A.4.1).
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Example A.4.1 Let (ρ, ϕ) be polar coordinates on R
2, thus x = ρ cosϕ, y =

ρ sinϕ, and then

dx = d(ρ cosϕ) = cosϕdρ− ρ sinϕdϕ ,

dy = d(ρ sinϕ) = sinϕdρ+ ρ cosϕdϕ .

At any given point p ∈M , the set of covectors forms a vector space, denoted
by T ∗

pM . The collection of all the tangent spaces is called the cotangent bundle
to M , denoted by T ∗M .

Summarising, covectors are dual to vectors. It is convenient to define

dxi(X) := Xi ,

where Xi is as in (A.3.2). With this definition the (locally defined) bases
{∂i}i=1,...,dimM of TM and {dxj}i=1,...,dimM of T ∗M are dual to each other:

〈dxi, ∂j〉 := dxi(∂j) = δij ,

where δij is the Kronecker delta, equal to one when i = j and zero otherwise.

A.5 Bilinear maps, two-covariant tensors

A map is said to be multi-linear if it is linear in every entry; e.g. g is bilinear if

g(aX + bY, Z) = ag(X,Z) + bg(Y,Z) ,

and
g(X, aZ + bW ) = ag(X,Z) + bg(X,W ) .

Here, as elsewhere when talking about tensors, bilinearity is meant with respect
to addition and to multiplication by functions.

A map g which is bilinear on the space of vectors can be represented by a
matrix with two indices down:

g(X,Y ) = g(Xi∂i, Y
j∂j) = XiY j g(∂i, ∂j)︸ ︷︷ ︸

=:gij

= gijX
iY j = gijdx

i(X)dxj(Y ) .

We say that g is a covariant tensor of valence two.

We say that g is symmetric if g(X,Y ) = g(Y,X) for all X, Y ; equivalently,
gij = gji.

A symmetric bilinear tensor field is said to be non-degenerate if det gij has
no zeros.

By Sylvester’s inertia theorem, there exists a basis θi of the space of covec-
tors so that a symmetric bilinear map g can be written as

g(X,Y ) = θ1(X)θ1(Y )+. . .+θs(X)θs(Y )−θs+1(X)θs+1(Y )−. . .−θs+r(X)θs+r(Y )

(s, r) is called the signature of g; in geometry, unless specifically said otherwise,
one always assumed that the signature does not change from point to point.
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If s = n, in dimension n, then g is said to be a Riemannian metric tensor.

A canonical example is provided by the flat Riemannian metric on R
n is

g = (dx1)2 + . . .+ (dxn)2 .

By definition, a Riemannian metric is a field of symmetric two-covariant
tensors with signature (+, . . . ,+) and with det gij without zeros.

A Riemannian metric can be used to define the length of curves: if γ : [a, b] ∋ s→
γ(s), then

ℓg(γ) =

∫ b

a

√
g(γ̇, γ̇)ds .

One can then define the distance between points by minimizing the length of the
curves connecting them.

If s = 1 and r = N − 1, in dimension N , then g is said to be a Lorentzian
metric tensor.

For example, the Minkowski metric on R
1+n is

η = (dx0)2 − (dx1)2 − . . .− (dxn)2 .

A.6 Tensor products

If ϕ and θ are covectors we can define a bilinear map using the formula

(ϕ⊗ θ)(X,Y ) = ϕ(X)θ(Y ) . (A.6.1)

For example

(dx1 ⊗ dx2)(X,Y ) = X1Y 2 .

Using this notation we have

g(X,Y ) = g(Xi∂i, Y
j∂j) = g(∂j , ∂j)︸ ︷︷ ︸

=:gij

Xi
︸︷︷︸
dxi(X)

Y j
︸︷︷︸
dxj(Y )︸ ︷︷ ︸

(dxi⊗dxj(X,Y )

= (gijdx
i ⊗ dxj)(X,Y )

We will write dxidxj for the symmetric product,

dxidxj :=
1

2
(dxi ⊗ dxj + dxj ⊗ dxi) ,

and dxi ∧ dxj for the anti-symmetric one,

dxi ∧ dxj :=
1

2
(dxi ⊗ dxj − dxj ⊗ dxi) .

It should be clear how this generalises: the tensors dxi⊗ dxj ⊗ dxk, defined
as

(dxi ⊗ dxj ⊗ dxk)(X,Y,Z) = XiY jZk ,
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form a basis of three-linear maps on the space of vectors, which are objects of
the form

X = Xijkdx
i ⊗ dxj ⊗ dxk .

Here X is a called tensor of valence (0, 3). Each index transforms as for a
covector:

X = Xijkdx
i ⊗ dxj ⊗ dxk = Xijk

∂xi

∂ym
∂xj

∂yℓ
∂xk

∂yn
dym ⊗ dyℓ ⊗ dyn .

It is sometimes useful to think of vectors as linear maps on co-vectors, using
a formula which looks funny when first met: if θ is a covector, and X is a vector,
then

X(θ) := θ(X) .

So if θ = θidx
i and X = Xi∂i then

θ(X) = θiX
i = Xiθi = X(θ) .

It then makes sense to define e.g. ∂i ⊗ ∂j as a bilinear map on covectors:

(∂i ⊗ ∂j)(θ, ψ) := θiψj .

And one can define a map ∂i ⊗ dxj which is linear on forms in the first slot,
and linear in vectors in the second slot as

(∂i ⊗ dxj)(θ,X) := ∂i(θ)dx
j(X) = θiX

j . (A.6.2)

The ∂i ⊗ dxj ’s form the basis of the space of tensors of rank (1, 1):

T = T ij∂i ⊗ dxj .
Generally, a tensor of valence, or rank, (r, s) can be defined as an object

which has r vector indices and s covector indices, so that it transforms as

Si1...ir j1...js → Sm1...mr
ℓ1...ℓs

∂yi1

∂xm1
. . .

∂yis

∂xmr

∂xℓ1

∂yj1
. . .

∂xℓs

∂yjs

For example, if X = Xi∂i and Y = Y j∂j are vectors, then X⊗Y = XiY j∂i⊗∂j
forms a contravariant tensor of valence two.

Tensors of same valence can be added in the obvious way: e.g.

(A+B)(X,Y ) := A(X,Y ) +B(X,Y ) ⇐⇒ (A+B)ij = Aij +Bij .

Tensors can be multiplied by scalars: e.g.

(fA)(X,Y,Z) := fA(X,Y,Z) ⇐⇒ f(Aijk) := (fAijk) .

Finally, we have seen in (A.6.1) how to take tensor products for one forms, and
in (A.6.2) how to take a tensor product of a vector and a one form, but this
can also be done for higher order tensor; e.g., if S is of valence (a, b) and T is
a multilinear map of valence (c, d), then S ⊗ T is a multilinear map of valence
(a+ c, b+ d), defined as

(S ⊗ T )( θ, . . .︸ ︷︷ ︸
a covectors and b vectors

, ψ, . . .︸ ︷︷ ︸
c covectors and d vectors

) := S(θ, . . .)T (ψ, . . .) .
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A.6.1 Contractions

Given a tensor field Sij with one index down and one index up one can perform
the sum

Sii .

This defines a scalar, i.e., a function on the manifold. Indeed, using the trans-
formation rule

Sij → S̄ℓk = Sij
∂xj

∂yk
∂yℓ

∂xi
,

one finds

S̄ℓℓ = Sij
∂xj

∂yℓ
∂yℓ

∂xi︸ ︷︷ ︸
δji

= Sii ,

as desired.
One can similarly do contractions on higher valence tensors, e.g.

Si1i2...ir j1j2j3...js → Sℓi2...ir j1ℓj3...js .

After contraction, a tensor of rank (r + 1, s + 1) becomes of rank (r, s).

A.7 Raising and lowering of indices

Let g be a symmetric two-covariant tensor field on M , by definition such an
object is the assignment to each point p ∈ M of a bilinear map g(p) from
TpM × TpM to R, with the additional property

g(X,Y ) = g(Y,X) .

In this work the symbol g will be reserved to non-degenerate symmetric two-
covariant tensor fields. It is usual to simply write g for g(p), the point p being
implicitly understood. We will sometimes write gp for g(p) when referencing p
will be useful.

The usual Sylvester’s inertia theorem tells us that at each p the map g will
have a well defined signature; clearly this signature will be point-independent
on a connected manifold when g is non-degenerate. A pair (M,g) is said to be a
Riemannian manifold when the signature of g is (dimM, 0); equivalently, when
g is a positive definite bilinear form on every product TpM×TpM . A pair (M,g)
is said to be a Lorentzian manifold when the signature of g is (dimM − 1, 1).
One talks about pseudo-Riemannian manifolds whatever the signature of g,
as long as g is non-degenerate, but we will only encounter Riemannian and
Lorentzian metrics in this work.

Since g is non-degenerate it induces an isomorphism

♭ : TpM → T ∗
pM

by the formula

X♭(Y ) = g(X,Y ) .
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In local coordinates this gives

X♭ = gijX
idxj =: Xjdx

j . (A.7.1)

This last equality defines Xj — “the vector Xj with the index j lowered”:

Xi := gijX
j . (A.7.2)

The operation (A.7.2) is called the lowering of indices in the physics literature
and, again in the physics literature, one does not make a distinction between
the one-form X♭ and the vector X.

The inverse map will be denoted by ♯ and is called the raising of indices;
from (A.7.1) we obviously have

α♯ = gijαi∂j =: αi∂i ⇐⇒ dxi(α♯) = αi = gijαj ,

where gij is the matrix inverse to gij . For example,

(dxi)♯ = gik∂k .

Clearly gij , understood as the matrix of a bilinear form on T ∗
pM , has the same

signature as g, and can be used to define a scalar product g♯ on T ∗
p (M):

g♯(α, β) := g(α♯, β♯) ⇐⇒ g♯(dxi, dxj) = gij .

This last equality is justified as follows:

g♯(dxi, dxj) = g((dxi)♯, (dxj)♯) = g(gik∂k, g
jℓ∂ℓ) = gikgkℓ︸ ︷︷ ︸

=δiℓ

gjℓ = gji = gij .

It is convenient to use the same letter g for g♯ — physicists do it all the time
— or for scalar products induced by g on all the remaining tensor bundles, and
we will sometimes do so.

One might wish to check by direct calculations that gµνX
ν transforms as a one-

form if Xµ transforms as a vector. The simplest way is to notice that gµνX
ν is a

contraction, over the last two indices, of the three-index tensor gµνX
α. Hence it is

a one-form by the analysis at the end of the previous section. Alternatively, if we
write ḡµν for the transformed gµν ’s, and X̄α for the transformed Xα’s, then

ḡαβ︸︷︷︸
gµν

∂xµ

∂yα
∂xν

∂yβ

X̄β = gµν
∂xµ

∂yα
∂xν

∂yβ
X̄β

︸ ︷︷ ︸
Xν

= gµνX
ν ∂x

µ

∂yα
,

which is indeed the transformation law of a covector.



198APPENDIX A. INTRODUCTIONTO PSEUDO-RIEMANNIAN GEOMETRY

A.8 The Lie derivative

A.8.1 A pedestrian approach

We start with a pedestrian approach to the definition of Lie derivative; the
elegant geometric definition will be given in the next section.

Given a vector field X, the Lie derivative LX is an operation on tensor
fields, defined as follows:

For a function f , one sets

LXf := X(f) . (A.8.1)

For a vector field Y , the Lie derivative coincides with the Lie bracket:

LXY := [X,Y ] . (A.8.2)

For a one form α, LXα is defined by imposing the Leibniz rule written back-
wards:

(LXα)(Y ) := LX(α(Y ))− α(LXY ) . (A.8.3)

(Indeed, the Leibniz rule applied to the contraction αiX
i would read

LX(αiY
i) = (LXα)iY

i + αi(LXY )i ,

which can be rewritten as (A.8.3).)
Let us check that (A.8.3) defines a one form. Clearly, the right-hand side

transforms in the desired way when Y is replaced by Y1+Y2. Now, if we replace
Y by fY , where f is a function, then

(LXα)(fY ) = LX(α(fY ))− α( LX(fY )︸ ︷︷ ︸
X(f)Y +fLXY

)

= X(fα(Y ))− α(X(f)Y + fLXY ))

= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y )− α(fLXY ))

= fX(α(Y ))− fα(LXY ))

= f((LXα)(Y )) .

So LXα is a C∞-linear map on vector fields, hence a covector field.
In coordinate-components notation we have

(LXα)a = Xb∂bαa + αb∂aX
b . (A.8.4)

Indeed,

(LXα)iY
i := LX(αiY

i)− αi(LXY )i

= Xk∂k(αiY
i)− αi(Xk∂kY

i − Y k∂kX
i)

= Xk(∂kαi)Y
i + αiY

k∂kX
i

=
(
Xk∂kαi + αk∂iX

k
)
Y i ,

as desired
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For tensor products, the Lie derivative is defined by imposing linearity under
addition together with the Leibniz rule:

LX(α⊗ β) = (LXα)⊗ β + α⊗LXβ .

Since a general tensor A is a sum of tensor products,

A = Aa1...apb1...bq∂a1 ⊗ . . . ∂ap ⊗ dxb1 ⊗ . . .⊗ dxap ,

requiring linearity with respect to addition of tensors gives thus a definition of
Lie derivative for any tensor.

For example, we claim that

LXT
a
b = Xc∂cT

a
b − T cb∂cXa + T ac∂bX

c , (A.8.5)

To see this, call a tensor T ab simple if it is of the form Y ⊗ α, where Y is a
vector and α is a covector. Using indices, this corresponds to Y aαb and so, by
the Leibniz rule,

LX(Y ⊗ α)ab = LX(Y aαb)

= (LXY )aαb + Y a(LXα)b

= (Xc∂cY
a − Y c∂cX

a)αb + Y a(Xc∂cαb + αc∂bX
c)

= Xc∂c(Y
aαb)− Y cαb∂cX

a + Y aαc∂bX
c ,

which coincides with (A.8.5) if T ab = Y bαb. But a general T ab can be written
as a linear combination with constant coefficients of simple tensors,

T =
∑

a,b

T ab∂a ⊗ dxb︸ ︷︷ ︸
no summation, so simple

,

and the result follows.
Similarly, one has, e.g.,

LXR
ab = Xc∂cR

ab −Rac∂cXb −Rbc∂cXa ,

LXSab = Xc∂cSab + Sac∂bX
c + Sbc∂aX

c , (A.8.6)

etc. Those are all special cases of the general formula for the Lie derivative
LXA

a1...ap
b1...bq :

LXA
a1...ap

b1...bq = Xc∂cA
a1...ap

b1...bq −Aca2...apb1...bq∂cXa1 − . . .
+Aa1...apcb1...bq∂b1X

c + . . . .

A useful property of Lie derivatives is

L[X,Y ] = [LX ,LY ] , (A.8.7)

where, for a tensor T , the commutator [LX ,LY ]T is defined in the usual way:

[LX ,LY ]T := LX(LY T )−LY (LXT ) . (A.8.8)
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To see this, we first note that if T = f is a function, then the right-hand-side of
(A.8.8) is the definition of [X,Y ](f), which in turn coincides with the definition
of L[X,Y ](f).

Next, for a vector field T = Z, (A.8.7) reads

L[X,Y ]Z = LX(LY Z)−LY (LXZ) , (A.8.9)

which is the same as

[[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] , (A.8.10)

which is the same as

[Z, [Y,X]] + [X, [Z, Y ]] + [Y, [X,Z]] = 0 , (A.8.11)

which is the Jacobi identity. Hence (A.8.7) holds for vector fields.
We continue with a one form α. We use the definitions, with Z any vector

field:

(LXLY α)(Z) = X( (LY α)(Z)︸ ︷︷ ︸
Y (α(Z))−α(LY Z))

)− (LY α) (LXZ)︸ ︷︷ ︸
Y (α(LXZ))−α(LY LXZ)

= X(Y (α(Z))) −X(α(LY Z)))− Y (α(LXZ)) + α(LY LXZ) .

Antisymmetrizing over X and Y , the second and third term above cancel out,
so that

((LXLY α−LY LX)α)(Z) = X(Y (α(Z))) + α(LY LXZ)− (X ←→ Y )

= [X,Y ](α(Z))− α(LXLY Z −LY LXZ)

= L[X,Y ](α(Z))− α(L[X,Y ]Z)

= (L[X,Y ]α)(Z) .

Since Z is arbitrary, (A.8.7) for covectors follows.
To conclude that (A.8.7) holds for arbitrary tensor fields, we note that by

construction we have

L[X,Y ](A⊗B) = L[X,Y ]A⊗B +A⊗L[X,Y ]B . (A.8.12)

Similarly

LXLY (A⊗B) = LX(LYA⊗B +A⊗LY B)

= LXLYA⊗B + LXA⊗LYB + LYA⊗LXB

+A⊗LXLYB . (A.8.13)

Exchanging X with Y and subtracting, the middle terms drop out:

[LX ,LY ](A⊗B) = [LX ,LY ]A⊗B +A⊗ [LX ,LY ]B . (A.8.14)

Basing on what has been said, the reader should have no difficulties finishing
the proof of (A.8.7).
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Example A.8.1 As an example of application of the formalism, suppose that there
exists a coordinate system in which (Xa) = (1, 0, 0, 0) and ∂0gbc = 0. Then

LXgab = ∂0gab = 0 .

But the Lie derivative of a tensor field is a tensor field, and we conclude that
LXgab = 0 holds in every coordinate system.

Vector fields for which LXgab = 0 are called Killing vectors: they arise from
symmetries of space-time. We have the useful formula

LXgab = ∇aXb +∇bXa . (A.8.15)

An effortless proof of this proceeds as follows: in adapted coordinates in which the
derivatives of the metric vanish at a point p, one immediately checks that equality
holds at p. But both sides are tensor fields, therefore the result holds at p for all
coordinate systems, and hence also everywhere.

The brute-force proof of (A.8.15) proceeds as follows:

LXgab = Xc∂cgab + ∂aX
cgcb + ∂bX

cgca

= Xc∂cgab + ∂a(Xcgcb)−Xc∂agcb + ∂b(X
cgca)−Xc∂bgca

= ∂aXb + ∂bXa +Xc (∂cgab − ∂agcb − ∂bgca)︸ ︷︷ ︸
−2gcdΓd

ab

= ∇aXb +∇bXa .

A.8.2 The geometric approach

We pass now to a geometric definition of Lie derivative. This requires, first, an
excursion through the land of push-forwards and pull-backs.

Transporting tensor fields

We start by noting that, given a point p0 in a manifold M , every vector X ∈
Tp0M is tangent to some curve. To see this, let {xi} be any local coordinates
near p0, with xi(p0) = xi0, then X can be written as Xi(p0)∂i. If we set
γi(s) = xi0 + sXi(p0), then γ̇i(0) = Xi(p0), which establishes the claim. This
observation shows that studies of vectors can be reduced to studies of curves.

Let, now, M and N be two manifolds, and let φ : M → N be a differentiable
map between them. Given a vector X ∈ TpM , the push-forward φ∗X of X is
a vector in Tφ(p)N defined as follows: let γ be any curve for which X = γ̇(0),
then

φ∗X :=
d(φ ◦ γ)

ds

∣∣∣∣
s=0

. (A.8.16)

In local coordinates yA on N and xi on M , so that φ(x) = (φA(xi)), we find

(φ∗X)A =
dφA(γi(s))

ds

∣∣∣∣
s=0

=
∂φA(γi(s))

∂xi
γ̇i(s)|s=0

=
∂φA(xi)

∂xi
Xi . (A.8.17)

This makes it clear that the definition is independent of the choice of the curve
γ satisfying X = γ̇(0).
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If we apply this formula to a vector field X defined on M we obtain

(φ∗X)A(φ(x)) =
∂φA

∂xi
(x)Xi(x) . (A.8.18)

The equation shows that if a point y ∈ N has more than one pre-image, say
y = φ(x1) = φ(x2) with x1 6= x2, then (A.8.18) might will define more than one
tangent vector at y in general. This leads to an important caveat: we will be
certain that the push-forward of a vector field on M defines a vector field on N
only when φ is a diffeomorphism. More generally, φ∗X defines locally a vector
field on φ(M) if and only if φ is a local diffeomorphism. In such cases we can
invert φ (perhaps locally) and write (A.8.18) as

(φ∗X)j(x) =

(
∂φj

∂xi
Xi

)
(φ−1(x)) . (A.8.19)

When φ is understood as a coordinate change rather than a diffeomorphism
between two manifolds, this is simply the standard transformation law of a
vector field under coordinate transformations.

The push-forward operation can be extended to contravariant tensors by
defining it on tensor products in the obvious way, and extending by linearity:
for example, if X, Y and Z are vectors, then

φ∗(X ⊗ Y ⊗ Z) := φ∗X ⊗ φ∗Y ⊗ φ∗Z .

Consider, next, a k-multilinear map α from Tφ(p0)M to R. The pull-back
φ∗α of α is a multilinear map on Tp0M defined as

TpM ∋ (X1, . . . Xk) 7→ φ∗(α)(X1, . . . ,Xk) := α(φ∗X1, . . . , φ∗Xk) .

As an example, let α = αAdy
A be a one-form, if X = Xi∂i then

(φ∗α)(X) = α(φ∗X) = α(
∂φA

∂xi
Xi∂A) = αA

∂φA

∂xi
Xi = αA

∂φA

∂xi
dxi(X) .

Equivalently,

(φ∗α)i = αA
∂φA

∂xi
. (A.8.20)

If α is a one-form field on N , this reads

(φ∗α)i(x) = αA(φ(x))
∂φA(x)

∂xi
. (A.8.21)

It follows that φ∗α is a field of one-forms on M , irrespective of injectivity or
surjectivity properties of φ. Similarly, pull-backs of covariant tensor fields of
higher rank are smooth tensor fields.

For a function f equation (A.8.21) reads

(φ∗df)i(x) =
∂f

∂yA
(φ(x))

∂φA(x)

∂xi
=
∂(f ◦ φ)

∂xi
(x) , (A.8.22)
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which can be succinctly written as

φ∗df = d(f ◦ φ) . (A.8.23)

Using the notation
φ∗f := f ◦ φ , (A.8.24)

we can write (A.8.23) as

φ∗d = dφ∗ for functions. (A.8.25)

Summarising:

1. Pull-backs of covariant tensor fields define covariant tensor fields. In par-
ticular the metric can always be pulled back.

2. Push-forwards of contravariant tensor fields can be used to define con-
travariant tensor fields when φ is a diffeomorphism.

In this context it is thus clearly of interest to consider diffeomorphisms φ,
as then tensor products can now be transported in the following way; we will
denote by φ̂ the associated map: We define φ̂f = f ◦φ for functions, φ̂ = φ∗ for
covariant fields, φ̂ = (φ−1)∗ for contravariant tensor fields, we use the rule

φ̂(A⊗B) = φ̂A⊗ φ̂B
for tensor products, and the definition is extended by linearity under multipli-
cation by functions to any tensor fields.

So, for example, if X is a vector field and α is a field of one-forms, one has

φ̂(X ⊗ α) := (φ−1)∗X ⊗ φ∗α . (A.8.26)

Flows of vector fields

Let X be a vector field on M . For every p0 ∈ M consider the (maximally
extended, as a function of t) solution to the problem

dxi

dt
= Xi(x(t)) , xi(0) = xi0 . (A.8.27)

The map
(t, x0) 7→ φt[X](x0) := x(t)

where xi(t) is the solution of (A.8.27), is called the local flow of X. We say that
X generates φt[X]. We will write φt for φt[X] when X is unambiguous in the
context.

The time of existence of solutions of (A.8.27) depends upon x0 in general.

Example A.8.2 As an example, let M = R and X = x2∂x. We then have to solve

dx

dt
= x2 , x(0) = x0 =⇒ x =

{
0, x0 = 0;

x0

1−x0t
, x0 6= 0 , 1− x0t > 0.

Hence
φt(x) =

x

1− xt ,

with t ∈ R when x = 0, with t ∈ (−∞, 1/x) when x > 0 and with t ∈ (1/x,∞)
when x < 0.
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We say that X is complete if φt[X](p) is defined for all (t, p) ∈ R×M .
The following standard facts are left as exercices to the reader:

1. φ0 is the identity map.

2. φt ◦ φs = φt+s.

In particular, φ−1
t = φ−t , and thus:

3. The maps x 7→ φt(x) are local diffeomorphisms; global if for all x ∈ M
the maps φt are defined for all t ∈ R.

4. φ−t[X] is generated by −X:

φ−t[X] = φt[−X] .

A family of diffeomorphisms satisfying property 2. above is called a one
parameter group of diffeomorphisms. Thus, complete vector fields generate one-
parameter families of diffeomorphisms via (A.8.27).

Reciprocally, suppose that a local one-parameter group φt is given, then the
formula

X =
dφ

dt

∣∣∣∣
t=0

defines a vector field, said to be generated by φt.

The Lie derivative revisited

The idea of the Lie transport, and hence of the Lie derivative, is to be able
to compare objects along integral curves of a vector field X. This is pretty
obvious for scalars: we just compare the values of f(x) with f(φt(x)), leading
to a derivative

LXf := lim
t→0

f ◦ φt − f
t

≡ lim
t→0

φ∗t f − f
t

≡ lim
t→0

φ̂tf − f
t

≡ d(φ̂tT )

dt

∣∣∣∣
t=0

.

(A.8.28)
We wish, next, to compare the value of a vector field Y at φt(x) with the

value at x. For this, we move from x to φt(x) following the integral curve of
X, and produce a new vector at x by applying (φ−1

t )∗ to Y |φt(x). This makes

it perhaps clearer why we introduced the transport map φ̂, since (φ̂Y )(x) is
precisely the value at x of (φ−1

t )∗Y . We can then calculate

LXY (x) := lim
t→0

(φ−1
t Y )(φt(x))− Y (x)

t
≡ lim

t→0

(φ̂tY )(x)− Y (x)

t
≡ d(φ̂tY (x))

dt

∣∣∣∣
t=0

.

(A.8.29)
In general, let X be a vector field and let φt be the associated local one-

parameter family of diffeomorphisms. Let φ̂t be the associated family of trans-
port maps for tensor fields. For any tensor field T one sets

LXT := lim
t→0

φ̂tT − T
t

≡ d(φ̂tT )

dt

∣∣∣∣
t=0

. (A.8.30)
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We want to show that this operation coincides with that defined in Section A.8.1.

The result for functions should be clear:

LXf = X(f) .

Consider, next, a vector field Y . From (A.8.19), setting ψt := φ−t ≡ (φt)
−1

we have

φ̂tY
j(x) := ((φ−1

t )∗Y )j(x) = (
∂ψjt
∂xi

Y i)(φt(x)) . (A.8.31)

Hence

dφ̂tY
j

dt
(x)|t=0 =

∂ψ̇j0
∂xi

(x)Y i(x) + ∂j(
∂ψj0
∂xi

Y i

︸ ︷︷ ︸
Y j

)(x)φ̇j(x)

= −∂iXj(x)Y i(x) + ∂jY
i(x)Xj(x)

= [X,Y ]j(x) ,

and we have obtained (A.8.2), p. 198.

For a covector field α, it seems simplest to calculate directly from (A.8.21):

(φ̂tα)i(x) = (φ∗tα)i(x) = αk(φt(x))
∂φkt (x)

∂xi
.

Hence

LXαi =
d(φ∗tα)i(x)

dt

∣∣∣∣
t=0

= ∂jαk(x)Xj(x) + αk(x)
∂Xk(x)

∂xi
(x) , (A.8.32)

as in (A.8.4).

It now follows from (A.8.3) that the Leibniz rule under duality holds.

Alternatively, one can start by showing that the Leibniz rule under duality holds,
and then use the calculations in Section A.8.1 to derive (A.8.32): For this, by
definition we have

φ∗tα(Y ) = α((φt)∗Y ) ,

hence

α(Y )|φt(x) = α((φt)∗(φ−1
t )∗Y )|φt(x) = φ∗tα|x((φ−1

t )∗Y |φt(x)) = φ̂tα(φ̂tY )|x .

Equivalently,

φ̂t(α(Y )) = (φ̂tα)(φ̂tY ) ,

from which the Leibniz rule under duality immediately follows.

A similar calculation leads to the Leibniz rule under tensor products.

The reader should have no difficulties checking that the remaining require-
ments set forth in Section A.8.1 are satisfied.
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A.9 Covariant derivatives

When dealing with R
n, or subsets thereof, there exists an obvious prescription

for how to differentiate tensor fields: in this case we have at our disposal the
canonical “trivialization {∂i}i=1,...,n of TRn” (this means: a globally defined set
of vectors which, at every point, form a basis of the tangent space), together
with its dual trivialization {dxj}i=1,...,n of T ∗

R
n. We can expand a tensor field

T of valence (k, ℓ) in terms of those bases,

T = T i1...ik j1...jℓ∂i1 ⊗ . . . ⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxjℓ
⇐⇒ T i1...ik j1...jℓ = T (dxi1 , . . . , dxik , ∂j1 , . . . , ∂jℓ) , (A.9.1)

and differentiate each component T i1...ik j1...jℓ of T separately:

X(T )
in the coordinate system xi

:= Xi∂T
i1...ik

j1...jℓ

∂xi
∂xi1⊗. . .⊗∂xik⊗dxj1⊗. . .⊗dxjℓ .

(A.9.2)
The resulting object does, however, not behave as a tensor under coordinate
transformations, in the sense that the above form of the right-hand-side will
not be preserved under coordinate transformations: as an example, consider
the one-form T = dx on R

n, which has vanishing derivative as defined by
(A.9.2). When expressed in spherical coordinates we have

T = d(ρ cosϕ) = −ρ sinϕdϕ+ cosϕdρ ,

the partial derivatives of which are non-zero (both with respect to the original
cartesian coordinates (x, y) and to the new spherical ones (ρ, ϕ)).

The Lie derivative LX of Section A.8 maps tensors to tensors but does not
resolve this question, because it is not linear under multiplication of X by a
function.

The notion of covariant derivative, sometimes also referred to as connec-
tion, is introduced precisely to obtain a notion of derivative which has tensorial
properties. By definition, a covariant derivative is a map which to a vector field
X and a tensor field T assigns a tensor field of the same type as T , denoted by
∇XT , with the following properties:

1. ∇XT is linear with respect to addition both with respect to X and T :

∇X+Y T = ∇XT +∇Y T , ∇X(T + Y ) = ∇XT +∇XY ; (A.9.3)

2. ∇XT is linear with respect to multiplication of X by functions f ,

∇fXT = f∇XT ; (A.9.4)

3. and, finally, ∇XT satisfies the Leibniz rule under multiplication of T by
a differentiable function f :

∇X(fT ) = f∇XT +X(f)T . (A.9.5)
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By definition, if T is a tensor field of rank (p, q), then for any vector field
X the field ∇XT is again a tensor of type (p, q). Since ∇XT is linear in X, the
field ∇T can naturally be viewed as a tensor field of rank (p, q + 1).

It is natural to ask whether covariant derivatives do exist at all in general
and, if so, how many of them can there be. First, it immediately follows from
the axioms above that if D and ∇ are two covariant derivatives, then

∆(X,T ) := DXT −∇XT

is multi-linear both with respect to addition and multiplication by functions —
the non-homogeneous terms X(f)T in (A.9.5) cancel — and is thus a tensor
field. Reciprocally, if ∇ is a covariant derivative and ∆(X,T ) is bilinear with
respect to addition and multiplication by functions, then

DXT := ∇XT + ∆(X,T ) (A.9.6)

is a new covariant derivative. So, at least locally, on tensors of valence (r, s)
there are as many covariant derivatives as tensors of valence (r + s, r + s+ 1).

We note that the sum of two covariant derivatives is not a covariant deriva-
tive. However, convex combinations of covariant derivatives, with coefficients
which may vary from point to point, are again covariant derivatives. This re-
mark allows one to construct covariant derivatives using partitions of unity:
Let, indeed, {Oi}i∈N be an open covering of M by coordinate patches and let
ϕi be an associated partition of unity. In each of those coordinate patches we
can decompose a tensor field T as in (A.9.1), and define

DXT :=
∑

i

ϕiX
j∂j(T

i1...ik
j1...jℓ)∂i1 ⊗ . . .⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxjℓ . (A.9.7)

This procedure, which depends upon the choice of the coordinate patches and
the choice of the partition of unity, defines one covariant derivative; all other
covariant derivatives are then obtained from D using (A.9.6). Note that (A.9.2)
is a special case of (A.9.7) when there exists a global coordinate system on
M . Thus (A.9.2) does define a covariant derivative. However, the associated
operation on tensor fields will not take the simple form (A.9.2) when we go to
a different coordinate system {yi} in general.

A.9.1 Functions

The canonical covariant derivative on functions is defined as

∇X(f) = X(f) ,

and we will always use the above. This has all the right properties, so obviously
covariant derivatives of functions exist. From what has been said, any covariant
derivative on functions is of the form

∇Xf = X(f) + α(X)f , (A.9.8)

where α is a one-form. Conversely, given any one form α, (A.9.8) defines a
covariant derivative on functions. The addition of the lower-order term α(X)f
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(A.9.8) does not appear to be very useful here, but it turns out to be useful
in geometric formulation of electrodynamics, or in geometric quantization. In
any case such lower-order terms play an essential role when defining covariant
derivatives of tensor fields.

A.9.2 Vectors

The simplest next possibility is that of a covariant derivative of vector fields.
Let us not worry about existence at this stage, but assume that a covariant
derivative exists, and work from there. (Anticipating, we will show shortly
that a metric defines a covariant derivative, called the Levi-Civita covariant
derivative, which is the unique covariant derivative operator satisfying a natural
set of conditions, to be discussed below.)

We will first assume that we are working on a set Ω ⊂ M over which we
have a global trivialization of the tangent bundle TM ; by definition, this means
that there exist vector fields ea, a = 1, . . . ,dimM , such that at every point
p ∈ Ω the fields ea(p) ∈ TpM form a basis of TpM .1

Let θa denote the dual trivialization of T ∗M — by definition the θa’s satisfy

θa(eb) = δab .

Given a covariant derivative ∇ on vector fields we set

Γab(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = Γab(X)ea , (A.9.9a)

Γabc := Γab(ec) = θa(∇eceb) ⇐⇒ ∇Xeb = ΓabcX
cea . (A.9.9b)

The (locally defined) functions Γabc are called connection coefficients. If {ea}
is the coordinate basis {∂µ} we shall write

Γµαβ := dxµ(∇∂β∂α)
(
⇐⇒ ∇∂µ∂ν = Γσνµ∂σ

)
, (A.9.10)

etc. In this particular case the connection coefficients are usually called Christof-
fel symbols. We will sometimes write Γσνµ instead of Γσνµ; note that the former
convention is more common. By using the Leibniz rule (A.9.5) we find

∇XY = ∇X(Y aea)

= X(Y a)ea + Y a∇Xea
= X(Y a)ea + Y aΓba(X)eb

= (X(Y a) + Γab(X)Y b)ea

= (X(Y a) + ΓabcY
bXc)ea , (A.9.11)

which gives various equivalent ways of writing ∇XY . The (perhaps only locally
defined) Γab’s are linear in X, and the collection (Γab)a,b=1,...,dimM is sometimes

1This is the case when Ω is a coordinate patch with coordinates (xi), then the
{ea}a=1,...,dimM can be chosen to be equal to {∂i}a=1,...,dimM . Recall that a manifold is
said to be parallelizable if a basis of TM can be chosen globally over M — in such a case Ω
can be taken equal to M . We emphasize that we are not assuming that M is parallelizable,
so that equations such as (A.9.9) have only a local character in general.
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referred to as the connection one-form. The one-covariant, one-contravariant
tensor field ∇Y is defined as

∇Y := ∇aY bθa ⊗ eb ⇐⇒ ∇aY b := θb(∇eaY )⇐⇒ ∇aY b = ea(Y
b) + ΓbcaY

c .

(A.9.12)
We will often write ∇a for ∇ea . Further, ∇aY b will sometimes be written as
Y b

;a.

A.9.3 Transformation law

Consider a coordinate basis ∂xi , it is natural to enquire about the transformation
law of the connection coefficients Γijk under a change of coordinates xi →
yk(xi). To make things clear, let us write Γijk for the connection coefficients in

the x–coordinates, and Γ̂ijk for the ones in the y–cordinates. We calculate:

Γijk := dxi
(
∇ ∂

∂xk

∂

∂xj

)

= dxi
(
∇ ∂

∂xk

∂yℓ

∂xj
∂

∂yℓ

)

= dxi
( ∂2yℓ

∂xk∂xj
∂

∂yℓ
+
∂yℓ

∂xj
∇ ∂

∂xk

∂

∂yℓ

)

=
∂xi

∂ys
dys
( ∂2yℓ

∂xk∂xj
∂

∂yℓ
+
∂yℓ

∂xj
∇ ∂yr

∂xk
∂

∂yr

∂

∂yℓ

)

=
∂xi

∂ys
dys
( ∂2yℓ

∂xk∂xj
∂

∂yℓ
+
∂yℓ

∂xj
∂yr

∂xk
∇ ∂

∂yr

∂

∂yℓ

)

=
∂xi

∂ys
∂2ys

∂xk∂xj
+
∂xi

∂ys
∂yℓ

∂xj
∂yr

∂xk
Γ̂sℓr . (A.9.13)

Summarising,

Γijk = Γ̂sℓr
∂xi

∂ys
∂yℓ

∂xj
∂yr

∂xk
+
∂xi

∂ys
∂2ys

∂xk∂xj
. (A.9.14)

Thus, the Γijk’s do not form a tensor; instead they transform as a tensor plus
a non-homogeneous term containing second derivatives, as seen above.

Exercice A.9.1 Let Γijk transform as in (A.9.14) under coordinate transfor-
mations. If X and Y are vector fields, define in local coordinates

∇XY :=
(
X(Y i) + ΓijkX

kY k
)
∂i . (A.9.15)

Show that ∇XY transforms as a vector field under coordinate transformations
(and thus is a vector field). Hence, a collection of fields {Γijk} satisfying the
transformation law (A.9.14) can be used to define a covariant derivative using
(A.9.15).



210APPENDIX A. INTRODUCTIONTO PSEUDO-RIEMANNIAN GEOMETRY

A.9.4 Torsion

Because the inhomogeneous term in (A.9.14) is symmetric under the interchange
of i and j, it follows from (A.9.14) that

T ijk := Γikj − Γijk

does transform as a tensor, called the torsion tensor of ∇.
An index-free definition of torsion proceeds as follows: Let ∇ be a covariant

derivative defined for vector fields, the torsion tensor T is defined by the formula

T (X,Y ) := ∇XY −∇YX − [X,Y ] , (A.9.16)

where [X,Y ] is the Lie bracket. We obviously have

T (X,Y ) = −T (Y,X) . (A.9.17)

Let us check that T is actually a tensor field: multi-linearity with respect to
addition is obvious. To check what happens under multiplication by functions,
in view of (A.9.17) it is sufficient to do the calculation for the first slot of T .
We then have

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f

(
∇XY −∇YX

)
− Y (f)X − [fX, Y ] . (A.9.18)

To work out the last commutator term we compute, for any function g,

[fX, Y ](g) = fX(Y (g)) − Y (fX(g))︸ ︷︷ ︸
=Y (f)X(g)+fY (X(g))

= f [X,Y ](g) − Y (f)X(g) ,

hence
[fX, Y ] = f [X,Y ]− Y (f)X , (A.9.19)

and the last term here cancels the undesirable second-to-last term in (A.9.18),
as required.

In a coordinate basis ∂µ we have [∂µ, ∂ν ] = 0 and one finds from (A.9.10)

T (∂µ, ∂ν) = (Γσνµ − Γσµν)∂σ , (A.9.20)

which shows that T is determined by twice the antisymmetrization of the Γσµν ’s
over the lower indices. In particular that last antisymmetrization produces a
tensor field.

A.9.5 Covectors

Suppose that we are given a covariant derivative on vector fields, there is a
natural way of inducing a covariant derivative on one-forms by imposing the
condition that the duality operation be compatible with the Leibniz rule: given
two vector fields X and Y together with a field of one-forms α, one sets

(∇Xα)(Y ) := X(α(Y ))− α(∇XY ) . (A.9.21)
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Let us, first, check that (A.9.21) indeed defines a field of one-forms. The lin-
earity, in the Y variable, with respect to addition is obvious. Next, for any
function f we have

(∇Xα)(fY ) = X(α(fY ))− α(∇X(fY ))

= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y + f∇XY )

= f(∇Xα)(Y ) ,

as should be the case for one-forms. Next, we need to check that ∇ defined by
(A.9.21) does satisfy the remaining axioms imposed on covariant derivatives.
Again multi-linearity with respect to addition is obvious, as well as linearity
with respect to multiplication of X by a function. Finally,

∇X(fα)(Y ) = X(fα(Y ))− fα(∇XY )

= X(f)α(Y ) + f(∇Xα)(Y ) ,

as desired.

The duality pairing

T ∗
pM × TpM ∋ (α,X) → α(X) ∈ R

is sometimes called contraction. As already pointed out, the operation ∇ on
one forms has been defined in (A.9.21) so as to satisfy the Leibniz rule under
duality pairing :

X(α(Y )) = (∇Xα)(Y ) + α(∇XY ) ; (A.9.22)

this follows directly from (A.9.21). This should not be confused with the Leib-
niz rule under multiplication by functions, which is part of the definition of
a covariant derivative, and therefore always holds. It should be kept in mind
that (A.9.22) does not necessarily hold for all covariant derivatives: if v∇ is
some covariant derivative on vectors, and f∇ is some covariant derivative on
one-forms, in general one will have

X(α(Y )) 6= (f∇X)α(Y ) + α(v∇XY ) .

Using the basis-expression (A.9.11) of ∇XY and the definition (A.9.21) we
have

∇Xα = Xa∇aαb θb ,

with

∇aαb := (∇eaα)(eb)

= ea(α(eb))− α(∇eaeb)
= ea(αb)− Γcbaαc .
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A.9.6 Higher order tensors

It should now be clear how to extend ∇ to tensors of arbitrary valence: if T is
r covariant and s contravariant one sets

(∇XT )(X1, . . . ,Xr, α1, . . . αs) := X
(
T (X1, . . . ,Xr, α1, . . . αs)

)

−T (∇XX1, . . . ,Xr, α1, . . . αs)− . . .− T (X1, . . . ,∇XXr, α1, . . . αs)

−T (X1, . . . ,Xr,∇Xα1, . . . αs)− . . .− T (X1, . . . ,Xr, α1, . . .∇Xαs) .
(A.9.23)

The verification that this defines a covariant derivative proceeds in a way iden-
tical to that for one-forms. In a basis we have

∇XT = Xa∇aTa1...ar b1...bsθa1 ⊗ . . .⊗ θar ⊗ eb1 ⊗ . . .⊗ ebs ,

and (A.9.23) gives

∇aTa1...ar b1...bs := (∇eaT )(ea1 , . . . , ear , θ
b1 , . . . , θbs)

= ea(Ta1...ar
b1...bs)− Γca1aTc...ar

b1...bs − . . .− ΓcaraTa1...c
b1...bs

+Γb1caTa1...ar
c...bs + . . . + ΓbscaTa1...ar

b1...c . (A.9.24)

Carrying over the last two lines of (A.9.23) to the left-hand-side of that equation
one obtains the Leibniz rule for ∇ under pairings of tensors with vectors or
forms. It should be clear from (A.9.23) that ∇ defined by that equation is
the only covariant derivative which agrees with the original one on vectors,
and which satisfies the Leibniz rule under the pairing operation. We will only
consider such covariant derivatives in this work.

A.9.7 Geodesics and Christoffel symbols

A geodesic can be defined as the stationary point of the action

I(γ) =

∫ b

a

1

2
g(γ̇, γ̇)(s)
︸ ︷︷ ︸

=:L (γ,γ̇)

ds , (A.9.25)

where γ : [a, b]→M is a differentiable curve. Thus,

L (xµ, ẋν) =
1

2
gαβ(xµ)ẋαẋβ .

One readily finds the Euler-Lagrange equations for this Lagrange function:

d

ds

(
∂L

∂ẋµ

)
=
∂L

∂xµ
⇐⇒ d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 . (A.9.26)

This provides a very convenient way of calculating the Christoffel symbols:
given a metric g, write down L , work out the Euler-Lagrange equations, and
identify the Christoffels as the coefficients of the first derivative terms in those
equations.



A.10. THE LEVI-CIVITA CONNECTION 213

Exercice A.9.2 Prove (A.9.26).

(The Euler-Lagrange equations for (A.9.25) are identical with those of

Ĩ(γ) =

∫ b

a

√
|g(γ̇, γ̇)(s)|ds , (A.9.27)

but (A.9.25) is more convenient to work with. For example, L is differentiable
at points where γ̇ vanishes, while

√
|g(γ̇, γ̇)(s)| is not. The aesthetic advantage

of (A.9.27), of being reparameterization-invariant, is more than compensated
by the calculational convenience of L .)

Example A.9.3 As an example, consider a metric of the form

g = dr2 + f(r)dϕ2 .

Special cases of this metric include the Euclidean metric on R2 (then f(r) = r2),
and the canonical metric on a sphere (then f(r) = sin2 r, with r actually being the
polar angle θ). The Lagrangian (A.9.27) is thus

L =
1

2

(
ṙ2 + f(r)ϕ̇2

)
.

The Euler-Lagrange equations read

∂L

∂ϕ︸︷︷︸
0

=
d

ds

(
∂L

∂ϕ̇

)
=

d

ds
(f(r)ϕ̇) ,

so that

0 = fϕ̈+f ′ṙϕ̇ = f
(
ϕ̈+ Γϕ

ϕϕϕ̇
2 + 2Γϕ

rϕṙϕ̇+ Γϕ
r ṙ

2
)

=⇒ Γϕ
ϕϕ = Γϕ

rr = 0 , Γϕ
rϕ =

f ′

2f
.

Similarly
∂L

∂r︸︷︷︸
f ′ϕ̇2/2

=
d

ds

(
∂L

∂ṙ

)
= r̈ ,

so that

Γr
rϕ = Γr

rr = 0 , Γr
ϕϕ = −f

′

2
.

A.10 The Levi-Civita connection

One of the fundamental results in pseudo-Riemannian geometry is that of the
existence of a torsion-free connection which preserves the metric:

Theorem A.10.1 Let g be a two-covariant symmetric non-degenerate tensor
field on a manifold M . Then there exists a unique connection ∇ such that

1. ∇g = 0,

2. the torsion tensor T of ∇ vanishes.
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Proof: Using the definition of ∇igjk we have

0 = ∇igjk ≡ ∂igjk − Γℓjigℓk − Γℓkigℓj ; (A.10.1)

here we have written Γijk instead of Γijk, as is standard in the literature. We
rewrite this equation making cyclic permutations of indices, and changing the
overall sign:

0 = −∇jgki ≡ −∂jgki + Γℓkjgℓi + Γℓijgℓk .

0 = −∇kgij ≡ −∂kgij + Γℓikgℓj + Γℓjkgℓi .

Adding the three equations and using symmetry of Γkji in ij one obtains

0 = ∂igjk − ∂jgki − ∂kgij + 2Γℓjkgℓi ,

Multiplying by gim we obtain

Γmjk = gmiΓℓjkgℓi =
1

2
gmi(∂igjk − ∂jgki − ∂kgij) . (A.10.2)

This proves uniqueness.

A straightforward, though somewhat lengthy, calculation shows that the
Γmjk’s defined by (A.10.2) satisfy the transformation law (A.9.14). Exercice
A.9.1 shows that the formula (A.9.15) defines a torsion-free connection. It then
remains to check that the insertion of the Γmjk’s, as given by (A.10.2), into the
right-hand-side of (A.10.1), indeed gives zero, proving existence. ✷

Let us give a coordinate-free version of the above, which turns out to require
considerably more work: Suppose, first, that a connection satisfying the above is
given. By the Leibniz rule we then have for any vector fields X , Y and Z,

0 = (∇Xg)(Y, Z) = X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ) . (A.10.3)

One then rewrites the same equation applying cyclic permutations to X , Y , and Z,
with a minus sign for the last equation:

g(∇XY, Z) + g(Y,∇XZ) = X(g(Y, Z)) ,

g(∇Y Z,X) + g(Z,∇YX) = Y (g(Z,X)) ,

−g(∇ZX,Y )− g(X,∇ZY ) = −Z(g(X,Y )) . (A.10.4)

As the torsion tensor vanishes, the sum of the left-hand-sides of these equations can
be manipulated as follows:

g(∇XY, Z) + g(Y,∇XZ) + g(∇Y Z,X) + g(Z,∇YX)− g(∇ZX,Y )− g(X,∇ZY )

= g(∇XY +∇YX,Z) + g(Y,∇XZ −∇ZX) + g(X,∇Y Z −∇ZY )

= g(2∇XY − [X,Y ], Z) + g(Y, [X,Z]) + g(X, [Y, Z])

= 2g(∇XY, Z)− g([X,Y ], Z) + g(Y, [X,Z]) + g(X, [Y, Z]) .

This shows that the sum of the three equations (A.10.4) can be rewritten as

2g(∇XY, Z) = g([X,Y ], Z)− g(Y, [X,Z])− g(X, [Y, Z])

+X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y )) . (A.10.5)
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Since Z is arbitrary and g is non-degenerate, the left-hand-side of this equation
determines the vector field ∇XY uniquely, and uniqueness of ∇ follows.

To prove existence, let S(X,Y )(Z) be defined as one half of the right-hand-side
of (A.10.5),

S(X,Y )(Z) =
1

2

(
X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))

+g(Z, [X,Y ])− g(Y, [X,Z])− g(X, [Y, Z])
)
. (A.10.6)

Clearly S is linear with respect to addition in all fields involved. It is straightforward
to check that it is linear with respect to multiplication of Z by a function, and since
g is non-degenerate there exists a unique vector field W (X,Y ) such that

S(X,Y )(Z) = g(W (X,Y ), Z) .

One readily checks that the assignment

(X,Y )→W (X,Y )

satisfies all the requirements imposed on a covariant derivative ∇XY . With some
more work one checks that ∇X so defined is torsion free, and metric compatible. ✷

Let us check that (A.10.5) reproduces (A.10.2): Consider (A.10.5) with X = ∂γ ,
Y = ∂β and Z = ∂σ,

2g(∇γ∂β, ∂σ) = 2g(Γρ
βγ∂ρ, ∂σ)

= 2gρσΓρ
βγ

= ∂γgβσ + ∂βgγσ − ∂σgβγ (A.10.7)

Multiplying this equation by gασ/2 we then obtain

Γα
βγ = 1

2g
ασ{∂βgσγ + ∂γgσβ − ∂σgβγ} . (A.10.8)

A.11 “Local inertial coordinates”

Proposition A.11.1 1. Let g be a Lorentzian metric, for every p ∈ M there
exists a neighborhood thereof with a coordinate system such that gµν = ηµν =
diag(1,−1, · · · ,−1) at p.

2. If g is differentiable, then the coordinates can be further chosen so that

∂σgαβ = 0 (A.11.1)

at p.

The coordinates above will be referred to as local inertial coordinates near
p.

Remark A.11.2 An analogous result holds for any pseudo-Riemannian metric.
Note that the “normal coordinates” satisfy the above. However, for metrics
of finite differentiability, the introduction of normal coordinates leads to a loss
of differentiability of the metric components, while the construction below pre-
serves the order of differentiability.
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Proof: 1. Let yµ be any coordinate system around p, shifting by a constant
vector we can assume that p corresponds to yµ = 0. Let ea = ea

µ∂/∂yµ be any
frame at p such that g(ea, eb) = ηab — such frames can be found by, e.g., a
Gram-Schmidt orthogonalisation. Calculating the determinant of both sides of
the equation

gµνea
µeb

ν = ηab

we obtain, at p,
det(gµν) det(ea

µ)2 = −1 ,

which shows that det(ea
µ) is non-vanishing. It follows that the formula

yµ = eµax
a

defines a (linear) diffeomorphism. In the new coordinates we have, again at p,

g
( ∂

∂xa
,
∂

∂xb

)
= eµae

ν
bg
( ∂

∂yµ
,
∂

∂yν

)
= ηab . (A.11.2)

2. We will use (A.9.14), which uses latin indices, so let us switch to that
notation. Let xi be the coordinates described in point 1., recall that p lies at the
origin of those coordinates. The new coordinates x̂j will be implicitly defined
by the equations

xi = x̂i +
1

2
Aijkx̂

jx̂k ,

where Aijk is a set of constants, symmetric with respect to the interchange of
j and k. Recall (A.9.14),

Γ̂ijk = Γsℓr
∂x̂i

∂xs
∂xℓ

∂x̂j
∂xr

∂x̂k
+
∂x̂i

∂xs
∂2xs

∂x̂k∂x̂j
; (A.11.3)

here we use Γ̂sℓr to denote the Christoffel symbols of the metric in the hatted
coordinates. Then, at xi = 0, this equation reads

Γ̂ijk = Γsℓr
∂x̂i

∂xs︸︷︷︸
δis

∂xℓ

∂x̂j︸︷︷︸
δℓj

∂xr

∂x̂k︸︷︷︸
δrk

+
∂xi

∂xs︸︷︷︸
δis

∂2xs

∂x̂k∂x̂j︸ ︷︷ ︸
As

kj

= Γijk +Aikj .

Choosing Aijk as −Γijk(0), the result follows.

If you do not like to remember formulae such as (A.9.14), proceed as follows:
Let xµ be the coordinates described in point 1. The new coordinates x̂α will be
implicitly defined by the equations

xµ = x̂µ +
1

2
Aµ

αβ x̂
αx̂β ,

where Aµ
αβ is a set of constants, symmetric with respect to the interchange of α

and β. Set

ĝαβ := g
( ∂

∂x̂α
,
∂

∂x̂β

)
, gαβ := g

( ∂

∂xα
,
∂

∂xβ

)
.
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Recall the transformation law

ĝµν(x̂σ) = gαβ(xρ(x̂σ))
∂xα

∂x̂µ
∂xβ

∂x̂ν
.

By differentiation one obtains at xµ = x̂µ = 0,

∂ĝµν
∂x̂ρ

(0) =
∂gµν
∂xρ

(0) + gαβ(0)
(
Aα

µρδ
β
ν + δαµA

β
νρ

)

=
∂gµν
∂xρ

(0) +Aνµρ +Aµνρ , (A.11.4)

where

Aαβγ := gασ(0)Aσ
βγ .

It remains to show that we can choose Aσ
βγ so that the left-hand-side can be made

to vanish at p. An explicit formula for Aσβγ can be obtained from (A.11.4) by a
cyclic permutation calculation similar to that in (A.10.4). After raising the first
index, the final result is

Aα
βγ =

1

2
gαρ

{
∂gβγ
∂xρ

− ∂gβρ
∂xγ

− ∂gργ
∂xβ

}
(0) ;

the reader may wish to check directly that this does indeed lead to a vanishing
right-hand-side of (A.11.4).

✷

A.12 Curvature

Let ∇ be a covariant derivative defined for vector fields, the curvature tensor
is defined by the formula

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (A.12.1)

where, as elsewhere, [X,Y ] is the Lie bracket defined in (A.3.6). We note the
anti-symmetry

R(X,Y )Z = −R(Y,X)Z . (A.12.2)

It turns out the this defines a tensor. Multi-linearity with respect to addition
is obvious, but multiplication by functions require more work.

First, we have (see (A.9.19))

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z −∇Y (f∇XZ)− ∇f [X,Y ]−Y (f)XZ︸ ︷︷ ︸
=f∇[X,Y ]Z−Y (f)∇XZ

= fR(X,Y )Z .

The simplest proof of linearity in the last slot proceeds via an index calculation in
adapted coordinates; so while we will do the “elegant”, index-free version shortly,
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let us do the ugly one first. We use the coordinate system of Proposition A.11.1
below, in which the first derivatives of the metric vanish at the prescribed point p:

∇i∇jZ
k = ∂i(∂jZ

k − Γk
ℓjZ

ℓ) + 0×∇Z︸ ︷︷ ︸
at p

= ∂i∂jZ
k − ∂iΓk

ℓjZ
ℓ at p . (A.12.3)

Antisymmetrising in i and j, the terms involving the second derivatives of Z drop
out, so the result is indeed linear in Z. So ∇i∇jZ

k−∇j∇iZ
k is a tensor field linear

in Z, and therefore can be written as Rk
ℓijZ

ℓ.
Note that ∇i∇jZ

k is, by definition, the tensor field of first covariant derivatives
of the tensor field ∇jZ

k, while (A.12.1) involves covariant derivatives of vector fields
only, so the equivalence of both approaches requires a further argument. This is
provided in the calculation below leading to (A.12.6).

Next,

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

=
{
∇X
(
Y (f)Z + f∇Y Z

)}
−
{
· · ·
}
X↔Y

−[X,Y ](f)Z − f∇[X,Y ]Z

=
{
X(Y (f))Z︸ ︷︷ ︸

a

+Y (f)∇XZ +X(f)∇Y Z︸ ︷︷ ︸
b

+f∇X∇Y Z
}
−
{
· · ·
}
X↔Y

− [X,Y ](f)Z︸ ︷︷ ︸
c

−f∇[X,Y ]Z .

Now, a together with its counterpart with X and Y interchanged cancel out
with c, while b is symmetric with respect to X and Y and therefore cancels out
with its counterpart with X and Y interchanged, leading to the desired equality

R(X,Y )(fZ) = fR(X,Y )Z .

In a coordinate basis {ea} = {∂µ} we find2 (recall that [∂µ, ∂ν ] = 0)

Rαβγδ := 〈dxα, R(∂γ , ∂δ)∂β〉
= 〈dxα,∇γ∇δ∂β〉 − 〈· · ·〉δ↔γ

= 〈dxα,∇γ(Γσβδ∂σ)〉 − 〈· · ·〉δ↔γ

= 〈dxα, ∂γ(Γσβδ)∂σ + ΓρσγΓσβδ∂ρ〉 − 〈· · ·〉δ↔γ

= {∂γΓαβδ + ΓασγΓσβδ} − {· · ·}δ↔γ ,

leading finally to

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ + ΓασγΓσβδ − ΓασδΓ
σ
βγ . (A.12.4)

In a general frame some supplementary commutator terms will appear in the
formula for Rabcd.

We note the following:

2The reader is warned that certain authors use a different sign convention either for
R(X,Y )Z, or for Rα

βγδ, or both. A useful table that lists the sign conventions for a se-
ries of standard GR references can be found on the backside of the front cover of [140].
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Theorem A.12.1 There exists a coordinate system in which the metric tensor
field has vanishing second derivatives at p if and only if its Riemann tensor
vanishes at p. Furthermore, there exists a coordinate system in which the met-
ric tensor field has constant entries near p if and only if the Riemann tensor
vanishes near p.

Proof: The condition is necessary, since Riem is a tensor. The sufficiency will
be admitted. ✷

The calculation of the curvature tensor is often a very traumatic experience.
There is one obvious case where things are painless, when all gµν ’s are constants:
in this case the Christoffels vanish, and so does the curvature tensor.

For more general metrics one way out is to use symbolic computer algebra,
this can, e.g., be done online on http://grtensor.phy.queensu.ca/NewDemo.
The Mathematica package xAct [139] provides a very powerful tool for all
kinds of calculations involving curvature.

Example A.12.2 As a less trivial example, consider the round two sphere, which
we write in the form

g = dθ2 + e2fdϕ2 , e2f = sin2 θ .

As seen in Example A.9.3, the Christoffel symbols are easily founds from the La-
grangean for geodesics:

L =
1

2
(θ̇2 + e2f ϕ̇2) .

The Euler-Lagrange equations give

Γθ
ϕϕ = −f ′e2f , Γϕ

θϕ = Γϕ
ϕθ = f ′ ,

with the remaining Christoffel symbols vanishing. Using the definition of the Rie-
mann tensor we then immediately find

Rϕ
θϕθ = −f ′′ − (f ′)2 = −e−f(ef )′′ = 1 . (A.12.5)

All remaining components of the Riemann tensor can be obtained from this one by
raising and lowering of indices, together with the symmetry operations which we
are about to describe. This leads to

Rab = gab , R = 2 .

Equation (A.12.1) is most frequently used “upside-down”, not as a definition
of the Riemann tensor, but as a tool for calculating what happens when one
changes the order of covariant derivatives. Recall that for partial derivatives
we have

∂µ∂νZ
σ = ∂ν∂µZ

σ ,

but this is not true in general if partial derivatives are replaced by covariant
ones:

∇µ∇νZσ 6= ∇ν∇µZσ .
To find the correct formula let us consider the tensor field S defined as

Y −→ S(Y ) := ∇Y Z .
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In local coordinates, S takes the form

S = ∇µZν dxµ ⊗ ∂ν .

It follows from the Leibniz rule — or, equivalently, from the definitions in
Section A.9 — that we have

(∇XS)(Y ) = ∇X(S(Y ))− S(∇XY )

= ∇X∇Y Z −∇∇XY Z .

The commutator of the derivatives can then be calculated as

(∇XS)(Y )− (∇Y S)(X) = ∇X∇Y Z −∇Y∇XZ −∇∇XY Z +∇∇YXZ

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇[X,Y ]Z −∇∇XY Z +∇∇YXZ

= R(X,Y )Z −∇T (X,Y )Z . (A.12.6)

Writing ∇S in the usual form

∇S = ∇σSµν dxσ ⊗ dxµ ⊗ ∂ν = ∇σ∇µZν dxσ ⊗ dxµ ⊗ ∂ν ,

we are thus led to

∇µ∇νZα −∇ν∇µZα = RασµνZ
σ − T σµν∇σZα . (A.12.7)

In the important case of vanishing torsion, the coordinate-component equivalent
of (A.12.1) is thus

∇µ∇νXα −∇ν∇µXα = RασµνX
σ . (A.12.8)

An identical calculation gives, still for torsionless connections,

∇µ∇νaα −∇ν∇µaα = −Rσαµνaσ . (A.12.9)

For a general tensor t and torsion-free connection each tensor index comes with
a corresponding Riemann tensor term:

∇µ∇νtα1...αr
β1...βs −∇ν∇µtα1...αr

β1...βs =

−Rσα1µνtσ...αr
β1...βs − . . .−Rσαrµνtα1...σ

β1...βs

+Rβ1σµν tα1...αr
σ...βs + . . .+Rβsσµνtα1...αr

β1...σ . (A.12.10)

A.12.1 Bianchi identities

We have already seen the anti-symmetry property of the Riemann tensor, which
in the index notation corresponds to the equation

Rαβγδ = −Rαβδγ . (A.12.11)
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There are a few other identities satisfied by the Riemann tensor, we start with
the first Bianchi identity. Let A(X,Y,Z) be any expression depending upon
three vector fields X,Y,Z which is antisymmetric in X and Y , we set

∑

[XY Z]

A(X,Y,Z) := A(X,Y,Z) +A(Y,Z,X) +A(Z,X, Y ) , (A.12.12)

thus
∑

[XY Z] is a sum over cyclic permutations of the vectors X,Y,Z. Clearly,

∑

[XY Z]

A(X,Y,Z) =
∑

[XY Z]

A(Y,Z,X) =
∑

[XY Z]

A(Z,X, Y ) . (A.12.13)

Suppose, first, that X, Y and Z commute. Using (A.12.13) together with the
definition (A.9.16) of the torsion tensor T we calculate

∑

[XY Z]

R(X,Y )Z =
∑

[XY Z]

(
∇X∇Y Z −∇Y∇XZ

)

=
∑

[XY Z]

(
∇X∇Y Z −∇Y (∇ZX + T (X,Z))︸ ︷︷ ︸

we have used [X,Z]=0, see (A.9.16)

)

=
∑

[XY Z]

∇X∇Y Z −
∑

[XY Z]

∇Y∇ZX

︸ ︷︷ ︸
=0 (see (A.12.13))

−
∑

[XY Z]

∇Y (T (X,Z)︸ ︷︷ ︸
=−T (Z,X)

)

=
∑

[XY Z]

∇X(T (Y,Z)) ,

and in the last step we have again used (A.12.13). This can be somewhat
rearranged by using the definition of the covariant derivative of a higher or-
der tensor (compare (A.9.23)) — equivalently, using the Leibniz rule rewritten
upside-down:

(∇XT )(Y,Z) = ∇X(T (Y,Z))− T (∇XY,Z)− T (Y,∇XZ) .

This leads to

∑

[XY Z]

∇X(T (Y,Z)) =
∑

[XY Z]

(
(∇XT )(Y,Z) + T (∇XY,Z) + T (Y, ∇XZ︸ ︷︷ ︸

=T (X,Z)+∇ZX

)
)

=
∑

[XY Z]

(
(∇XT )(Y,Z)− T (T (X,Z)︸ ︷︷ ︸

=−T (Z,X)

, Y )
)

+
∑

[XY Z]

T (∇XY,Z) +
∑

[XY Z]

T (Y,∇ZX)︸ ︷︷ ︸
=−T (∇ZX,Y )︸ ︷︷ ︸

=0 (see (A.12.13))

=
∑

[XY Z]

(
(∇XT )(Y,Z) + T (T (X,Y ), Z)

)
.
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Summarizing, we have obtained the first Bianchi identity:
∑

[XY Z]

R(X,Y )Z =
∑

[XY Z]

(
(∇XT )(Y,Z) + T (T (X,Y ), Z)

)
, (A.12.14)

under the hypothesis that X, Y and Z commute. However, both sides of this
equation are tensorial with respect to X, Y and Z, so that they remain correct
without the commutation hypothesis.

We are mostly interested in connections with vanishing torsion, in which
case (A.12.14) can be rewritten as

Rαβγδ +Rαγδβ +Rαδβγ = 0 . (A.12.15)

Our next goal is the second Bianchi identity. We consider four vector fields
X, Y , Z and W and we assume again that everybody commutes with everybody
else. We calculate
∑

[XY Z]

∇X(R(Y,Z)W ) =
∑

[XY Z]

(
∇X∇Y∇ZW︸ ︷︷ ︸

=R(X,Y )∇ZW+∇Y ∇X∇ZW

−∇X∇Z∇YW
)

=
∑

[XY Z]

R(X,Y )∇ZW

+
∑

[XY Z]

∇Y∇X∇ZW −
∑

[XY Z]

∇X∇Z∇YW

︸ ︷︷ ︸
=0

. (A.12.16)

Next,
∑

[XY Z]

(∇XR)(Y,Z)W =
∑

[XY Z]

(
∇X(R(Y,Z)W )−R(∇XY,Z)W

−R(Y, ∇XZ︸ ︷︷ ︸
=∇ZX+T (X,Z)

)W −R(Y,Z)∇XW
)

=
∑

[XY Z]

∇X(R(Y,Z)W )

−
∑

[XY Z]

R(∇XY,Z)W −
∑

[XY Z]

R(Y,∇ZX)W︸ ︷︷ ︸
=−R(∇ZX,Y )W︸ ︷︷ ︸

=0

−
∑

[XY Z]

(
R(Y, T (X,Z))W +R(Y,Z)∇XW

)

=
∑

[XY Z]

(
∇X(R(Y,Z)W )−R(T (X,Y ), Z)W −R(Y,Z)∇XW

)
.

It follows now from (A.12.16) that the first term cancels out the third one,
leading to

∑

[XY Z]

(∇XR)(Y,Z)W = −
∑

[XY Z]

R(T (X,Y ), Z)W , (A.12.17)
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which is the desired second Bianchi identity for commuting vector fields. As
before, because both sides are multi-linear with respect to addition and multi-
plication by functions, the result remains valid for arbitrary vector fields.

For torsionless connections the components equivalent of (A.12.17) reads

Rαµβγ;δ +Rαµγδ;β +Rαµδβ;γ = 0 . (A.12.18)

A.12.2 Pair interchange symmetry

There is one more identity satisfied by the curvature tensor which is specific to
the curvature tensor associated with the Levi-Civita connection, namely

g(X,R(Y,Z)W ) = g(Y,R(X,W )Z) . (A.12.19)

If one sets

Rabcd := gaeR
e
bcd , (A.12.20)

then (A.12.19) is equivalent to

Rabcd = Rcdab . (A.12.21)

We will present two proofs of (A.12.19). The first is direct, but not very
elegant. The second is prettier, but less insightful.

For the ugly proof, we suppose that the metric is twice-differentiable. By
point 2. of Proposition A.11.1, in a neighborhood of any point p ∈ M there
exists a coordinate system in which the connection coefficients Γαβγ vanish at
p. Equation (A.12.4) evaluated at p therefore reads

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ
=

1

2

{
gασ∂γ(∂δgσβ + ∂βgσδ − ∂σgβδ)

−gασ∂δ(∂γgσβ + ∂βgσγ − ∂σgβγ)
}

=
1

2
gασ

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
.

Equivalently,

Rσβγδ(0) =
1

2

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
(0) . (A.12.22)

This last expression is obviously symmetric under the exchange of σβ with γδ,
leading to (A.12.21).

The above calculation traces back the pair-interchange symmetry to the
definition of the Levi-Civita connection in terms of the metric tensor. As already
mentioned, there exists a more elegant proof, where the origin of the symmetry
is perhaps somewhat less apparent, which proceeds as follows: We start by
noting that

0 = ∇a∇bgcd −∇b∇agcd = −Recabged −Redabgce , (A.12.23)
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leading to anti-symmetry in the first two indices:

Rabcd = −Rbacd .

Next, using the cyclic symmetry for a torsion-free connection, we have

Rabcd +Rcabd +Rbcad = 0 ,

Rbcda +Rdbca +Rcdba = 0 ,

Rcdab +Racdb +Rdacb = 0 ,

Rdabc +Rbdac +Rabdc = 0 .

The desired equation (A.12.21) follows now by adding the first two and sub-
tracting the last two equations, using (A.12.23).

It is natural to enquire about the number of independent components of a tensor
with the symmetries of a metric Riemann tensor in dimension n, the calculation
proceeds as follows: as Rabcd is symmetric under the exchange of ab with cd, and
anti-symmetric in each of these pairs, we can view it as a symmetric map from the
space of anti-symmetric tensor with two indices. Now, the space of anti-symmetric
tensors is N = n(n − 1)/2 dimensional, while the space of symmetric maps in
dimension N is N(N+1)/2 dimensional, so we obtain at most n(n−1)(n2−n+2)/8
free parameters. However, we need to take into account the cyclic identity:

Rabcd +Rbcad +Rcabd = 0 . (A.12.24)

If a = b this reads
Raacd +Racad +Rcaad = 0 ,

which has already been accounted for. Similarly if a = d we obtain

Rabca +Rbcaa +Rcaba = 0 ,

which holds in view of the previous identities. We conclude that the only new
identities which could possibly arise are those where abcd are all distinct. Clearly no
expression involving three such components of the Riemann tensor can be obtained
using the previous identities, so this is an independent constraint. In dimension four
(A.12.24) provides thus four candidate equations for another constraint, labeled by
d, but it is easily checked that they all coincide; this leads to 20 free parameters
at each space point. The reader is encouraged to finish the counting in higher
dimensions.

A.13 Geodesic deviation (Jacobi equation)

Suppose that we have a one parameter family of geodesics

γ(s, λ) (in local coordinates, (γα(s, λ))),

where s is the parameter along the geodesic, and λ is a parameter which dis-
tinguishes the geodesics. Set

Z(s, λ) :=
∂γ(s, λ)

∂λ
≡ ∂γα(s, λ)

∂λ
∂α ;
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for each λ this defines a vector field Z along γ(s, λ), which measures how nearby
geodesics deviate from each other, since, to first order, using a Taylor expansion,

γα(s, λ) = γα(s, λ0) + Zα(λ− λ0) +O((λ− λ0)2) .

To measure how a vector field W changes along s 7→ γ(s, λ), one introduces
the differential operator D/ds, defined as

DW µ

ds
:=

∂(W µ ◦ γ)

∂s
+ Γµαβ γ̇

βWα (A.13.1)

= γ̇β
∂W µ

∂xβ
+ Γµαβ γ̇

βWα (A.13.2)

= γ̇β∇βW µ . (A.13.3)

(It would perhaps be more logical to write DWµ

∂s in the current context, but
people never do that.) The last two lines only make sense if W is defined in
a whole neighbourhood of γ, but for the first it suffices that W (s) be defined
along s 7→ γ(s, λ). (One possible way of making sense of the last two lines is to
extend W µ to any smooth vector field defined in a neighorhood of γµ(s, λ), and
note that the result is independent of the particular choice of extension because
the equation involves only derivatives tangential to s 7→ γµ(s, λ).)

Analogously one sets

DW µ

dλ
:=

∂(W µ ◦ γ)

∂λ
+ Γµαβ∂λγ

βWα (A.13.4)

= ∂λγ
β ∂W

µ

∂xβ
+ Γµαβ∂λγ

βWα (A.13.5)

= Zβ∇βW µ . (A.13.6)

Note that since s→ γ(s, λ) is a geodesic we have from (A.13.1) and (A.13.3)

D2γµ

ds2
:=

Dγ̇µ

ds
=
∂2γµ

∂s2
+ Γµαβ γ̇

β γ̇α = 0 . (A.13.7)

(This is sometimes written as γ̇α∇αγ̇µ = 0, which is again an abuse of notation
since typically we will only know γ̇µ as a function of s, and so there is no such
thing as ∇αγ̇µ.) Furthermore,

DZµ

ds
=︸︷︷︸

(A.13.1)

∂2γµ

∂s∂λ
+ Γµαβ γ̇

β∂λγ
α =︸︷︷︸
(A.13.4)

Dγ̇µ

dλ
, (A.13.8)

(The abuse-of-notation derivation of the same formula proceeds as:

∇γ̇Zµ = γ̇ν∇νZµ = γ̇ν∇ν∂λγµ =︸︷︷︸
(A.13.3)

∂2γµ

∂s∂λ
+Γµαβ γ̇

β∂λγ
α =︸︷︷︸
(A.13.6)

Zβ∇β γ̇µ = ∇Z γ̇µ ,

(A.13.9)
which can then be written as

∇γ̇Z = ∇Z γ̇ .) (A.13.10)
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One can now repeat the calculation leading to (A.12.8) to obtain, for any vector
field W defined along γµ(s, λ),

D

ds

D

dλ
W µ − D

dλ

D

ds
W µ = Rαβδ

µγ̇αZβW δ . (A.13.11)

If W µ = γ̇µ the second term at the left-hand-side is zero, and from D
dλ γ̇ = D

dsZ
we obtain

D2Zµ

ds2
(s) = Rαβσ

µγ̇αZβ γ̇σ . (A.13.12)

We have obtained an equation known as the Jacobi equation, or as the geodesic
deviation equation; in index-free notation:

D2Z

ds2
= R(γ̇, Z)γ̇ . (A.13.13)

Solutions of (A.13.13) are called Jacobi fields along γ.

A.14 Null hyperplanes and hypersurfaces

One of the objects that occur in Lorentzian geometry and which posses rather
disturbing properties are null hyperplanes and null hypersurfaces, and it ap-
pears useful to include a short discussion of those. Perhaps the most unusual
feature of such objects is that the direction normal is actually tangential as
well. Furthermore, because the normal has no natural normalization, there is
no natural measure induced on a null hypersurface by the ambient metric.

We start with some algebraic preliminaries. Let W be a real vector space,
and recall that its dualW ∗ is defined as the set of all linear maps from W to R in
the applications (in this work only vector spaces over the reals are relevant, but
the field makes no difference for the discussion below). To avoid unnecessary
complications we assume that W is finite dimensional. It is then standard that
W ∗ has the same dimension as W .

We suppose that W is equipped with a a) bilinear, b) symmetric, and c)
non-degenerate form q. Thus

q : W → W

satisfies

a) q(λX + µY,Z) = λq(X,Z) + µq(Y,Z) , b) q(X,Y ) = q(Y,X) ,

and we also have the implication

c) ∀Y ∈W q(X,Y ) = 0 =⇒ X = 0 . (A.14.1)

(Strictly speaking, we should have indicated linearity with respect to the second
variable in a) as well, but this property follows from a) and b) as above). By an
abuse of terminology, we will call q a scalar product ; note that standard algebra
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textbooks often add the condition of positive-definiteness to the definition of
scalar product, which we do not include here.

Let V ⊂W be a vector subspace of W . The annihilator V 0 of W is defined
as the set of linear forms on W which vanish on V :

V 0 := {α ∈W ∗ : ∀Y ∈ V α(Y ) = 0} ⊂W ∗ .

V 0 is obviously a linear subspace of W ∗.
Because q non-degenerate, it defines a linear isomorphism, denoted by ♭,

between W and W ∗ by the formula:

X♭(Y ) = g(X,Y ) .

Indeed, the map X 7→ X♭ is clearly linear. Next, it has no kernel by (A.14.1).
Since the dimensions of W and W ∗ are the same, it must be an isomorphism.
The inverse map is denoted by ♯. Thus, by definition we have

g(α♯, Y ) = α(Y ) .

The map ♭ is nothing but “the lowering of the index on a vector using the metric
q”, while ♯ is the “raising of the index on a one-form using the inverse metric”.

For further purposes it is useful to recall the standard fact:

Proposition A.14.1

dimV + dimV 0 = dimW .

Proof: Let {ei}i=1,...,dimV be any basis of V , we can complete {ei} to a basis
{ei, fa}, with a = 1, . . . ,dimW − dimV , of W . Let {e∗i , f∗a} be the dual basis
of W ∗. It is straightforward to check that V 0 is spanned by {f∗a}, which gives
the result. ✷

The quadratic form q defines the notion of orthogonality:

V ⊥ := {Y ∈W : ∀X ∈ V g(X,Y ) = 0} .

A chase through the definitions above shows that

V ⊥ = (V 0)♯ .

Proposition A.14.1 implies:

Proposition A.14.2

dimV + dimV ⊥ = dimW .

This implies, again regardless of signature:

Proposition A.14.3

(dimV ⊥)⊥ = V .
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Proof: The inclusion (dimV ⊥)⊥ ⊃ V is obvious from the definitions. The
equality follows now because both spaces have the same dimension, as a conse-
quence of Proposition (A.14.2). ✷

Now,

X ∈ V ∩ V ⊥ =⇒ q(X,X) = 0 , (A.14.2)

so that X vanishes if q is positive- or negative-definite, leading to dimV ∩
dimV ⊥ = {0} in those cases. However, this does not have to be the case
anymore for non-definite scalar products q.

A vector subspace V of W is called a hyperplane if

dimV = dimW − 1 .

Proposition A.14.2 implies then

dimV ⊥ = 1 ,

regardless of the signature of q. Thus, given a hyperplane V there exists a
vector w such that

V ⊥ = Rw .

If q is Lorentzian, we say that

V is





spacelike if w is timelike;
timelike if w is spacelike;
null if w is null.

An argument based e.g. on Gram-Schmidt orthonormalization shows that if V is
spacelike, then the scalar product defined on V by restriction is positive-definite;
similarly if V is timelike, then the resulting scalar product is Lorentzian. The
last case, of a null V , leads to a degenerate induced scalar product. In fact, we
claim that

V is null if and only if V contains its normal. . (A.14.3)

To see (A.14.3), suppose that V ⊥ = Rw, with w null. Since g(w,w) = 0 we
have w ∈ (Rw)⊥, and from Proposition A.14.3

w ∈ (Rw)⊥ = (V ⊥)⊥ = V .

Since V does not contain its normal in the remaining cases, the equivalence is
established.

A hypersurface is N ⊂M called null if at every p ∈ N the tangent space
TpN is a null subspace of TpM . So (A.14.2) shows that a normal to a null
hypersurface N is also tangent to N .
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A.15 Isometries

Let (M,g) be a pseudo-Riemannian manifold. A map ψ is called an isometry
if

ψ∗g = g , (A.15.1)

where ψ∗ is the pull-back map defined in Section A.8.2, p. 201.

A standard fact is that the group Iso(M,g) of isometries of (M,g) carries
a natural manifold structure; such groups are called Lie groups. If (M,g) is
Riemannian and compact, then Iso(M,g) is compact.

It is also a standard fact that any element of the connected component of
the identity of a Lie group G belongs to a one-parameter subgroup {φt}t∈R of G.
This allows one to study actions of isometry groups by studying the generators
of one-parameter subgroups, defined as

X(f)(x) =
d(f(φt(x)))

dt

∣∣∣∣
t=0

⇐⇒ X =
dφt
dt

∣∣∣∣
t=0

.

The vector fields X obtained in this way are called Killing vectors. The knowl-
edge of Killing vectors provides considerable amount of information on the
isometry group, and we thus continue with an analysis of their properties. We
will see shortly that the collection of Killing vectors forms a Lie algebra: by
definition, this is a vector space equipped with a bracket operation such that

[X,Y ] = −[Y,X] ,

and

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ] = 0 .

In the case of Killing vectors, the bracket operation will be the usual bracket
of vector fields.

Of key importance to us will be the fact, that the dimension of the isometry
group of (M , g) equals the dimension of the space of the Killing vectors.

A.16 Killing vectors

Let φt be a one-parameter group of isometries of (M , g), thus

φ∗t g = g =⇒ LXg = 0 . (A.16.1)

Recall that

LXgµν = Xα∂αgµν + ∂µX
αgαν + ∂νX

αgµα .

In a coordinate system where the partial derivatives of the metric vanish at a
point p, the right-hand-side equals ∇µXν +∇νXµ. But the left-hand-side is a
tensor field, and two tensor fields equal in one coordinate system coincide in all
coordinate systems. We have thus proved that generators of isometries satisfy
the equation

∇αXβ +∇βXα = 0 . (A.16.2)
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Conversely, consider a solution of (A.16.2); any such solution is called a
Killing vector. From the calculation just carried out, the Lie derivative of the
metric with respect to X vanishes. This means that the local flow of X preserves
the metric. In other words, X generates local isometries of g. To make sure
that X generates a one-parameter group of isometries one needs moreover to
make sure that X is complete; this requires separate considerations.

Recall the identity (A.8.7), p. 199:

L[X,Y ] = [LX ,LY ] . (A.16.3)

This implies that the commutator of two Killing vector fields is a Killing vector
field:

L[X,Y ]g = LX(LY g︸︷︷︸
0

)−LY (LXg︸ ︷︷ ︸
0

) = 0 .

We say that the collection of all Killing vector fields, equipped with the Lie
bracket, forms a Lie algebra.

Remark A.16.1 Let (M, g) be a complete Riemannian manifold, than all Killing
vector fields are complete. To see this, let φt be generated by a Killing vector X ,
let p ∈ M and let γ(t) = φt(p) be the integral curve of X through p, thus γ̇ = X .
We claim, first, that the length of X is preserved along the orbits of X . Indeed:

d(X iXi)

dt
= 2XkX i∇kXi = 0 ,

as ∇kXi is antisymmetric. Next, the length of any segment of γ(t) is

∫ t2

t1

|γ̇|dt =

∫ t2

t1

|X |dt = |X(p)|(t2 − t1) .

The fact that γ is defined for all t follows now immediately from completeness of
(M, g).

Remark A.16.2 Let p be a fixed point of an isometry φ. For W ∈ TpM let s 7→
γW (s) be an affinely parameterised geodesic with γW (0) = p and γ̇(0) = W . Since
isometries map geodesics to geodesics, the curve s 7→ φ(γW (s)) is a geodesic that
passes through p and has tangent vector φ∗W there. As affine parameterisation is
also preserved by isometries, we conclude that

φ(γW (s)) = γφ∗W (s) . (A.16.4)

In particular, in the Riemannian case φ maps the metric spheres

S(p, r) := {q ∈M : d(p, q) = r}

to themselves. (This remains true in the Lorentzian case, except that the S(p, r)’s
are not spheres anymore.)

If (M, g) is isotropic at p, then the action of Iso(M, g) on TpM is transitive
which, in the complete Riemannian case, implies that the action of Iso(M, g) on
S(p, r) is transitive as well.
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In Riemannian geometry, the sectional curvature κ of a plane spanned by two
vectors X,Y ∈ TpM is defined as

κ(X,Y ) :=
g(R(X,Y )X,Y )

g(X,X)g(Y, Y )− g(X,Y )2
.

Note that κ depends only upon the plane, and not the choice of the vectors X and
Y spanning the plane. The definition extends to pseudo-Riemannian manifolds as
long as the denominator does not vanish; equivalently, the plane spanned by X and
Y should not be null.

For maximally symmetric Riemannian manifolds the action of the isometry
group on the ollection of two-dimensional subspaces of the tangent bundle is tran-
sitive, which implies that κ is independent of p. Complete Riemannian manifolds,
not necessarily simply connected, with constant κ are called space forms.

Remark A.16.3 A complete Riemannian manifold (M, g) which is isotropic around
every point is necessarily homogeneous. To see this, let p, p′ ∈M , and let q be any
point such that the distance from q to p equals that from q to p′, say r. Then both p
and p′ lie on the distance sphere S(q, r), and since (M, g) is isotropic at q, it follows
from Remark A.16.2 that there exists an isometry which leaves q fixed and which
maps p into p′.

Equation (A.16.2) leads to a second order system of equations, as follows:
Taking cyclic permutations of the equation obtained by differentiating (A.16.2)
one has

−∇γ∇αXβ −∇γ∇βXα = 0 ,

∇α∇βXγ +∇α∇γXβ = 0 ,

∇β∇γXα +∇β∇αXγ = 0 .

Adding, and expressing commutators of derivatives in terms of the Riemann
tensor, one obtains

2∇α∇βXγ = (Rσγβα +Rσαβγ + Rσβαγ︸ ︷︷ ︸
=−Rσαγβ−Rσγβα

)Xσ

= 2RσαβγX
σ .

Thus
∇α∇βXγ = RσαβγX

σ . (A.16.5)

Example A.16.4 As an example of application of (A.16.5), let (M, g) be flat. In a
coordinate system {xµ} in which the metric has constant entries (A.16.5) reads

∂α∂βXγ = 0 .

The solutions are therefore linear,

Xα = Aα +Bα
βx

γ .

Plugging this into (A.16.2), one finds that Bαβ must be anti-symmetric. Hence,
the dimension of the set of all Killing vectors of Rn,m, and thus of Iso(Rn,m), is
n(n+ 1)/2, independently of signature.
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Consider, next, a torus Tn := S1 × . . .× S1, equipped again with a flat metric.
In this case none of the locally defined Killing vectors of the form Bi

jx
j survive

the periodic identifications, hence the dimension of Iso(Tn, δ) is n: indeed, from
(A.16.5) and integrating by parts we have

∫
X iDjDiX

j

︸ ︷︷ ︸
=0

= −
∫
DjX i DiXj︸ ︷︷ ︸

=−DjXi

=

∫
|DX |2 , (A.16.6)

and so Bij ≡ DiXj = 0: all Killing vectors on a flat Riemannian Tn are covariantly
constant.

In fact, an obvious modification of the last calculation shows that the isome-
try group of compact Riemannian manifolds with strictly negative Ricci tensor is
finite, and that non-trivial Killing vectors of compact Riemannian manifolds with
non-positive Ricci tensor are covariantly constant. Indeed, for such manifolds the
left-hand side does not vanish anymore in general, but instead we have

∫
|DX |2 =

∫
X iDjDiX

j =

∫
X iRkji

jXj =

∫
X iRkiX

j , (A.16.7)

The left-hand side is always positive. If the Ricci tensor is non-positive, then the
right-hand-side is non-positive, which is only possible if both vanish, hence DX = 0
and RijX

iXj = 0. If the Ricci tensor is strictly negative, then X = 0. Hence there
are no non-trivial Kiling vectors, and the dimension of the group of isometries is
zero. Since the group is compact when (M, g) is Riemannian and compact, it must
be finite.

An important consequence of (A.16.5) is:

Proposition A.16.5 Let M be connected and let p ∈ M . A Killing vector is
uniquely defined by its value X(p) and the value at p of the anti-symmetric
tensor ∇X(p).

Proof: Consider two Killing vectors X and Y such that X(p) = Y (p) and
∇X(p) = ∇Y (p). Let q ∈M and let γ be any curve from p to q. Set

Zβ := Xβ − Y β , Aαβ = ∇α(Xβ − Yβ) .

Along the curve γ we have

DZα
ds

= γ̇µ∇µZα = γ̇µAµα

DAαβ
ds

= γ̇µ∇µ∇αZβ = Rγµαβ γ̇
µZγ .

This is a linear first order system of ODEs along γ with vanishing Cauchy data
at p. Hence the solution vanishes along γ, and thus Xµ(q) = Y µ(q). ✷

Note that there are at most n values of X at p and, of view of anti-symmetry,
at most n(n − 1)/2 values of ∇X at p. Since the dimension of the space of
Killing vectors equals the dimension of the group of isometries, as a Corollary
we obtain:

Proposition A.16.6 The dimension of the group of isometries of an n-dimensional
pseudo-Riemannian manifold (M,g) is less than or equal to n(n+ 1)/2.
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A manifold (M,g) is called maximally symmetric if the dimension of Iso(M,g)
equals the maximum allowed value, n(n+ 1)/2 in dimension n.

A manifold (M,g) is called homogeneous if the action of Iso(M,g) is transi-
tive. Thus the dimension of the orbit of the isometry group through each point
is n. This implies that the dimension of Iso(M,g) is at least n.

A manifold (M,g) is called isotropic at p ∈ M if for every antisymmet-
ric tensor Bµν ∈ T ∗

pM ⊗ T ∗
pM there exists a Killing vector on M such that

∇µXν(p) = Bµν . In particular the dimension of Iso(M,g) is at least n(n−1)/2.
Examples of flat maximally symmetric manifolds are provided by R

n,m. It
follows e.g. from the (pseudo-Riemannian version of the) Hadamard-Cartan
theorem that these are the only simply connected geodesically complete such
manifolds.

Curved examples of maximally symmetric manifolds can be constructed as
follows: Let Rn,m := (Rn+m, η), where η is a quadratic form of signature (n,m).
For a ∈ R

∗ consider the submanifold

Sa := {ηαβxαxβ = a} .

Note that the covector field Nα := ηαβx
α/
√
|a| is conormal to Sa. Since

η(N,N) = a/|a| 6= 0, the tensor field η induces on Sa a pseudo-Riemannian
metric, which will be denoted by h.

As both η and Sa are invariant under the defining action of SO(n,m) on
R
n+m, the metric h is also invariant under this action.

Further, the action is effective; this means that the only element g ∈
SO(n,m) leaving all points invariant is the identity map. Indeed, suppose
that φ ∈ SO(n,m) leaves invariant every point p ∈ Sa. Now, every point
x = (xµ) for which ηαβx

αxβ has the same sign as a can be written in the form
xµ = βxµ0 , where x0 ∈ Sa and β ∈ R. By linearity of the action, φ leaves x
invariant. Hence φ is a linear map which is the identity on an open set, and
thus the identity everywhere.

We conclude that the dimension of the isometry group of (Sa, h) equals
that of SO(n,m), namely (n+m)(n+m− 1)/2. Since the dimension of Sa is
n+m− 1, this implies that (Sa, h) is maximally symmetric.

As a first explicit example, let η be either the Minkowski or the flat metric
in dimension n+ 1, which we write in the form

η = ǫdw2 + δ = ǫdw2 + dr2 + r2dΩ2 , ǫ ∈ {±1} ,

hence Sa is given by the equation

ǫw2 = a− r2 .

Away from the set {a = r2}, differentiation gives 2ǫw dw = −2r dr, hence

dw2 =
r2

w2
dr2 = ǫ

r2

a− r2dr
2 .

Thus the induced metric equals

h =
r2

a− r2dr
2 + dr2 + r2dΩ2 =

a

a− r2dr
2 + r2dΩ2 . (A.16.8)
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When ǫ = 1 and a = R2, Sa is a sphere in Euclidean space, w2 = R2− r2 ≤
R2 and we find the following representation of the upper-hemisphere metric:

h =
1

1− r2

R2

dr2 + r2dΩ2 , 0 < r < R . (A.16.9)

Note that the same formula defines a Lorentzian metric for r > R:

h = − 1
r2

R2 − 1
dr2 + r2dΩ2 , r > R . (A.16.10)

This corresponds to the case a = R2 and ǫ = −1 of our construction, in which
case Sa is the timelike hyperboloid r2 = R2+t2 ≥ R2 in Minkowski space-time.
This is de Sitter space-time (in a non-standard coordinate system), solution of
the vacuum Einstein equations with positive cosmological constant.

When ǫ = −1 and a = −R2, Sa consists of two copies of a spacelike
hyperboloid in Minkowski space, t2 = R2 + r2, with induced metric of constant
negative curvature:

h =
1

1 + r2

R2

dr2 + r2dΩ2 . (A.16.11)

This is the metric on hyperbolic space.
Introducing r̂ = Rr, the above Riemannian metrics can be written in a more

standard form

h = R2

(
dr̂2

1 + kr̂2
+ r̂2dΩ2

)
, k ∈ {0,±1} , (A.16.12)

where k determines whether the metric is flat, or positively curved, or negatively
curved.

To obtain negatively curved Lorentzian metrics we take η of signature (2, n):

η = −dw2 − dz2 + δ = −dw2 − dz2 + dr2 + r2dΩ2 .

The hypersurface S−R2 is then given by the equation

w2 + z2 = R2 + r2 ,

and can be thought of as a surface of revolution obtained by rotating a hyper-
boloid w = 0, z2 = R2 + r2, around the w = z = 0 axis. Setting

w = ρ cos t , z = ρ sin t ,

one has
dw2 + dz2 = dρ2 + ρ2dt2 ,

and the equation for S−R2 becomes

ρ2 = r2 +R2 .

Hence

dρ2 =
r2

ρ2
dr2 =

r2dr2

r2 +R2
,
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and since

η = −dw2 − dz2 + dr2 + r2dΩ2 = −(dρ2 + ρ2dt2) + dr2 + r2dΩ2 .

we obtain

h = −
(

r2dr2

r2 +R2
+ (r2 +R2)dt2

)
+ dr2 + r2dΩ2

= −(r2 +R2)dt2 +
dr2

1 + r2

R2

+ r2dΩ2 .

Note that the slices {t = const} are maximally symmetric hyperbolic. Some-
what amusingly, in the embedded model the time coordinate t is periodic. The
universal cover of S−R2 , where t is assumed to run over R instead of S1, is
called the anti-de Sitter space-time.

It is a standard fact that all maximally symmetric metrics are locally iso-
metric. So the above formulae give the local form for all maximally symmetric
Lorentzian or Riemannian metrics.

A.17 Moving frames

A formalism which is very convenient for practical calculations is that of moving
frames; it also plays a key role when considering spinors, compare Section 3.1.
By definition, a moving frame is a (locally defined) field of bases {ea} of TM
such that the scalar products

gab := g(ea, eb) (A.17.1)

are point independent. In most standard applications one assumes that the ea’s
form an orthonormal basis, so that gab is a diagonal matrix with plus and minus
ones on the diagonal. However, it is sometimes convenient to allow other such
frames, e.g. with isotropic vectors being members of the frame.

It is customary to denote by ωabc the associated connection coefficients:

ωabc := θa(∇eceb) ⇐⇒ ∇Xeb = ωabcX
cea , (A.17.2)

where, as elsewhere, {θa(p)} is a basis of T ∗
pM dual to {ea(p)} ⊂ TpM ; we will

refer to θa as a coframe. The connection one forms ωab are defined as

ωab(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = ωab(X)ea ; . (A.17.3)

As always we use the metric to raise and lower indices, even though the ωabc’s
do not form a tensor, so that

ωabc := gadω
e
bc , ωab := gaeω

e
b . (A.17.4)

When ∇ is metric compatible, the ωab’s are anti-antisymmetric: indeed, as the
gab’s are point independent, for any vector field X we have

0 = X(gab) = X(g(ea, eb)) = g(∇Xea, eb) + g(ea,∇Xeb)
= g(ωca(X)ec, eb) + g(ea, ω

d
b(X)ed)

= gcbω
c
a(X) + gadω

d
b(X)

= ωba(X) + ωab(X) .
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Hence
ωab = −ωba ⇐⇒ ωabc = −ωbac . (A.17.5)

One can obtain a formula for the ωab’s in terms of Christoffels, the frame
vectors and their derivatives: In order to see this, we note that

g(ea,∇eceb) = g(ea, ω
d
bced) = gadω

d
bc = ωabc . (A.17.6)

Rewritten the other way round this gives an alternative equation for the ω’s
with all indices down:

ωabc = g(ea,∇eceb) ⇐⇒ ωab(X) = g(ea,∇Xeb) . (A.17.7)

Then, writing
ea = ea

µ∂µ ,

we find

ωabc = g(ea
µ∂µ, ec

λ∇λeb)
= gµσea

µec
λ(∂λeb

σ + Γσλνeb
ν) . (A.17.8)

Next, it turns out that we can calculate the ωab’s in terms of the Lie brackets
of the vector fields ea, without having to calculate the Christoffel symbols. This
shouldn’t be too surprising, since an ON frame defines the metric uniquely. If
∇ has no torsion, from (A.17.7) we find

ωabc − ωacb = g(ea,∇eceb −∇ebec) = g(ea, [ec, eb]) .

We can now carry-out the usual cyclic-permutations calculation to obtain

ωabc − ωacb = g(ea, [ec, eb]) ,

−(ωbca − ωbac) = −g(eb, [ea, ec]) ,
−(ωcab − ωcba) = −g(ec, [eb, ea]) .

So, if the connection is the Levi-Civita connection, summing the three equations
and using (A.17.5) leads to

ωcba =
1

2

(
g(ea, [ec, eb])− g(eb, [ea, ec])− g(ec, [eb, ea])

)
. (A.17.9)

Equations (A.17.8)-(A.17.9) provide explicit expressions for the ω’s; yet another
formula can be found in (A.17.10) below. While it is useful to know that
there are such expressions, and while those expressions are useful to estimate
things for PDE purposes, they are rarely used for practical calculations; see
Example A.17.3 for more comments about that last issue.

Exercice A.17.1 Use (A.17.9) to show that

ωcba =
1

2

(
ηad dθ

d(eb, ec) + ηbd dθ
d(ea, ec) + ηcd dθ

d(eb, ea)
)
. (A.17.10)
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It turns out that one can obtain a simple expression for the torsion of ω
using exterior differentiation. Recall that if α is a one-form, then its exterior
derivative dα can be calculated using the formula

dα(X,Y ) = X(α(Y ))− Y (α(X)) − α([X,Y ]) . (A.17.11)

We set

T a(X,Y ) := θa(T (X,Y )) ,

and using (A.17.11) together with the definition (A.9.16) of the torsion tensor
T we calculate as follows:

T a(X,Y ) = θa(∇XY −∇YX − [X,Y ])

= X(Y a) + ωab(X)Y b − Y (Xa)− ωab(Y )Xb − θa([X,Y ])

= X(θa(Y ))− Y (θa(X))− θa([X,Y ]) + ωab(X)θb(Y )− ωab(Y )θb(X)

= dθa(X,Y ) + (ωab ∧ θb)(X,Y ) .

It follows that

T a = dθa + ωab ∧ θb . (A.17.12)

In particular when the torsion vanishes we obtain the so-called Cartan’s first
structure equation

dθa + ωab ∧ θb = 0 . (A.17.13)

Example A.17.2 As a simple example, we consider a two-dimensional metric of
the form

g = dx2 + e2fdy2 , (A.17.14)

where f could possibly depend upon x and y. A natural frame is given by

θ1 = dx , θ2 = efdy .

The first Cartan structure equations read

0 = dθ1︸︷︷︸
0

+ω1
b ∧ θb = ω1

2 ∧ θ2 ,

since ω1
1 = ω11 = 0 by antisymmetry, and

0 = dθ2︸︷︷︸
ef∂xfdx∧dy

+ω2
b ∧ θb = ∂xfθ

1 ∧ θ2 + ω2
1 ∧ θ1 .

It should then be clear that both equations can be solved by choosing ω12 propor-
tional to θ2, and such an ansatz leads to

ω12 = −ω21 = −∂xf θ2 = −∂x(ef ) dy . (A.17.15)

Example A.17.3 As another example of the moving frame technique we consider
(the most general) three-dimensional spherically symmetric metric

g = e2β(r)dr2 + e2γ(r)dθ2 + e2γ(r) sin2 θdϕ2 . (A.17.16)
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There is an obvious choice of ON coframe for g given by

θ1 = eβ(r)dr , θ2 = eγ(r)dθ , θ3 = eγ(r) sin θdϕ , (A.17.17)

leading to
g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3 ,

so that the frame ea dual to the θa’s will be ON, as desired:

gab = g(ea, eb) = diag(1, 1, 1) .

The idea of the calculation which we are about to do is the following: there is only
one connection which is compatible with the metric, and which is torsion free. If we
find a set of one forms ωab which exhibit the properties just mentioned, then they
have to be the connection forms of the Levi-Civita connection. As shown in the
calculation leading to (A.17.5), the compatibility with the metric will be ensured if
we require

ω11 = ω22 = ω33 = 0 ,

ω12 = −ω21 , ω13 = −ω31 , ω23 = −ω32 .

Next, we have the equations for the vanishing of torsion:

0 = dθ1 = − ω1
1︸︷︷︸

=0

θ1 − ω1
2θ

2 − ω1
3θ

3

= −ω1
2θ

2 − ω1
3θ

3 ,

dθ2 = γ′eγdr ∧ dθ = γ′e−βθ1 ∧ θ2
= − ω2

1︸︷︷︸
=−ω1

2

θ1 − ω2
2︸︷︷︸

=0

θ2 − ω2
3θ

3

= ω1
2θ

1 − ω2
3θ

3 ,

dθ3 = γ′eγ sin θ dr ∧ dϕ+ eγ cos θ dθ ∧ dϕ = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3
= − ω3

1︸︷︷︸
=−ω1

3

θ1 − ω3
2︸︷︷︸

=−ω2
3

θ2 − ω3
3︸︷︷︸

=0

θ3

= ω1
3θ

1 + ω2
3θ

2 .

Summarising,

−ω1
2θ

2 − ω1
3θ

3 = 0 ,

ω1
2θ

1 − ω2
3θ

3 = γ′e−βθ1 ∧ θ2 ,
ω1

3θ
1 + ω2

3θ
2 = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3 .

It should be clear from the first and second line that an ω1
2 proportional to θ2 should

do the job; similarly from the first and third line one sees that an ω1
3 proportional

to θ3 should work. It is then easy to find the relevant coefficient, as well as to find
ω2

3:

ω1
2 = −γ′e−βθ2 = −γ′e−β+γdθ , (A.17.18a)

ω1
3 = −γ′e−βθ3 = −γ′e−β+γ sin θ dϕ , (A.17.18b)

ω2
3 = −e−γ cot θ θ3 = − cos θ dϕ . (A.17.18c)

It is convenient to define curvature two-forms:

Ωa
b = Rabcdθ

c ⊗ θd =
1

2
Rabcdθ

c ∧ θd . (A.17.19)



A.17. MOVING FRAMES 239

The second Cartan structure equation then reads

Ωa
b = dωab + ωac ∧ ωcb . (A.17.20)

This identity is easily verified using (A.17.11):

Ωa
b(X,Y ) =

1

2
Rabcd θ

c ∧ θd(X,Y )︸ ︷︷ ︸
=XcY d−XdY c

= RabcdX
cY d

= θa(∇X∇Y eb −∇Y∇Xeb −∇[X,Y ]eb)

= θa(∇X(ωcb(Y )ec)−∇Y (ωcb(X)ec)− ωcb([X,Y ])ec)

= θa
(
X(ωcb(Y ))ec + ωcb(Y )∇Xec

−Y (ωcb(X))ec − ωcb(X)∇Y ec − ωcb([X,Y ])ec

)

= X(ωab(Y )) + ωcb(Y )ωac(X)

−Y (ωab(X)) − ωcb(X)ωac(Y )− ωab([X,Y ])

= X(ωab(Y ))− Y (ωab(X)) − ωab([X,Y ])︸ ︷︷ ︸
=dωa

b(X,Y )

+ωac(X)ωcb(Y )− ωac(Y )ωcb(X)

= (dωab + ωac ∧ ωcb)(X,Y ) .

Equation (A.17.20) provides an efficient way of calculating the curvature tensor
of any metric.

Example A.17.4 In dimension two the only non-vanishing components of ωa
b are

ω1
2 = −ω2

1, and it follows from (A.17.20) that

Ω1
2 = dω1

2 + ω1
a ∧ ωa

2 = dω1
2 . (A.17.21)

In particular (assuming that θ2 is dual to a spacelike vector, whatever the signature
of the metric)

Rdµg = Rθ1 ∧ θ2 = 2R12
12θ

1 ∧ θ2 = R1
2abθ

a ∧ θb = 2Ω1
2

= 2dω1
2 , (A.17.22)

where dµg is the volume two-form.

Example A.17.2 continued We have seen that the connection one-forms for the
metric

g = dx2 + e2fdy2 (A.17.23)

read
ω12 = −ω21 = −∂xf θ2 = −∂x(ef ) dy .

By symmetry the only non-vanishing curvature two-forms are Ω12 = −Ω21. From
(A.17.20) we find

Ω12 = dω12 + ω1b ∧ ωb
2︸ ︷︷ ︸

=ω12∧ω2
2=0

= −∂2x(ef ) dx ∧ dy = −e−f∂2x(ef ) θ1 ∧ θ2 .
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We conclude that

R1212 = −e−f∂2x(ef ) . (A.17.24)

(Compare Example A.12.2, p. 219.) For instance, if g is the unit round metric on the
two-sphere, then ef = sinx, and R1212 = 1. If ef = sinhx, then g is the canonical
metric on hyperbolic space, and R1212 = −1. Finally, the function ef = coshx
defines a hyperbolic wormhole, with again R1212 = −1.

Example A.17.3 continued: From (A.17.18) we find:

Ω1
2 = dω1

2 + ω1
1︸︷︷︸

=0

∧ω1
2 + ω1

2 ∧ ω2
2︸︷︷︸

=0

+ω1
3 ∧ ω3

2︸ ︷︷ ︸
∼θ3∧θ3=0

= −d(γ′e−β+γdθ)

= −(γ′e−β+γ)′dr ∧ dθ
= −(γ′e−β+γ)′e−β−γθ1 ∧ θ2

=
∑

a<b

R1
2abθ

a ∧ θb ,

which shows that the only non-trivial coefficient (up to permutations) with the pair
12 in the first two slots is

R1
212 = −(γ′e−β+γ)′e−β−γ . (A.17.25)

A similar calculation, or arguing by symmetry, leads to

R1
313 = −(γ′e−β+γ)′e−β−γ . (A.17.26)

Finally,

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 + ω2
2︸︷︷︸

=0

∧ω2
3 + ω2

3 ∧ ω3
3︸︷︷︸

=0

= −d(cos θ dϕ) + (γ′e−βθ2) ∧ (−γ′e−βθ3)

= (e−2γ − (γ′)2e−2β)θ2 ∧ θ3 ,

yielding

R2
323 = e−2γ − (γ′)2e−2β . (A.17.27)

The curvature scalar can easily be calculated now to be

R = Rij
ij = 2(R12

12 +R13
13 +R23

23)

= −4(γ′e−β+γ)′e−β−γ + 2(e−2γ − (γ′)2e−2β) . (A.17.28)

The Bianchi identities have a particularly simple proof in the moving frame
formalism. For this, let ψa be any vector-valued differential form, and define

Dψa = dψa + ωab ∧ ψb . (A.17.29)

Thus, using this notation the vanishing of torsion can be written as

Dθa = 0 . (A.17.30)
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In situations where the torsion does not vanish, we calculate

Dτa = dτa + ωab ∧ τ b = d(dθa + ωab ∧ θb) + ωac ∧ (dθc + ωcb ∧ θb)
= dωab ∧ θb − ωab ∧ dθb + ωac ∧ (dθc + ωcb ∧ θb)
= Ωa

b ∧ θb .

If the torsion vanishes the left-hand side is zero. We leave it as an exercice for
the reader to check that the equation

Ωa
b ∧ θb = 0 (A.17.31)

is equivalent to the first Bianchi identity.

Next, for any differential form with two-frame indices, such as the curvature
two-form, we define

DΩa
b := dΩa

b + ωac ∧Ωc
b − ωcb ∧ Ωa

c . (A.17.32)

Then

DΩa
b = d(dωab + ωac ∧ ωcb) + ωac ∧Ωc

b − ωcb ∧ Ωa
c

= dωac ∧ ωcb − ωac ∧ dωcb + ωac ∧ Ωc
b − ωcb ∧ Ωa

c

= (Ωa
c − ωae ∧ ωec) ∧ ωcb − ωac ∧ (Ωc

b − ωce ∧ ωeb)
+ωac ∧ Ωc

b − ωcb ∧ Ωa
c = 0 .

Thus

DΩa
b = 0 , (A.17.33)

which can be checked to coincide with the second Bianchi identity.

A.18 Clifford algebras

Our approach is a variation upon [42]. Let q be a non-degenerate quadratic
form on a vector space over K, where K = R or C. Let A be an algebra over K.
A Clifford map of (W, q) into A is a linear map f : W → A with the property
that, for any X ∈W ,

f(X)2 = −q(X,X) . (A.18.1)

By polarisation, this is equivalent to

f(X)f(Y ) + f(Y )f(X) = −2q(X,Y ) . (A.18.2)

for any X,Y ∈W .
Note that a Clifford map is necessarily injective: if f(X) = 0 then q(X,Y ) =

0 for all Y by (A.18.2), hence X = 0. Thus dim A ≥ dimW whenever a Clifford
map exists.

The Clifford algebra Cℓ(W, q) is the unique (up to homomorphism) associa-
tive algebra with unity defined by the following two properties:
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1. there exists a Clifford map κ : W → Cℓ(W, q), and

2. for any Clifford map f : W → A there exists exactly one homomorphism
f̃ of algebras with unity f̃ : Cℓ(W, q)→ A such that

f = f̃ ◦ κ .

The definition is somewhat roundabout, and takes a while to absorb. The
key property is the Clifford anti-commutation rule (A.18.2). The second point
is a way of saying that Cℓ(W, q) is the smallest algebra for which (A.18.2) holds.

Now, uniqueness of Cℓ(W, q), up to algebra homomorphism, follows imme-
diately from its definition. Existence is a consequence of the following construc-
tion: let T (W ) be the tensor algebra of W ,

T (W ) := K⊕W ⊕∞
ℓ=2 W ⊗ . . .⊗W︸ ︷︷ ︸

ℓ factors

,

it being understood that only elements with a finite number of non-zero com-
ponents in the infinite sum are allowed. Then T (W ) is an associative algebra
with unity, the product of two elements a, b ∈ T (W ) being the tensor prod-
uct a ⊗ b. Let Iq be the two-sided ideal generated by all tensors of the form
X ⊗X + q(X,X), X ∈W . Then the quotient algebra

T (W )/Iq

has the required property. Indeed, let κ be the map which to X ∈W ⊂ T (W )
assigns the equivalence class [X] ∈ T (W )/Iq. Then κ is a Clifford map by

definition. Further, if f : V → A is a Clifford map, let f̂ be the unique linear
map f̂ : T (W )→ A satisfying

f̂(X1 ⊗ . . .⊗Xk) = f(X1) · · · f(Xk) .

Then f̂ vanishes on Iq, hence provides the desired map f̃ defined on the quotient,

f̃([X]) := f̂(X).

Example A.18.1 Let W = R, with q(x) = x2. Then C with κ(x) = xi, satisfies
the Clifford product rule. Clearly (A.18.1) cannot be satisfied in any smaller
algebra, so (up to homomorphism) Cℓ(W, q) = C.

Example A.18.2 Let W = R, with q′(x) = −x2. Then Cℓ(W, q′) = R, κ(x) =
x. Comparing with Example A.18.1, one sees that passing to the opposite
signature matters.

Example A.18.3 Consider the hermitian, traceless, Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.18.3)

and set σi = σi. One readily checks that

σiσj = δij + iǫijkσ
k =⇒ {σi, σj} := σiσj + σjσi = 2δij , (A.18.4)
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where for any two matrices a, b the anti-commutator {a, b} is defined as

{a, b} = ab+ ba .

Hence, for any X ∈ R
3 it holds that

(Xkiσk)(X
ℓiσℓ) = −δ(X,X) ,

where δ is the standard scalar product on W = R
3. Thus, the map

X = (Xk)→ Xkiσk

is a Clifford map on (R3, δ), and in fact the algebra generated by the matrices
γk := iσk is homomorphic to Cℓ(R3, δ). This follows again from the fact that
no smaller dimension is possible.

Example A.18.4 Let σi be the Pauli matrices (A.18.3) and let the 4×4 complex
valued matrices be defined as

γ0 =

(
0 idC2

idC2 0

)
= −γ0 , γi =

(
0 σi
−σi 0

)
= γi . (A.18.5)

We note that γ0 is hermitian, while the γi’s are anti-hermitian with respect to
the canonical hermitian scalar product 〈·, ·〉C on C

4. From Equation (A.18.5)
one immediately finds

{γi, γj} =

(
−{σi, σj} 0

0 −{σi, σj}

)
, {γi, γ0} = 0 , (γ0)2 = 1 ,

and (A.18.4) leads to the Clifford product relation

γaγb + γbγa = −2gab (A.18.6)

for the Minkowski metric gab = diag(−1, 1, 1, 1).
A real representation of the commutation relations (A.18.6) on R

8 can be
obtained by viewing C

4 as a vector space over R, so that 1) each 1 above is
replaced by idR2 , and 2) each i is replaced by the antisymmetric 2× 2 matrix

(
0 −1
1 0

)
.

More precisely, let us define the 4× 4 matrices σ̂i by

σ̂1 =

(
0End(R2) idR2

idR2 0End(R2)

)
, σ̂3 =

(
idR2 0End(R2)

0End(R2) −idR2

)
, (A.18.7)

σ̂2 =




0End(R2) −
(

0 −1
1 0

)

(
0 −1
1 0

)
0End(R2)


 , (A.18.8)

which are clearly symmetric, and the new γ’s by

γ0 =

(
0End(R4) idR4

idR4 0End(R4)

)
= −γ0 , γi =

(
0End(R4) σ̂i
−σ̂i 0End(R4)

)
= γi .

(A.18.9)
It should be clear that the γ’s satisfy (A.18.6), with γ0 symmetric, and γi’s -
antisymmetric.
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Let us return to general considerations. Choose a basis ei of W , and consider
any element a ∈ T (W ). Then a can be written as

a = α+

N∑

k=1

∑

i1,...,ik

ai1...ikei1 ⊗ . . . ⊗ eik ,

for some N depending upon a. When passing to the quotient, every tensor prod-
uct eij⊗eir with ij > ir can be replaced by −2gij ir−eir⊗eij , leaving eventually
only those indices which are increasingly ordered. Thus, a is equivalent to

β + biei +

k∑

k=N

∑

i1<...<ik

bi1...ikei1 ⊗ . . . ⊗ eik ,

for some new coefficients. For example

α+ aiei + aijei ⊗ ej = α+ aiei + aij( e(i ⊗ ej)︸ ︷︷ ︸
∼−q(ei,ej)

+e[i ⊗ ej])

∼ α− aijq(ei, ej) + aiei + aije[i ⊗ ej] .

This implies that elements of the form

γi1...ik := [ei1 ⊗ . . .⊗ eik ] , i1 < . . . < ik

span Cℓ(W, q). (Here the outermost bracket is the equivalence relation in
T (W ).) Equivalently,

Cℓ(W, q) = K⊕Vect{γi1...ik} , where γi := κ(ei) , γi1...ik := γ[i1 · · · γik] .

We conclude that the dimension of Cℓ(W, q) is less than or equal to that of the
exterior algebra of W , in particular Cℓ(W, q) is finite dimensional (recall that
it was part of our definition that dimW <∞). The reader is warned that the
above elements of the algebra are not necessarily linearly independent, as can
be seen in Examples A.18.2 and A.18.3.

It should be clear to the reader that the linear map, which is deduced by
the considerations above, from the exterior algebra to the Clifford algebra, does
not preserve the product structures in those algebras.

A representation (V, ρ) of a Clifford algebra Cℓ(W, q) on a vector space V
over K is a map ρ : Cℓ(W, q) → End(V ) such that ρ ◦ κ is a Clifford map. It
immediately follows from the definition of the Clifford algebra that ρ is uniquely
defined by its restriction to κ(W ).

A fundamental fact is the following:

Proposition A.18.5 Let q be positive definite and let (V, ρ) be a representation
of Cℓ(W, q). If K = R, then there exists a scalar product 〈·, ·〉 on V so that
ρ ◦ κ(X) is antisymmetric for all X ∈W . Similarly if K = C, then there exists
a hermitian product 〈·, ·〉 on V so that ρ◦κ(X) is antihermitian for all X ∈W .
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Proof: Let ei be any basis of W , set γi := ρ(κ(ei)), since ρ is a representation
the γi’s satisfy the relation (A.18.6). Let γI run over the set

Ω := {±1 ,±γi ,±γi1...ik}1≤i1<···<ik≤n .

It is easy to check that Ωγi ⊂ Ω, but since

(Ωγi)γi = Ω γiγi︸︷︷︸
=−1

= −Ω = Ω ,

we conclude that Ωγi = Ω. Let (·, ·) denote any scalar product on V , and for
ψ,ϕ ∈ V set

〈ψ,ϕ〉 :=
∑

γI∈Ω
(γIψ, γIϕ) .

Then for any 1 ≤ ℓ ≤ n we have (no summation over ℓ)

〈(γℓ)tγℓψ,ϕ〉 = 〈γℓψ, γℓϕ〉 =
∑

γI∈Ω
(γIγℓψ, γIγℓϕ)

=
∑

γI∈Ωγℓ
(γIψ, γIϕ) =

∑

γI∈Ω
(γIψ, γIϕ)

= 〈ψ,ϕ〉 .

Since this holds for all ψ and ϕ we conclude that (γℓ)
tγℓ = Id. Multiplying

from the right with γℓ, and recalling that (γℓ)
2 = −Id we obtain (γℓ)

t = −γℓ.
Now, by definition,

(ρ ◦ κ(X))t = (Xaγa)
t = −Xaγa = −ρ ◦ κ(X) ,

as desired.
An identical calculation applies for hermitian scalar products. ✷

The scalar product constructed above is likely to depend upon the initial choice
of basis ea, but this is irrelevant for the problem at hand, since the statement that
ρ ◦ κ(X) is anti-symmetric, or anti-hermitian, is basis-independent.

Throughout most of this work, when q is positive definite we will only use
scalar products on V for which the representation of Cℓ(W, q) is anti-symmetric
or anti-hermitian.

Let dimV > 0. A representation (V, ρ) of Cℓ(W, q) is said to be reducible if
V can be decomposed as a direct sum V1 ⊕ V2 of nontrivial subspaces, each of
them being invariant under all maps in ρ(Cℓ(W, q)). The representation (V, ρ)
is said to be irreducible if it is not reducible. Note that the existence of an
invariant space does not a priori imply the existence of a complementing space
which is invariant as well. However, we have the following:

Proposition A.18.6 Every finite dimensional representation

ρ : Cℓ(W, q)→ End(V )

of Cℓ(W, q) such that V contains a non-trivial invariant subspace is reducible.
Hence, V = ⊕ki=1Vi, ρ = ⊕ki=1ρi, with (Vi, ρi := ρ|Vi) irreducible.
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Proof: Suppose that there exists a subspace V1 ⊂ V invariant under ρ. We can
assume that V1 has no invariant subspaces, otherwise we pass to this subspace
and call it V1; in a finite number of steps we obtain a subspace V1 such that ρ|V1
is irreducible. The proof of Proposition A.18.5 provides a scalar or hermitian
product 〈·, ·〉 on V which is invariant under the action of all maps in Ω. Then
V = V1⊕ (V1)⊥, and it is easily checked that (V1)

⊥ is also invariant under maps
in Ω, hence under all maps in the image of ρ. One can repeat now the whole
argument with V replaced by (V1)⊥, and the claimed decomposition is obtained
after a finite number of steps. ✷

It is sometimes convenient to use irreducible representations, which involves
no loss of generality in view of Proposition A.18.6. However, we will not assume
irreducibility unless explicitly specified otherwise.

A.18.1 Eigenvalues of γ-matrices

In the proofs of the energy-momentum inequalities the positivity properties
of several matrices acting on the space of spinors have to be analyzed. It is
sufficient to make a pointwise analysis, so we consider a real vector space V
equipped with a scalar product 〈·, ·〉 together with matrices γµ, µ = 0, 1, · · · , n
satisfying

γµγν + γνγµ = −2ηµν , (A.18.10)

where η = diag(−1, 1, · · · , 1). We further suppose that the matrices γtµ, trans-
posed with respect to 〈·, ·〉, satisfy

γt0 = γ0 , γti = −γi ,

where the index i runs from one to n. Let us start with

aµγ0γµ = a0 + aiγ0γi , (aµ) = (a0,~a) = (a0, (ai)) .

The matrices aiγ0γi are symmetric and satisfy

(aiγ0γi)
2 = aiajγ0γiγ0γj = −aiajγ0γ0γiγj = |~a|2δ ,

so that the eigenvalues belong to the set {±|~a|δ}. Since γ0 anticommutes with
aiγ0γi, it interchanges the eigenspaces with positive and negative eigenvalues.
Let ψi, i = 1, . . . , N , be an ON basis of the |~a|δ eigenspace of aiγ0γi, set

φ2i−1 = ψi , φ2i = γ0ψi .

It follows that {φi}2Ni=1 forms an ON basis of V (in particular dimV = 2N), and
in that basis aµγ0γµ is diagonal with entries a0 ± |~a|δ. We have thus proved

Proposition A.18.7 The quadratic form 〈ψ, aµγ0γµψ〉 is non-negative if and
only if a0 ≥ |~a|δ.

Let us consider, next, the symmetric matrix

A := aµγ0γµ + bγ0 + cγ1γ2γ3 . (A.18.11)
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Let ψ1 be an eigenvector of aiγ0γi with eigenvalue |~a|δ, set

φ1 = ψ1 , φ2 = γ0ψ1 , φ3 = γ1γ2γ3ψ1 , φ4 = γ1γ2γ3γ0ψ1 .

From the commutation relations (A.18.10) one easily finds

aiγ0γiφ1 = |~a|δφ1 , aiγ0γiφ2 = −|~a|δφ2 , aiγ0γiφ3 = −|~a|δφ3 , aiγ0γiφ4 = |~a|δφ4 ,

γ0φ1 = φ2 , γ0φ2 = φ1 , γ0φ3 = −φ4 , γ0φ4 = −φ3 ,
γ1γ2γ3φ1 = φ3 , γ1γ2γ3φ2 = φ4 , γ1γ2γ3φ3 = φ1 , γ1γ2γ3φ4 = φ2 .

It is simple to check that the φi’s so defined are ON; proceeding by induction
one constructs an ON-basis {φi}2Ni=1 of V (in particular dimV is a multiple of
4) in which A is block-diagonal, built-out of blocks of the form




a0 + |~a|δ b c 0
b a0 − |~a|δ 0 c
c 0 a0 − |~a|δ −b
0 c −b a0 + |~a|δ


 .

The eigenvalues of this matrix are easily found to be a0 ±
√
|~a|2δ + b2 + c2. We

thus have:

Proposition A.18.8 We have the sharp inequality

〈ψ, (aµγ0γµ + bγ0 − cγ1γ2γ3)ψ〉 ≥
(
a0 −

√
|~a|2δ + b2 + c2

)
|ψ|2 ,

in particular the quadratic form 〈ψ,Aψ〉, with A defined in (A.18.11), is non-
negative if and only if

a0 ≥
√
|~a|2δ + b2 + c2 .

A.19 Elements of causality theory

It is convenient to recall some definitions from causality theory. Given a man-
ifold M equipped with a Lorentzian metric g, at each point p ∈ M the set
of timelike vectors in TpM has precisely two components. A time-orientation
of TpM is the assignment of the name “future pointing vectors” to one of
those components; vectors in the remaining component are then called “past
pointing”. A Lorentzian manifold is said to be time-orientable if such locally
defined time-orientations can be defined globally in a consistent way. A space-
time is a time-orientable Lorentzian manifold on which a time-orientation has
been chosen.

A differentiable path γ will be said to be timelike if at each point the tangent
vector γ̇ is timelike; it will be said future directed if γ̇ is future directed. There
is an obvious extension of this definition to null, causal or spacelike curves. We
define an observer to be an inextendible, future directed timelike path. In these
notes the names “path” and ”curve” will be used interchangedly.
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Let U ⊂ O ⊂M . One sets

I+(U ; O) := {q ∈ O : there exists a timelike future directed path

from U to q contained in O} ,
J+(U ; O) := {q ∈ O : there exists a causal future directed path

from U to q contained in O} ∪U .

I−(U ; O) and J−(U ; O) are defined by replacing “future” by “past” in the
definitions above. The set I+(U ; O) is called the timelike future of U in O,
while J+(U ; O) is called the causal future of U in O, with similar terminology
for the timelike past and the causal past. We will write I±(U ) for I±(U ; M ),
similarly for J±(U ), and one then omits the qualification “in M ” when talking
about the causal or timelike futures and pasts of U . We will write I±(p; O) for
I±({p}; O), I±(p) for I±({p}; M ), etc.

A function f will be called a time function if its gradient is timelike, past
pointing. Similarly a function f will be said to be a causal function if its gradient
is causal, past pointing. The choice “past-pointing” here has to do with our
choice (−,+, . . . ,+) of the signature of the metric. This is easily understood
on the example of Minkowski space-time (Rn+1, η), where the gradient of the
usual time coordinate t is −∂t, since η00 = −1. Had we chosen to work with the
signature (+,−, . . . ,−), time functions would have been defined to have future
pointing gradients.

A.19.1 Geodesics

An affinely parameterised geodesic γ is a maximally extended solution of the
equation

∇γ̇ γ̇ = 0 .

It is a fundamental postulate of general relativity that physical observers move
on timelike geodesics. This motivates the following useful definition: an ob-
server is a maximally extended future directed timelike geodesics.

It is sometimes convenient to consider geodesics which are not necessarily affinely
parameterised. Those are solutions of

∇ dγ
dλ

dγ

dλ
= χ

dγ

dλ
. (A.19.1)

Indeed, let us show that a change of parameter obtained by solving the equation

d2λ

ds2
+ χ

(
dλ

ds

)2

= 0 (A.19.2)

brings (A.19.2) to the form (A.19.2): under a change of parameter λ = λ(s) we
have

dγµ

ds
=
dλ

ds

dγµ

dλ
,

and

D

ds

dγν

ds
=

D

ds
(
dλ

ds

dγν

dλ
)
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=
d2λ

ds2
dγν

dλ
+
dλ

ds

D

ds

dγν

dλ

=
d2λ

ds2
dγν

dλ
+
(dλ
ds

)2 D
dλ

dγν

dλ

=
d2λ

ds2
dγν

dλ
+
(dλ
ds

)2
χ
dγν

dλ
,

and the choice indicated above gives zero, as desired.

Let f be a smooth function and let λ 7→ γ(λ) be any integral curve of ∇f ; by
definition, this means that dγµ/dλ = ∇µf . The following provides a convenient
tool for finding geodesics:

Proposition A.19.1 (Integral curves of gradients) Let f be a function satisfy-
ing

g(∇f,∇f) = ψ(f) ,

for some function ψ. Then the integral curves of ∇f are geodesics, affinely
parameterised if ψ′ = 0.

Proof: We have

γ̇α∇αγ̇β = ∇αf∇α∇βf = ∇αf∇β∇αf =
1

2
∇β(∇αf∇αf) =

1

2
∇βψ(f) =

1

2
ψ′∇βf .

(A.19.3)
Let us denote by λ the parameter such that

dγµ

dλ
= ∇µf ,

then (A.19.3) can be rewritten as

D

dλ

dγµ

dλ
=

1

2
ψ′ dγ

µ

dλ
.

✷

A significant special case is that of a coordinate function f = xi. Then

g(∇f,∇f) = g(∇xi,∇xi) = gii (no summation) .

For example, in Minkowski space-time, all gµν ’s are constant, which shows that
the integral curves of the gradient of any coordinate, and hence also of any
linear combination of coordinates, are affinely parameterized geodesics. An
other example is provided by the coordinate r in Schwarzschild space-time,
where grr = 1 − 2m/r; this is indeed a function of r, so the integral curves of
∇r = (1− 2m/r)∂r are (non-affinely parameterized) geodesics.
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Appendix B

Weighted Poincaré inequalities

The following is a simplified version of [14] (most intricacies in [14] are due
to low differentiability hypotheses on the metric). We start with a Lemma,
essentially due to Geroch and Perng [100]:

Lemma B.0.2 Let Ω, Ω̃ be any two relatively compact domains in M , there is a
constant ǫ > 0 such that for all sections u ∈ H1

loc(M) of a vector bundle E we
have

ǫ

∫

Ω̃
|u|2 dvM ≤

∫

Ω
|u|2 dvM +

∫

M
|Du|2 dvM . (B.0.1)

Proof: Let g̊ be any smooth auxiliary Riemannian metric on M , let q be any
point of Ω̃, fix p ∈ Ω and let rp be small enough that the g̊-geodesic ball B(p, rp)
of radius rp and centred at p, lies within Ω. Let X be a C∞ compactly supported
vector field, such that the associated flow φt satisfies φ1(B(p, rp)) ⊃ B(q, rq) for
some rq > 0. (Since M is C∞ and connected, it is always possible to construct
such an X.) Let Ωt = φt(B(p, rp)).

By direct calculation and Hölder’s inequality we have, for any u ∈ H1
loc(M),

d

dt

∫

Ωt

|u|2dvM =

∫

Ωt

(
2〈u,DXu〉+ |u|2divg̊X

)
dvM

≤ C

∫

Ωt

(
|u|2 + |Du|2

)
dvM ,

where C depends on ‖X‖L∞ , ‖divg̊X‖L∞ . Defining F (t) =
∫
Ωt
|u|2dvM , we

have
d

dt
F (t) ≤ CF (t) + C

∫

M
|Du|2dvM ,

and Gronwall’s lemma gives F (1) ≤ eC(F (0) +
∫
M |Du|2dvM ). Thus there is

ǫ > 0 such that

ǫ

∫

B(q,rq)
|u|2 dvM ≤

∫

Ω
|u|2 dvM +

∫

M
|Du|2 dvM .

Since Ω̃ has compact closure, it is covered by finitely many such balls B(q, rq)
and (B.0.1) follows. ✷

As a corollary of Lemma B.0.2 we obtain:
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Corollary B.0.3 If there is a domain Ω ⊂M and a constant ǫ > 0 such that

ǫ

∫

Ω
|u|2 dvM ≤

∫

M
|Du|2 dvM (B.0.2)

for all u ∈ C1
c (M), then (M,D) admits a weighted Poincaré inequality (3.2.24).

Proof: By paracompactness and Lemma B.0.2, there is a countable locally
finite covering of M by domains Ωk and constants 1 ≥ ǫk > 0, k ∈ Z

+, such
that for each k,

ǫk

∫

Ωk

|u|2 dvM ≤
∫

Ω
|u|2 dvM +

∫

M
|Du|2 dvM .

This can be further estimated using (B.0.2), so the function

w(x) =
∑

k:x∈Ωk

2−kǫǫk
1 + ǫ

(B.0.3)

is bounded, strictly positive, and satisfies
∫

M
|u|2 w dvM ≤

∫

M
|Du|2 dvM ,

which is the required weighted Poincaré inequality. ✷

We will show that the inequality needed in Corollary B.0.3 holds under
rather weak asymptotic conditions on the metric:

Definition B.0.4 A uniform end M̃ ⊂ M is a set such that M̃ ≃ R
n\B(0, 1)

and there is a constant η > 0 such that

η δijξ
iξj ≤ gij(x)ξiξj ≤ η−1δijξ

iξj ;

for all x ∈ R
n\B(0, 1) and all vectors ξ ∈ R

n.

We have:

Proposition B.0.5 Suppose (M,g) is a (connected) manifold of dimension n ≥
3, with g ∈ C0(M), containing a uniform end M̃ . Then (M,D) admits a
weighted Poincaré inequality.

Proof: Let r = (
∑

(xi)2)1/2 ∈ C∞(M̃ ) and χ = χ(r) ∈ C1
c (M̃) satisfy, for

some R0 > 1 and k ≥ 10,

χ(r) =
log(r/R0)

log k
, 2R0 ≤ r ≤ (k − 1)R0

and χ(r) = 1 for r > kR0, χ(r) = 0 for r ≤ R0. Then |χ′(r)| ≤ 2/(r log k), so
for any u ∈ C1

c (M)

∫

M
|D(χu)|2 dvM ≤ 2

∫

M
|Du|2 dvM +

4

(log k)2

∫

R0≤r≤kR0

1

r2
|u|2 dvM . (B.0.4)
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Now ∆0(r
2−n) = 0 for r ≥ 1 in R

n, n ≥ 3, so for any v ∈ C1
c (Rn\B(0, 1)) we

have

0 = −
∫

Rn

∂i(∂i(r
2−n) |v|2rn−2) dx

= (n− 2)2
∫

Rn

r−2|v|2 dx+ (n− 2)

∫

Rn

r−12〈v,Drv〉 dx.

Using Hölder’s inequality we obtain

(n − 2)2

4

∫

Rn

r−2|v|2 dx ≤
∫

Rn

|Dv|2 dx

and thus there is ǫ > 0 such that for all v ∈ C1
c (M̃ ),

ǫ

∫

M̃
r−2|v|2 dvM ≤

∫

M̃
|Dv|2 dvM . (B.0.5)

Thus combining (B.0.5) with v = χu and (B.0.4) gives

∫

r>kR0

r−2|u|2 dvM ≤
∫

M̃
r−2|χu|2 dvM

≤ C

∫

M̃
|D(χu)|2 dvM

≤ C

∫

M̃
|Du|2 dvM +

C

(log k)2

∫

M̃
r−2|u|2 dvM .

If k is chosen so that C/(log k)2 ≤ 1
2 then the last term may be absorbed into

the left hand side, giving

∫

r≥kR0

r−2|u|2 dvM ≤ C
∫

M
|Du|2 dvM . (B.0.6)

Lemma B.0.2 now applies and gives the required weighted Poincaré inequality.
✷
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