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We present solutions in the gauged Uð1Þ � Uð1Þ model of Witten describing vortons—spinning flux

loops stabilized against contraction by the centrifugal force. Vortons were heuristically described many

years ago; however, the corresponding field theory solutions were not obtained and so the stability issue

remained open. We construct explicitly a family of stationary vortons characterized by their charge and

angular momentum. Most of them are unstable and break in pieces when perturbed. However, thick

vortons with a small radius preserve their form in the 3þ 1 nonlinear dynamical evolution. This gives the

first ever evidence of stable vortons and impacts several branches of physics where they could potentially

exist. These range from cosmology, since vortons could perhaps contribute to dark matter, to QCD and

condensed matter physics.
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More than 25 years ago Witten introduced the idea of
superconducting cosmic strings in the context of a field
theory model that can be viewed as a sector of a grand
unification theory (GUT) [1]. The model admits classical
solutions describing strings (vortices) whose longitudinal
current can attain astronomical values (see Ref. [2] for a
review).

Soon after, it was realized that superconducting strings
could form loops whose current would produce an angular
momentum supporting them against contraction [3]. If sta-
ble, such cosmic vortons should be of considerable physical
interest, but until recently it was not clear if vortons are
stable or not, since the underlying field theory solutions
were not known. Various approximations were used to
describe vortons, for example, by viewing them as thin and
large elastic rings [4]. It was also realized that objects similar
to vortons could potentially exist also in other domains, as
for example in condensed matter physics [5], or in QCD [6].
Since superconducting strings exist in the Weinberg-Salam
theory [7], vortons are potentially possible also there.

The first field theory solutions describing stationary vor-
tons were found in the global limit ofWitten’s model, when
the gauge fields vanish [8]. These vortons have approxi-
mately equal radius and thickness, like a Horn torus.
Solutions describing thin and large vortons were later found
aswell; however, when perturbed, thinvortons turn out to be
dynamically unstable and break in pieces [9]. Although
discouraging, this result is actually quite natural since thin
vortons can be locally approximated by straight strings,
while the latter are known to become unstable for large
currents [2].

However, a more close inspection reveals that unstable
modes of superconducting strings have a nonzero minimal

wavelength [10], as in the case of the Plateau-Rayleigh
instability of a water jet [11]. Therefore, imposing periodic
boundary conditions with a short enough period should
remove all instabilities. As a result, thick vortons made of
short string pieces have chances to be stable.
In this Letter we present for the first time stationary

vorton solutions in the gauged Witten model, and our
vortons are thick. To study their stability, we simulate their
full 3þ 1 nonlinear dynamics in the limit of vanishing
gauge couplings. We find that most of them are unstable;
however, thick vortons with a large charge and the smallest
possible radius are stable. By continuity, it follows that
vortons with nonzero but small gauge couplings should be
stable as well.
We therefore present evidence of stable vortons, whose

features turn out to be quite different from those predicted
by the effective theories. This can impact several branches
of physics where vortons could potentially exist.
The model of Witten.—This is a theory of two Abelian

vectors AðaÞ
� interacting with two complex scalars

�a (a ¼ 1; 2) with the Lagrangian

L ¼ � 1

4

X
a

FðaÞ
��FðaÞ�� þX

a

ðD��aÞ�D��a � V: (1)

Here the gauge field strengths are FðaÞ
�� ¼ @�A

ðaÞ
� � @�A

ðaÞ
� ,

the gauge covariant derivatives D��a ¼ ð@� þ
igaA

ðaÞ
� Þ�a with gauge couplings ga, and the potential is

V ¼ X
a

�a

4
ðj�aj2 � �2

aÞ2 þ �j�1j2j�2j2 � �2�
4
2

4
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where �1 ¼ 1. If 4�2 > �1�2 and 2� > �2�
2
2 then the

global minimum of the potential (vacuum) is achieved
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for j�1j ¼ 1 and �2 ¼ 0. Fields Að1Þ
� , �1, �2 are massive

with masses, respectively, m2
A ¼ 2g21, m

2
1 ¼ �1, m

2
2 ¼ ��

1
2�2�

2
2, whereas Að2Þ

� is massless and can be identified

with an electromagnetic field. The theory has a local
Uð1Þ � Uð1Þ invariance and two Noether currents j

�
a ¼

2Reði��
aD

��aÞ with two conserved charges
R
jtad

3x.
The Euler-Lagrange equations are

@�F
ðaÞ�� ¼ gaj

�
a; D�D

��a þ @V

@j�aj2
�a ¼ 0: (3)

Assuming cylindrical coordinates x� ¼ ðt; �; z; ’Þ, we
make the ansatz for stationary, axially symmetric fields

�1¼X1þ iY1; �2¼ðX2þ iY2Þexpfið!tþm’Þg; (4)

where Xa, Ya as well as A
ðaÞ
� depend on �, z, and we impose

the gauge condition AðaÞ
� ¼ 0. Herem is an integer winding

number and! is a frequency. The fields should be globally
regular and the energy should be finite, which requires that
at infinity X1 ! 1 while all other amplitudes approach
zero. At the symmetry axis � ¼ 0, the amplitudes X2, Y2,

AðaÞ
’ vanish, while for the other amplitudes the normal

derivative @=@� vanishes. Under the reflection z ! �z
the amplitudes Ya are odd whereas all the others are even.

The choice of the ansatz implies that the first Noether
charge vanishes, while the second one is

Q ¼ 2
Z

d3xðX2
2 þ Y2

2Þð!� g2A
ð2Þ
t Þ: (5)

The energy is E ¼ R
Tt
td

3x and the angular momentum

J ¼
Z

Tt
’d

3x ¼ mQ; (6)

where the energy-momentum tensor is obtained by varying
the metric tensor T�

� ¼ 2g��@L=@g�� � ��
�L. In the

above formulas all fields and coordinates are dimensionless.
If � is the energy scale, then the dimensionful (boldfaced)

quantities are �a ¼ ��a, AðaÞ
� ¼ �AðaÞ

� , x� ¼ x��,
E ¼ �E; hence, � is the asymptotic value of �1.

Stationary vortons.—Inserting the ansatz (4) to the field
equations (3) gives, after separating the t and ’ variables,
an elliptic system of ten nonlinear partial differential equa-
tions for the ten functions of �, z. We solve these equations
with two different numerical methods: using the elliptic
partial differential equation solver FIDISOL based on the
Newton-Raphson procedure [12], and also minimizing
the energy within a finite element approach provided by
the FREEFEM++ library [13].

We look for solutions with a toroidal structure and
nontrivial phase windings along both torus generators.
Apart from the azimuthal winding number m, there is a
second integer n determining the winding of the phase of
�1 around the boundary of the (�, z) half plane. If n � 0
then �1 vanishes at a point (�0, 0) corresponding to the
center of the closed vortex forming thevorton, and the phase

of �1 winds around this point. Prescribing nonzero values
of n, m, and Q (see the Supplemental Material [14] for
details), the fields cannot unwind to vacuum, and the iter-
ative numerical procedure converges to a smooth limiting
configurationwith a finite radius�0.We have constructed in
this way vortons for n ¼ 1, 2 and m ¼ 1; . . . ; 12, and also
solutions similar to Q balls [15] for n ¼ 0, m ¼ 0; 1; . . .
(see the Supplemental Material [14]).
The vorton can be visualized as a toroidal tube confining

a magnetic flux of ~Bð1Þ ¼ ~r� ~Að1Þ
, since �1 � 0 inside

the tube and thus the first U(1) is restored. �2 is nonzero
inside the tube, giving rise to a charged condensate and to a
persistent electric current along the tube. The current cre-
ates a momentum along the azimuthal direction, which
gives rise to an angular momentum along the z direction.

Outside the vorton tube the massive fields Að1Þ
� , �1, �2

rapidly approach their vacuum values and there remains

only the long-range massless Að2Þ
� generated by the electric

current confined inside the vorton tube. At large r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
one has Að2Þ

t ¼ Q=ð4	rÞ þ � � � and Að2Þ
’ ¼

� sin
=r2 þ � � � ; therefore, from far away the vorton looks
like a superposition of an electric charge Q with a mag-
netic dipole �.
Figure 1 shows the 3D solution profiles for an m ¼ 1

vorton. One can see that the vorton tube is very thick and

compact. The vortex magnetic field ~Bð1Þ ¼ ~r� ~Að1Þ
and

the electric current ~j2 are tangent to the azimuthal lines. The

electric field ~Eð2Þ ¼ � ~rAð2Þ
t is mostly oriented along the

radial direction and supports a nonzero flux at infinity,Q ¼H
d ~Eð2Þ � d ~S ¼ g2Q. The massless magnetic field ~Bð2Þ ¼

~r� ~Að2Þ
at large r is of magnetic dipole type.

Vortons can be labeled by their charge Q and the integer
spin m ¼ J=Q (assuming that n ¼ 1). The vorton radius
�0 is not very sensitive to the value of Q but increases
rapidly with m, so that for large m vortons are thin and
large, with the radius much larger than the thickness. On
the other hand, increasing Q increases the thickness of the
vorton tube, so that for large Q vortons are thick and look
almost spherical.
The frequency ! can be used instead of Q to character-

ize the solutions, which exist only within a finite frequency
range !� <!<!þ. Both E and Q diverge for ! ! !�
and have a minimum in between, as shown in Fig. 2.
Vortons can be viewed as boson condensates, which is
why their charge cannot be too small, since the boson
condensation is not energetically favored for small quan-
tities of the field quanta.
For ga ¼ 0 the gauge fields vanish and the vortons are

global, made of the scalars �a alone [8]. For ga � 0 the
gauge fields are excited and increase the total energy and
charge, as shown in Fig. 2. Solutions do not exist for
arbitrary values of �a, �2, �, ga but only for some regions
in the parameter space. For example, fixing all parameters
and also ! and varying g1 ¼ g2, the solutions exist
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only within a finite range of gauge couplings, as is seen in
Fig. 2.

Dynamical vortons.—To analyze the vorton stability, we
simulate their nonlinear 3þ 1 temporal dynamics. In
doing this, we consider only the global vortons, since
simulating dynamics of the gauge fields would require
too much computer power. However, we expect the results
obtained in the global case to apply to the fully gauged
vortons as well, at least for small enough gauge couplings
ga. Indeed, for ga ¼ 0 the vorton is made of scalars �a.
For small nonzero ga their global currents give rise to the

OðgaÞ source in the gauge field equations; hence, AðaÞ
� ¼

OðgaÞ. The backreaction of the gauge fields on the scalars
is Oðg2aÞ and can be neglected as compared to the reaction
of the scalars on themselves. For stationary vortons this is
confirmed by the numerics, as is seen in Fig. 2. Therefore,
one can expect the temporal dynamics of vortons with
small ga to be dominated by the scalars only; hence it
can be approximated by the global vorton dynamics.

Vortons with large m develop pinching deformations
breaking them in pieces [9]. However, for smallm, vortons
could be stable, since they are compact and thick and have
no room for the instability to settle in. To verify this, we
consider a hyperbolic evolution scheme based on an
implicit �-Newmark finite difference approximation (see
the Supplemental Material [14] for details). The initial
configuration is a stationary, axially symmetric vorton. It
becomes automatically perturbed by the space discretiza-
tion when adapted from 2D to the 3D mesh, which triggers
a nontrivial temporal evolution. The natural time scale is
set by the value of ! of the underlying vorton solution,
which is of order one. We integrate with the time step
�t ¼ 0:1 and find that the m � 3 vortons very quickly
become strongly deformed and then break in pieces. The
time they take to break decreases rapidly as m grows (see
Fig. 3 and the Supplemental Material [14] for the videos).
The products of the vorton decay are typically two or three
out-spiraling fragments of spherical topology.

We therefore conclude that thin and large vortons are
unstable, thus confirming the result of Ref. [9]. One should
say that a different conclusion was previously made in
Ref. [16], where thin vortons were found to be stable.
Since neither our analysis nor that of Ref. [9] confirms
this, it is possible that the conclusion of Ref. [16] is an
artifact of modifying the scalar potential made in that work
in order to improve the stability behavior.
We finally turn to vortons with m ¼ 1; 2 and choose a

large value Q, in which case the vortons are compact and
thick. For m ¼ 2 we cannot make a definite conclusion,
since the vortons do not actually break but sometimes
become strongly deformed. However, nothing at all hap-
pens to them ¼ 1 vortons. As the time increases, they only
move slowly in the box, sometimes reflecting from the
boundary, without changing shape. We integrated up to
t� 103 (which requires weeks of runtime) without
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FIG. 2 (color online). Left panel shows E against ! for the
values of gauge couplings ðg1; g2Þ ¼ ð0:008; 0:021Þ (dashed),
(0.012, 0.012) (solid), (0.008, 0.027) (dotted). Right panel shows
E, Q, � against g1 ¼ g2 for a fixed ! ¼ 0:804. In both cases
�1 ¼ 41:1, �2 ¼ 40, � ¼ 22:3, �2 ¼ 1, n ¼ 1, m ¼ 2.

FIG. 1 (color online). Profiles of the stationary vorton solution for Q ¼ 1500 and n ¼ 1, m ¼ 1 for the parameter values �1 ¼ 41:1,
ð�2; �2Þ ¼ ð30; 1Þ, � ¼ 20, and g1 ¼ g2 ¼ 0:01. The first panel displays constant energy surfaces. The second panel shows surfaces of

constant j�1j2 and the magnetic field ~Bð1Þ (cones). One has ~Eð1Þ ¼ 0. The third panel shows j�2j2 isosurfaces and the electromagnetic

current ~j2 (cones). The last panel shows the electric field ~Eð2Þ (cones), while the isosurfaces show its magnitude. The gray (red online)
corresponds to large values, the dark gray (blue online) to small values, and the light gray (yellow online) to intermediate values.
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noticing any change in their behavior. We also checked
that increasing the size of the box does not change any-
thing, so that one cannot say that the boundary has a
stabilizing effect. We therefore conclude that vortons
with the lowest spin and a large charge are dynamically
stable (see the Supplemental Material [14] for more dis-
cussion). Intuitively, this is because they are so thick that
they are hard to pinch.

Interestingly, a very similar conclusion was made for the
spinning light bullets, which share many properties with
vortons [17]. These are nonrelativistic solutions for a com-
plex scalar field with a t, ’-dependent phase (as for �2),
and they also have toroidal profiles. Their Eð!Þ depen-
dence is similar to that shown in Fig. 2. It was found that
the m ¼ 1 solutions with a large charge and ! close to !�
preserve their shape in the 3þ 1 dynamical evolution [17].
Exactly the same statement applies for our relativistic
vortons.

In summary, for the first time since the vortons were
heuristically described almost 25 year ago [3], we present
the underlying stable solutions within the Uð1Þ � Uð1Þ
gauge field theory of Witten [1]. We can now make some
estimates. Assuming the original motivation of Witten,
the energy scale should be of the GUT magnitude
�� 1014 GeV. Using the value E� 5� 103 for esti-
mates, it follows that vortons are extremely heavy, with
E� 5� 1017 GeV, which is not far from the Planck en-
ergy. On the other hand, their minimal Noether chargeQ�
5� 103 is actually not so large as compared to the average
particle density in the hot early universe. Therefore, vor-
tons could be abundantly created due to charge fluctuations
in the course of a phase transition via the Kibble mecha-
nism [18], if only GUTs indeed applied in the past. Being
classically stable, vortons could disintegrate via a quantum

tunneling towards the �0 ¼ 0 state, but this process should
be exponentially suppressed, and in fact quantum fluctua-
tions can also have a stabilizing effect by preventing the
collapse to zero size [19]. Vortons could probably evapo-
rate via interactions with GUT fermions [20], but this
process should stop after the GUT epoch. Therefore, it is
not inconceivable that some relic vortons could still be
around and contribute to dark matter.
Let us consider ga ¼ 0 vortons. For stationary fields (4),

Eqs. (3) for �a can formally be interpreted [8] as the
nonrelativistic Gross-Pitaevskii equation for a two-
component Bose-Einstein condensate (BEC). This can
describe ultracold atomic gazes with two hyperfine states,
such as 87Rb [21]. Scalars �a then correspond to the two
BEC order parameters, one of which creates a vortex while
the other one condenses in the vortex core. Our solutions
therefore describe stationary vortons made of loops of such
vortices, whose potential existence has been much dis-
cussed [5]. In fact, vortex rings in two-component BECs
have been observed experimentally [22], although it is not
completely clear if they support an angularmomentum [23].
�1 and �2 can also be interpreted [24], respectively, as

the d-wave superconducting and antiferromagnetic order
parameters in the SO(5) model of high Tc superconductiv-
ity [25]. This model admits d-wave superconducting vor-
tices with an antiferromagnetic core [26], while our
solutions describe loops made of these vortices. Such
vorton quasiparticles could be important for the supercon-
ducting phase transition in this model [24].
Equally, scalars �a can be viewed as describing a

condensate of (Kþ, K0) mesons in QCD [27]; hence,
our solutions describe the K vortons, whose existence
was conjectured in Ref. [6]. Setting the scale to be
�� 200 MeV gives for their energy E� 1 TeV. Such
objects could probably exist in dense QCD matter, as for
example in neutron stars [28], which may affect their
electromagnetic and neutrino transport properties.
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