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TOPOLOGICAL SOLITONS

Topological solitons occur in many nonlinear classical field theories. They are
stable, particle-like objects, with finite mass and a smooth structure. Exam-
ples are monopoles and Skyrmions, Ginzburg–Landau vortices and sigma-model
lumps, and Yang–Mills instantons. This book is a comprehensive survey of
static topological solitons and their dynamical interactions. Particular emphasis
is placed on the solitons that satisfy first-order Bogomolny equations. For these,
the soliton dynamics can be investigated by finding the geodesics on the moduli
space of static multi-soliton solutions. Remarkable scattering processes can be
understood this way.
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College. He introduced and helped develop the method of modelling topological
soliton dynamics by geodesic motion on soliton moduli spaces. He also discov-
ered, with Frans Klinkhamer, the unstable sphaleron solution in the electroweak
theory of elementary particles. professor Manton was awarded the London Math-
ematical Society’s Whitehead Prize in 1991, and he was elected a fellow of the
Royal Society in 1996.

Paul Sutcliffe received his Ph.D. from the University of Durham in 1992.
Following postdoctoral appointments at Heriot-Watt, Orsay and Cambridge,
he moved to the University of Kent, where he is now Reader in Mathematical
Physics. For the past five years, he has been an EPSRC Advanced Fellow. He
has researched widely on topological solitons, especially multi-soliton solutions
and soliton dynamics, and has found surprising relations between different kinds
of soliton. One of his principal research contributions was revealing the symmet-
ric structures formed by Skyrmions and monopoles, their links with fullerenes in
carbon chemistry, and finding associated novel scattering processes. He also dis-
covered, with Richard Battye, the first stable knotted soliton solution in classical
field theory.
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J. A. de Azcárrage and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some Applica-
tions in Physics†

O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems
V. Belinkski and E. Verdaguer Gravitational Solitons
J. Bernstein Kinetic Theory in the Early Universe
G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space†

M. Burgess Classical Covariant Fields
S. Carlip Quantum Gravity in 2+1 Dimensions
J. C. Collins Renormalization†

M. Creutz Quarks, Gluons and Lattices†

P. D. D’Earth Supersymmetric Quantum Cosmology
F. de Felice and C. J. S Clarke Relativity on Curved Manifolds†

P. G. O. Freund Introduction to Supersymmetry†

J. Fuchs Affine Lie Algebras and Quantum Groups†

J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course
for Physicists†

Y. Fujii and K. Maeda The Scalar–Tensor Theory of Gravitation
A. S. Galperin, E. A. Ivanov, V. I. Orievetsky and E. S. Sokatchev Harmonic Superspace
R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity†
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Preface

Topological solitons have been investigated by theoretical physicists and
mathematicians for more than a quarter of a century, and it is now a good
time to survey the progress that has been made. Many types of soliton
have been understood in detail, both analytically and geometrically, and
also numerically, and various links between them have been discovered.

This book introduces the main examples of topological solitons in clas-
sical field theories, discusses the forces between solitons, and surveys in
detail both static and dynamic multi-soliton solutions. Kinks in one di-
mension, lumps and vortices in two dimensions, monopoles and Skyrmions
in three dimensions, and instantons in four dimensions, are all discussed.
In some field theories, there are no static forces between solitons, and
there is a large class of static multi-soliton solutions satisfying an equa-
tion of the Bogomolny type. Deep mathematical methods can be used to
investigate these. The manifold of solutions is known as moduli space, and
its dimension increases with the soliton number. We survey the results in
this area. We also discuss the idea of geodesic dynamics on moduli space,
which is an adiabatic theory of multi-soliton motion at modest speeds
when the static forces vanish, or almost vanish.

Some variants of the solitons mentioned above are considered, but
we do not consider the coupling of fermions to solitons, nor solitons in
supersymmetric theories, where there are sometimes remarkable duali-
ties between the solitons and elementary particles, nor solitons coupled
to gravity, although all these topics are interesting. Also not discussed
are the solitons of string theory, known as branes, and the related non-
commutative solitons. Much recent work has been on these, but we are
not knowledgable enough to write about them. There is some discussion
of Skyrmion quantization, because this is essential for the physical inter-
pretation of Skyrmions, but nothing else on soliton quantization. At the
end we discuss the unstable analogues of solitons, known as sphalerons.

ix



x Preface

To make this book reasonably self-contained, we start with an intro-
duction and three general chapters on classical field theory and the math-
ematical tools useful for understanding various solitons. For those new to
the subject we recommend a quick read through these chapters, and then
a careful study of the subsequent chapters on kinks and lumps. Here,
gauge fields do not occur. The later chapters are longer and some of the
material technically harder. The reader can return to the earlier chapters
for some of the necessary background material while reading these.

We have tried to make the discussion mathematically sound, at the
level customary in theoretical physics, and many calculations are given
in detail. But the analysis and topology should be regarded as heuristic.
Fortunately, many aspects of the theory we present have been given a rig-
orous analytical basis through the work of Taubes, Uhlenbeck and Stuart,
among others. The geometrical and topological aspects have been put on
a firm basis by Atiyah, Hitchin and their collaborators.

Many numerical results concerning solitons have been obtained over
the past decades, and some are presented here. To ensure the accuracy
of what we present we have recalculated and plotted afresh almost every-
thing. This was partly to achieve consistency with our conventions and
notation, partly to take advantage of up-to-date computational power,
and partly to avoid the need to copy graphs from other publications.

We would like to record here our thanks to many friends and colleagues
who have shared our interest in solitons.

N. S. M. especially thanks Peter Goddard for introducing him to the
subject, for supervising his Ph.D. thesis and for later support, and
Michael Atiyah (now Sir Michael) for inspirational guidance on many
topics at the interface of mathematics and theoretical physics. He thanks
those who have collaborated on joint papers in this area: Peter Forgács,
Roman Jackiw, Ian Affleck, Orlando Alvarez, Frans Klinkhamer, Gary
Gibbons, Peter Ruback, Fred Goldhaber, Andy Jackson, Andreas Wirzba,
Michael Atiyah, Robert Leese, Nigel Hitchin, Michael Murray, Houari
Merabet, Bernard Piette, and Martin Speight. He would also like to
warmly thank his Ph.D. students who have worked in the area of topo-
logical solitons, and in some cases collaborated on papers: Mark Temple-
Raston, Trevor Samols, Bernd Schroers, Margaret James, Paul Shah, Kim
Baskerville, Conor Houghton, Sazzad Nasir, Patrick Irwin, Steffen Kr-
usch, Nuno Romão, João Baptista and Anne Schunck. Many results and
ideas presented in this book are due to them.

N. S. M. is grateful to CERN for a Scientific Associateship during part of
2001, which allowed significant progress on this book. He is also grateful to
Julia Blackwell for typing drafts of many of the chapters. He particularly
thanks Anneli and Ben for their love and understanding while enduring
many evenings and weekends of book writing and rewriting.
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P.M. S. was fortunate to be an undergraduate and Ph.D. student at
Durham during a time when there were many soliton experts around.
He thanks Ed Corrigan, David Fairlie, Robert Leese, Bernard Piette and
Ian Strachan for many valuable discussions, and in particular Wojtek
Zakrzewski and Richard Ward, his Ph.D. supervisor. As a research fellow
in Cambridge he benefited greatly from conversations with Sir Michael
Atiyah, Gary Gibbons, Nigel Hitchin, Trevor Samols and Paul Shellard.
He would like to thank all his collaborators, and particularly Richard
Battye, Conor Houghton and Theodora Ioannidou. P. M. S. acknowledges
the EPSRC for an advanced fellowship held at the time of writing this
book. He thanks Zoë for her love and motivation (through continually
asking “isn’t it finished yet?”), and Steven and Jonathan for warning
that a book with no wizards in it will never sell.

Together, we especially thank Wojtek Zakrzewski. The writing of this
book emerged from an earlier project he initiated, which unfortunately
did not come to fruition.





1
Introduction

1.1 Solitons as particles

In the 1960s and early 1970s a novel approach to quantum field theory
developed and became popular. Physicists and mathematicians began
to seriously study the classical field equations in their fully nonlinear
form, and to interpret some of the solutions as candidates for particles
of the theory. These particles had not been recognized before – they are
different from the elementary particles that arise from the quantization
of the wave-like excitations of the fields. Their properties are largely
determined by the classical equations, although a systematic treatment
of quantum corrections is possible.

A characteristic feature of the new, particle-like solutions is their topo-
logical structure, which differs from the vacuum. If one supposes that
quantum excitations about the vacuum are associated with smooth de-
formations of the field, then such excitations do not change the topology.
So the usual elementary particles of quantum field theory, e.g. the pho-
ton, have no topological structure. The new particles owe their stability to
their topological distinctiveness. Although they are often of large energy,
they can not simply decay into a number of elementary particles.

In many cases, the topological character of the field is captured by a
single integer N , called the topological charge. This is usually a topolog-
ical degree, or generalized winding number of the field. The topological
charge N can be identified as the net number of the new type of particle,
with the energy increasing as |N | increases. The basic particle has N = 1;
the minimal energy field configuration with N = 1 is a classically stable
solution, as it can not decay into a topologically trivial field. The energy
density is smooth, and concentrated in some finite region of space. Such
a field configuration is called a topological soliton – or just soliton. The

1



2 Introduction

ending “-on” indicates the particle-like nature of the solution. There is
usually a reflection symmetry reversing the sign of N , and hence there
is an antisoliton with N = −1. Soliton-antisoliton pairs can annihilate
or be pair-produced. Field configurations with N > 1 are interpreted as
multi-soliton states. Sometimes it is energetically favourable for these to
decay into N well separated charge 1 solitons; alternatively they can relax
to a classical bound state of N solitons.

The length scale and energy of a soliton depend on the coupling con-
stants appearing in the Lagrangian and field equations. In a Lorentz
invariant theory, and in units where the speed of light is unity, the energy
of a soliton is identified as its rest mass. In contrast, the elementary par-
ticles have a mass proportional to Planck’s constant h̄ (this is sometimes
not recognized, because of the choice of units). Quantum effects become
small in the limit h̄ → 0. In this limit, the topological soliton has finite
mass, but the elementary particle mass goes to zero. Furthermore, the
quantum corrections to the soliton mass go to zero.

There are important relationships between the solitons of a theory and
the wave-like fields which satisfy the linearized field equations. It is the
quantization of the latter that gives the elementary particle states, with
the nonlinear terms being responsible for interactions between these parti-
cles. First, in the region of space far from the soliton, the field approaches
the vacuum, and the rate of approach is determined by the linearized field
equation. Thus, if the linearized equation has no mass term, making the
elementary particles massless, then the soliton’s tail will be long-range,
falling off with an inverse power of distance. If the linearized equation has
a positive mass coefficient m, implying that the elementary particle mass
is mh̄ to first approximation, then the soliton field approaches the vacuum
exponentially fast, the difference being e−mr corrected by powers of r, at
a distance r from the soliton core. This is called a Yukawa tail. Typi-
cally, the constant coefficient multiplying this is not determined by the
linearized equation, but must be calculated using the full field equations
solved throughout space.

Secondly, when one has two well separated solitons, their interaction
energy depends on their separation in rather a simple way, completely
determined by the linearized, asymptotic field of the solitons. The deriva-
tive of the interaction energy with respect to the separation is the force
between the solitons.

Thirdly, the linearized theory can be used to describe the scattering
of waves off the soliton. Here the equations are linearized around the
soliton solution, rather than the vacuum. In two or three dimensions this
involves partial wave analysis which shows that incoming plane waves
emerge after collision with the soliton as radially scattered waves. This
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has the quantum interpretation [343]:∗

Soliton + elementary particle −→ Soliton + elementary particle .

There are simplifications in one space dimension.
Finally, the linearized waves are important in soliton-soliton scatter-

ing. Although topological charge conservation implies that solitons do
not disappear, nevertheless some of the soliton kinetic energy can be con-
verted into radiation during the scattering process, especially in a high
energy, relativistic collision. The radiation disperses into space, and at
low amplitude is described by the linearized field equations. Sometimes,
the total amount of radiation can be estimated using the linearized the-
ory, treating the moving solitons as sources, but this only works at modest
collision speeds. The interpretation in the quantized field theory is that
soliton-soliton collisions can produce elementary particles:

Soliton + Soliton −→ Soliton + Soliton + elementary particles .

1.2 A brief history of topological solitons

There were a number of antecedents to the discovery of particle-like topo-
logical solitons in field theory. One of the first was Kelvin’s vortex model
of atoms [400]. Kelvin suggested that these could be represented by knot-
ted structures in an ideal fluid. The topology of the knot would be un-
changing, corresponding to the chemical immutability of atoms; the many
distinct knot types would classify the many naturally occurring elements.
The dynamics of the fluid, leading to vibrations of the knot shape, would
explain atomic spectra. However, constructing partial differential equa-
tions (PDEs) with knot-like solutions is not easy. The Skyrme-Faddeev
model, discussed at the end of Chapter 9, is a particularly successful
example.

With the discovery of the electron, and later the constituents of the
nucleus, our modern view of atoms emerged. Now the problem was to
understand the subatomic particles. A point-like electron has an infi-
nite Coulomb energy, classically. Abraham and Lorentz [269], and later
Born and Infeld [59] made various attempts to give finite structure to the
electron. The Abraham-Lorentz model gives the electron a distributed
charge density, and requires short-range scalar interactions to stabilize
the electric repulsion. The structure is mathematically rather arbitrary,
and there are difficulties maintaining relativistic invariance. However, as

∗ Most references are postponed until the later, more specialized chapters, starting
with Chapter 5. We only give references before then to key ideas and those that are
not discussed later.
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we shall see, the balancing of two types of force is characteristic of several
types of topological soliton. The Born-Infeld model is a nonlinear variant
of Maxwell’s electrodynamics. Here, an electrically charged point source
gives rise to finite field strengths and finite total energy. However, the
fields are not smooth, having a discontinuous gradient at the source. The
solution is not really a soliton. In both types of model, the length scale
is the “classical electron radius”, which is chosen such that the electro-
static field energy outside this radius, for a Coulomb field, is of order the
electron mass.

One further antecedent was the Dirac monopole. This is a singular so-
lution of the usual electromagnetic equations, with a net magnetic charge.
It has a point singularity, and has infinite energy. However, the fields at
a fixed distance r from the source are topologically interesting, and their
topology is related to the magnetic charge, which can only occur in inte-
ger multiples of the quantum 2πh̄/q, where q is the basic unit of electric
charge. We shall describe the Dirac monopole in detail in Chapter 8 prior
to a discussion of soliton-like magnetic monopoles.

Historically, the first example of a topological soliton model of a particle
was the Skyrmion. For a survey of Skyrme’s pioneering work, see the book
compiled by Brown [68]. The Skyrmion emerged from the Yukawa model,
a field theory for spin 1

2 nucleons (protons and neutrons) and the three
types of spinless pion (π+, π−, π0), with the relatively heavy nucleons
interacting through pion exchange. Skyrme believed that the nucleons in
a nucleus were moving in a nonlinear, classical pion medium. This made
him reconsider the pion interaction terms. Symmetry arguments led to a
particular form of Lagrangian for the three-component pion field, with a
topological structure which allowed a topologically stable soliton solution
of the classical field equation, distinct from the vacuum. This Skyrmion
has rotational degrees of freedom, and Skyrme had the insight to see that
when these were quantized it was quite permissible for the state to have
spin 1

2 . Thus a purely bosonic field theory could lead to spin 1
2 fermionic

states, which could be identified as nucleons. Within Skyrme’s model it
therefore became unnecessary to include independent nucleons coupled
to the pion fields. They emerge naturally as the soliton states of the
theory. Subsequent work has shown that multi-Skyrmion solutions have
some relation to nuclei, and recently there has been considerable progress
finding classical multi-Skyrmion solutions with Skyrmion numbers up to
20 and beyond.

Skyrme at first found it challenging to analyse his pion field theory in
three space dimensions. As a toy model he proposed a Lorentz invari-
ant field theory in one space dimension, where the field has values on a
circle. This is the sine-Gordon theory. Here there is also a topological
soliton. Developing Skyrme’s work, Coleman [85] and Mandelstam [274]
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later showed that an exact quantization of the sine-Gordon theory is pos-
sible, and it has both elementary meson states, analogous to pions, and
solitons. The solitons behave to a certain extent as fermions, although in
one dimension there is no possibility of spin.

Another, slightly earlier strand in the historical development came from
condensed matter theory. Condensed matter systems are fundamentally
quantal in nature, and non-relativistic, and involve complicated, many
electron states. Against this background, a number of phenomenologi-
cal approaches were developed based on classical field theory. The basic
field usually represents a density of fermions, and is assumed to be slowly
varying in space and time. This field carries sufficient information about
the quantum state that one can write down an energy function for the
field. This is the Ginzburg-Landau (GL) approach. Its most famous use
is in describing superconductors, where a complex scalar field φ repre-
sents the density and phase of the superconducting paired electrons. GL
theory is superceded by the more fundamental BCS theory [33] in certain
circumstances, but is still valuable for studying spatially varying states,
and types of superconductor where a more fundamental theory is lacking.

In the GL theory the field φ is coupled to the electromagnetic gauge
potential aµ. One basic feature is that in the lowest energy state, φ is
a non-zero constant φ0. The magnitude of φ0 is determined by the GL
energy function, but the phase is arbitrary. It may be assumed that φ0

is real and positive, but this is a gauge choice. One says that the phase
symmetry φ #→ eiαφ is spontaneously broken. A consequence is that
the electromagnetic field acquires a length scale, which accounts for the
finite penetration depth of the magnetic field in a superconductor. In the
relativistic generalization of GL theory, the photon acquires a mass.

It was discovered by Abrikosov in 1957 that the GL energy function
has topological solitons. The topology arises from the fact that the vac-
uum manifold is a circle, since the phase of φ0 is arbitrary. The solitons
really only exist in the version of the theory in two space dimensions –
they are called magnetic flux vortices, or simply vortices. Along a large
circle surrounding a basic vortex, the phase of φ changes by 2π. In three
dimensions these vortices extend into tubes, and they carry magnetic flux
through the superconductor. These magnetic flux vortices persist in the
relativistic theory, as shown by Nielsen and Olesen, and can be interpreted
either as particles in two dimensions or as massive, relativistic strings in
three dimensions. If they were present at very large scales in the universe,
they would be called cosmic strings.

The GL theory is an example of a gauge theory with spontaneously
broken gauge symmetry. The gauge group is the abelian group U(1).
In the late 1960s such models with non-abelian gauge symmetry were
proposed to unify the electromagnetic and weak interactions. The famous
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electroweak theory of Glashow-Weinberg-Salam, with SU(2)×U(1) gauge
symmetry spontaneously broken to U(1) became established as part of
the standard model of elementary particle physics, being confirmed by
the subsequent discovery of the massive W± and Z gauge bosons in the
1980s. The breaking is produced by a Higgs scalar field, whose vacuum
manifold is the orbit space SU(2) × U(1)/U(1), which is a 3-sphere.

The non-trivial topology of the 3-sphere encouraged a search for stable
topological solitons in the electroweak theory, but it now appears fairly
certain that none exist. However, the theory does have some non-trivial
unstable solutions related to the topology. These solutions are called
sphalerons (sphaleros ≡ unstable).

Until the Glashow-Weinberg-Salam theory was experimentally estab-
lished, other gauge theories with spontaneously broken symmetry were
considered. Particularly interesting among these is the Georgi-Glashow
model, with SO(3) symmetry broken to U(1). The Higgs vacuum man-
ifold here is SO(3)/U(1), a 2-sphere. This is just the right structure to
permit soliton solutions in three dimensions. The Higgs field defines a
map from the 2-sphere at spatial infinity to the 2-sphere of the Higgs
vacuum manifold, whose degree is the topological charge. As for the GL
vortex, the topological structure is associated with a non-trivial magnetic
field, which in this case points radially inwards or outwards. The Georgi-
Glashow model therefore has magnetic monopoles as topological solitons.
This was discovered independently by ’t Hooft and Polyakov in 1974.

An important ingredient of the standard model of particle physics is
the strongly interacting sector, described by quantum chromodynamics
(QCD). QCD is a pure Yang-Mills gauge theory, without Higgs fields,
coupled to fermionic quark fields. This is the theory to which the Skyrme
model is possibly a low energy approximation [428]. If the quarks are ig-
nored, there is just a pure gauge theory, with gauge group SU(3), whose
classical field equation is the Yang-Mills equation. This does not have
soliton solutions in three space dimensions. However, the Yang-Mills
equation in four space dimensions does have topological soliton solutions,
known as instantons. The name arises because four-dimensional space
can be regarded as Euclideanized space-time, where the Minkowski metric
ds2 = dt2−dx ·dx is replaced by the Euclidean metric ds2 = dt2 +dx ·dx.
A solution localized in four-dimensional space can therefore be interpreted
as simultaneously localized in three-dimensional space and in (Euclidean)
time. It therefore corresponds to a spatially localized event occurring in
an instant.

In many circumstances, the amplitudes for quantum processes can be
treated as Euclidean functional integrals. In the semi-classical approxi-
mation, the integrals are dominated by the classical solutions. Serious
attempts have been made to understand quantum Yang-Mills theory,
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especially for gauge group SU(2), by assuming that the functional inte-
gral is dominated by instantons [71]. This approach is hard to implement
in pure Yang-Mills theory, because the integration must involve multi-
instanton/multi-anti-instanton contributions. However, in supersymmet-
ric Yang-Mills theory with certain geometries, just the multi-instantons
contribute, and a precise calculation of quantum correlation functions can
be made taking this into account [112].

1.3 Bogomolny equations and moduli spaces

A key discovery, which has aided the study of topological solitons in many
field theories, is that the field equations can be reduced from second to
first order PDEs, provided the coupling constants take special values.
Several examples were exposed in a seminal paper of Bogomolny in 1976,
and many others are now known. Generally, the first order equations are
called Bogomolny equations. Bogomolny equations never involve time
derivatives, and their solutions are static soliton or multi-soliton configu-
rations.

Bogomolny showed that in these special field theories, the energy is
bounded below by a numerical multiple of the modulus of the topologi-
cal charge N , with equality if the field satisfies the Bogomolny equation.
Thus, solutions of the Bogomolny equation of a given charge all have the
same energy; and since the fields minimize the energy, they are automat-
ically stable. In general the Hessian, or second variation of the energy, in
the background of a static solution, has a spectrum consisting of a finite
number of negative eigenvalues and a finite number of zero eigenvalues.
The corresponding (normalizable) eigenfunctions are called negative and
zero modes, respectively. There are also infinitely many positive eigenval-
ues. Bogomolny solitons are stable in the sense that they have no negative
modes; although zero modes may still lead to rolling instabilities. They
also automatically satisfy the Euler-Lagrange equations, which normally
only imply that a static solution is a stationary point of the energy.

Kinks in one dimension are solutions of a Bogomolny equation, although
this is rather a trivial case. The reduction of the GL equations for gauged
vortices to a coupled pair of Bogomolny equations occurs at the critical
value of the coupling separating the Type I and Type II superconducting
regimes. Monopoles satisfy a Bogomolny equation if the Higgs field is
massless. Instantons satisfy the self-dual Yang-Mills equation, which is
like a Bogomolny equation in four-dimensional space.

The set of solutions to the Bogomolny equation of a particular theory
is often large. The N -soliton solution space, with any gauge freedom
quotiented out, is called the N -soliton moduli space, and denoted MN .
It is a smooth manifold. Originally, index theorems were used to establish
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the dimension of MN . The dimension is a small integer multiple of the
number of solitons, the multiple just counting the number of degrees of
freedom of each soliton. Subsequently the global structure of MN has
been clarified.

The existence of non-trivial solutions of Bogomolny equations mathe-
matically explains why the force between solitons is sometimes zero. For
example, for two well separated monopoles, the total force between them
is the sum of a magnetic repulsion and also a scalar attraction (because
of the Higgs field). When the Higgs field is massless, both forces are long
range, and in fact cancel. So far this only implies that the leading order
1/r2 force vanishes as r → ∞. Without the Bogomolny equation, it would
be much more difficult to understand the exact cancellation of forces. But
Taubes proved that static solutions exist with monopoles at (essentially)
any separation. The nature of such solutions is now understood in great
detail. The fact that the energy of these solutions is independent of sep-
aration implies that the forces exactly cancel.

1.4 Soliton dynamics

So far, we have discussed static solitons in various field theories, and their
interpretation as particles. An important issue is to understand the dy-
namics and interaction of these solitons. In a relativistic field theory, the
dynamical equations are essentially uniquely determined as the relativistic
generalization of the Euler-Lagrange equations for static fields. A soliton
can be boosted to move at an arbitrary speed less than the speed of light.
In a non-relativistic theory, like the GL theory of superconductors, it is
not so easy to determine the correct equations for time dependent fields,
and experimental input is needed. The dynamics may or may not be
dissipative. However, we shall show that in almost all situations, solitons
behave like ordinary particles.

When solitons are well separated they can be approximated as point-like
objects carrying charges, or perhaps more complicated internal structure.
The charges are defined in terms of the asymptotic form of the fields sur-
rounding the soliton. One can calculate the forces between well separated
solitons, and their relative motion, and interpret the result in terms of the
charges. For example, Bogomolny monopoles carry a magnetic charge and
a scalar charge. As we mentioned previously, for monopoles at rest the
corresponding forces exactly cancel; however, for monopoles in relative
motion, they do not cancel, and this results in velocity dependent forces,
and hence accelerations. Also there is a net force between a monopole and
antimonopole. The forces can be calculated directly from the time depen-
dent field equations, or by considering integrals of the energy-momentum
tensor. There is no need to postulate a force law for solitons, as one needs
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to do for electrically charged point particles, where the force

F =
q2r
4πr3

(1.1)

between two charges q at separation r is a basic postulate of electromag-
netic theory, supplementing Maxwell’s equations.

Thus topological solitons realize a dream of theoretical physics, which
is to give a unified understanding of the existence and internal structure
of particles, and of the dynamics and interactions of particles. All these
things follow from the nonlinear dynamical field equations.

The treatment of solitons as point-like objects breaks down when the
solitons come close together. If solitons collide at high speed, then the
scattering behaviour can be very complicated, the only certainty being
the conservation of topological charge. Thus if a soliton and antisoliton
collide, they may annihilate and the energy emerge as wave-like radia-
tion – the field pattern is generally complicated and can only be found
numerically. Alternatively, the soliton and antisoliton may survive and
separate, with a smaller amount of radiation being generated.

In a high energy soliton-soliton collision, there must be at least two
solitons surviving the collision, but there can again be a complicated
radiation pattern carrying away part of the energy, and part of this may
convert into soliton-antisoliton pairs.

However, there are circumstances when soliton-soliton collisions occur
rather gently, and adiabatically. The number of outgoing solitons equals
the number of incoming solitons, and there is little accompanying radia-
tion. This occurs generally in a theory with a Bogomolny equation, where
the initial data are a field configuration close to a static multi-soliton so-
lution, but perturbed a little to give the solitons some relative motion.
An example is the collision (perhaps head-on) of two monopoles, where
their initial velocities are small compared to the speed of light. The net
force, being velocity dependent and vanishing at zero velocity, is small.
One might imagine that in these circumstances the monopoles hardly in-
teract at all, and just pass through each other, preserving their momenta.
This is very far from the case. We shall show later that monopoles, and
also vortices, in such a gentle head-on collision, usually scatter through a
right angle.

The adiabatic dynamics of solitons can be approximated by a finite-
dimensional dynamical system – the dynamics on moduli space. If the
original field theory is second order in time derivatives of the fields, then
the motion on moduli space reduces to geodesic motion. The metric
on moduli space is not flat, and this is responsible for the non-trivial
scattering. If the original field theory has couplings close to, but not
exactly, the critical ones for the Bogomolny equation to be valid, then
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there is a residual potential energy defined on moduli space, and the
adiabatic motion of solitons is approximately given by geodesic dynamics
on moduli space modified by this potential. It is remarkable that the
moduli space dynamics smoothly extends the asymptotic dynamics of
solitons, where the solitons can be approximated as point-like, into the
region where the solitons are close together relative to their size, and
strongly deformed.

We shall discuss in detail the forces between most types of soliton,
including kinks, vortices, monopoles and Skyrmions. We shall also give a
detailed discussion of how the moduli space for vortices and monopoles is
constructed, how the metric on moduli space can be found, and how one
can study the geodesic dynamics on moduli space modelling second order
adiabatic soliton motion. A remarkable feature of the metrics on moduli
space is that they are often Kähler or hyperkähler. We shall also discuss
some examples of field theories which are first order in time derivatives.
These lead to first order dynamics on moduli space, where the initial
soliton configuration, but not the soliton velocities, must be specified as
initial data.

1.5 Solitons and integrable systems

The notion of soliton has often been used in recent decades in a somewhat
different sense [2]. Certain partial differential equations have localized,
smooth soliton solutions which do not disperse. Moreover if a number of
these solitons are superposed at large separations, and set in motion, then
there is a collision, but they emerge from the collision almost unchanged.
The number of solitons is unchanged, and the momenta (and energies)
before and after are all the same. If one could label the solitons, then one
would say that the momenta had been permuted. The solitons just expe-
rience a time delay or time advance due to the collisions. Such behaviour
is very interesting and it occurs in integrable PDEs. The conservation of
number and momenta of solitons is a consequence of an infinite number
of conservation laws, which means that after a suitable transformation of
the field one can find an infinite set of decoupled dynamical variables each
obeying rather simple dynamics. This kind of integrable soliton dynamics
is most often studied in one space dimension. Classic examples are the
KdV and sine-Gordon solitons. The latter is particularly interesting as a
model of a particle, because the sine-Gordon theory is Lorentz invariant.

Integrable evolution equations do exist in more than one space dimen-
sion, such as the KP equation, which is a planar example. However, such
multi-dimensional integrable systems usually break the spatial symme-
try of the domain, so that the properties of a soliton depend upon the
direction in which it travels.
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The topological solitons that we shall consider in this book have the
feature of being smooth and localized, and having a conserved parti-
cle number. They exist in theories in space dimensions up to four and
beyond. But, with the exception of the sine-Gordon model, they do not
exhibit integrability. There is inelastic and non-trivial scattering of topo-
logical solitons in collisions. If there were a Lorentz invariant, integrable
Lagrangian field theory in two or more space dimensions, with solitons,
that would be very interesting. But so far, despite considerable search-
ing, no such model has been found. The models that we shall consider,
which have topological soliton solutions, are sometimes Lorentz invariant.
Even those that are not Lorentz invariant still possess the symmetry of
the underlying spatial domain. Thus for a model defined in Rd, flat d-
dimensional space, there is at least Euclidean symmetry E(d). Broadly
speaking, theoretical physicists, though perhaps not all mathematicians,
think that there are sufficient features of the particles we consider to call
them solitons, even if there is no integrability.

In several cases, the first order, time independent Bogomolny equa-
tion for topological solitons is an integrable system. Although this does
not imply that the explicit construction of multi-soliton solutions is al-
ways possible, it nevertheless implies that strong results can be derived
concerning the solutions and the nature of the moduli spaces. This is a
rather curious situation. It means that static multi-solitons are related to
integrable systems, but the dynamics is not integrable.

The geodesic dynamics on moduli space is an approximation to the full
field theory dynamics. One may ask if this reduced dynamics is integrable.
It appears that in many cases, for example for vortices and for monopoles,
it is not. Indeed, the metric on the two-monopole moduli space is known
explicitly, because it is hyperkähler and because of symmetry. However,
analytic and numerical investigations show that the geodesic motion on
this moduli space is a non-integrable Hamiltonian dynamical system.

It is worthwhile to compare the radiation aspects of integrable soliton
dynamics in one dimension with topological soliton dynamics. Systems
like KdV are infinite-dimensional dynamical systems, where the N -soliton
dynamics can be separated off as a finite-dimensional subsystem. The sub-
system is integrable, and hence one can determine the soliton dynamics
(e.g. time delays). Because the whole system is integrable, small am-
plitude radiation degrees of freedom are also integrable. These are the
wave-like modes.

In the topological soliton situation, the N -soliton dynamics can also
be separated off as a finite-dimensional dynamical system – the motion
on moduli space. The latter system is exactly defined, because of the
integrability of the Bogomolny equation. Thus, so far, the analogy with
the integrable solitons is really close. The difference is that the remaining
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radiation modes do not completely decouple. The field theory dynamics
of topological solitons does excite some radiation. Moreover, the radiation
is not integrable, so exact results can not be obtained.

Atiyah and Hitchin have made the following comparison between inte-
grable soliton dynamics, and the dynamics of topological solitons where
there is a Bogomolny equation for static fields. They point out [17] that
the classical equations of field theory (e.g. for monopoles) may be regarded
as an exact description of at least a simplified model of nature. The mod-
uli space of static solitons is a precise finite-dimensional truncation of
great mathematical beauty, but one must accept that the geodesic dynam-
ics on moduli space only approximately describes the soliton dynamics.
On the other hand, equations like KdV are not exact. KdV emerges from
an approximation to the equations for real fluid waves after making a
number of assumptions about the amount of nonlinearity, the depth of
fluid, and the directionality of the waves. However, KdV is an essentially
solvable PDE, and soliton scattering properties can be calculated exactly.
So moduli space dynamics of topological solitons is an approximate treat-
ment of an exact equation, whereas integrable soliton dynamics is an exact
treatment of an approximate equation. Both are only an approximation
to the truth.

1.6 Solitons – experimental status

Let us conclude this introduction with some remarks on the physical sta-
tus of the ideas presented in this book. So far, there are rather limited
experimental tests of many of the ideas and mathematical results.

There are a number of physical systems which carry one-dimensional
solitons, e.g. optical fibres, and narrow water channels [115]. The soli-
tons are sometimes described by an integrable model, or a near-integrable
variant. Sigma model lumps occur as solitons in certain idealized, planar
ferromagnetic and antiferromagnetic systems in the continuum approxi-
mation [138]. They are mathematically interesting because the static soli-
ton solutions are rational functions of a single complex variable, and thus
can easily be written down explicitly. Moreover, as we shall see, rational
maps play an important role in the theory of monopoles and Skyrmions.
The two-dimensional Ginzburg-Landau vortices are observed as solitons
in thin superconductors, and as extended vortices in three-dimensional
superconductors [326, 231]. A dissipative dynamical equation is relevant
for most superconductors, so there has not yet been the possibility of
firing vortices at one another and observing the right-angle scattering.
Very few superconductors are close to the critical coupling separating
Type I/Type II; the nearest are niobium and certain lead alloys. So the
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Bogomolny equations for static multi-vortex solutions have not been very
important. Some versions of first order Chern-Simons vortex dynamics
may be relevant to quantum Hall systems, but this needs clarification
[439, 348]. Global vortices have recently been created experimentally
as extended strings in three-dimensional Bose-Einstein condensates com-
posed of trapped dilute alkali gases [298]. Relativistic, cosmic strings have
not been observed [202].

Models which give the electron a finite structure are not supported
experimentally. Quantum field theory, and in particular quantum elec-
trodynamics, can deal with a fundamental point-like electron through the
renormalization programme, although ultimately this may be unsatisfac-
tory.

Magnetic monopoles have not been observed, despite a long history of
searching [161]. Fortunately, the standard model of elementary particles
has no monopole solutions. Certain Grand Unified Theories have them,
and the non-observance of monopoles severely constrains these models
[438, 341]. The standard electroweak model does have unstable, sphaleron
solutions, and they are in principle formed at the 10 TeV energy scale,
which may be accessible in future particle accelerators. The crucial chal-
lenge before this is to find the Higgs particle – without the Higgs the
whole mathematical structure leading to monopoles and sphalerons is in
doubt.

Skyrmions remain an interesting possible model for nucleons and nuclei.
For a single nucleon, the model works well, and the model also gives a
reasonable description of the deuteron – the bound state of a proton and
a neutron. However, the Skyrme model predictions for larger nuclei need
further analysis. There is some evidence that the spin states of multi-
Skyrmions match those of a number of nuclei, but there is no evidence
yet that the surprisingly symmetric, classical multi-Skyrmion shapes give
new insight into nuclear structure.

The study of pure quantized Yang-Mills theory using instantons is not
yet finalized. Maybe the theory of multi-instantons, and their moduli
spaces, will play an important role. Instantons are relevant to the dy-
namics, as is clear from lattice QCD studies. However, the whole prob-
lem of understanding quantum Yang-Mills theory, and quark confinement,
remains open.

Should supersymmetry be discovered there would be much new interest
in solitons, and especially in solitons described by Bogomolny equations,
as the critical couplings that make Bogomolny equations possible are the
same as those that arise in supersymmetric theories [429, 188]. Solitons
in superstring theory [335] are currently being enthusiastically studied,
where they are known as “branes”.
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1.7 Outline of this book

We shall explore all the examples of topological solitons that have been
mentioned so far, and a few more. The organization is as follows. We
shall present in Chapter 2 some essential background ideas, concerning
Lagrangians and field equations, the role of symmetries, and the structure
of gauge theories and their physical content. In Chapter 3 we present ideas
and calculational methods from topology that are needed to understand
topological solitons. In Chapter 4 we discuss some further general ideas
and methods that can be applied to study several types of soliton.

Chapter 5 is about solitons in one-dimensional field theories, especially
the φ4 kink and sine-Gordon soliton. Chapters 6 and 7 are about solitons
in two space dimensions. The former deals with sigma model lumps and
two-dimensional (Baby) Skyrmions whereas the latter is concerned with
GL vortices both in gauged and ungauged theories. Chapter 8 is on
monopoles, and Chapter 9 on Skyrmions, both three-dimensional solitons.
Chapter 10 is about Yang-Mills instantons, and Chapter 11 is on sphaleron
solutions.

This book focusses on the classical solutions describing solitons and
their dynamics. Readers may well be interested in soliton quantization –
the treatment of solitons and their dynamics in quantum field theory. The
coupling of solitons to additional bosonic and fermionic quantum fields is
also interesting, and leads to ideas of fractional charge, and to the study of
solitons in supersymmetric theories. However, these topics would require
a further book (with other authors) to survey them in depth, and with
the exception of Skyrmion quantization, they are not discussed here.



2
Lagrangians and fields

In this book we shall be dealing with classical field dynamics, and also
classical particle dynamics. We shall be showing how topological solitons
in field theory behave like particles, and this will involve reducing the field
equations to an effective particle dynamics. Field theory has an infinite
number of dynamical degrees of freedom, whereas particle dynamics has
a finite number proportional to the number of particles. We need to
understand the structure of field and particle dynamics separately before
looking at the relationship between them. Particle dynamics, being a
finite-dimensional system, is conceptually more basic, so we look at that
first. If the dynamics is non-dissipative, we shall use the Lagrangian
formalism. The simplest dissipative equation of motion, the gradient
flow, can easily be deduced from a Lagrangian structure.

2.1 Finite-dimensional systems

In Lagrangian dynamics, the configuration space is a smooth manifold
M , of dimension D, say. The system is represented by one point in M ,
varying with time along a smooth trajectory. Let q = (q1, . . . , qD) denote
local coordinates in M . The trajectory is expressed either as q(t), or in
component form as qi(t), 1 ≤ i ≤ D.

To define the Lagrangian function, we need further structure on M . We
consider three types, though they need not all be present at once. The
first is a potential energy function – a scalar function on M given locally
as V (q). The second is a Riemannian metric on M . This is given locally
by a symmetric non-degenerate rank 2 tensor gij(q). The last type of
structure is an abelian gauge potential, locally a covariant rank 1 tensor
or 1-form on M , with components denoted by ai(q). We shall denote, in
the standard way, the inverse of the metric by gij , so gijgjk = δi

k with
δi
k the Kronecker delta symbol (δi

k = 1 if i = k, 0 otherwise). Here and

15
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below, we use the summation convention; if an index is repeated, it is
summed over.

Given these data on M , and a trajectory q(t), we define the Lagrangian

L =
1
2
gij(q)q̇iq̇j − ai(q)q̇i − V (q) . (2.1)

At a given time t, L depends on the position q and velocity q̇ = dq
dt , and

is assumed to be no more than quadratic in the velocity. We refer to the
first two terms in L as kinetic terms. Although the Lagrangian is defined
locally in terms of some coordinate system, it is actually coordinate in-
variant if we suppose that gij and ai transform as covariant tensor fields
on M .

The dynamical principle determining the trajectory q(t) is the principle
of stationary action. We consider all trajectories which begin at q(1) at
t = t1 and end at q(2) at t = t2 (t2 > t1). (The velocities at t1 and t2 do
not need to be specified.) We define the action

S =
∫ t2

t1
L(t) dt , (2.2)

for any trajectory satisfying the initial and final condition. The actual
motion is one for which S is stationary.

The standard result in the calculus of variations implies that the true
motion satisfies the Euler-Lagrange equation

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , (2.3)

which here takes the form

d

dt

(
gij q̇

j − ai

)
− ∂

∂qi

(1
2
gjkq̇

j q̇k − aj q̇
j − V

)
= 0 . (2.4)

This equation of motion can be reexpressed as

gij(q̈j + Γj
klq̇

kq̇l) + fij q̇
j + ∂iV = 0 , (2.5)

where ∂i denotes ∂
∂qi and

fij = ∂iaj − ∂jai (2.6)

is the gauge field strength, an antisymmetric tensor or 2-form, and

Γj
kl =

1
2
gij(∂kgli + ∂lgki − ∂igkl) (2.7)

is the Levi-Civita connection on M .
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The Euler-Lagrange equation appears to be more fundamental than the
action principle that gives rise to it, since other variational principles give
the same equation. We shall regard any solution of the Euler-Lagrange
equation as a physically acceptable motion, without worrying about initial
and final data. The solution is unique if we specify the initial position
and initial velocity.

Suppose, locally, we replace ai(q) by ai(q)+ ∂iα(q) where α is a scalar
function on M . Then L changes by the subtraction of

∂iα q̇i = α̇ , (2.8)

a total time derivative. The action S changes by

α(q(1)) − α(q(2)) , (2.9)

which is independent of the trajectory joining q(1) to q(2). Thus, this
change of ai has no effect on the equation of motion, and can be regarded
as having no effect at all (at least classically). Such a change of ai is a
gauge transformation. Notice that the equation of motion only involves
fij , which is gauge invariant. In fact, because of this gauge invariance,
ai need not be a globally defined 1-form; it need only be a local 1-form
representing a connection on a U(1) bundle over M . We expand on this
in Section 3.4 below.

The law of conservation of energy is obtained by multiplying (2.5) by
q̇i and summing over i. One finds that

d

dt

(1
2
gij q̇

iq̇j + V
)

= 0 , (2.10)

and hence
1
2
gij q̇

iq̇j + V = E , (2.11)

where the constant E is the conserved total energy. To derive this we
have used the fact that fij is antisymmetric. Although q̇ is the coordinate
velocity, on a Riemannian manifold the geometrical speed v – the distance
moved per unit time – depends on the metric, and is given by the formula
v =

√
gij q̇iq̇j . Therefore, the first term in E is the kinetic energy 1

2v2.
In the simplest case of a constant potential V , and no gauge field, the

Euler-Lagrange equation is

q̈j + Γj
klq̇

kq̇l = 0 , (2.12)

which is the equation for geodesic motion on M . Conservation of energy
here implies that the motion along the geodesic is at constant speed. Note
that solutions of the Euler-Lagrange equation with given initial and final
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data need not be unique. For example, there are infinitely many geodesic
trajectories connecting two points on a sphere; provided the points are
non-coincident and non-antipodal, these geodesics all lie on the same great
circle, but involve different numbers of rotations around it, at different
speeds.

A special case of the above Lagrangian formalism is the Newtonian
dynamics of one or more particles. For one particle of mass m moving
in d dimensions, the manifold M is the Cartesian space Rd with the
Euclidean metric gij = mδij . We denote the (Cartesian) trajectory of the
particle by x(t). The Lagrangian is

L =
1
2
mẋiẋi − ai(x)ẋi − V (x) , (2.13)

and the equation of motion

mẍi = −fij ẋ
j − ∂iV . (2.14)

There is a static force due to V , and a velocity dependent force due to
the gauge field. In the absence of forces, the equation of motion is simply

mẍi = 0 , (2.15)

whose solutions are straight line trajectories at constant speed.
In three dimensions one may define the axial vector magnetic field bi =

−1
2εijkfjk, where εijk is the alternating tensor: εijk = 1 (−1) if (i, j, k) is

an even (odd) permutation of (1, 2, 3), and 0 otherwise. (a is a covariant
vector or 1-form, and the usual vector potential of electromagnetic theory,
being the spatial part of a contravariant 4-vector, is −a. Hence b =
∇ × (−a).) One may also regard V as the electrostatic potential, and
−∂iV as the electric field ei. Then (2.14) becomes, in vector notation

mẍ = ẋ × b + e , (2.16)

which is the Lorentz force law for a non-relativistic particle of mass m,
and unit electric charge. But note that interpretations of Eq. (2.14), other
than this electromagnetic one, may arise.

For N similar particles, M = Rd ⊗ · · · ⊗ Rd = RNd with its Euclidean
metric. The trajectory of the N particles is (x1(t), . . . ,xN (t)), and the
Newtonian form of the Lagrangian is

L =
N∑

r=1

1
2
mẋi

rẋ
i
r −

N∑

r=1

a(r)
i (x1, . . . ,xN )ẋi

r − V (x1, . . . ,xN ) . (2.17)

The potential V is a single function on RNd, and the functions {a(r)
i }

may be thought of as Nd components of a single 1-form on RNd. If
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there are no background fields on Rd, the particles are influenced only by
each other. In this case there is translational and rotational symmetry.
In particular {a(r)} and V depend only on the differences in the particle
positions xr−xs. We shall discuss the consequences of symmetries further
in Section 2.2.

A small generalization of the Newtonian dynamics is where the N par-
ticles are moving on a given d-dimensional Riemannian manifold X, with
local coordinates x and metric hij(x). The manifold M is XN , the Nth
Cartesian power of X, and the Lagrangian is

L =
N∑

r=1

1
2
hij(xr)ẋi

rẋ
j
r −

N∑

r=1

a(r)
i (x1, . . . ,xN )ẋi

r − V (x1, . . . ,xN ) . (2.18)

Again, if the particles are only interacting with each other, then the sym-
metries of X will constrain the form of {a(r)} and V .

An interesting issue is whether the permutation symmetry between the
N particles has any significance. Acting on XN , the permutation group
SN permutes {x1, . . . ,xN} in all possible ways. Since the particles are
similar, the functions {a(r)} and V are invariant under permutations.
Thus

a(r)(x1′ , . . . ,xN ′) = a(r′)(x1, . . . ,xN ) (2.19)
V (x1′ , . . . ,xN ′) = V (x1, . . . ,xN ) , (2.20)

where (1′, . . . , N ′) is a permutation of (1, . . . , N). This just ensures that
if the labels of the particles are permuted, the trajectories are unchanged.

Provided the particles are at N distinct points, one may quotient XN

by SN and obtain a Lagrangian system on the quotient. Locally, the
Lagrangian and equations of motion look the same. However, this quo-
tient generally leads to singularities where two or more particles become
coincident. The dynamics on the quotient does not unambiguously tell
us how particles emerge from a collision. However, the original dynamics
on XN is unproblematic. If the potential V has no singularity when par-
ticles collide, then particles simply pass through each other if they have
sufficient energy. One may label the particles 1 to N at some instant,
and then follow their trajectories, which are always smooth. One does
not lose track of the labels, even in a collision.

Later, we shall be investigating field theory defined on a Riemannian
space X (often X = Rd) which admits topological solitons. We shall show
that N -soliton dynamics can be approximated by a reduced Lagrangian
system of type (2.1), where M is a manifold of dimension proportional
to N (in the simplest case dim M = Nd). We shall also show that the
solitons, when they are well separated, behave as similar, independent
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particles. In this well separated regime, the reduced dynamics is of the
form (2.18), with the functions {a(r)} and V being small and only af-
fecting the dynamics slightly. To first approximation each soliton follows
a geodesic on X. So M has the local asymptotic form XN , with the
corresponding product metric. Now, because the solitons are well sepa-
rated, we can safely take the quotient, and regard M as asymptotic to
XN/SN . It turns out that this quotienting is actually the required thing
to do in field theory. The solitons can not be labelled in a natural way.
When soliton positions are permuted, the field is identical before and af-
ter the permutation. However, this seems to produce a difficulty, because
XN/SN is potentially singular when points in X coincide. What hap-
pens is that the finite size of the solitons prevents a singularity. M is
not globally XN/SN , but only approaches it in the asymptotic regime.
M is a manifold which smooths out the singularities of XN/SN . Even
the topology of M is sometimes different from that of XN/SN or XN .
This is very remarkable. It means that a Newtonian description of N soli-
tons is possible while they are far apart, but it breaks down completely
when they are close together. Solitons can not consistently be labelled
along trajectories. Indeed the trajectory on M does not generally have
an interpretation as a set of N unlabelled trajectories in X.

Two first order dynamical systems are related to the Lagrangian (2.1).
One of these is the Lagrangian with no quadratic terms in velocity

L = −ai(q)q̇i − V (q) . (2.21)

The equation of motion is

fij q̇
j + ∂iV = 0 . (2.22)

This determines q̇i and hence the trajectory q(t), given initial data q(t1) =
q(1), provided fij is invertible. In this situation, M can be regarded as
a phase space, with −fij the symplectic 2-form and V the Hamiltonian,
and (2.22) Hamilton’s equations. V is conserved, since

dV

dt
= ∂iV q̇i = −fij q̇

j q̇i = 0 , (2.23)

the last equality following from the antisymmetry of fij .
The other first order system is the gradient flow associated to the Rie-

mannian manifold M with potential V . This is

κgij q̇
j + ∂iV = 0 , (2.24)

where κ is a fixed positive constant. If M = Rd with the Euclidean metric,
then (2.24) simplifies to

κẋi + ∂iV = 0 . (2.25)
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The only difference from the Newtonian equation

mẍi + ∂iV = 0 (2.26)

is that second time derivatives are replaced by first time derivatives (and
the constant m replaced by κ for dimensional reasons).

The interpretation of the gradient flow equation on M is as follows.
At any point q of M , gij∂jV is a vector orthogonal to the contour of
V (hypersurface of constant V ) through q, pointing in the direction of
increasing V , and of magnitude dV

ds where s is the distance in the direction
orthogonal to the contour. Equation (2.24) states that the velocity is the
negative of this vector, divided by κ. The gradient flow equation implies
that

dV

dt
= ∂iV q̇i =

{
−κgij q̇iq̇j

− 1
κgij∂iV ∂jV .

(2.27)

Both expressions show that V decreases along a gradient flow trajectory.
In fact, a gradient flow trajectory is a path of steepest descent.

Suppose q(t) (−∞ < t < ∞) is a complete trajectory, satisfying
Eq. (2.24). If q±∞ = limt→±∞ q(t) both exist, then limt→±∞ q̇(t) = 0,
so q±∞ are stationary points of V . The gradient flow joins these two
stationary points. If M is compact, and V a non-singular function, then
all non-trivial gradient flow trajectories have good limits as t → ±∞, and
connect a higher to a lower stationary point of V .

2.2 Symmetries and conservation laws

Suppose a Lie group G of symmetries acts on M , leaving invariant the
metric gij , the 1-form ai, and the potential V . Then there is a set of
conservation laws for solutions of the equation of motion (2.5), one for
each generator of the group.

Let q '→ q + εξ(q) be the infinitesimal action of one of the generators
of G, where ξ is a vector field on M , and ε is an infinitesimal parameter.
The metric is invariant if

Lξgij = 0 , (2.28)

where Lξ denotes the Lie derivative in the direction of ξ. Explicitly, the
Lie derivative of the metric is

Lξgij = ξk∂kgij + ∂iξ
kgkj + ∂jξ

kgik . (2.29)

This can be reexpressed using the Levi-Civita connection, so that (2.28)
reduces to the Killing equation

ξi;j + ξj;i = 0 , (2.30)
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where ξi = gijξj and ξi;j = ∂jξi − Γk
ijξk is its covariant derivative. A

group G leaving the metric on M invariant is called a group of isometries
of M and an individual generating vector field ξ satisfying (2.30) is called
a Killing vector. The gauge potential ai is invariant if

Lξai = ∂iαξ , (2.31)

where αξ is a scalar function on M , also linearly dependent on ξ. The
interpretation of (2.31) is that the Lie derivative of ai does not need to
be strictly zero although it could be; it is sufficient that the Lie derivative
equals a gauge transformation, with generator αξ. Explicitly,

ξj∂jai + ∂iξ
jaj = ∂iαξ . (2.32)

Under a general gauge transformation, ai '→ ai + ∂iα, the left-hand side
of this equation changes by the addition of ∂i(ξj∂jα), so there needs to
be an associated gauge transformation

αξ '→ αξ + ξj∂jα . (2.33)

Finally, the potential V is invariant if

LξV = 0 . (2.34)

Explicitly,
ξi∂iV = 0 . (2.35)

We now investigate the effect on the Lagrangian (2.1) of a shift in the
trajectory q(t) to q(t)+εξ(q(t)). The velocity q̇i changes to q̇i +ε∂kξiq̇k,
so

δL = ε
(1
2
(∂kgijξ

kq̇iq̇j + gij∂kξ
iq̇kq̇j + gij q̇

i∂kξ
j q̇k)

−(∂kaiξ
kq̇i + ai∂kξ

iq̇k) − ∂iV ξ
i
)

= −ε(∂iαξ)q̇i

= −εα̇ξ , (2.36)

using the invariance conditions given above. Since δL is a total time
derivative, Noether’s theorem asserts that there is a conserved quantity
[214]

Qξ = ξi ∂L

∂q̇i
+ αξ

= gijξ
iq̇j − ξiai + αξ

= gijξ
iq̇j + ψξ . (2.37)
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The first term is the inner product of ξ with the velocity vector q̇. The
quantity ψξ ≡ −ξiai + αξ is gauge invariant, and it is directly related to
the field tensor fij . Using (2.31), one finds that

ξifij = ∂jψξ . (2.38)

One may prove that Qξ is independent of time using a variant of the
argument given for field theory in Section 2.4. Alternatively, one may
verify this directly, using the equation of motion (2.5) and the invariance
conditions.

For the Lagrangian with no quadratic term in velocities (2.21), the
conserved quantity Qξ associated with ξ is simply ψξ. This is easily
verified by contracting the equation of motion (2.22) with ξi.

For the gradient flow, given by equation (2.24), Qξ = gijξiq̇j . One can
verify not only that Qξ is conserved, but that Qξ = 0, since in this case
the equation of motion (2.24) implies that

gijξ
iq̇j = −1

κ
ξi∂iV = 0 . (2.39)

Thus the gradient flow is orthogonal to the vector field ξ. More generally,
the flow is orthogonal to orbits of G. Since G preserves V , this is not
surprising, since the orbits of G are submanifolds of the hypersurfaces
V = const, and the flow is orthogonal to these hypersurfaces.

2.3 Field theory

Classical Lagrangian field theory is concerned with the dynamics of one
or more fields defined throughout space and evolving in time. Let us
first suppose space is Rd. Space-time is R × Rd. Local coordinates are
x = (t,x), and we shall often identify x0 = t. The simplest field is a scalar
field φ, a function on R × Rd, denoted locally by φ(t,x).

One may regard the field as representing an infinite number of dynam-
ical degrees of freedom. Formally, the value of φ at each spatial point is
one degree of freedom, which evolves in time. Generally, the field values
at distinct points are coupled together, because the Lagrangian depends
not just on φ and its time derivative ∂0φ, but also on its space derivatives
∇φ. The components of ∇φ are ∂iφ, where ∂i now denotes ∂

∂xi . As in
the finite-dimensional systems, we suppose that the Lagrangian depends
on ∂0φ polynomially, with no higher than quadratic terms. Similarly, we
suppose that the dependence on ∇φ is polynomial.

The simplest type of Lagrangian for the field φ is

L =
∫ (1

2
(∂0φ)2 − 1

2
∇φ · ∇φ− U(φ)

)
ddx . (2.40)
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The Lagrangian density L, the integrand here, is a local quantity depend-
ing isotropically on ∇φ. The potential U is some function of φ (and not
explicitly dependent on x), often taken to be a polynomial.

There is a natural splitting of this Lagrangian into kinetic energy and
potential energy terms, L = T − V . We call

T =
∫ 1

2
(∂0φ)2 ddx (2.41)

the kinetic energy of the field, and

V =
∫ (1

2
∇φ · ∇φ+ U(φ)

)
ddx (2.42)

the potential energy. Note that the potential energy is defined for a field
at a given time, and it has a gradient energy contribution in addition
to that of the potential U . It is important that the potential energy
is bounded below, otherwise the dynamics is liable to produce singular
fields. This justifies the choice of sign in front of the gradient term. Also
U should be bounded below, which means that if it is a polynomial its
leading term should be an even power with positive coefficient. We shall
almost always arrange that the minimal value of U is zero.

For a field theory defined in R×Rd we shall always insist on Euclidean
invariance in Rd, and time translation invariance. The Euclidean group
E(d) combines spatial translations and rotations. Translational symmetry
is ensured by having no explicit dependence on x in the Lagrangian, and
integrating over the whole of Rd using the standard measure. Rotational
invariance requires combining the gradient terms into a scalar, as in (2.40).
Acceptable generalizations of (2.40) could involve a kinetic term

∫
(∇φ · ∇φ)(∂0φ)2 ddx , (2.43)

and a term similar to this occurs in the Skyrme model. Terms linear in
∂0φ are also possible, but must not just be total time derivatives. One
of the simplest possibilities occurs in a theory with two fields φ1 and φ2,
where the kinetic term could include

∫
(φ1∂0φ2 − φ2∂0φ1) ddx . (2.44)

The potential energy could include further terms like
∫

(∇φ · ∇φ)2 ddx , (2.45)

or ∫
W (φ)∇φ · ∇φ ddx , (2.46)
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for some positive function W .
The field theory with Lagrangian (2.40) possesses more than the Eu-

clidean symmetry E(d). Because the time and space derivatives of φ both
occur quadratically and with a relative minus sign, the theory is Lorentz
invariant (the speed of light is unity). Lorentz invariance allows additions
to (2.40) of the form

∫
W (φ)

(
(∂0φ)2 − ∇φ · ∇φ

)
ddx . (2.47)

Lorentz invariance is vital for theories purporting to describe elementary
particles in Minkowski space-time R × Rd. Many of the field theories
we shall consider have Lorentz invariance. In such theories, the soliton
dynamics will be Lorentz invariant. However, some theories are intended
to describe condensed matter systems, and Lorentz invariance is then
not required. In Lorentz invariant theories we shall often use the more
condensed notation ∂µφ∂µφ to denote (∂0φ)2−∇φ·∇φ. Generally, Greek
indices will run from 0 to d in (d + 1)-dimensional Minkowski space-
time, and will be raised or lowered using the Minkowski metric ηµν , with
signature (1,−1, . . . ,−1).

The action associated with a Lagrangian density L(∂0φ, ∇φ,φ) is

S =
∫ t2

t1
L dt =

∫ t2

t1

∫
L(∂0φ, ∇φ,φ) ddx dt . (2.48)

The action principle is that S is stationary for given initial and final data
defined throughout Rd; φ(t1,x) = φ(1)(x), φ(t2,x) = φ(2)(x). So consider
a variation of the trajectory φ(t,x) to φ(t,x) + δφ(t,x) where δφ→ 0 as
|x| → ∞, and δφ = 0 at times t1 and t2. The variation of S is

δS =
∫ t2

t1

∫ (
∂L

∂(∂0φ)
∂0δφ+

∂L
∂(∇φ)

· ∇δφ+
∂L
∂φ

δφ
)

ddx dt . (2.49)

Integrating by parts,

δS =
∫ t2

t1

∫ {(
−∂0

∂L
∂(∂0φ)

− ∇ ·
(

∂L
∂(∇φ)

)
+
∂L
∂φ

)
δφ
}

ddx dt . (2.50)

For δS to vanish for all δφ, we require

∂0
∂L

∂(∂0φ)
+ ∇ ·

(
∂L

∂(∇φ)

)
− ∂L
∂φ

= 0 , (2.51)

and this is the Euler-Lagrange equation satisfied by the dynamical field.
Note that the last two terms together (at x) can be regarded formally as
(minus) the derivative of L with respect to φ(x).
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For the basic Lagrangian (2.40), Eq. (2.51) is

∂0∂0φ−∇2φ+
dU

dφ
= 0 , (2.52)

which is a Lorentz invariant nonlinear wave equation.
For a static field, the field equation simplifies to the nonlinear Laplace

equation

∇2φ =
dU

dφ
, (2.53)

and this is the condition for φ to be a stationary point of the potential
energy function V . A solution φ is stable if it is a minimum of V .

The Lagrangian formalism can easily be extended to a theory of n
scalar fields φ = (φ1, . . . ,φn). A dynamical field configuration is a map
φ : R × Rd '→ Rn. The Lagrangian now depends on all n component
fields and their derivatives, and the action is stationary with respect to
independent variations of each of them. The Euler-Lagrange equations
are thus

∂0
∂L

∂(∂0φl)
+ ∇ ·

(
∂L

∂(∇φl)

)
− ∂L
∂φl

= 0 , 1 ≤ l ≤ n . (2.54)

Because the field takes values in Rn, this type of theory is called a linear
scalar field theory, even though the field equations (2.54) are nonlinear.

The fields can also have a tensorial character, which requires additional
use of the Minkowski metric to produce a Lorentz invariant Lagrangian
density. We shall need to deal with U(1) gauge fields below, which entails
a 1-form potential aµ with time and space components {a0, ai}. From the
point of view of deriving the Euler-Lagrange equations, each component
of a tensor field can be treated as an independent field. (Caution: Here
aµ is a dynamical field, and not a fixed background 1-form coupled to a
dynamical particle, as in Section 2.1.)

An important phenomenon in field theory is the possibility of internal
symmetries, unrelated to the isometries of space. For example, suppose
the Lagrangian density is

L =
1
2
∂0φl∂0φl −

1
2
∇φl · ∇φl − U(φlφl) , (2.55)

where the repeated index l labelling the fields is to be summed over from 1
to n, and U is a function of just the single quantity φlφl. This is invariant
under internal rotations

φl '→ Rlmφm , (2.56)

with Rlm an SO(n) matrix. The symmetry leads to conservation laws for
the dynamics.



2.3 Field theory 27

Let us next consider the Lagrangian for a scalar field φ(t,x) defined on
the space X with Riemannian metric hij(x). Space-time is R × X, and
the metric on X is extended trivially to a metric of Lorentzian signature
on space-time

ds2 = dt2 − hij(x)dxidxj . (2.57)

It is possible to define field theories on more general curved space-time
backgrounds, and this is important if gravitational effects are significant.
We do not consider this possibility here. If X is curved, we think of this
as due not to gravity, but to material constraints. For example vortices
can be considered on a 2-sphere, where the sphere is a thin, curved layer
of superconductor in flat three-dimensional space. Einstein’s equations
play no role.

We wish the dynamics of the field to depend just on the intrinsic ge-
ometry of X, and to respect the symmetries of X. This means that the
integration measure becomes

√
det h ddx, the natural measure on X, and

the expression ∇φ ·∇φ is replaced by hij∂iφ∂jφ. det h denotes the deter-
minant of hij . No other changes are allowed. Thus the basic Lagrangian
(2.40) becomes

L =
∫

X

(1
2
(∂0φ)2 − 1

2
hij∂iφ∂jφ− U(φ)

)√
det h ddx , (2.58)

and the action is
S =

∫ t2

t1
L dt . (2.59)

The field equation is now

∂0∂0φ− 1√
det h

∂i(
√

det h hij∂jφ) +
dU

dφ
= 0 , (2.60)

where the only significant change from (2.52) is that the ordinary Lapla-
cian operator is replaced by the covariant Laplacian on X.

Yet another variant of field theory is where the field φ takes values in
a non-trivial manifold Y , so

φ : R × X '→ Y . (2.61)

Locally, the field is represented by φ(t,x) = (φ1(t,x), . . . ,φn(t,x)), where
n = dim Y . Abstractly, (φ1, . . . ,φn) are coordinates on Y . One needs
a metric Hlm(φ1, . . . ,φn) on Y to define the Lagrangian. A particular
example is the sigma model Lagrangian, which depends quadratically on
the time and space derivatives of the field, and has no potential term.
The Lagrangian is

L =
1
2

∫

X

(
∂0φl∂0φmH lm − hij∂iφl∂jφmH lm

)√
det h ddx . (2.62)
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The symmetry group of this Lagrangian is the product of the isometry
groups of X and Y , together with time translation invariance.

Such a theory is called a nonlinear scalar theory. Sometimes it is for-
mulated as a linear theory, with the scalar field subject to a nonlinear
constraint. This may be convenient if Y , with its metric, is a simple sub-
manifold of a Euclidean space. For example, in the basic sigma model,
and also the Skyrme model, Y is a round sphere, and this sits conveniently
in a Euclidean space of one higher dimension.

We conclude with a remark about the relationship between field theory
and the finite-dimensional dynamical systems we considered earlier. Let
us consider the sigma model example with field φ = (φ1, . . . ,φn). A
field configuration is a multiplet of specific functions (φ1(x), . . . ,φn(x))
defined throughout X, at a given time. A configuration is not necessarily
a static solution of the Euler-Lagrange field equations, but it could be
the instantaneous form of a dynamical field. Then we can think of the
function space C, whose points are field configurations (φ1(x), . . . ,φn(x)),
as the infinite-dimensional analogue of the finite-dimensional manifold M
with points q, the configuration space of a finite-dimensional dynamical
system. The field potential energy

V =
1
2

∫

X
hij∂iφl∂jφmH lm

√
det h ddx (2.63)

depends only on the configuration (φ1(x), . . . ,φn(x)), so is a scalar func-
tion on C.

There is a natural Riemannian distance in C between two infinitesimally
close configurations (φ1(x), . . . ,φn(x)) and (φ1(x) + δφ1(x), . . . ,φn(x) +
δφn(x)), namely

ds2 =
∫

X
δφl(x)δφm(x)H lm

√
det h ddx , (2.64)

the natural squared norm of (δφ1, . . . , δφn). If the fields are time depen-
dent, then the kinetic energy T is obtained from ds2 by replacing δφl by
∂0φl, and dividing by 2, giving the first term in the expression (2.62).

Similar arguments apply to all the other examples of field theory we
have presented so far. So a field theory is simply a dynamical system of a
certain type, defined on an infinite-dimensional Riemannian configuration
space C.

2.4 Noether’s theorem in field theory

If a Lagrangian field theory has an infinitesimal symmetry then there is
an associated current Jµ(x) which is conserved: ∂µJµ = ∂0J0 +∇ ·J = 0.
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Both space-time symmetries and internal symmetries lead to conservation
laws.

Consider a theory in (d+1)-dimensional Minkowski space, for the field
φ. Let the infinitesimal variation of φ be

φ(x) '→ φ(x) + ε∆φ(x) , (2.65)

with ε infinitesimal. This variation is a symmetry if one can show, with-
out using the field equation, that the corresponding variation of the La-
grangian density L is a total divergence,

L(x) '→ L(x) + ε∂µKµ(x) . (2.66)

The action then varies only by a surface term. Sometimes, Kµ will be
zero, and the action strictly invariant.

Now let us calculate the change in L more explicitly:

L(x) '→ L(x) + ε
∂L

∂(∂µφ)
∂µ(∆φ) + ε

∂L
∂φ

∆φ (2.67)

= L(x) + ε∂µ

(
∂L

∂(∂µφ)
∆φ
)

+ ε

(
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

)

∆φ .

Using the field equation, the last parentheses vanish. Identifying (2.66)
and (2.67), we see that the current

Jµ ≡ ∂L
∂(∂µφ)

∆φ− Kµ (2.68)

is conserved. This is Noether’s theorem. If there are several fields, the
first term in Jµ becomes a sum over terms, one for each field.

Current conservation ∂µJµ = 0 implies the conservation of the Noether
charge

Q =
∫

J0 ddx . (2.69)

Q is time independent because

dQ

dt
=
∫
∂0J

0 ddx = −
∫

∇ · J ddx = 0 . (2.70)

Here we have used the divergence theorem, and assumed that J → 0 as
|x| → ∞.

As a first example, consider the complex Klein-Gordon field φ(x), with
Lagrangian density

L =
1
2
∂µφ̄∂

µφ− 1
2
m2φ̄φ . (2.71)
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The phase rotation φ '→ eiαφ, φ̄ '→ e−iαφ̄ is a U(1) symmetry, leaving
L invariant. Infinitesimally, ∆φ = iφ, ∆φ̄ = −iφ̄. Here Kµ = 0, so the
conserved current is

Jµ = − i

2
(φ̄∂µφ− φ∂µφ̄) . (2.72)

One can verify ∂µJµ = 0 directly, using the Klein-Gordon equation

∂µ∂
µφ+ m2φ = 0 (2.73)

and its complex conjugate. Jµ is interpreted as the electric current, and
Q =

∫
J0 ddx as the total electric charge.

As a second, rather general example, consider infinitesimal translations
in Minkowski space-time

xµ '→ xµ + εµ , (2.74)

with ε infinitesmal, for an arbitrary Lagrangian not depending explicitly
on the space-time coordinates. The effect on a field φ is

φ(x) '→ φ(x + ε) = φ(x) + εν∂νφ(x) , (2.75)

and similarly for derivatives of φ. The effect on the Lagrangian density,
no matter what the details of its structure, is

L '→ L + εν∂νL = L + εν∂µ(δµ
νL) . (2.76)

Since the infinitesimal parameter εν is a space-time vector, the conserved
current is a tensor

Tµ
ν =

∂L
∂(∂µφ)

∂νφ− δµ
νL . (2.77)

Naively, there is one current for each component of εν . Tµ
ν is the energy-

momentum tensor, and it satisfies ∂µTµ
ν = 0.

The conserved charge associated with time translation symmetry is the
energy

E =
∫

T 0
0 ddx =

∫ (
∂L

∂(∂0φ)
∂0φ− L

)
ddx . (2.78)

The conserved charge associated with spatial translations is the momen-
tum vector

Pi = −
∫

T 0
i ddx = −

∫
∂L

∂(∂0φ)
∂iφ ddx . (2.79)
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2.5 Vacua and spontaneous symmetry breaking

Consider a Lagrangian describing a multiplet of n real scalar fields φ =
(φ1, . . . ,φn) in Minkowski space-time R × Rd, with no explicit time or
space dependence. Let the potential U(φ) have minimal value Umin = 0.
We denote by V the submanifold of Rn where U attains its minimum, and
call this the vacuum manifold of the theory. If the field takes its value in
V, and is constant throughout space (and time), we call this a vacuum
configuration, or vacuum for short; it is a stable solution of the field
equations and its total energy is zero. The effect of internal symmetries
on the possible vacua is the topic of this section. The internal symmetry
group can be discrete or a Lie group.

For example, for the Lagrangian density (2.55), with SO(n) symmetry,
the energy is

∫ (1
2
∂0φl∂0φl +

1
2
∇φl · ∇φl + U(φlφl)

)
ddx . (2.80)

This is minimized by a field configuration which is independent of t and
x, and minimizes U . The SO(n) symmetry means that constant config-
urations lying on any given orbit of SO(n) have the same energy, so the
vacuum is not necessarily unique. We assume here that the minimum of
U is attained on just a single orbit of SO(n). There are two possibilities.
If this orbit consists of just one point, the vacuum is unique, and is in-
variant under the symmetry group SO(n). One says that the symmetry
is unbroken in the vacuum. If the orbit is non-trivial, then the vacuum is
not uniquely determined. The vacuum is a (random) choice of a point on
the orbit. One says that the symmetry is spontaneously broken.

Quartic potentials illustrate the two possibilities. If

U = (c + φlφl)2 − c2 , (2.81)

with c ≥ 0, then the minimum of U occurs at φl = 0, and the symmetry
is unbroken. If

U = (c − φlφl)2 , (2.82)

with c > 0, the minimum occurs on the orbit φlφl = c. The vacuum is a
choice of a point on the orbit, e.g. the n-vector

(φ1,φ2, . . . ,φn) = (0, 0, . . . ,
√

c) , (2.83)

and this spontaneously breaks the SO(n) symmetry. The subgroup of
SO(n) whose action leaves the n-vector fixed is SO(n − 1). Geometrically,
this is called the isotropy group of the particular vector. Physically, it
is the unbroken subgroup of the original symmetry group, leaving the
vacuum fixed. More generally, if the symmetry group of the potential U
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is the group G, and the choice of vacuum leaves the group H unbroken,
then the vacuum orbit of the symmetry group is G/H, with H the isotropy
group of the chosen vacuum.

The occurrence of spontaneous breaking of an internal symmetry group
G has important consequences for the dynamics of the field, particularly
if G is a Lie group. Small amplitude oscillations around a chosen vacuum
can be decomposed into the directions orthogonal to the orbit G/H and
tangent to the orbit. The tangent directions are “flat” directions, since
the potential function U is unchanging in these directions. Generally, the
potential is not flat in the orthogonal directions, but increases quadrati-
cally. In the flat directions, the oscillating field components ψ satisfy the
wave equation

∂0∂0ψ −∇2ψ = 0 , (2.84)

to linear order in ψ. The plane wave solutions are ψ = ψ0e−i(k·x−ωt), with
the relation between frequency ω and wave-vector k

ω = |k| , (2.85)

so ω is arbitrarily close to zero. In the quantized theory there are mass-
less, elementary scalar particles associated with such waves. This is Gold-
stone’s theorem [162]. Its proof is not completely straightforward, as it
does not assume the small amplitude approximation that we have just
made. The number of distinct Goldstone particles is dimG − dim H,
which is the dimension of the orbit G/H. In the example (2.82), the
orbit is SO(n)/SO(n − 1), which is the (n − 1)-sphere, and the number
of Goldstone particles is n − 1. In classical field theory, the consequence
of spontaneous symmetry breaking is the presence of long-range interac-
tions corresponding to the exchange of the massless Goldstone particles.
By contrast, in a theory of scalar fields with a symmetry group G which
is unbroken, all particles are generally massive and interactions are short-
range.

2.6 Gauge theory

Since the 1970s, the standard model of elementary particle physics has
been a gauge field theory. A gauge theory is one where an internal Lie
symmetry group G acts locally, that is, independently at each space-time
point. Field configurations which differ only by a gauge transformation
are to be regarded as physically the same. This means that the true
configuration space of a gauge theory is smaller than the naive space of
all field configurations, A. Typically, A is an infinite-dimensional linear
space; the group of gauge transformations G is the space of maps from
space into the Lie group G, which is an infinite-dimensional curved space;



2.6 Gauge theory 33

and the true configuration space C is the quotient A/G, which is also
curved. The existence of solitons in gauge theory is related to the nonlin-
ear nature of C. We shall explore this later, but here we just describe the
basic dynamical structure of a gauge theory, and how to interpret such a
theory as a dynamical system on C.

The simplest type of gauge theory is based on the group G = U(1).
Since U(1) is abelian (commutative), this is called an abelian gauge the-
ory. Physically, the theory describes the electromagnetic field interacting
with other fields. We shall suppose these other fields are scalars. The ba-
sic example with one complex scalar field is scalar electrodynamics. Let
us start with the ungauged theory in space-time R×Rd with Lagrangian

L =
∫ (1

2
∂µφ̄∂

µφ− U(φ̄φ)
)

ddx . (2.86)

Here φ(x) is the complex-valued scalar field, which can be expressed in
terms of two real fields as φ = φ1 + iφ2. U only depends on |φ|2 = φ̄φ.
This Lagrangian, expressed in terms of φ1 and φ2, is of the type (2.55)
with n = 2. There is an internal symmetry U(1), or equivalently SO(2),
as the global phase rotation

φ '→ eiαφ (2.87)

leaves the Lagrangian L invariant. The conserved current is given, as
before, by (2.72).

To obtain a U(1) gauge theory, one requires the Lagrangian to be in-
variant under

φ(x) '→ eiα(x)φ(x) , (2.88)

where α(x) is an arbitrary function of space and time. The term U(φ̄φ)
is already invariant, but the terms involving derivatives of φ are not. To
remedy this one needs to introduce the electromagnetic gauge potential
aµ(x), with time and space components {a0,a}. These are new, inde-
pendent fields. One defines the gauge covariant derivative of φ, with
components

Dµφ = ∂µφ− iaµφ , (2.89)

and postulates that aµ transforms under the gauge transformation (2.88)
to

aµ '→ aµ + ∂µα . (2.90)

Dµφ gauge transforms in the same way (covariantly) as φ itself:

∂µφ− iaµφ '→ ∂µ(eiαφ) − i(aµ + ∂µα)eiαφ

= i∂µα eiαφ+ eiα∂µφ− iaµeiαφ− i∂µα eiαφ

= eiα(∂µφ− iaµφ) . (2.91)
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The covariant derivative of φ̄ is Dµφ = ∂µφ̄+iaµφ̄, the complex conjugate
of the covariant derivative of φ, since aµ are real fields. Under a gauge
transformation,

Dµφ '→ e−iαDµφ . (2.92)
Thus the expression DµφDµφ is gauge invariant, and may appear in the
Lagrangian.

If α is infinitesimal, the gauge transformations of φ and aµ reduce to

φ '→ φ+ iαφ (2.93)
aµ '→ aµ + ∂µα . (2.94)

For the fields aµ to be dynamical, we need to include terms involving
their derivatives in the Lagrangian. This is done using the field tensor

fµν = ∂µaν − ∂νaµ . (2.95)

This is gauge invariant, since under the gauge transformation (2.90),

fµν '→ ∂µ(aν + ∂να) − ∂ν(aµ + ∂µα)
= ∂µaν − ∂νaµ

= fµν , (2.96)

using the symmetry property of double partial derivatives. The compo-
nents of the field tensor are the electric components

ei = f0i = ∂0ai − ∂ia0 , (2.97)

or in vector notation e = ∂0a − ∇a0, and the magnetic components

fij = ∂iaj − ∂jai . (2.98)

The electric components of fµν comprise a 1-form in space, the magnetic
components a 2-form.

Using all these ingredients one can construct a Lorentz invariant La-
grangian density for scalar electrodynamics,

L = −1
4
fµνfµν +

1
2
DµφDµφ− U(φ̄φ) . (2.99)

Explicitly separating space and time parts, we obtain

L =
1
2
eiei +

1
2
D0φD0φ− 1

4
fijfij −

1
2
DiφDiφ− U(φ̄φ) , (2.100)

where both ∂0 and a0 terms are included as “time” parts. We define the
kinetic and potential energies

T =
∫ (1

2
eiei +

1
2
D0φD0φ

)
ddx (2.101)

V =
∫ (1

4
fijfij +

1
2
DiφDiφ+ U(φ̄φ)

)
ddx , (2.102)
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although we will need to say more precisely what a0 is before we can
actually call T the kinetic energy. Notice that the choice of signs in
(2.99) ensures that T is positive definite.

There is no difficulty extending this theory to a space-time R×X. We
just need to use the metric hij on X, to contract tensor indices. Thus the
Lagrangian density becomes

L =
1
2
hijeiej +

1
2
D0φD0φ

− 1
4
hikhjlfijfkl −

1
2
hijDiφDjφ− U(φ̄φ) , (2.103)

and the integration measure is
√

det h ddx. The further generalization,
where φ is a section of a U(1) bundle over X and ai are components of a
connection 1-form on this bundle, is described in Chapter 3.

We do not necessarily require the theory to be Lorentz invariant. On
R × Rd, it is usual for the potential energy expression of scalar electro-
dynamics to be taken to be (2.102). This is called the gauged Ginzburg-
Landau energy. However, there are alternatives for the kinetic term. In
particular, in Chapter 7, we shall consider a kinetic energy in two spa-
tial dimensions where the Maxwell term 1

2eiei is dropped in favour of a
Chern-Simons term, and where the covariant time derivative of φ appears
in the Lagrangian density as i(φ̄D0φ − φD0φ), which is real and gauge
invariant. The field equations of Lorentz invariant scalar electrodynamics
with Lagrangian density (2.99) are obtained, as usual, by requiring the
action

S =
∫ t2

t1
L ddx dt (2.104)

to be stationary under variations of {φ, aµ}. The variations {δφ, δaµ} are
assumed to vanish at t = t1, t = t2, and as |x| → ∞. We use δφ̄ = δφ.
The Euler-Lagrange equations are

DµDµφ = −2U ′(φ̄φ)φ (2.105)

∂µfµν = − i

2
(φ̄Dνφ− φDνφ) , (2.106)

where U ′ denotes the derivative of U with respect to its single argument
φ̄φ. The right-hand side of (2.106) is the Noether current Jν associated
with the U(1) global symmetry φ '→ eiαφ, and its conservation, ∂νJν = 0,
is consistent with (2.106). Most of the component equations of (2.105)
and (2.106) are evolution equations for φ and a. However, the equation
with ν = 0, which comes from varying a0 in the action, is rather different.
This is Gauss’ law, which reads

∂iei = − i

2
(φ̄D0φ− φD0φ) . (2.107)
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Expanding out, this becomes

∂i(∂0ai − ∂ia0) = − i

2
(φ̄∂0φ− φ∂0φ̄) − a0φ̄φ , (2.108)

which can be rearranged as

(∇2 − φ̄φ)a0 = ∂i∂0ai +
i

2
(φ̄∂0φ− φ∂0φ̄) . (2.109)

This equation for a0 can, in principle, be solved at a given time if the
time derivatives of ai and φ are known. a0 is thus not an independent
dynamical field, but may be eliminated, although the question of existence
and uniqueness of solutions for a0 is rather subtle, and depends on fixing
boundary conditions. Notice that the equation (2.107) is gauge invariant.
Sometimes it is possible to fix the gauge so that the right-hand side of
(2.109) vanishes. Then one may choose a0 = 0.

This discussion of the role of a0 in a U(1) gauge theory can be given
a more geometrical flavour. As a dynamical theory, one should regard
the configuration space of scalar electrodynamics as C = A/G, where A
is the set of spatial field configurations {φ(x),a(x)} and G = {eiα(x)} is
the group of position dependent gauge transformations (see Fig. 2.1).

{φ (t),a (t)}

δφ,δa}{

{δφ,δa}

Fig. 2.1. Sketch of the configuration space illustrating variations of the fields
and their projection orthogonal to gauge orbits.

The orbits of G are generically all similar, and C is the space of orbits.
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A dynamical trajectory, whether or not it satisfies the field equations, is
a trajectory in C.

How do we calculate the kinetic and potential energies of a trajectory
in C? We need to lift the trajectory in C to a trajectory {φ(t,x),a(t,x)}
in A, but we want to extract information that does not depend on the
choice of lift but only depends on the projection down to C. The potential
energy V is gauge invariant, and does not involve time derivatives, so can
be thought of as defined, at each instant, on C.

For the kinetic energy T one needs to make a genuine projection. Sup-
pose at time t the fields are {φ,a} and at t+ δt they are {φ+ δφ,a+ δa}.
The naive contribution to the kinetic energy would be

1
2

∫ 1
(δt)2

(
δa · δa + δφ δφ

)
ddx . (2.110)

However, this would be non-zero if {δφ, δa} were simply an infinitesimal
gauge transformation

δφ = iαφ (2.111)
δa = ∇α , (2.112)

which represents motion along a gauge orbit. Such motion does not corre-
spond to a physical change and should have no associated kinetic energy.

One deals with this by projecting {δφ, δa} orthogonally to the gauge
orbit through {φ,a}. Thus we define

δφ⊥ = δφ− iβφ (2.113)
δa⊥ = δa − ∇β , (2.114)

where β is chosen so that
∫ (

δa⊥ · ∇α+
1
2
(δφ⊥(iαφ) + (δφ⊥)iαφ)

)
ddx = 0 (2.115)

for all (infinitesimal) functions α(x). Integrating by parts, and discarding
boundary terms, we see that

∫ (
∇ · δa⊥ +

i

2
(φ̄δφ⊥ − φδφ⊥)

)
α ddx = 0 , (2.116)

so
∇ · δa⊥ +

i

2
(φ̄δφ⊥ − φδφ⊥) = 0 . (2.117)

Equation (2.117) is the defining equation of (δφ⊥, δa⊥) and it is an equa-
tion for β. Expanding out, we find

(∇2 − φ̄φ)β = ∇ · δa +
i

2
(φ̄δφ− φδφ̄) . (2.118)
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Now notice that this is precisely the equation (2.109) for a0, if we replace
(δφ, δa) by (∂0φ, ∂0a). Therefore, we can interpret

D0φ = ∂0φ− ia0φ (2.119)
ei = ∂0ai − ∂ia0 (2.120)

as the projection of ∂0φ and ∂0ai orthogonal to gauge orbits, provided we
impose Gauss’ law (2.109) on a0.

We deduce that if Gauss’ law is satisfied, the expression
1
2

∫ (
eiei + D0φD0φ

)
ddx (2.121)

can be interpreted as
1
2

∫ (
∂0a

⊥
i ∂0a

⊥
i + ∂0φ⊥∂0φ

⊥
)

ddx , (2.122)

which is one half the (speed)2 of the projected motion to C, and thus
the natural gauge invariant kinetic energy for a trajectory in C. The
corresponding expression for the metric on C is

ds2 =
∫ (

δa⊥i δa
⊥
i + δφ⊥δφ⊥

)
ddx . (2.123)

Our conclusion is that T and V are well defined in a U(1) gauge theory
for any trajectory, and gauge invariant, provided one imposes Gauss’ law
to determine a0. If one can arrange the gauge choice

∇ · ∂0a +
i

2
(φ̄∂0φ− φ∂0φ̄) = 0 , (2.124)

then it is satisfactory to set a0 = 0. These considerations will be impor-
tant when we discuss the dynamics of solitons in U(1) gauge theories.

We now briefly describe the extension of the gauge theory formalism
to a non-abelian Lie group G [434]. Let the identity element of G be
denoted by I. We assume that G is finite-dimensional to have a finite
number of independent fields. We also need to assume that G is compact,
to ensure that the gauge invariant kinetic energy expression is positive
definite. Such a group G can always be identified with a group of unitary
matrices (i.e. U(n) for some n, or a Lie subgroup of this). The Lie algebra
of G is then a vector space of antihermitian n × n matrices. Generally,
we denote the Lie algebra of a group G by Lie(G); however, for specific
matrix groups, like U(n) or SO(n), their Lie algebras are denoted by
u(n) and so(n). Let {ta : 1 ≤ a ≤ dim G} be an orthonormalized basis
of Lie(G), satisfying Tr(tatb) = Cδab for some fixed negative constant C.
The Lie algebra structure is

[ta, tb] = fabctc , (2.125)
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and fabc are the structure constants. The normalization condition implies
that fabc are totally antisymmetric in their indices.

Let us consider a field theory with a multiplet of complex scalar fields
Φ = (Φ1, . . . ,Φn) acted on by G. Suppressing indices, the global action
of G is

Φ '→ gΦ , g ∈ G . (2.126)

We desire a theory invariant under space-time dependent gauge transfor-
mations

Φ(x) '→ g(x)Φ(x) . (2.127)

To construct a gauge invariant Lagrangian we need to have a covariant
derivative of Φ. This requires the introduction of a gauge potential Aµ(x),
taking values in Lie(G). In terms of the basis {ta}, Aµ has a component
expansion Aµ = Aa

µta. The covariant derivative is

DµΦ = ∂µΦ + AµΦ . (2.128)

If we now postulate that Aµ gauge transforms as

Aµ '→ gAµg−1 − ∂µg g−1 , (2.129)

then

DµΦ '→ ∂µ(gΦ) + (gAµg−1 − ∂µgg−1)gΦ
= ∂µgΦ + g∂µΦ + gAµΦ − ∂µgΦ
= gDµΦ , (2.130)

so DµΦ transforms like Φ, i.e. covariantly. Occasionally, we will denote
the covariant derivative operator by DA

µ if we wish to draw attention to
a particular gauge field configuration Aµ(x).

The final ingredient of the Lagrangian is the Yang-Mills field tensor Fµν ,
defined as the commutator of covariant derivatives Dµ and Dν . When one
expands out the defining equation

[Dµ, Dν ]Φ = FµνΦ , (2.131)

one obtains the explicit formula

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , (2.132)

which is valued in Lie(G). (In the abelian case, [Dµ, Dν ] = −ifµν .) Under
a gauge transformation,

Fµν '→ ∂µ(gAνg−1 − ∂νgg−1) − ∂ν(gAµg−1 − ∂µgg−1)
+[gAµg−1 − ∂µgg−1, gAνg−1 − ∂νgg−1]

= gFµνg−1 (2.133)
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(using ∂µg−1 = −g−1∂µgg−1, which ensures ∂µ(g−1g) = ∂µI = 0). This
is also clear from (2.131).

The Yang-Mills Lagrangian density is a Lorentz invariant combination
of these ingredients,

L =
1
8
Tr(FµνFµν) +

1
2
(DµΦ)†DµΦ − U(Φ†Φ) . (2.134)

Under a gauge transformation,

Tr(FµνF
µν) '→ Tr(gFµνg−1gFµνg−1) = Tr(FµνFµν) , (2.135)

using the cyclicity of the trace. Also

Φ†Φ '→ (gΦ)†gΦ = Φ†g†gΦ = Φ†Φ , (2.136)

because g is unitary, and similarly

(DµΦ)†DµΦ '→ (gDµΦ)†gDµΦ = (DµΦ)†g†gDµΦ = (DµΦ)†DµΦ .
(2.137)

So L is gauge invariant.
The Euler-Lagrange field equations for the Yang-Mills theory are

DµDµΦ = −2U ′(Φ†Φ)Φ (2.138)
DµFµν = Jν , (2.139)

where the Lie(G)-valued current is

Jν = − 1
C

(
Φ†taDνΦ − (DνΦ)†taΦ

)
ta , (2.140)

and the field tensor (and similarly any other Lie(G)-valued quantity) has
covariant derivative DλFµν = ∂λFµν + [Aλ, Fµν ]. Like the U(1) La-
grangian, the Yang-Mills Lagrangian can be split into kinetic and poten-
tial parts

T =
∫ (

−1
4
Tr(EiEi) +

1
2
(D0Φ)†D0Φ

)
ddx (2.141)

V =
∫ (

−1
8
Tr(FijFij) +

1
2
(DiΦ)†DiΦ + U(Φ†Φ)

)
ddx ,(2.142)

where Ei = F0i, but the expression T only describes the physical kinetic
energy if one imposes Gauss’ law

DiEi = − 1
C

(Φ†taD0Φ − (D0Φ)†taΦ)ta , (2.143)

which reduces to an equation for A0.
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Note that an infinitesimal non-abelian gauge transformation has the
form g = eα = I + α, with α an infinitesimal antihermitian matrix.
Under such a transformation,

δΦ = αΦ (2.144)
δAµ = −Dµα . (2.145)

Therefore D0Φ = ∂0Φ + A0Φ and Ei = ∂0Ai − DiA0 are related to ∂0Φ
and ∂0Ai by the addition of a gauge transformation with parameter A0.
Gauss’ law determines A0 in such a way that {D0Φ, Ei} is the projection
of {∂0Φ, ∂0Ai} orthogonal to gauge orbits, i.e. in such a way that the
orthogonality condition

∫ (
Tr(EiDiα) + (D0Φ)†αΦ + (αΦ)†D0Φ

)
ddx = 0 (2.146)

is satisfied for all functions α which vanish at infinity. One verifies this
by multiplying (2.143) by α, taking the trace, and using the divergence
theorem. One also needs the covariant divergence identity

∂i(Tr(Eiα)) = Tr(DiEi α) + Tr(Ei Diα) , (2.147)

which follows from the identity ∂i(Tr(Eiα)) = Tr(∂iEi α)+Tr(Ei ∂iα) be-
cause the cyclic property of a trace implies Tr([Ai, Ei]α)+Tr(Ei[Ai,α]) =
0. Thus, when Gauss’ law is satisfied, T is the natural kinetic energy for
a trajectory in the true configuration space C.

There are two important variants of Yang-Mills theory that we will be
considering later. In the first, we take the scalar field Φ to be valued in
the Lie algebra, Lie(G). That is, Φ is an n × n matrix field, which has a
component expansion Φ = Φata. The gauge transformation of Φ is now
by conjugation (the adjoint action of G),

Φ '→ gΦg−1 . (2.148)

This transformation keeps Φ in Lie(G). The covariant derivative of Φ is

DµΦ = ∂µΦ + [Aµ, Φ] , (2.149)

which gauge transforms as

DµΦ '→ ∂µ(gΦg−1) + [gAµg−1 − ∂µgg−1, gΦg−1]
= gDµΦg−1 . (2.150)

The Lagrangian density is

L =
1
8
Tr (FµνFµν) − 1

4
Tr (DµΦDµΦ) − U(Tr Φ2) , (2.151)
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and is gauge invariant because of the cyclic property of the trace. The
second variant is pure Yang-Mills theory. Here there is no scalar field, but
only the gauge field Aµ and its field tensor Fµν , with Lagrangian density

L =
1
8
Tr (FµνFµν) , (2.152)

and field equation
DµFµν = 0 . (2.153)

Each variant of gauge theory has its own version of Gauss’ law, but the
interpretation that it projects the time derivatives of the fields orthogonal
to gauge orbits persists.

Naively, the vacuum of pure Yang-Mills theory is the field configuration
Aµ = 0. However, a gauge transformation of this, Aµ = −∂µgg−1, is
equally well a vacuum configuration. Such a configuration is called a pure
gauge. Its field tensor vanishes, so the field equation (2.153) is trivially
satisfied.

We described earlier how space-time and internal symmetries lead to
conserved quantities in scalar field theory. The space-time and global
symmetries lead in the same way to conserved quantities in gauge theo-
ries. One might imagine that the very much larger group of local gauge
symmetries leads to yet further local conservation laws. However, this is
not the case, because the conserved charges vanish identically if Gauss’
law is satisfied at each space-time point.

Although gauge transformations by themselves do not give new con-
servation laws, it is interesting that suitable gauge transformations can
be used to improve familiar conservation laws [214]. Thus, consider pure
Yang-Mills theory. An infinitesimal translation in the direction εν is a
symmetry. The change in the field, naively, is

Aλ '→ Aλ + εν∂νAλ . (2.154)

As usual, the change in the Lagrangian density is εν∂νL = εν∂µ(δµ
νL),

and hence the conserved energy-momentum tensor is

Tµ
ν =

1
8
Tr
(
4Fµλ∂νAλ − δµ

ν F κλFκλ

)
. (2.155)

This satisfies ∂µTµ
ν = 0, but it is not gauge invariant. It can be improved

by adding to the original variation of the gauge potential an infinitesimal
gauge transformation with parameter ενAν . Thus

Aλ '→ Aλ + εν∂νAλ − Dλ(ενAν)
= Aλ + ενFνλ , (2.156)
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which already looks more covariant. The improved energy-momentum
tensor is

T̃µ
ν =

1
8
Tr
(
4FµλFνλ − δµ

ν F κλFκλ

)
. (2.157)

This is conserved and gauge invariant, and T̃µν is symmetric under inter-
change of µ and ν. We shall apply this improvement technique in later
sections.

2.7 The Higgs mechanism

It is important to understand the field content of a gauge theory lin-
earized around the vacuum, and whether the fields are effectively massive
or massless. This will determine the asymptotic nature of the fields of
any soliton, and the type of interactions to expect between well separated
solitons.

The pure Maxwell theory is the prototype. Here the field equation is
∂µfµν = 0, and is already linear. We can impose the transverse gauge
condition ∇ · a = 0. Gauss’ law now allows a0 = 0. The remaining field
equation is the massless wave equation

(∂0∂0 −∇2)a = 0 . (2.158)

This has plane wave solutions a = εei(k·x−ωt) with dispersion relation
ω = |k|, and the polarization ε must be transverse to the wave-vector, that
is ε ·k = 0, to satisfy ∇ ·a = 0. The particle arising from quantization of
the waves is the massless photon, which has two independent polarization
states.

Consider now scalar electrodynamics, with Lagrangian (2.99). If U has
its minimum at φ = 0, then the U(1) gauge symmetry is unbroken, and
the linearized equations for a and φ decouple. Generally, φ will be a
massive field with two real components. The mass depends on the second
derivative ∂φ̄∂φU , evaluated at φ = 0. More explicitly, if the Taylor
expansion of U is U = U0 + 1

2m2φ̄φ+ · · · , then the scalar fields both have
mass m. However, the photon is massless as before, and is long-range.

When there is spontaneous symmetry breaking, things are different.
Suppose U(φ̄φ) has its minimum at |φ| ̸= 0. Because of the U(1) symme-
try, there is a whole circular U(1) orbit that minimizes U . In the absence
of the gauge fields, there was a scalar Goldstone particle. However, now
it makes sense to fix the gauge so that φ is real, and the vacuum is
φ = φ0 > 0. The linearized equation for φ involves only oscillations of the
magnitude of φ, but its phase remains zero. Generally, U has a quadratic
minimum in this direction, so there is a single massive scalar field. On
quantization this becomes the Higgs particle of scalar electrodynamics.
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Provided that φ is at or close to its vacuum value, the part of the
Lagrangian quadratic in the gauge field aµ is

−1
4
fµνfµν +

1
2
φ2

0aµaµ , (2.159)

so the positive coefficient φ0 acts as a non-zero mass parameter. There
is no remaining gauge freedom. The field equation associated with the
Lagrangian (2.159) is

∂µfµν + φ2
0a

ν = 0 . (2.160)

Expanding out, this becomes

(∂µ∂
µ + φ2

0)a
ν − ∂ν∂µaµ = 0 . (2.161)

Acting with ∂ν , the triple derivative terms cancel, and it follows that

∂νa
ν = 0 . (2.162)

So (2.161) simplifies to the massive Klein-Gordon equation

(∂µ∂
µ + φ2

0)a
ν = 0 . (2.163)

Because of the auxillary condition, ∂νaν = 0, one may regard the spatial
components of the gauge field, a, as independently satisfying (2.163), but
a0 is dependent on these. The plane wave solutions of (2.163) and (2.162)
are of the form

a0 =
k · ε
ω

ei(k·x−ωt) , a = εei(k·x−ωt) , (2.164)

with ω =
√
|k|2 + φ2

0, and ε an unconstrained polarization vector. On
quantization, one gets a massive photon, with three independent polariza-
tion states, and no scalar Goldstone particle. This is the Higgs mechanism
[180, 120, 233].

The Yang-Mills analogue is as follows. In pure Yang-Mills theory, with
gauge group G, there are dim G massless gauge fields (gluons). When
scalar fields Φ are coupled to the Yang-Mills field, and if the potential
function U(Φ†Φ) has its minimum at Φ = 0 (the unbroken case), then the
gluons are still massless, and there are n massive scalar fields, all with
the same mass. The gauge symmetry is spontaneously broken if U has
its minimum at Φ0 ̸= 0. Let the isotropy subgroup of Φ0 be H. Then U
takes the same minimal value on the whole orbit of Φ0, which is G/H. If
G is a sufficiently large subgroup of U(n), one can fix the gauge so that
Φ = Φ0(1 + η) with η real. There is then just one massive scalar Higgs
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field, associated with η. All components of the gauge field need also to
be considered. There is a mass term

1
2
(AµΦ0)†AµΦ0 , (2.165)

coming from the part of the Lagrangian density 1
2(DµΦ)†DµΦ. This can

be rewritten as 1
2Aa

µMabAµb, where Mab = (taΦ0)†tbΦ0 = −Φ†
0t

atbΦ0 is
the mass matrix, a quadratic form on Lie(G). It has zero eigenvalues in
the directions of Lie(H), because the generators of H annihilate Φ0, and
non-zero eigenvalues in the directions of the orthogonal subspace Lie(G)
− Lie(H). Thus there are dim H massless gauge fields associated with
the unbroken group H, but the remaining gauge fields become massive.
There are no Goldstone particles if the gauge group G acts transitively
on the vacuum manifold of U , that is, if the orbit of Φ0 is the entire set
minimizing U .

We shall see the Higgs mechanism in action when we discuss vortices
and monopoles in Chapters 7 and 8.

2.8 Gradient flow in field theory

Recall from Section 2.1 that the gradient flow equation associated with
a second order dynamical system on a Euclidean manifold is obtained by
replacing second by first time derivatives. If the background metric is
non-trivial, it needs to be included, as in (2.24).

Similarly, in scalar field theory, which has an infinite-dimensional Eu-
clidean configuration space, the gradient flow equation is obtained by
replacing the second order nonlinear wave equation (2.52) by

κ∂0φ = ∇2φ− dU

dφ
, (2.166)

with κ positive, as before. This is a nonlinear diffusion equation. The flow
is in the direction where the potential energy V decreases most steeply.
Short wavelength fields decay the most rapidly for equation (2.166), and
the field is smoothed out. For arbitrary initial data, at time t0, the field
φ is infinitely differentiable at any time t > t0. An important contrast
between (2.166) and the analogous equation (2.25) for a finite-dimensional
system, related to this, is that in the field theory time can not be reversed
for generic initial data, because the shortest wavelengths would blow up
arbitrarily fast.

However, there are solutions φ(t,x) of (2.166) which are defined for all
time. If limt→−∞ φ(t,x) = φ−∞(x) and limt→∞ φ(t,x) = φ∞(x) both
exist, then φ−∞ and φ∞ are static solutions of the equation, and hence
stationary points of V .
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The gradient flow equation has a number of uses, one of which is sim-
ply to search for static solutions (generally minima of V ). Physically, it
describes a dissipative relaxation of the field towards equilibrium.

In a gauge theory there is also a gradient flow. One version is gauge
invariant. Thus in scalar electrodynamics, the gradient flow equations are

κD0φ = DiDiφ− 2U ′(φ̄φ)φ (2.167)

κei = ∂jfji −
i

2
(φ̄Diφ− φDiφ) , (2.168)

which are related to equations (2.105) and (2.106), but one time derivative
∂0 or covariant time derivative D0 has been dropped. Perhaps surpris-
ingly, Gauss’ law (2.107) is automatically satisfied. One verifies this by
taking the divergence of (2.168), and using (2.167) to replace the terms
involving DiDiφ. This calculation explains the necessity for the coeffi-
cient κ to be the same in (2.167) and (2.168). The interpretation is that
in gradient flow, the projected motion {D0φ, ei} is automatically orthog-
onal to gauge orbits. In fact, this is not so surprising, because the flow
is orthogonal to hypersurfaces of the potential energy V , and these hy-
persurfaces include all gauge orbits since V is gauge invariant. It follows
that one can set a0 = 0. The gauge-fixed gradient flow equations are then

κ∂0φ = DiDiφ− 2U ′(φ̄φ)φ (2.169)

κ∂0ai = ∂jfji −
i

2
(φ̄Diφ− φDiφ) , (2.170)

and these are consistent with the version of Gauss’ law with a0 = 0.
Similar considerations apply to non-abelian gauge theory. The gradient

flow equation of pure Yang-Mills theory is

κF0i = DjFji . (2.171)

Gauss’ law is DiF0i = 0, and this is satisfied since

κDiF0i = DiDjFji =
1
2
[Di, Dj ]Fji = −1

2
[Fij , Fij ] = 0 . (2.172)

The gauge-fixed gradient flow equation, with A0 = 0, is

κ∂0Ai = DjFji . (2.173)

Thus the gradient flow in gauge theory is a flow in the full configura-
tion space A, which may or may not be gauge-fixed; and because Gauss’
law is satisfied, there is a consistent interpretation as a flow in the true
configuration space C with its natural metric and potential.
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Topology in field theory

We shall need some ideas from topology in order to understand the clas-
sification of solitons in field theory, and especially to understand their
stability. However, this is not a textbook on topology, and our discus-
sion will be somewhat heuristic. For a rigorous discussion of these topics
we recommend the books [181] and [60]. In this chapter, and in a few
places later in the book, it will be very helpful to use differential forms.
We assume the reader has some familiarity with these (an elementary
introduction can be found in the book [133]).

There are two basic techniques for classifying solitons in theories with
scalar fields. The first is homotopy theory, and the second is topological
degree theory, which can sometimes be used to calculate a homotopy class.
Topological degree is a special case of homology ideas.

In gauge theories, the Chern numbers classify solitons. These are found
by integrating Chern forms over space. The Chern forms are gauge in-
variant differential forms of even degree constructed algebraically from the
field tensor. The simplest are 2-forms and 4-forms. The former can be in-
tegrated over a plane or surface, the latter over R4 or another 4-manifold.
Since we are interested in the application to solitons in dimensions up
to four, we do not discuss higher degree Chern forms. After discussing
Chern forms and Chern numbers, we shall consider the related Chern-
Simons forms and their integrals.

3.1 Homotopy theory

Let X and Y be two manifolds without boundary, and consider the con-
tinuous maps between them, Ψ : X !→ Y . Often it is helpful to identify
base points x0 ∈ X and y0 ∈ Y and require Ψ(x0) = y0; then Ψ is a
based map. A based map Ψ0 : X !→ Y is said to be homotopic to another
such map Ψ1 if Ψ0 can be continuously deformed into Ψ1. Precisely, Ψ0

47
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is homotopic to Ψ1 if there is a continuous map

Ψ̃ : X × [0, 1] !→ Y , (3.1)

with “time” τ parametrizing the interval [0, 1], such that Ψ̃ |τ=0 = Ψ0 and
Ψ̃ |τ=1 = Ψ1, and Ψ̃(x0; τ) = y0 for all τ .

“Homotopic” is an equivalence relation; it is symmetric (Ψ0 homotopic
to Ψ1 implies Ψ1 homotopic to Ψ0) because the time flow can be reversed;
it is transitive (Ψ0 homotopic to Ψ1 and Ψ1 homotopic to Ψ2 implies
Ψ0 homotopic to Ψ2) because time intervals can be adjoined, and then
rescaled; and is obviously reflexive (Ψ0 homotopic to itself). Thus the
maps Ψ can be classified into homotopy classes. One class is the constant
class, consisting of maps homotopic to the constant map Ψ for which
Ψ(x) = y0 for all x.

One can say more about homotopy classes if X is a sphere. The n-
sphere Sn is the set of points in Rn+1 at unit distance from the origin.
We shall be especially interested in the cases S1 the circle, which is also
the manifold of the group U(1), S2 the usual sphere, and S3 the unit
sphere in four dimensions, which is also the manifold of the group SU(2).

The set of homotopy classes of based maps Ψ : Sn !→ Y is denoted by
πn(Y ). We take as base points the North pole p in Sn, that is, the point
(0, 0, . . . , 1) ∈ Rn+1, and some chosen point y0 ∈ Y . (In R2, the usual
choice of base point is (1, 0).) For n ≥ 1, the set πn(Y ) forms a group;
the nth homotopy group of Y . To understand this one needs to define
the composition of two classes of maps, and show that the usual group
axioms are satisfied. In practice, one composes two maps and shows that
the composition is independent of the choice within the homotopy class.

The construction, for π1(Y ), is schematically as in Fig. 3.1.
A map S1 !→ Y , and also its image in Y , is called a loop. Ψ0 and Ψ1 are

y0

Y

Ψ Ψ

Ψ Ψ

0

0 1

1

Fig. 3.1. Sketch illustrating the composition of two maps involved in the
construction of π1(Y ).
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two based loops in Y . Their composition Ψ0 · Ψ1 is the loop Ψ obtained
by following Ψ0 by Ψ1. The homotopy class of Ψ depends only on the
classes of Ψ0 and Ψ1. The composition is associative,

Ψ0 · (Ψ1 · Ψ2) = (Ψ0 · Ψ1) · Ψ2 , (3.2)

because each of these is the loop Ψ0 followed by Ψ1 followed by Ψ2.
The class of the constant map S1 !→ y0 is the identity element of the
group π1(Y ). When composed with another map Ψ, the class of Ψ is
unchanged. The inverse of Ψ is Ψ traversed in the opposite direction,
which composes with Ψ to give a loop in the constant class. Note that
π1(Y ) is generally non-abelian, since the composition of loops Ψ0 · Ψ1 is
not necessarily homotopic to Ψ1 ·Ψ0. π1(Y ) is known as the fundamental
group of Y . If Y is connected and π1(Y ) = I, where I denotes the trivial
group with just the identity element, then the space Y is said to be
simply connected. In this case, every loop is contractible, i.e. homotopic
to the trivial loop. Consider Rd with the origin as base point. Any loop
Ψ0 : S1 !→ Rd is contractible (parametrize S1 by θ ∈ [0, 2π], and define
Ψ̃(θ; τ) = (1 − τ)Ψ0(θ)), therefore π1(Rd) = I. The same construction
works on many other spaces, after defining a suitable origin and local
Cartesian coordinates. Thus, for all d ≥ 2, loops in Sd are contractible,
so π1(Sd) = I.

One can show that π1(S1) = Z. A map S1 !→ S1 is defined by a
continuous function f(θ) on [0, 2π], where f(θ) is the angle on the target.
The map is based if f(0) = 0, and continuity of the map requires that
f(2π) = 2πk for some k ∈ Z. k is called the winding number of the
map. It is the net number of times that the image f(θ) winds around the
target as θ goes once around the domain. k, being an integer, can not
change under a homotopy. Conversely, maps f0 and f1 with the same k
are homotopic, as one sees from the formula f̃ = (1 − τ)f0 + τf1, which
continuously deforms f0 into f1. Thus the homotopy classes of π1(S1)
are labelled by the integers. Moreover, as a group, π1(S1) is Z with the
usual addition. This is checked by composing maps f0 and f1, in the
sense above, and noting that the winding numbers k0 and k1 add. In
this example, the fundamental group is abelian. More complicated is
the d-dimensional torus Td. Td can be regarded as Rd, with base point
the origin, modulo a lattice Λ with d independent basis vectors. Then
π1(Td) = Λ, which is isomorphic as a group to Zd, again abelian.

The fundamental group π1(Y ) of a closed Riemann surface Y of genus
g > 1 is non-abelian, being generated by 2g loops a1, . . . , ag, b1, . . . , bg

and their inverses, starting and ending at the base point y0. They are
subject to the single relation

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g = I . (3.3)
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By cutting Y along all the generating loops one can represent Y as a
polygon, every vertex of which corresponds to y0, and whose edges are
identified in pairs; see Fig. 3.2. The surface is reconstructed by gluing the
edge pairs as and a−1

s together, and similarly bs and b−1
s , in such a way

that the arrows match up.

b

a

b

ab

a

b

a 1

1

1

1g

g

g

g

Fig. 3.2. Polygon representation of a genus g Riemann surface.

Let us next consider maps from Sn to a general manifold Y , for n ≥ 2.
We can represent the n-sphere Sn as Rn with all points at infinity iden-
tified, using stereographic projection from the North pole p; see Fig. 3.3.

p

S

R

n

n

Fig. 3.3. Pictorial representation of stereographic projection from Sn to Rn.

Stereographic projection is a one-to-one correspondence between {Sn−p}
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and Rn. If we adjoin a single point at infinity to Rn, and regard this
as the image of p, then we have our desired representation of Sn. A
based map Ψ : Sn !→ Y is therefore homotopically equivalent to a map
Ψ : Rn !→ Y , provided limx→∞ Ψ(x) = y0. One says that the point at
infinity is mapped to y0.

Two alternative representations are helpful. We can contract Rn onto
the interior of an n-ball. This is explicitly achieved by the map ρ !→
tan−1 ρ, with ρ the distance from the origin. It follows that a continuous
map from Rn to Y , where the boundary of the ball and all exterior points
map to y0, is equivalent to a based map from Sn to Y . Similarly, we
can contract Rn onto an n-dimensional hypercube in Rn. A continuous
map from Rn to Y , where the boundary of the hypercube and all exterior
points map to y0, is again equivalent to a based map from Sn to Y .

Using the hypercube representation one can see how πn(Y ) forms a
group for n ≥ 2. Maps Ψ0 and Ψ1 from Sn to Y , representing two
homotopy classes, are composed schematically as in Fig. 3.4.

Y
R y

Ψ

Ψ
n

1

0

0

Fig. 3.4. Schematic representation of how πn(Y ) forms a group using the
hypercube representation.

The result Ψ0 ·Ψ1 has the correct behaviour as x → ∞ to be regarded
as a map from Sn to Y . The identity element of πn(Y ) is the class
of the constant map Sn !→ y0. The homotopy inverse of a map Ψ (or
rather, its class) is obtained, in the hypercube representation, by making
a single reflection in Rn, i.e. defining Ψ−1(x1, . . . , xn) = Ψ(−x1, . . . , xn).
It can be checked that the composition of Ψ and Ψ−1 is homotopic to the
constant map. Three maps combine associatively, as before. Thus πn(Y )
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is a group.
There is a crucial difference between this case with n ≥ 2, and the case

n = 1. Figure 3.5 indicates that by a homotopy, the order in which two
maps (classes) are composed can be reversed if n ≥ 2.

Y
R y
n

0

Fig. 3.5. Sketch to illustrate that for n ≥ 2 the order in which two maps are
composed can be reversed.

The group πn(Y ), for n ≥ 2, is therefore abelian.
Calculation of homotopy groups πn(Y ) is a major task of algebraic

topology, and is not easy. We quote some of the most important results
for us. A basic result is

πn(Sn) = Z ∀n ≥ 1 . (3.4)

The generator of the group is the class of the identity map from Sn to
itself. A representative of the kth homotopy class is where there is a
k-fold winding in a 2-plane, e.g. the map

(r cos θ, r sin θ, x3, x4, . . . , xn+1) !→ (r cos kθ, r sin kθ, x3, x4, . . . , xn+1)
(3.5)

with r2 + (x3)2 + (x4)2 + · · · + (xn+1)2 = 1. For 1 ≤ n < d, πn(Sd) = I
because all maps Sn !→ Sd are contractible to a constant map. This is
because the image excludes at least one point of Sd; removing this, one
obtains an image of Sn in Rd, which can be linearly contracted to a point.
The groups πn(Sd) for n > d are increasingly difficult to compute as n
and d increase. Some examples are

πn(S1) = I ∀n ≥ 2 , π3(S2) = Z ,

πn+1(Sn) = Z2 ∀n ≥ 3 , πn+2(Sn) = Z2 ∀n ≥ 2 . (3.6)
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The higher homotopy groups of a torus are trivial; πn(Td) = I if n ≥ 2.
One further homotopy notion is the set of unbased homotopy classes

π0(Y ). These classes are maps from a single point to Y , up to homotopy
equivalence. (Note, we regard the 0-sphere here as one point, not the two
points ±1 ∈ R1.) Maps with image points in the same connected com-
ponent of Y are homotopic. Thus π0(Y ) is the set of distinct, connected
components of Y . If Y is connected, then π0(Y ) has just one element.
π0(Y ) is generally not a group.

We shall need some results on the homotopy groups of coset spaces
in Chapter 8. Let G be a Lie group with subgroup H. The crucial
isomorphism results are

π2(G/H) = π1(H), π1(G/H) = π0(H) , (3.7)

which hold provided that G is both connected and simply connected, i.e.
π0(G) = π1(G) = I. Note that π0(G) and π0(H) are groups because
one can use the group multiplication of G to compose elements. The
isomorphisms (3.7) follow from the existence of a series of homomorphisms
between homotopy groups, called the exact homotopy sequence. Its proof
involves a consideration of the obstructions to lifting a continuous map
Ψ : S2 !→ G/H to a continuous map Ψ̃ : S2 !→ G. We refer the interested
reader to ref. [181] for a detailed proof.

A simple but relevant example is

π2(SU(2)/U(1)) = π1(U(1)) = π1(S1) = Z , (3.8)

which we already knew because the coset space SU(2)/U(1) may be iden-
tified with S2. Two useful generalizations of this example are

π2

(
SU(m)

U(1)m−1

)
= π1(U(1)m−1) = Zm−1 (3.9)

π2

(
SU(m)

U(m − 1)

)
= π1(U(m − 1)) = Z , (3.10)

where the final equality in the last line follows because U(m−1) = U(1)×
SU(m − 1)/Zm−1 and SU(m − 1) is simply connected, so the integer is
associated with a winding around the U(1) factor.

Homotopy theory can be applied directly to a scalar field theory of
the type governed by the Lagrangian (2.62), where the field at a given
time is a map φ : X !→ Y . If the field (strongly) satisfies the dynamical
field equation then it is continuous in space and time, so its homotopy
class is well defined and unchanging with time. The homotopy class is
a topological, conserved quantity. Homotopy theory can also be applied
to field theories defined in Rd, but here the boundary conditions play a
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crucial role. These applications are discussed further in Section 4.1, and
in later chapters.

So far, we have considered the homotopy groups of a finite-dimensional
space Y . One may also consider homotopy groups of a space of based
continuous functions, or a space of based continuous maps, from X to Y ,
say. We shall call this space of maps Maps(X !→ Y ). This space is gen-
erally disconnected, with each connected component being one homotopy
class of maps. We denote by Maps0(X !→ Y ) the class of based maps
which contains the constant map X !→ y0. Let us limit the discussion to
maps from Sm to Y , and let W be the space of maps

W = Maps0(S
m !→ Y ) . (3.11)

W is connected, and the base point of W is the constant map itself,
Sm !→ y0. Then it is easy to see that for n ≥ 1,

πn(W ) = πn(Maps0(S
m !→ Y )) = πn+m(Y ) . (3.12)

This general result becomes clear using the hypercube representations of
Sm and Sn introduced above. An n-sphere’s worth of based maps in the
constant class, from Sm !→ Y , may be represented as in Fig. 3.6, where
the hypercube is now (n + m)-dimensional, each point on its boundary
is mapped to y0, and each slice (fixing n of the coordinates) gives a map
Sm !→ Y . An example is

W = Maps0(S
1 !→ S2) . (3.13)

Since π1(S2) = I, every map is in the class of the constant map. Here
π1(W ) = Z, because π2(S2) = Z. Heuristically, each map is contractible,
but a whole loop of maps is not simultaneously contractible (in general).
The picture is as in Fig. 3.7, where we show the images of a 1-parameter
family of maps from S1 !→ S2.

Similarly, if W = Maps0(S2 !→ S3), then π1(W ) = Z.
In the context of field theory, the space Maps0(X !→ Y ) is the vacuum

component of the configuration space C of the scalar field theory with
Lagrangian (2.62), so πn(Maps0(X !→ Y )) is the nth homotopy group of
this component of C. The base point condition is natural if one point of X
is special (for example, represents the point at infinity). There are other
applications too, to scalar field theories and to gauge theories. For exam-
ple, the fact that π1(Maps0(S2 !→ S3)) = Z underlies the construction of
sphalerons in the electroweak theory, which we describe in Chapter 11.

3.2 Topological degree

Topological degree is a more limited, but also more refined tool than
homotopy theory, and it allows the calculation of the homotopy class of
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Y

R

S

y0

S
n

m

n+m

Fig. 3.6. An n-sphere’s worth of based maps, from Sm !→ Y , illustrated using
the hypercube representation.

a map in certain circumstances. It is useful, because it occurs in various
ways in field theories with solitons. Often, the topological aspect of a
soliton is entirely captured by the degree of a map directly related to the
soliton field. However, the more general homotopy theory ideas are in the
background, and can be brought into action where necessary.

The topological degree is defined for a map Ψ between two closed man-
ifolds of the same dimension, Ψ : X !→ Y . Let dim X = dim Y = d.
Both X and Y must be oriented, and the map should be differentiable
everywhere, with continuous derivatives. To avoid trivial difficulties, we
suppose X is connected. We may as well suppose Y is connected too,
since the image of X will always lie in one of the connected components
of Y .

We need next to suppose that a normalized volume form Ω is defined on
Y . Locally, this maps an oriented frame of tangent vectors at each point
of Y to the reals, and preferably the positive reals. If Y is a Riemannian
manifold, the Hodge dual of a positive function on Y is such a volume
form. The normalization condition is

∫

Y
Ω = 1 . (3.14)

Now consider Ψ∗(Ω), the pull-back of Ω to X using the map Ψ. In
terms of local coordinates, if Ω = β(y)dy1 ∧ dy2 ∧ · · · ∧ dyd, and Ψ is
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S
2

p

Fig. 3.7. The images of a 1-parameter family of maps from S1 !→ S2.

represented by functions y(x), then

Ψ∗(Ω) = β(y(x))
∂y1

∂xj
dxj ∧ ∂y2

∂xk
dxk ∧ · · · ∧ ∂yd

∂xl
dxl

= β(y(x)) det
(
∂yi

∂xj

)

dx1 ∧ dx2 ∧ · · · ∧ dxd , (3.15)

where J(x) = det
(
∂yi

∂xj

)
is the Jacobian of the map at x.

Now define
deg Ψ =

∫

X
Ψ∗(Ω) . (3.16)

This integral occurs naturally in various field theories. deg Ψ is called
the topological degree of the map Ψ, and is an integer, as we shall show
below. The topological degree is a homotopy invariant of Ψ, simply be-
cause an integer can not change under a continuous deformation. It is
also independent of the choice of Ω, because the difference of two normal-
ized volume forms on Y is a d-form whose integral is zero, and hence an
exact form. The pull-back of the difference is therefore exact on X, and
integrates to zero.

The most important example is for a map Ψ : Sn !→ Sn. Suppose Ψ is
in the kth homotopy class of πn(Sn). Then deg Ψ = k. This is clear for
the map (3.5), which is a representative of the class. If one pulls back the
standard, rotationally invariant, normalized volume form on the target



3.2 Topological degree 57

Sn, one gets k times the standard normalized volume form on the domain
Sn. In particular, for a map Ψ : S1 !→ S1, the degree is equal to the
winding number. This is verified by choosing the volume form 1

2πdθ on
S1, and noting that for a map given by a function f(θ), the formula (3.16)
reduces to

deg Ψ =
1
2π

∫ 2π

0

df

dθ
dθ =

1
2π

(f(2π) − f(0)) = k . (3.17)

Sometimes the degree of a more general map, between higher-dimensional
manifolds, is also called a winding number.

Another important example for us is the degree of a map from a three-
dimensional manifold X to SU(2). Elements of SU(2) can be written
as

g = c012 + ic · τ , (3.18)

where 12 is the unit 2×2 matrix and τ1, τ2, τ3 are the Pauli matrices, and
where c2

0 + c · c = 1. Geometrically, SU(2) is a 3-sphere. The standard
normalized volume form on SU(2) can be expressed as

Ω =
1

24π2
Tr (dgg−1 ∧ dgg−1 ∧ dgg−1) . (3.19)

To understand this, note that Ω is invariant under left and right mul-
tiplication by fixed elements of SU(2), g !→ g1gg2, and since SU(2) ×
SU(2)/Z2 = SO(4), Ω is rotationally invariant. To understand the nor-
malization factor, consider g close to 12, where c0 is essentially constant.
Then (3.19) simplifies to

Ω =
−6i

24π2
Tr (τ1τ2τ3) dc1 ∧ dc2 ∧ dc3 =

1
2π2

dc1 ∧ dc2 ∧ dc3 . (3.20)

This is the desired normalization, because the unit 3-sphere has total
volume 2π2 and has volume element dc1 ∧ dc2 ∧ dc3 close to c0 = 1.

If Ψ is a map from X to SU(2), represented by a function g(x), then

deg Ψ =
1

24π2

∫

X
Tr (dgg−1 ∧ dgg−1 ∧ dgg−1) , (3.21)

where dg now denotes ∂ig dxi. This is the integral of the pull-back of Ω
to X.

A very useful feature of the topological degree of a map Ψ : X !→ Y is
that there is a second, apparently independent way to compute it. Choose
a point y on Y , such that the set of preimages of y, the points on X
mapped to y, is a set (possibly empty) of isolated points {x(1), . . . ,x(M)}
at each of which the Jacobian of the map is non-zero. Such points y occur



58 Topology in field theory

almost everywhere on Y . Let

d̃egΨ =
M∑

m=1

sign (J(x(m))) , (3.22)

where sign (J(x(m))) is the sign of the Jacobian at x(m). One says that
d̃egΨ counts the preimages of y with their multiplicity, which is 1 or −1,
depending on whether Ψ is locally orientation preserving or orientation
reversing. Clearly d̃egΨ is an integer. It is a theorem that d̃egΨ = deg Ψ,
and hence is independent of the choice of y.

To prove that d̃egΨ = deg Ψ, we proceed as follows. Deform the volume
form Ω on Y so that it is concentrated on a small neighbourhood of the
point y, and still normalized. deg Ψ is unaffected, because, as we argued
earlier, it doesn’t depend on the choice of Ω. Ψ∗(Ω) is now concentrated
on small neighbourhoods of each of the preimages {x(1), . . . ,x(M)}. More-
over, the integral of Ψ∗(Ω) over one of these neighbourhoods is simply ±1,
which can be understood by a naive local change of coordinates from {xi}
back to {yi}, which introduces a factor |J |−1, and reproduces the volume
form Ω up to an orientation preserving/reversing sign. The integral is
then unity, by the normalization condition. Summing over the preim-
ages, we see that the formula (3.16) for deg Ψ reduces to the expression
(3.22) for d̃egΨ. deg Ψ is consequently an integer.

The standard map (3.5) from Sn to Sn again provides an example. A
suitable choice for y is any point with r ̸= 0. The preimages of

(r cosψ, r sinψ, x3, . . . , xn+1) (3.23)

are the points
(r cos θ, r sin θ, x3, . . . , xn+1) , (3.24)

where cos kθ = cosψ and sin kθ = sinψ. This requires kθ = ψmod 2π.
If we choose both ψ and θ to be in the range [0, 2π) then θ = ψ

k ,
ψ+2π

k , . . . , ψ+2π(k−1)
k . There are k preimages, and it is easy to see that

the Jacobian is positive at each. So the degree of the map, by counting
preimages, is k.

Preimage counting is often the easiest way of determining the degree of
a map. A good example is the degree of a rational map from the Riemann
sphere to itself. The Riemann sphere is the complex plane with one point
at infinity adjoined, C ∪ {∞}. Topologically it is S2. We denote a point
on the Riemann sphere by a complex number z, which can take any value,
including infinity. A rational map is a function

R(z) =
p(z)
q(z)

, (3.25)
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where p and q are polynomials in z. p and q must have no common roots,
otherwise factors can be cancelled between them. q can be a non-zero
constant, in which case R is just a polynomial. For finite z, R(z) may
have any complex value, including infinity. The value is infinity where q
vanishes. R(∞) is the limit as z → ∞ of p(z)/q(z), and can either be
finite or infinity. Functions of the type (3.25) are smooth maps from S2

to S2.
The algebraic degree kalg of R is the larger of the degrees of the poly-

nomials p and q. For example, the maps (z − a)/(z − b), 1/z2 and z3 + a
have algebraic degrees 1, 2 and 3, respectively.

The topological degree of R is the number of preimages of a given
point c, counted with multiplicity. These are found by solving R(z) = c,
or equivalently

p(z) − cq(z) = 0 , (3.26)

and this is a polynomial equation, generally of degree kalg and with kalg

simple roots. At each of these isolated roots, the complex derivative
dR/dz is non-zero. By expanding in real and imaginary parts, we find
that as a real map between 2-spheres, R has Jacobian |dR/dz|2, which is
positive. More geometrically, this is because the map, being holomorphic,
locally preserves orientation. Thus each preimage of c occurs with positive
multiplicity. Therefore, the topological degree of R equals the algebraic
degree.

Some values of c are exceptional. As c varies, the roots of p − cq will
sometimes coalesce, but the net number of preimages doesn’t change if
one defines their multiplicities with care. Also p−cq may sometimes have
one or more leading powers of z missing. But then the missing finite
roots of (3.26) are regarded as being at infinity. This becomes clear if one
changes c a little. For example, the equation

1
z2

= c , (3.27)

with c small, has roots at z = ±
√

1
c near infinity, so the equation

1
z2

= 0 , (3.28)

which degenerates if expressed in the form (3.26), is regarded as having a
double root at z = ∞. From either viewpoint, the map R(z) = 1/z2 has
algebraic and topological degree 2.

Rational maps have several important applications in soliton theory,
and we shall encounter them more than once in the following chapters.
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3.3 Gauge fields as differential forms

For studying the topological properties of gauge fields, it is convenient to
express the gauge potential and field tensor as differential forms.

Let us start with an abelian gauge theory defined on X, a manifold
with local coordinates (x1, . . . , xd), and let us ignore the time dependence.
We postulated in Chapter 2 that a gauge potential is a covariant rank 1
tensor. That means that under a coordinate transformation xi !→ x′i, the
components ai of the gauge potential transform to

a′i =
∂xj

∂x′i aj . (3.29)

This is natural, since it implies that the gauge covariant derivative of a
scalar field, ∂iφ− iaiφ, transforms in the same way as ∂iφ under a coordi-
nate transformation. It follows that the gauge potential components can
be combined into a differential 1-form

a = ai dxi = a1 dx1 + a2 dx2 + · · · + ad dxd , (3.30)

and the covariant derivative of φ becomes the 1-form dφ−iaφ. The 1-form
a is coordinate invariant, since the transformation rule (3.29) is equivalent
to the equation

ai dxi = a′i dx′i . (3.31)

The field tensor components combine into the 2-form field strength

f = da =
∑

i<j

(∂iaj − ∂jai) dxi ∧ dxj , (3.32)

the exterior derivative of a. This is also coordinate invariant. Two basic
properties of the exterior derivative operator d are the Leibniz rule d(u∧
v) = du ∧ v + (−1)ru ∧ dv, if u is an r-form, and that the operator gives
zero when applied twice, that is, dd = 0. Because of the latter property,

df = d(da) = 0 , (3.33)

so f is closed. Under a gauge transformation,

a !→ a + dα . (3.34)

f is gauge invariant, since

d(a + dα) = da + d(dα) = da . (3.35)

The gauge potential in a non-abelian gauge theory defined on X has
spatial components Ai. These are each valued in Lie(G), the Lie algebra
of the gauge group G, which as before we take to be a vector space
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of antihermitian matrices. The components can be combined into A =
Ai dxi. This is a matrix of the type occurring in Lie(G), whose entries
are 1-forms, and generally complex. A is referred to as a Lie(G)-valued
1-form. Thus in an SU(2) theory, the gauge potential is a 2× 2 traceless
antihermitian matrix of 1-forms. This can be written as

A =
(

iA3 iA1 + A2

iA1 − A2 −iA3

)
(3.36)

or equivalently A = Aa(iτa), where A1, A2 and A3 are ordinary, real 1-
forms, and {iτa} is a Pauli matrix basis of su(2). The covariant derivative
of a scalar field Φ is now DΦ = dΦ + AΦ.

The field strength is

F = dA + A ∧ A =
∑

i,j

(∂iAj + AiAj) dxi ∧ dxj

=
∑

i<j

(∂iAj − ∂jAi + [Ai, Aj ]) dxi ∧ dxj

=
∑

i<j

Fij dxi ∧ dxj , (3.37)

a Lie(G)-valued 2-form. The exterior derivative operator d acts on each
matrix entry of A in the usual way. A ∧ A means that the matrix A is
multiplied by itself in the usual way, with individual entries being multi-
plied using the wedge product of 1-forms. Generally, A ∧ A is not zero.
In the SU(2) case,

F =
(

i∆A3 i∆A1 + ∆A2

i∆A1 − ∆A2 −i∆A3

)
, (3.38)

where ∆A1 = dA1 − 2A2 ∧ A3, and cyclically.
The field strength F is not gauge invariant. Under a gauge transfor-

mation,

A !→ gAg−1 − dgg−1 (3.39)
F !→ gFg−1 . (3.40)

Also, F is not a closed 2-form. However, it satisfies the Bianchi identity

dF + A ∧ F − F ∧ A = 0 (3.41)

because, from (3.37),

dF = dA ∧A−A ∧ dA = (dA + A ∧A) ∧A−A ∧ (dA + A ∧A) . (3.42)
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3.4 Chern numbers of abelian gauge fields

The first Chern form of an abelian gauge field is defined to be the 2-form

C1 =
1
2π

f . (3.43)

The factor 1
2π will be seen to be useful later.

Let us first consider a gauge field in the plane, R2. The first Chern
number c1 is the integral of the first Chern form C1,

c1 =
1
2π

∫

R2
f . (3.44)

If f is smooth and decays to zero as |x| → ∞ more rapidly than |x|−2,
then c1 is finite. In Cartesian coordinates,

c1 =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f12 dx1 dx2 , (3.45)

where f12 = ∂1a2 − ∂2a1 is the magnetic field in the plane. Therefore the
first Chern number is the total magnetic flux through the plane, divided
by 2π. (If the plane is thought of as embedded in R3, then b = −f12 is
the component of the magnetic field pointing in the x3 direction, recalling
again that a is minus the usual vector potential.)

By Stokes’ theorem for differential forms, c1 can be expressed as a line
integral along the circle at infinity

c1 =
1
2π

∫

S1
∞

a =
1
2π

∫ 2π

0
aθ dθ

∣∣∣∣∣
ρ=∞

, (3.46)

where (ρ, θ) are polar coordinates.
Finally, because f → 0 as |x| → ∞, the gauge potential for large |x|

can be expressed as a pure gauge, that is a = dα. In particular, on the
circle at infinity, aθ = ∂θα. Therefore

c1 =
1
2π

∫ 2π

0

∂α

∂θ
dθ =

1
2π

(α(2π) − α(0)) . (3.47)

We have three expressions for c1, namely (3.44), (3.46) and (3.47).
However, there is no reason for c1 to take any particular value. c1 is
not necessarily an integer for a pure abelian gauge field in R2. This is
because α is not necessarily single-valued, nor does it need to increase
by an integer multiple of 2π around the circle at infinity. However, we
shall see later, in our discussion of vortices, that the coupling of the gauge
potential to a scalar field φ does bring in further restrictions, and then c1

must be an integer.



3.4 Chern numbers of abelian gauge fields 63

Now let X be a compact two-dimensional surface, without a boundary.
Let us suppose a scalar field and a U(1) gauge field are defined on X,
represented locally by a complex-valued function φ and a real 1-form a.
The field strength is f = da. If we required {φ, a} to be a globally defined
function and 1-form on X, then f would be a globally defined exact 2-form
on X (the exterior derivative of a 1-form). In this case, Stokes’ theorem
for forms would imply that

∫

X
f =

∫

X
da =

∫

∂X
a = 0 , (3.48)

since ∂X, which denotes the boundary of X, is here absent. Thus, the net
magnetic flux through X would be zero, and this is rather uninteresting.

One obtains a more interesting situation by relaxing one’s view of the
global nature of the fields {φ, a}. They need only be regarded as a section
and connection on a U(1) bundle over the surface X. We will not present
the mathematically careful definition of these concepts. For that, see [60].
Instead, we shall give the theoretical physicist’s picture and justification,
following ref. [432]. The idea is that, physically, φ and a are not observ-
able, but only their gauge equivalence class is. So we require φ and a to be
globally well defined only up to a gauge transformation. Gauge invariant
quantities are globally well defined.

To proceed, we imagine X to be divided up into a (finite) number of
overlapping, contractible regions (patches) {Up}. A pair of such regions
is illustrated in Fig. 3.8.

We assume that the section and connection are represented by a scalar
field and 1-form {φ(1), a(1)} on region U1, and similarly by {φ(2), a(2)} on
region U2. On the overlap of these regions, U21 = U2∩U1, we require that
{φ(1), a(1)} and {φ(2), a(2)} are related by a gauge transformation

φ(2) = e−iα(21)
φ(1) (3.49)

a(2) = a(1) − dα(21) , (3.50)

where e−iα(21) ∈ U(1) need only be defined on U21. Note that we may have
used different coordinate systems on U1 and U2, but the formulae (3.49)
and (3.50) are coordinate independent, so this doesn’t matter. Note also
that we still have the freedom to make independent gauge transformations
on U1 and U2, so that the fields on these regions could be replaced by

φ′(1) = eiα(1)
φ(1) (3.51)

a′(1) = a(1) + dα(1) , (3.52)

and similarly for {φ(2), a(2)}. The primed fields still satisfy equations
(3.49) and (3.50), but the transition function e−iα(21) needs to be replaced
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X

U UU1 221

Fig. 3.8. Two overlapping patches on X.

by eiα(2)
e−iα(21)

e−iα(1) . It turns out that for a well defined bundle on
X, there is a further constraint on the transition functions. On triply
overlapping patches U3 ∩ U2 ∩ U1, the transition functions must obey

e−iα(32)
e−iα(21)

e−iα(13)
= 1 . (3.53)

(Here, e−iα(pq) is always defined to equal eiα(qp) .)
The formula (3.49) implies that on U21, the gauge invariant quanti-

ties |φ(1)|2 and |φ(2)|2 are equal, so |φ|2 is globally well defined. More
importantly, the field strength f is globally well defined, since

f (1) = da(1) = da(2) = f (2) , (3.54)

using (3.50).
Since f = da locally, f is a closed 2-form, satisfying df = 0. Because

a is not globally well defined, f is not necessarily an exact 2-form. This
by itself tells us nothing about the integral of f over X, except that it
can be non-zero. However, the fact that the transition between regions
is as given by (3.49) and (3.50) leads to an important constraint on the
integral. The easiest example that shows this is where X is the 2-sphere,
S2.

Two regions, U1 and U2, are sufficient to cover S2. Suppose U1 covers
most of the sphere, except a disc surrounding the South pole, and U2

most of the sphere, except a disc surrounding the North pole. We use
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spherical polar coordinates (θ,ϕ). (The reader might be worried here,
because polar coordinates are ill defined at the North and South poles,
and ϕ is multivalued, but it turns out this is no problem.) Let {φ(1), a(1)}
and {φ(2), a(2)} be the fields on U1 and U2. U1 and U2 overlap on a region
U21 including the equator. Let e−iα(21)(θ,ϕ) be the transition function,
defined over the whole 2π range of ϕ, and over some range of θ including
π
2 but not extending to 0 or π. Then

a(2) = a(1) − dα(21) . (3.55)

Since φ(2) = e−iα(21)
φ(1), and φ(1),φ(2) are themselves well defined on their

respective regions, e−iα(21) must be single-valued, i.e.

e−iα(21)(θ,2π) = e−iα(21)(θ,0) . (3.56)

Even if φ(1),φ(2) were absent (or had value zero) we would require this.
Now let us calculate the integral of f over S2. We split the 2-sphere

into hemispheres, with boundary the equator, and use a(1), a(2) in the
Northern and Southern hemispheres, respectively. Then

∫

S2
f =

∫

Northern hemisphere
da(1) +

∫

Southern hemisphere
da(2)

=
∫

Equator
a(1) −

∫

Equator
a(2) . (3.57)

The step from the first to the second line uses Stokes’ theorem for each
hemisphere. The integral around the equator is taken in the usual sense
(ϕ increasing). Next, using (3.55), we deduce that

∫

S2
f =

∫

Equator
dα(21) = α(21)

(
π

2
, 2π

)
− α(21)

(
π

2
, 0
)

, (3.58)

i.e. the magnetic flux equals the increase in α(21) going round the equator
once. Because of Eq. (3.56), this is some integer multiple of 2π, say 2πN .
For example, α(21) could be of the simple form α(21)(θ,ϕ) = Nϕ, which
gives this result. Thus we have the quantization of flux

∫

S2
f = 2πN (3.59)

for some integer N , or equivalently

c1 =
1
2π

∫

S2
f = N , (3.60)

so the first Chern number is an integer.
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Rather remarkably, for a compact Riemann surface X without bound-
ary, of any genus g, one obtains the same constraint on the first Chern
number

c1 =
1
2π

∫

X
f = N , (3.61)

with N an arbitrary integer. One can understand this by using the repre-
sentation of the surface by a polygon with edges identified, as in Fig. 3.2.
The gauge potential a can be extended smoothly to the whole polygon,
but there are constraints. The gauge potential in a neighbourhood of the
edge as must agree up to a gauge transformation eiα(s) with the gauge
potential in a neighbourhood of the edge a−1

s . This gauge transformation
is single-valued on the loop in X corresponding to as. Now, by Stokes’
theorem, c1 can be expressed as 1

2π

∫
a, where the integral is along the

boundary of the polygon. The contributions from edges as and a−1
s would

cancel if the gauge transformation eiα(s) were unity, because of the arrows
being oppositely oriented. The total contribution from as and a−1

s is in
fact 1

2π

∫
dα(s), where the integral is along as, and this equals an integer

Nas . Similarly the pair of edges bs and b−1
s contribute an integer Nbs .

Summing these contributions, we get the integer result (3.61).
There is one further characterization of the first Chern number of a

U(1) bundle over a surface X. It can be demonstrated that the number
of zeros of a section φ of the bundle, counted with multiplicity, equals c1.

The second Chern form for an abelian gauge field is

C2 =
1

8π2
f ∧ f . (3.62)

This 4-form is closed, because df = 0, and is locally exact, since

C2 =
1

8π2
d(f ∧ a) . (3.63)

On R4, the second Chern number of an abelian field is therefore

c2 =
∫

R4
C2 =

1
8π2

∫

S3
∞

f ∧ a . (3.64)

If f → 0 as |x| → ∞, then this integral vanishes. So the second Chern
number of an abelian field on R4, with this boundary condition, is not
interesting.

For an abelian field on a closed 4-manifold X, c2 can be non-zero if X
has topologically non-trivial closed two-dimensional submanifolds, and it
is always an integer. For example, if X is X(1) × X(2), where each factor
is a compact surface, then

c2 =
1

8π2

∫

X(1)×X(2)
f ∧ f =

( 1
2π

∫

X(1)
f
)( 1

2π

∫

X(2)
f
)

= c(1)
1 c(2)

1 .

(3.65)
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c(1)
1 and c(2)

1 are the first Chern numbers of the field on X(1) and X(2).
One factor of 2 disappears, because if (for simplicity) f = f (1) + f (2),
where f (1) is non-zero on X(1), and f (2) on X(2), then f ∧f = 2f (1)∧f (2).
This illustrates why the second Chern form has a prefactor 1

8π2 .

3.5 Chern numbers for non-abelian gauge fields

Because the field strength F is not gauge invariant, it can not be used
to construct a direct analogue of the first Chern form C1 = 1

2πf of the
abelian theory. However, for a U(n) gauge theory, or if the gauge group
G is a subgroup of the n × n unitary matrices, one defines

C1 =
i

2π
Tr F , (3.66)

where Tr denotes the trace. C1 is gauge invariant. At the Lie algebra
level, u(n) = su(n) ⊕ u(1), and the trace picks out the U(1) part of the
field strength, which commutes (as a matrix) with the SU(n) part. For
an SU(2) gauge field, with field strength (3.38), C1 vanishes.

The second Chern form, C2, is defined as

C2 =
1

8π2

(
Tr (F ∧ F ) − Tr F ∧ Tr F

)
. (3.67)

Let us assume that F has no U(1) part; then only the term Tr (F ∧ F )
contributes. F ∧F is the matrix product of F with itself, with the 2-form
entries being combined by wedge product. The result, after taking the
trace, is a 4-form. C2 is gauge invariant, since

Tr (gFg−1 ∧ gFg−1) = Tr (gF ∧ Fg−1) = Tr (F ∧ F ) . (3.68)

(The cyclic property of a trace Tr (αβ . . . γ) = Tr (β . . . γα) is valid if the
entries of the matrices α,β, . . . , γ are commuting objects, and here the
entries of both g and F , which are 0-forms and 2-forms, commute.)

A key property of C2 is that it is a closed 4-form, because

dC2 =
1

4π2
Tr (dF ∧ F )

=
1

4π2

(
Tr (F ∧ A ∧ F ) − Tr (A ∧ F ∧ F )

)

= 0 , (3.69)

using the Bianchi identity (3.41) and the cyclicity of the trace (and the
fact that 2-forms commute with r-forms for any r). Locally, C2 can be
explicitly written as an exact form

C2 = d
( 1

8π2
Tr
(

F ∧ A − 1
3
A ∧ A ∧ A

))
. (3.70)
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Let us now specialize to an SU(2) gauge field defined in R4, regarded
as space-time, and define the second Chern number

c2 =
∫

R4
C2 . (3.71)

The importance of c2 is that it is integer-valued if the field strength F
approaches zero sufficiently fast as |x| → ∞. (This is different from the
situation for c1 in a U(1) gauge theory in R2.) To see this, we assume
this fast decay of F , writing this concisely as F∞ = 0, and fix the radial
gauge xµAµ = 0. Then there is a limiting gauge potential which is pure
gauge,

A∞ = −dg∞(g∞)−1 . (3.72)
g∞ is defined on the 3-sphere at infinity S3

∞, and takes values in SU(2),
also a 3-sphere. Therefore, we have a map

g∞ : S3
∞ !→ SU(2) . (3.73)

If one doubts that g∞ is globally defined on S3
∞, one may start with two

functions g∞N and g∞S defined on the Northern and Southern hemispheres
of S3

∞, with

A∞
N = −dg∞N (g∞N )−1 , A∞

S = −dg∞S (g∞S )−1 . (3.74)

On the equator where they overlap, there must be a gauge transformation
g∞E connecting them,

g∞N = g∞E g∞S . (3.75)
g∞E is a map from S2 !→ SU(2). Since π2(S3) = I, such a map is homo-
topic to the constant map, S2 !→ 12, so g∞E can be continuously extended
to a map over the Northern hemisphere. Then (g∞E )−1 can be used to
change g∞N over its hemisphere keeping g∞S fixed, such that after the
change, g∞N = g∞S on the equator, and hence A∞

N = A∞
S . Then g∞ is

continuously defined over all of S3
∞, and A∞ is given by (3.72).

Now recall the formula (3.70), which is globally valid on R4. Stokes’
theorem implies that

c2 =
∫

R4
C2 =

1
8π2

∫

S3
∞

Tr
(

F ∧ A − 1
3
A ∧ A ∧ A

)
. (3.76)

Since F∞ = 0, the first term vanishes, so

c2 = − 1
24π2

∫

S3
∞

Tr (A∞ ∧ A∞ ∧ A∞) , (3.77)

which can be reexpressed in terms of g∞ as

c2 =
1

24π2

∫

S3
∞

Tr
(
dg∞(g∞)−1 ∧ dg∞(g∞)−1 ∧ dg∞(g∞)−1

)
. (3.78)



3.6 Chern-Simons forms 69

This is precisely the formula (3.21) we obtained earlier for the degree of
a map from S3 to SU(2). Therefore the second Chern number c2 is the
degree of g∞, associated with the pure gauge at infinity, and hence an
integer. For reasons that will be explained in Chapter 10, this integer is
also called the instanton number of the field.

Non-abelian gauge fields can be defined on a general closed 4-manifold
X (without boundary), for example a 4-sphere or a 4-torus. As in the
abelian theory on surfaces, A is a connection, this time on a complex
vector bundle. X must be covered in patches {Up}, and the connection
A is a separately defined Lie(G)-valued 1-form A(p) on each patch. On
the overlap Uqp of two patches Up and Uq there is a gauge transformation
g(qp) ∈ G relating A(q) and A(p). The Chern form C2 is defined locally
as before, but because it is gauge invariant, it is a global 4-form on X.
Because of the (local) Bianchi identity, C2 is closed. C2 is not exact
unless A is globally defined over X (which is possible only if the bundle
is trivial). The second Chern number is

c2 =
∫

X
C2 . (3.79)

If C2 is exact, then c2 = 0, since X has no boundary. c2 is generally non-
zero, and remarkably, it is always an integer. Moreover it depends only
on the transition functions {g(qp)}, so it is a topological invariant of the
bundle over X. If X has dimension higher than four, we may integrate
C2 over any four-dimensional closed submanifold of X. c2 is again an
integer.

For applications to solitons, one usually thinks of the Chern number as
a topological invariant of the field, but it is actually an invariant of the
underlying bundle.

3.6 Chern-Simons forms

Locally, Chern forms can be expressed as exact forms. The expression
constructed from the gauge field whose exterior derivative gives the Chern
form is called a Chern-Simons form. The first Chern form of an abelian
field is locally the 2-form C1 = 1

2π da, so

Y1 =
1
2π

a (3.80)

is the Chern-Simons 1-form. For a more general gauge group, the Chern-
Simons 1-form is

Y1 =
i

2π
Tr A . (3.81)
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From (3.70) we see that the Chern-Simons 3-form of a non-abelian field
is

Y3 =
1

8π2
Tr
(

F ∧ A − 1
3
A ∧ A ∧ A

)
. (3.82)

The abelian version is
Y3 =

1
8π2

f ∧ a . (3.83)

None of these Chern-Simons forms are gauge invariant; however, their
integrals often are.

Consider the example of an SU(2) gauge field configuration in R4. Let
us explicitly distinguish R3 spatial variables x and the time t. (Since we
are integrating differential forms over manifolds, the metric plays no role,
so the time could be Euclidean or Minkowskian.) Let F → 0 as |x| → ∞.
We do not at the moment restrict how F behaves as t → ±∞. The 1-form
gauge potential approaches a pure gauge A∞ = −dg∞(g∞)−1 on S2

∞, the
2-sphere at spatial infinity, if we impose the radial gauge condition Ar = 0
(r = |x|). There is now no problem finding a gauge transformation that
makes A∞ = 0. We need to smoothly extend the map g∞ : S2

∞ !→ SU(2)
to a map g(x) : R3 !→ SU(2), but there is no obstruction to this since
π2(S3) = I, so g∞ is contractible. The required gauge transformation is
g(x)−1. This construction can be extended for any interval of time.

Now consider the equation C2 = dY3, and its integral over [t0, t1]×R3.
Using Stokes’ theorem,

∫

[t0,t1]×R3
C2 =

∫

R3
Y3

∣∣∣∣∣
t=t1

−
∫

R3
Y3

∣∣∣∣∣
t=t0

. (3.84)

There is no contribution from the boundary at spatial infinity because of
our gauge choice, which makes not only F , but all spatial components of
A vanish there.

Let us define the Chern-Simons number y3 as the integral of Y3,

y3 =
∫

R3
Y3 =

1
8π2

∫

R3
Tr
(

F ∧ A − 1
3
A ∧ A ∧ A

)
. (3.85)

Only the spatial components of A and F contribute. Equation (3.84)
states that the integral of the Chern form C2 over space, and from time
t0 to t1, is the change in Chern-Simons number,

∫

[t0,t1]×R3
C2 = y3(t1) − y3(t0) . (3.86)

Next, let us study the gauge invariance of y3. We may perform a further
gauge transformation g(x), but it must satisfy lim|x|→∞ g(x) = 12, so as to
preserve the condition that A vanishes at infinity. A map g : R3 !→ SU(2),
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subject to this limiting behaviour, is equivalent to a map S3 !→ SU(2),
and it has integer degree, deg g. Under the gauge transformation g(x),

Y3 !→ 1
8π2

Tr
(

gFg−1 ∧ (gAg−1 − dgg−1) − 1
3
(gAg−1 − dgg−1)3

)

= Y3 +
1

8π2
dT2 +

1
24π2

Tr (dgg−1)3 , (3.87)

where T2 = Tr (dgg−1 ∧ gAg−1), and the superscript 3 is shorthand for
the triple wedge product. T2 vanishes at spatial infinity, so dT2 integrates
to zero. Therefore,

y3 !→ y3 +
1

24π2

∫

R3
Tr (dgg−1)3

= y3 + deg g . (3.88)

Thus, the Chern-Simons number is not gauge invariant, but a gauge trans-
formation can only change it by an integer. The fractional part of y3,
which is usually taken to lie in the interval [0, 1), is gauge invariant. y3 is
strictly gauge invariant under “small” gauge transformations, for which
deg g = 0. However, one doesn’t want to restrict to these.

The further gauge transformation g could depend on x and t. However,
deg g being an integer must be time independent, by continuity. Thus
the difference in y3 between times t0 and t1 is completely gauge invariant,
even though y3 itself can be shifted by an integer. This is consistent with
(3.86), since C2 is gauge invariant.

Let us now also suppose that F → 0 as t → ±∞. We maintain our
choice of gauge, for which A = 0 at spatial infinity. (Note that this is a
different gauge choice from that of the previous section.) As t → −∞,
the gauge potential approaches a pure gauge throughout R3

A = −dg−(g−)−1 , (3.89)

where g− = 12 at spatial infinity. Performing the gauge transformation
(g−(x))−1 (possibly of non-zero degree) makes A = 0 at t = −∞. This is
the naive vacuum, and has Chern-Simons number zero. The same gauge
transformation must be made for all t, to avoid discontinuities.

Now consider the field as t → ∞. Here the gauge potential is another
pure gauge

A = −dg+(g+)−1 . (3.90)

Because of the boundary condition g+ = 12 at spatial infinity, the map
g+ : R3 !→ SU(2) is again equivalent to a map g+ : S3 !→ SU(2), with
integer degree, deg g+. deg g+ is the interesting quantity. First of all it is
the Chern-Simons number y3 as t → ∞. But it is also a gauge invariant
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integer associated with the whole field configuration in R4. It can not be
changed without spoiling the naive vacuum at t = −∞, or the boundary
condition at spatial infinity. Since y3 = 0 at t = −∞, Eq. (3.88) implies
that

c2 = lim
t→∞

y3(t) = deg g+ . (3.91)

Thus, in the gauge we have chosen, the second Chern number of a field
configuration for which F → 0 at infinity equals the Chern-Simons num-
ber of its limiting vacuum configuration at t = ∞. In the language of
instantons, a gauge field with instanton number N interpolates between
the naive vacuum and a vacuum with degree N .

In Chapter 11 we shall describe the electroweak sphaleron, and show
that its Chern-Simons number is 1

2 .
Let us now turn to abelian gauge fields in lower dimensions. Consider

a cylindrical space-time where space is a circle S1, parametrized by a
coordinate x in the range [0, 2π], with the ends identified, and time is the
usual linear variable. The circle could have length 2πL, but the value of
L is here irrelevant. Let the 1-form gauge potential be a = a0 dt + ax dx.
The field strength is f = f0x dt∧dx, where f0x = ∂0ax−∂xa0 is the electric
field on the circle. The Chern-Simons 1-form is Y1 = 1

2πa. Integrating
this around the circle gives us the Chern-Simons number

y1 =
1
2π

∫

S1
a =

1
2π

∫ 2π

0
ax dx . (3.92)

The allowed gauge transformations g(t, x) ∈ U(1) are those which are pe-
riodic around the circle. Such gauge transformations are time dependent
maps S1 !→ S1. Let us write

g(t, x) = eiα(t,x) (3.93)

where α is periodic in x, mod 2π. Under this gauge transformation,

ax !→ ax + ∂xα (3.94)

so

y1 !→ y1 +
1
2π

∫ 2π

0
∂xα dx

= y1 +
1
2π

(α(2π) − α(0))

= y1 + k (3.95)

where k is the winding number of g(t, x), which by continuity is indepen-
dent of time.
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Again, the fractional part of y1 is gauge invariant. The change of y1

over time is

y1(t1) − y1(t0) =
1
2π

∫ t1

t0

∫ 2π

0
∂0ax dx dt =

1
2π

∫ t1

t0

∫ 2π

0
f0x dx dt , (3.96)

provided a0 is single-valued, so that the spatial integral of ∂xa0 vanishes.
Therefore

y1(t1) − y1(t0) =
∫

[t0,t1]×S1
C1 , (3.97)

which is gauge invariant, and the analogue of (3.86).
If space is the line R, we still define the Chern-Simons number as

y1 =
1
2π

∫ ∞

−∞
ax dx , (3.98)

and the fractional part of this is gauge invariant if we insist that only
gauge transformations g(t, x) which approach 1 as x → ±∞ are allowed.
This Chern-Simons number plays a role in the discussion of gauged kinks
in Chapter 11.

In Chapter 7, we shall be considering field theories in 2+1 dimensions,
with vortices, where part of the action is the integral of the abelian Chern-
Simons 3-form. The variational principle requires us to fix the fields at
an initial and final time t0 and t1. The Chern-Simons part of the action
is a constant multiple of

y3 =
1

8π2

∫ t1

t0

∫

R2
f ∧ a , (3.99)

where we assume also that f → 0 at spatial infinity and therefore a
approaches a pure gauge. For a smooth f with this boundary condition,
y3 is convergent.

A gauge transformation g(t,x) must have the property g = 1 through-
out R2 at t = t0 and t = t1. By continuity, we can suppose g = 1 at
spatial infinity for all t. (g can have no winding on the circle at spatial
infinity, because for all t, it has to extend to R2.) Write g(t,x) = eiα(t,x),
with α = 0 on the entire boundary of [t0, t1] × R2. Under this gauge
transformation,

y3 !→ y3 +
1

8π2

∫ t1

t0

∫

R2
f ∧ dα

= y3 +
1

8π2

∫ t1

t0

∫

R2
d(f ∧ α)

= y3 +
1

8π2

∫

boundary
f ∧ α

= y3 . (3.100)
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Thus the Chern-Simons action is gauge invariant.
It is interesting to determine the variation of y3 under a general varia-

tion of the gauge field that vanishes on the boundary. Under a !→ a + δa,
f !→ f + d(δa), so

δy3 =
1

8π2

∫ (
d(δa) ∧ a + f ∧ δa

)

=
1

8π2

∫ (
d(δa ∧ a) + 2f ∧ δa

)

=
1

4π2

∫
f ∧ δa , (3.101)

where the integrals are over [t0, t1]×R2, as before. This is gauge invariant,
since a but not δa changes under a gauge transformation. For δy3 to
vanish for all δa,

f = 0 . (3.102)

This is the field equation for an abelian theory in 2+1 dimensions whose
action is just a Chern-Simons term. The magnetic and electric fields must
both vanish.



4
Solitons – general theory

This chapter is concerned with methods for deciding if a particular La-
grangian field theory can have topological soliton solutions, and with one
general method for finding them. It is also concerned with soliton dy-
namics. Ultimately, to find solitons, one must solve the field equations,
either analytically or numerically. However, it is very helpful to know
beforehand if a theory is likely to have solitons or not, how the solitons
are topologically classified, and what symmetries the solitons may have.
The topological data are intimately tied up with boundary conditions.

The topics we shall discuss are i) the topological structure and clas-
sification of solitons, ii) the Derrick scaling argument for the existence
or non-existence of solitons, iii) symmetries, and the reduction of Euler-
Lagrange field equations to ordinary differential equations (ODEs), iv)
the modelling of soliton dynamics at slow speeds by a finite-dimensional
dynamical system – the dynamics on moduli space.

4.1 Topology and solitons

Here we shall apply results from Chapter 3 to investigate whether partic-
ular field theories have the required topological structure for topological
solitons to exist. A key point is that topological and energetic consid-
erations need to be combined. We shall first consider theories with a
multiplet of scalar fields, possibly coupled to gauge fields, and then dis-
cuss pure gauge theories.

In Chapter 3 we often stressed the base point condition when discussing
the homotopy class of a map. This is important if one wants to have a
homotopy group structure, but usually, if one just wants to know whether
maps can or can not be deformed into each other, then the base point
condition can be dropped. The classification of homotopy classes is unaf-
fected provided the domain X of the map is connected. In the context of

75
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field theory, we shall often drop the base point requirement if it plays no
role.

Our main aim is to elucidate the topological aspects of fields defined on
a flat space Rd. Just assuming the fields are continuous is not sufficient. In
the absence of further structure, linear fields are topologically trivial. For
example, any field configuration φ(x) can be replaced by (1−τ)φ(x). If τ
runs from 0 to 1, then that is a homotopy, taking the initial configuration
to the trivial one, φ = 0. The nonlinear case is a bit different. Suppose
the field is a map from Rd to a target manifold Y . Since Rd is contractible
to a point, the only topological invariant is the component of Y where the
field takes its value. So field configurations would be classified by π0(Y ).

The topological classification becomes more interesting if we assume the
energy density decays rapidly as ρ→ ∞, where ρ is the distance from the
origin. In fact, most solitons have finite total energy, which is a stronger
property, but there are exceptions, like global vortices. The requirement
that the energy density is zero at infinity imposes boundary conditions
on the fields, crucial for the topological classification. We have already
seen an example of this. We showed that a pure SU(2) gauge field in R4

is classified by its second Chern number, provided the field strength F
decays rapidly towards infinity.

Consider a multiplet of n scalar fields, φ = (φ1, . . . ,φn), with an energy
functional of the form

E =
∫ (1

2
∇φl · ∇φl + U(φ1, . . . ,φn)

)
ddx . (4.1)

For time independent fields, E is the total energy. Assume the potential
function U(φ1, . . . ,φn) takes its minimal value Umin = 0 on a submanifold
V ⊂ Rn, the vacuum manifold of the theory. There is no constraint on
the value of φ at any finite point x. However, at spatial infinity φ must
take its values in V, to ensure zero energy density there. Its value can be
different in different directions. A field configuration therefore defines a
map from Sd−1

∞ , the sphere at infinity in Rd, to V.
Topologically, we lose no information if we just retain these asymptotic

data
φ∞ : Sd−1

∞ %→ V . (4.2)

In a linear theory, two field configurations with the same asymptotic data
are homotopic. Moreover, field configurations φ, φ̃ with distinct asymp-
totic data φ∞, φ̃∞ are still homotopic if φ∞ is homotopic to φ̃∞. The
topological character of the configuration φ(x) is therefore determined by
the homotopy class of the map φ∞, which is an element of πd−1(V).

In many examples, there is an SO(n) internal symmetry, and the po-
tential is of the form U(φlφl). If V is a single orbit of SO(n), then V is
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either a single point, or a sphere Sn−1, depending on the parameters in
U . If V is one point, which means that the symmetry is unbroken in the
vacuum, then there are no homotopy classes beyond the trivial one, and
no topological solitons. If V = Sn−1, there is spontaneous breaking of the
internal symmetry. The asymptotic field is a map

φ∞ : Sd−1
∞ %→ Sn−1 , (4.3)

so fields are classified by elements of the homotopy group πd−1(Sn−1).
Let us restrict attention to theories in dimensions 1, 2 and 3, and con-

sider these in turn:
d = 1: Here Sd−1

∞ consists of the points ±∞ in R, so φ∞ is a map from
two points to V. The components of V are classified by π0(V), and this
is the set of topologically distinct vacua. The topological class of a field
configuration φ(x) is therefore an element of π0(V)×π0(V). In particular,
if V consists of p points in Rn, then there are p2 topologically distinct types
of field. Suppose the field is characterized by (v1, v2) ∈ π0(V) × π0(V). If
v1 = v2 then the field is in the class of the vacuum v1. If v1 ̸= v2 then
the field is kink-like, and connects the vacuum v1 at −∞ to the vacuum
v2 at ∞.

d = 2: Here Sd−1
∞ is a circle. The field is topologically characterized by

an element of π1(V), the fundamental group of V. A field configuration for
which this element is the identity is in the vacuum sector, since the field
can be deformed to take a constant value in V on the circle at infinity, and
then to a constant field throughout R2. A field configuration characterized
by a non-trivial element of π1(V) has the character of a vortex, and the
element of π1(V) gives its “winding at infinity”.

If V is Sn−1, with n > 2, then π1(V) is trivial so there are no vortices.
If n = 2, then field configurations are classified by π1(S1) = Z, and the
winding number N is the vortex number. Of course there are plenty of
manifolds V with non-trivial fundamental group, but we want V to be
a submanifold of Rn, minimizing a potential U . Then it is not so easy
to construct natural examples. One example, somewhat artificial, is to
consider φ = (φ1, . . . ,φ6), with a potential U of the form

U(φ) = (φ2
1 + φ2

2 + φ2
3 + 2φ2

4 + 2φ2
5 + 2φ2

6 − 1)2 (4.4)
+(φ1φ2 − φ2

4)
2 + (φ1φ3 − φ2

5)
2 + (φ2φ3 − φ2

6)
2

+(φ1φ6 − φ4φ5)2 + (φ2φ5 − φ4φ6)2 + (φ3φ4 − φ5φ6)2 .

This is minimized when all brackets vanish. If we organize φ as a sym-
metric matrix

M =

⎛

⎝
φ1 φ4 φ5

φ4 φ2 φ6

φ5 φ6 φ3

⎞

⎠ , (4.5)
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then the vanishing of U implies that each 2× 2 determinant of M is zero,
and the sum of the squares of the entries of M is unity. Therefore M is of
rank 1. The general matrix satisfying these conditions can be expressed
in terms of a unit 3-vector ψ = (ψ1,ψ2,ψ3) as

M =

⎛

⎝
ψ2

1 ψ1ψ2 ψ1ψ3

ψ1ψ2 ψ2
2 ψ2ψ3

ψ1ψ3 ψ2ψ3 ψ2
3

⎞

⎠ , (4.6)

with each row and each column proportional to ψ. Note that if ψ is
replaced by −ψ then M is unaltered, so the vacuum manifold is a 2-
sphere with opposite points identified, i.e. the real projective plane RP2.
The equations φ1 = ψ2

1, φ2 = ψ2
2, φ3 = ψ2

3, φ4 = ψ1ψ2, φ5 = ψ1ψ3 and
φ6 = ψ2ψ3 define the Veronese embedding of RP2 in R6. The image in
fact lies in the 4-sphere which is at the intersection of the 5-sphere (after
rescaling φ4, φ5 and φ6 by

√
2)

φ2
1 + φ2

2 + φ2
3 + 2φ2

4 + 2φ2
5 + 2φ2

6 = 1 (4.7)

and the hyperplane
φ1 + φ2 + φ3 = 1 . (4.8)

Note also that the potential U is SO(3)-symmetric, with SO(3) acting
by conjugation on the matrix M . At the minima of U , SO(3) acts by
rotating ψ. A choice of ψ spontaneously breaks the symmetry to O(2),
the subgroup of rotations that either preserve ψ or rotate ψ to −ψ.

Since π1(V) = π1(RP2) = Z2, a theory based on this potential can have
Z2 vortices. Disclinations in uniaxial nematic liquid crystals are examples
of such vortices [105]. There is a vacuum sector, and a vortex sector,
and a field configuration which is made from two vortices is topologically
equivalent to the vacuum.

d = 3: This is the dimension of physical space. Spatial infinity is S2
∞,

a 2-sphere, so the homotopy classes of linear fields are elements of the
group π2(V). If V is simply a discrete set of points or curves, then π2(V)
is trivial, and there are no topological solitons. The simplest non-trivial
example is where V = S2. Since π2(S2) = Z, a field configuration is
labelled by an integer N , called the monopole number. If V = Sn−1, with
n > 3, then π2(V) is again trivial, and there are no solitons.

It is possible for V to be a manifold other than S2, with π2(V) non-
trivial. An example would be CP2. It is not so easy, however, to realize
such examples as minima of a potential in a linear space.

If a linear scalar field is the only field in the theory, then the correspond-
ing topological objects in dimensions 1, 2 and 3 (assuming they exist) are
known as kinks, global vortices, and global monopoles. Global vortices
and global monopoles, which do exist as solutions of the field equation
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in certain theories, have a divergent total energy, due to gradients of the
field at infinity. Suppose the field at infinity is a topologically non-trivial
map from Sd−1

∞ to V, with d ≥ 2. Then (in polar coordinates) the angular
derivatives of the field remain finite as the radius ρ tends to infinity. The
Cartesian components of the gradient of the field therefore decay as ρ−1,
and the gradient energy density decays as ρ−2. This can be integrated
over the angular coordinates, leaving a radial integral of order

∫ ∞
ρd−3 dρ . (4.9)

This is logarithmically divergent if d = 2, and linearly divergent if d = 3.
The presence of a gauge field does not change the topological clas-

sification, though gauge fields have several important effects, which we
shall discuss more carefully later. Perhaps most importantly, the gra-
dient terms are replaced by covariant gradient terms, which can vanish
rapidly as ρ→ ∞, even though the scalar field at infinity is topologically
non-trivial. The corresponding solitons in two or three dimensions then
have finite energy, and for this reason we regard them as more interest-
ing, and more truly topological solitons. We call them simply vortices
and monopoles.

We turn now to nonlinear scalar fields φ : Rd %→ Y , where Y is a
closed manifold, and d ≥ 2. Let us assume there are no gauge fields,
as these make the classification complicated. There may be a potential
U(φ) with its minimum occurring on a non-trivial submanifold V ⊂ Y .
The simplest type of theory is where there is no potential, and the energy
depends just on the gradient of φ. This is called a sigma model if the
energy depends quadratically on the gradient, and a Skyrme model if
the energy has a more complicated structure. Let us now assume that
the field φ has finite energy. To avoid a divergent gradient energy, the
field should tend to a constant value at infinity, independent of direction.
Thus φ∞ : Sd−1

∞ %→ Y must be a constant map, with value y0, say. (In the
absence of a potential, the choice of y0 is arbitrary, but once it is made we
take it to be the base point of Y . If a potential is present, then y0 must be
in V.) This boundary condition allows a topological compactification of
space Rd to Sd. (Stereographic projection achieves this.) A single point
at spatial infinity is added, and this is taken to be the base point of Sd.
φ : Rd %→ Y then extends to a continuous, based map, φ : Sd %→ Y . The
topological class of φ is therefore given by an element of the homotopy
group πd(Y ).

Consider the cases d = 2 and 3, and finally d = 1.
d = 2: Here, field configurations are labelled by elements of π2(Y ). The

simplest possibility is with Y = S2. Since π2(S2) = Z, there is an integer
topological label. Solitons classified by this integer are O(3) sigma model
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lumps, O(3) being the symmetry group of S2, and Baby Skyrmions. The
most interesting generalization is for Y = CPn or Y another compact
Kähler manifold. (Note that, topologically, CP1 = S2.) Since π2(CPn) =
Z, lumps with an integer topological charge are possible in the CPn sigma
model. Generally, lump solutions are holomorphic functions in C, the
complexified spatial plane.

d = 3: Here the relevant homotopy group is π3(Y ). The simplest non-
trivial case is Y = S3, with π3(S3) = Z. Topological solitons labelled by
elements of this group occur in Skyrme models and are called Skyrmions,
the integer label being the Skyrmion number or baryon number. Note
that if G is any compact, non-abelian simple Lie group, then π3(G) =
Z (essentially because there is a canonical SU(2) subgroup in G, and
SU(2) = S3 topologically). Thus Skyrmions are possible in theories with
a scalar field φ : R3 %→ G.

Since π3(S2) = Z, a theory with a scalar field φ : R3 %→ S2 can
have topological solitons. The Skyrme-Faddeev model has a suitable La-
grangian for these to exist. A unit charge soliton is related to the Hopf
fibration

S3

⇓
S2 .

Generally, the integer label is called the Hopf charge.
d = 1: This case is rather different, because “infinity” consists of two

points, ±∞. We call a topological soliton on R, with a field φ tak-
ing values in a closed manifold Y , a nonlinear kink. If we insist that
φ(∞) = y0 = φ(−∞), or if the potential U has its minimum just at the
one point y0, then R can be compactified to a circle, and solitons clas-
sified by elements of π1(Y ). But if φ(∞) and φ(−∞) are distinct, then
the topological classification is a bit more complicated. An example is
the sine-Gordon kink. Normally, the field is regarded as linear, and the
potential U periodic. However, it is possible to regard the field as taking
values on a circle, and U then has a unique minimum on the circle. This
interpretation makes the sine-Gordon kink into a nonlinear kink.

Coupling a nonlinear scalar field φ to a gauge field can have a significant
topological effect, because it can allow the field to be non-constant on
Sd−1
∞ , while the energy remains finite. The field is a map φ : Rd %→ Y , and

its asymptotic form is a map φ∞ : Sd−1
∞ %→ Y where the image is restricted

to a single orbit of the gauge group. The topological classification of
solitons is now in terms of relative homotopy groups. A model with
solitons of this type has been investigated by Yang [435].
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Table 4.1. Classification table of possible solitons in linear and nonlinear scalar
field theories.

Linear d Nonlinear

Kink l Nonlinear kink
π0(V) × π0(V) π1(Y )
Vortex 2 Sigma model lump

Baby Skyrmion
π1(V) π2(Y )
Monopole 3 Skyrmion
π2(V) π3(Y )

Table 4.1 is a classification table of solitons in linear and nonlinear scalar
field theories in one, two or three space dimensions, and the homotopy
group (or set) that classifies them.

The nonlinear types of soliton that we refer to as Skyrmions are some-
times called textures.

Consider next a scalar field defined on a closed manifold X, rather than
flat space. We remarked already that for a scalar field which is a map from
X to a target manifold Y , the homotopy classes of maps X %→ Y directly
classify the possible field configurations. If the energy of a static field is
a positive expression involving the gradient of the field, as in (4.1), then
the lowest energy configuration, the vacuum, is a constant map. If there
is a homotopy class of maps distinct from the class of the constant map,
then one may seek solutions of the field equation there, and in particular,
a solution of minimal energy.

Such solutions may be thought of as solitons if the energy density is
localized on a small part of X. This may or may not be the case. In
Chapter 6 we shall consider lumps defined on a 2-sphere of finite radius.
These are maps from S2 to S2, whose topological charge N is the degree
of the map. We shall see that minimal energy solutions exist for all non-
zero values of N , and they have a large number of parameters. As these
parameters vary, the solutions can change from being concentrated on
small regions of the sphere to being rather evenly spread over it. Lumps
are therefore not very good examples of solitons. On the other hand,
Skyrmions are. They are energy minimizing maps from a Riemannian 3-
manifold X to SU(2). They have a built-in length scale, because the en-
ergy involves both quadratic and quartic terms in derivatives, and at the
characteristic scale these are comparable in magnitude. The Skyrmion
number N is the topological degree of the map X %→ SU(2). There
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is evidence that Skyrmion solutions exist for any N , and if X is a suffi-
ciently large manifold, then the Skyrmion is localized, so it is a topological
soliton.

Let us now briefly discuss pure gauge fields. In R2, the only relevant
quantity is the first Chern number c1, which doesn’t have to be an integer,
so there are no topological solitons. On a closed surface X, c1 is an
arbitrary integer for an abelian field (or abelian part of a non-abelian
field). It is the total magnetic flux through X, divided by 2π, and is a
conserved topological quantity. But, for a solution of the field equation,
the magnetic flux and energy are not localized, so the solution should
not be interpreted as one or more two-dimensional solitons. We shall
see below that if X is a smoothly embedded surface in R3, and c1 ̸= 0
on X, then the gauge field has magnetic monopole singularities inside
X, which are the sources of the magnetic flux. These Dirac monopoles
in three dimensions are effectively the topological solitons of pure U(1)
gauge theory, although they have infinite energy.

For smooth gauge fields in R3, the quantity that naturally occurs is
the Chern-Simons number y3, which can be non-zero for both abelian
and non-abelian fields. However, it can take any real value, and does not
classify solitons.

Finally, in R4, non-abelian gauge fields of finite energy are classified by
the second Chern number c2, which is an integer. Corresponding solitons
– instantons – do exist, and c2 is the topological charge, the instanton
number.

4.2 Scaling arguments

In this section, we shall only consider time independent field configura-
tions with finite energy. Our discussion so far has shown that these can
be classified by their homotopy class. The vacuum, which is spatially
constant and has the minimal energy of all fields, lies in the trivial class.
It is natural to ask whether there exist minima of the energy in other ho-
motopy classes. Such minima are usually stable solitons. More generally,
one may ask if there are any non-minimal stationary points of the energy.
Such stationary points are often rather like solitons, but unstable.

A simple and important non-existence theorem is due to Derrick [107].
It applies to field theories defined in flat space. Derrick noted that in
many theories, the energy functional for static fields has the property
that its variation with respect to a spatial rescaling is never zero for
any non-vacuum field configuration. But a field configuration which is a
stationary point of the energy should be stationary against all variations
including spatial rescaling. So in these theories, there can be no static
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finite energy solutions of the field equation in any homotopy class, except
the vacuum. In particular, there are no topological solitons.

More precisely, in Rd a spatial rescaling is a map x %→ µx, with µ > 0.
Let Ψ(x) be a finite energy field configuration, with Ψ any kind of field
or multiplet of fields, and let Ψ(µ)(x), 0 < µ < ∞, be the 1-parameter
family of field configurations obtained from Ψ(x) by applying the map
x %→ µx. We shall clarify how Ψ(µ)(x) is related to Ψ(x) below. Let

e(µ) = E(Ψ(µ)) (4.10)

denote the energy of the field configuration Ψ(µ)(x), as a function of µ.
Then we have Derrick’s theorem:

Suppose that for an arbitrary, finite energy field configuration Ψ(x),
which is not the vacuum, the function e(µ) has no stationary point. Then
the theory has no static solutions of the field equation with finite energy,
other than the vacuum.

The usefulness of this non-existence theorem depends on defining Ψ(µ)

in an appropriate way so that it is easy to determine e(µ). For a scalar
field configuration φ(x) one defines simply

φ(µ)(x) = φ(µx) . (4.11)

The gradient of φ(µ) is then

∇φ(µ)(x) = ∇(φ(µx)) = µ∇φ(µx) . (4.12)

For a 1-form gauge potential A, possibly coupled to a scalar field Φ, one
defines

A(µ)(x) = µA(µx) . (4.13)

The additional factor of µ is natural for a 1-form. Its effect is to give
the same scaling behaviour to the covariant derivative of Φ(µ) as to the
ordinary derivative,

DA(µ)
Φ(µ)(x) = (dΦ(µ) + A(µ)Φ(µ))(x) = µDAΦ(µx) . (4.14)

The field strength involves one further derivative, so

F (µ)(x) = µ2F (µx) . (4.15)

(The notation here is for a non-abelian theory, but the abelian case is
similar.) Other kinds of field would be rescaled in the appropriate way
depending on their geometrical character. For example a vector field V
would scale as

V(µ)(x) =
1
µ
V(µx) . (4.16)
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Note that the boundary conditions, φ ∈ V, DΦ = 0, F = 0 on Sd−1
∞ are

preserved by rescaling according to these rules. Therefore, as µ varies,
the energy remains finite and the topological class of the field does not
change. Also, if φ is a nonlinear scalar field then the rescaling is consistent;
if φ(x) ∈ Y then φ(µ)(x) ∈ Y .

In a theory with just a scalar field φ, the energy is often of the form

E(φ) =
∫ (

W (φ)∇φ · ∇φ+ U(φ)
)

ddx

≡ E2 + E0 , (4.17)

where we have decomposed the energy into its component parts, and the
subscripts indicate the explicit powers of µ that occur when the integrand
is rescaled. Then

e(µ) = E(φ(µ)) =
∫ (

W (φ(µ))∇φ(µ) · ∇φ(µ) + U(φ(µ))
)

ddx

=
∫ (

µ2W (φ(µx))∇φ(µx) · ∇φ(µx) + U(φ(µx))
)

ddx

= µ2−dE2 + µ−dE0 , (4.18)

where the last step follows by a change of variables from x to µx. Thus
e(µ) is a simple function of µ, with the coefficients E2 and E0 depending
on the initial choice of field configuration φ(x).

Generally E2 and E0 are both positive. Then the nature of e(µ) depends
crucially on the spatial dimension d. If d = 3 or d = 2,

e(µ) =

⎧
⎨

⎩

1
µE2 + 1

µ3 E0 d = 3
E2 + 1

µ2 E0 d = 2
(4.19)

so e(µ) decreases monotonically as µ increases. There is no stationary
point, so no non-trivial solutions of the field equation are possible. If
d = 1,

e(µ) = µE2 +
1
µ

E0 , (4.20)

which is stationary at µ =
√

E0/E2, so in this case solutions are not ruled
out. Thus, finite energy topological solitons in purely scalar theories with
an energy of the type (4.17) are possible in one dimension, but not in
higher dimensions. We shall discuss these one-dimensional kink solutions
in Chapter 5.

Note that the vacuum solution evades Derrick’s theorem in all dimen-
sions, because, by definition, the vacuum is a field that is constant in
space and where the potential takes its minimal value, so E2 = E0 = 0.
There is a possibility to evade the theorem in two dimensions if E0 = 0,
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for example, if the potential term is absent. In this case e(µ) = E2 is
independent of µ. We shall discuss sigma model lump solutions, which
arise in this way, in Chapter 6. The other way to evade Derrick’s theorem
in a scalar field theory is to include terms in the Lagrangian and energy
involving higher powers of the derivatives of φ, or higher order derivatives.
This leads to Baby Skyrmions and Skyrmions, discussed in Chapters 6
and 9, respectively. Global vortices evade the theorem because they have
infinite energy.

In a gauge theory with a scalar field, the general form of the energy
functional (simplifying the algebraic structure, and ignoring numerical
coefficients) is

E =
∫ (

|F |2 + |DΦ|2 + U(Φ)
)

ddx

≡ E4 + E2 + E0 . (4.21)

Generally, each term contributes positively to the energy. Replacing
{Φ, A} by rescaled fields {Φ(µ), A(µ)} gives an energy

e(µ) = µ4−dE4 + µ2−dE2 + µ−dE0 . (4.22)

Derrick’s argument has now lost most of its teeth. If d = 2 or d =
3, e(µ) has a minimum for some µ in the range 0 < µ < ∞. This
is because e(µ) is a continuous function bounded below by zero, which
tends to infinity both as µ → 0 (the E0 term) and as µ → ∞ (the E4

term). Thus solutions with E0, E2 and E4 all positive are not ruled out
in two or three spatial dimensions, and there are indeed gauged vortices
in two dimensions, and gauged monopoles in three dimensions. (In one
dimension, the field strength of a static gauge field vanishes, and the gauge
potential can be locally gauge transformed away.) If d = 4,

e(µ) = E4 +
1
µ2

E2 +
1
µ4

E0 , (4.23)

which has no stationary point. So a gauge theory with scalars has no
non-trivial solutions in four-dimensional Euclidean space-time.

In a pure Yang-Mills gauge theory, the terms involving Φ are absent,
and

e(µ) = µ4−dE4 . (4.24)

This has no stationary point if d < 4 and E4 > 0, so there is only the
vacuum solution F = 0 (which is the only type of field with E4 = 0).
However, if d = 4, e(µ) is scale independent, and non-vacuum solutions
are possible. Indeed instantons of pure Yang-Mills theory exist in four
dimensions, and are discussed in Chapter 10.
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We have so far used the scaling argument of Derrick to rule out the
existence of solutions other than the vacuum in a range of field theories.
However, it can be used in two positive ways. The first is to use the
condition that the energy of a solution is stationary under rescaling to
find relations between the various contributions to the energy. These
relations are called virial theorems.

For example, suppose that d = 1, and that φ(x) is a solution of the
field equation of the theory with energy (4.17). (Previously φ(x) was just
a finite energy field configuration.) Then

e(µ) = µE2 +
1
µ

E0 , (4.25)

so
de

dµ
= E2 −

1
µ2

E0 . (4.26)

This derivative must be zero at µ = 1. Therefore E2 = E0, so the gradient
term and the potential term (integrated over R) each contribute half of
the total energy.

Similarly, if d = 2 and {Φ, A} is a solution of the field equations for the
theory with energy (4.21), then

e(µ) = µ2E4 + E2 +
1
µ2

E0 . (4.27)

de
dµ vanishes at µ = 1 only if E4 = E0. Thus the Yang-Mills (or Maxwell)
energy and the energy from the potential U contribute equally to the total
energy (and less than half, because of E2).

A second use (or perhaps, misuse) of Derrick’s theorem is to suggest
that if the theorem does not rule out a topological soliton solution, i.e. if
e(µ) has a minimum for finite µ, and e(µ) → ∞ if either µ → 0 or µ → ∞,
then such a soliton probably exists. Suppose that the homotopy group
classifying fields is Z, so that the class 1 ∈ Z is the sector which poten-
tially has the basic, stable soliton solution. The energy E certainly has
an infimum for field configurations in this class, and this is non-negative.
Consider a sequence of field configurations whose energy approaches the
infimum. The sequence may fail to converge for various reasons. One
is that the centre of mass (moment of the energy density) drifts out to
infinity – but this can be prevented by centring each element of the se-
quence at the origin. Another is that the energy density concentrates
into a spike over one point – but if this is essentially a local rescaling of
the field, with µ → ∞, then this is ruled out if e(µ) has its minimum at
finite µ. Similarly, failure to converge because the field spreads out and
the energy spreads thinly throughout space – again if this is essentially a
rescaling with µ → 0, then it is ruled out.
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We can not rigorously conclude that a soliton exists by this argument,
because other types of singularity in the field could develop as one ap-
proaches the infimum of E. However, in several examples, where solitons
of unit topological charge have been rigorously proved to exist (vortices,
monopoles), the proof does depend in an important way on understanding
that fields which are rescaled by µ have divergent energy, both as µ → 0
and as µ → ∞.

The same argument does not work so simply for higher charge solitons.
A sequence of configurations in a higher homotopy class can fail to con-
verge because the configuration splits into soliton clusters of lower charge,
which separate to infinity as the energy approaches its infimum. To show
that this does not occur, one has to show that soliton clusters attract each
other at large separation, which is true for some kinds of soliton and not
for others.

4.3 Symmetry and reduction of dimension

We have already seen that the space-time and internal symmetries of
a Lagrangian field theory have important consequences. They lead to
conservation laws for the dynamics. Symmetries have another important
role, especially in the study of solitons. It turns out that solitons are
frequently of a symmetric form, and recognizing this helps to find and
understand them.

The maximal spatial symmetry that a time independent field can have
is the full Euclidean symmetry, that is, invariance under translations and
rotations. Usually, the vacuum is the only finite energy field of this type.
Any field configuration with a positive energy density would have infinite
energy if it were translation invariant in even one direction. Solitons are
localized solutions whose energy density vanishes at spatial infinity, so
they can not have any translational symmetry. They can have, at most,
full rotational symmetry.

In certain variational problems, there is a rigorous proof that the con-
figuration that optimizes the “energy” also has maximal symmetry. For
example, in the plane, the closed curve of given length with maximal en-
closed area is the circle. There are no such results for solitons, except
in some very special cases. For example, the basic Skyrmion in R3 is
believed to be rotationally symmetric, but there is no proof that a field
configuration with less symmetry can not have lower energy.

To explore the possible symmetries of solitons, one generally makes an
“ansatz” for the field. One assumes that the field is invariant under a
group of symmetries which is some subgroup of the complete symmetry
group of the energy functional, and then seeks solutions with this sym-
metry. It is important to write down the most general field satisfying the
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invariance conditions. For example, if one imposes time independence
and SO(d) rotational symmetry in Rd (d ≥ 2), then the symmetry de-
termines the angular behaviour of the fields, and the most general field
with the symmetry can be expressed in terms of a number of functions
depending only on the radial variable. It is important not to accidentally
or deliberately suppress any of these functions, unless there is a further
symmetry condition, for example a reflection symmetry, to justify it.

Imposing symmetries on a field often restricts the topological class of
the field. For example, for a multiplet of scalar fields, rotational symmetry
restricts the homotopy class of the map Sd−1

∞ %→ V associated with the
field at infinity.

There are now two routes that one can follow. One can take the ansatz
for the field, which involves the unknown radial functions, and substi-
tute it into the field equation. One will find that the equation reduces
to a number of ordinary differential equations, involving just the radial
derivatives of the remaining functions. It is much easier to solve this set of
ODEs than the original PDE in Rd. Solutions of finite energy, satisfying
the appropriate boundary conditions, are candidate soliton solutions.

The second route, often slightly easier to implement, is to take the
ansatz for the field and substitute into the energy functional. The in-
tegral over the angular variables can then be done trivially, because the
rotational symmetry implies that the energy density is independent of
the angles. There remains a radial integral of a simplified energy den-
sity, which depends only on the radial functions in the ansatz, and their
derivatives. This simplified energy functional can be regarded as that of
a dimensionally reduced theory. It is the energy for a field theory defined
in one spatial dimension (actually on a half-line, because the radius is
non-negative). One may calculate the Euler-Lagrange equations for this
theory in the usual way. These turn out to be identical to the equa-
tions obtained by the first route, where the ansatz was substituted in
the d-dimensional field equation. As before, these dimensionally reduced
equations can be solved, and the solutions are candidate solitons.

The fact that these two routes lead to the same equations and solutions
is a consequence of the principle of symmetric criticality. We shall give a
proof of this in the next section.

Let us analyse in more detail the example of rotational symmetry in Rd,
as it exemplifies many features of more general symmetries. The action
of an element R ∈ SO(d) on a point x ∈ Rd,

x %→ Rx , (4.28)

preserves the length of x, that is, x · x = (Rx) · (Rx) for all R and
x. Moreover the length is the only invariant, so the orbit of x under
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the action of SO(d) is the complete sphere Sd−1, centred at the origin,
of radius |x|. Rd is thus foliated into a 1-parameter family of spheres,
labelled by the radius. Each sphere can be identified with the coset space
SO(d)/SO(d− 1) where SO(d− 1) is the isotropy group, the subgroup of
SO(d) which leaves a point on the sphere fixed. For example, the point

x0 = (0, . . . , 0, ρ) , ρ > 0 (4.29)

remains fixed under the action of the SO(d − 1) subgroup of SO(d) con-
sisting of matrices of the form

R =
(

r 0
0 1

)

(4.30)

where r is a (d− 1)× (d− 1) matrix.∗ Any other point in the orbit of x0

is fixed by an SO(d − 1) subgroup conjugate to this.
In Rd there is one exceptional orbit of SO(d), the origin. Here the

isotropy group is the whole of SO(d).
For a single scalar field φ, SO(d) invariance requires that

φ(Rx) = φ(x) (4.31)

for all x and all R. φ is constant on the orbits of SO(d), and is determined
by its values on a curve that intersects each orbit once. This we can choose
to be the half-line whose points are of the form (4.29), extended to ρ = 0.
φ reduces to a function f of the radial variable ρ alone,

φ(x) = f(ρ) , ρ = |x| . (4.32)

φ is continuous if and only if f is continuous, and f(0) can take any value.
Differentiability of φ imposes a stronger condition. By symmetry,

φ(0, . . . , 0, ρ) = φ(0, . . . , 0,−ρ) (4.33)

(a rotation connects these points), so ∂φ
∂xd = 0 at x = 0. Therefore f must

be differentiable and satisfy

df

dρ

∣∣∣∣∣
ρ=0

= 0 . (4.34)

Suppose now that we have a field theory in Rd with a multiplet of n
scalar fields φ = (φ1, . . . ,φn), and that there is an SO(n) internal symme-
try. There may now be more than one way to impose rotational symmetry,

∗ Here, x0 should be a column vector, acted on from the left by the matrix R. However,
it is notationally more convenient to present components as a row. We shall treat
some other vectors similarly, not distinguishing the row and column forms.
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involving combined rotations and internal rotations. The full symmetry
group of the energy functional for static fields, ignoring translations and
reflections, is SO(d) × SO(n). We can require the field to be invariant
under an SO(d) subgroup whose elements are of the form (R, D(R))
where D : SO(d) %→ SO(n) associates an SO(n) matrix D(R) with each
rotation matrix R ∈ SO(d). The group multiplication law

(R1, D(R1)) · (R2, D(R2)) = (R1R2, D(R1)D(R2)) (4.35)

is consistent only if

D(R1R2) = D(R1)D(R2) . (4.36)

Thus D is a homomorphism. The invariance condition is now

φ(Rx) = D(R)φ(x) . (4.37)

Any choice of homomorphism will give a consistent ansatz for the field.
One possibility is that the homomorphism D is trivial, and that D(R) =

1n for all R. In this case, the invariance condition is essentially the same
as for a single scalar field; each component of φ is rotationally invariant,
and just depends on the radial variable ρ. A more interesting possibility
is where D maps SO(d) isomorphically onto a subgroup of SO(n), which
is only possible if n ≥ d. Let us consider the simplest case, where

D(R) =
(

R 0
0 1n−d

)

. (4.38)

φ splits into (φ1, . . . ,φd,φd+1, . . . ,φn). The last n − d components are
again rotationally invariant in the sense of just being functions of ρ. Let
us ignore these, and assume that n = d. Then D(R) = R.

Our invariance condition is now

φ(Rx) = Rφ(x) . (4.39)

Thinking about the general solution of this equation gives insight into
the construction of symmetric fields in almost any situation. Note that
the equation determines φ at Rx in terms of its value at x. Thus the
field on a whole orbit of SO(d) is determined by its value at one point
of the orbit. On the other hand, the values on distinct orbits are not
algebraically related.

Let us assume for the moment that d > 2, so that both SO(d) and
SO(d − 1) are non-trivial. The key point is to consider the action of the
isotropy group of x. Let R be any element of this isotropy group. Then
Rx = x, so

φ(x) = Rφ(x) , (4.40)
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which is an algebraic constraint on the value of φ at x. We see that
φ(x) must be invariant under the “internal” action of the isotropy group.
At the origin, where the isotropy group is SO(d), φ must vanish. At
x0 = (0, 0, . . . , ρ), with ρ > 0, the isotropy group SO(d − 1) consists of
matrices of the form (4.30), and (4.40) reduces to

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

φ1

·
·

φd−1

φd

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
(

r 0
0 1

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

φ1

·
·

φd−1

φd

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (4.41)

This is satisfied for all r only if φ1 = φ2 = · · · = φd−1 = 0. The value of
the remaining component, φd, is arbitrary. Thus we can write

φ(x0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
·
·
0

f(ρ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (4.42)

A general point can be expressed as x = R(0, . . . , 0, ρ) for some R ∈
SO(d), and here φ = R(0, . . . , 0, f(ρ)), by (4.39). It follows that φ(x) has
the form

φ(x) = f(ρ)
x
ρ

. (4.43)

This is called the hedgehog ansatz for a multiplet of d scalar fields [336].
The set of d functions of d variables is reduced to a single function of one
variable, f(ρ), because of rotational symmetry. Substituting the ansatz
into the field equation gives an ODE for the function f(ρ).

Let us rewrite the hedgehog ansatz as φ(x) = g(ρ)x, where g(ρ) =
f(ρ)/ρ. Continuity of φ at x = 0 requires that g has a finite limit as
ρ → 0, and therefore f(ρ) = O(ρ). Provided g is differentiable, φ is
differentiable. These conditions are rather different from the conditions
we found earlier for a rotationally invariant, one-component scalar field.

Suppose the d-component field φ has a potential term U(φ) = (c −
φlφl)2 with c > 0, leading to spontaneous breaking of the SO(d) internal
symmetry. For the energy density to go to zero at infinity, a field of
hedgehog form must satisfy the boundary condition f(ρ) → ±

√
c as ρ→

∞. The rotational symmetry and the boundary condition determine the
homotopy class of the field. If f(∞) =

√
c, then the field at infinity is the

identity map Sd−1
∞ %→ Sd−1, which is in the homotopy class 1 of the group
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πd−1(Sd−1) = Z. If f(∞) = −
√

c then the field at infinity is the antipodal
map, which is in the class −1 if d is odd, but the class 1 if d is even (since
for d even, the antipodal map can be obtained by a continuous rotation of
the identity map). Thus, for linear fields in three spatial dimensions, the
basic soliton or antisoliton can be of hedgehog type, but multi-solitons
can not be.

The hedgehog ansatz is a rather special consequence of the groups act-
ing here. The basic principle that applies to any symmetric field is that
i) the field value at any point on an orbit of the symmetry group is de-
termined by its value at one base point on the orbit, ii) the field at the
base point is constrained because it must be invariant under the isotropy
group there.

In two dimensions, the rotation group is SO(2), which is abelian. Its
orbits in the plane are circles, with the origin as an exceptional orbit. The
invariance condition for a multiplet of real scalar fields is

φ(Rx) = D(R)φ(x) , (4.44)

where D is a choice of homomorphism from SO(2) to the internal symme-
try group. The basic example is where φ is a two-component field, with in-
ternal symmetry group SO(2). The homomorphisms D : SO(2) %→ SO(2)
are labelled by an integer j, and are given by the formulae

D

(
cos θ − sin θ
sin θ cos θ

)

=
(

cos jθ − sin jθ

sin jθ cos jθ

)

. (4.45)

A scalar doublet field satisfying (4.44) has the form (in polar coordinates)

φ(ρ, θ) = f(ρ)
(

cos jθ

sin jθ

)

, (4.46)

or what can be obtained from this by a further constant internal rota-
tion. Since the isotropy group is trivial for ρ > 0, there are no further
constraints on f here. However, continuity and rotational invariance at
ρ = 0 requires that f → 0 as ρ → 0, if j ̸= 0. If there is spontaneous
symmetry breaking, and f tends to a non-zero value as ρ→ ∞, then this
ansatz for the field has winding number j. If the scalar field has more
than two components, then it splits into a number of doublets with this
behaviour (not all j necessarily the same), plus singlets with no angular
dependence.

We have dealt at some length with symmetries of linear scalar fields.
However, nonlinear scalar fields can be treated rather similarly, as we
shall see when studying Skyrmions. The internal symmetry group is now
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the symmetry group of the manifold Y where the nonlinear field takes its
values, or a subgroup of this if there is a potential.

It is not difficult to extend the analysis to symmetric vector fields and
other tensor fields in Rd. Consider, as before, rotations in Rd, but ignore
any internal symmetry group. Under a rotation R, the value of a vector
field V at x is carried to Rx. However, also important is how the neigh-
bourhood of x is mapped to the neighbourhood of Rx. This is calculated
by noting that, under R,

x + δx %→ R(x + δx) = Rx + Rδx (4.47)

so δx goes to Rδx. Thus the condition of rotational invariance for a vector
field is

V(Rx) = RV(x) . (4.48)

This equation is similar to that for a multiplet of d scalar fields, but here
there is no choice for the homomorphism D. One must have D(R) = R.
For d > 2, the only fields satisfying (4.48) are of the hedgehog form

V(x) = g(ρ)x , (4.49)

with g(0) finite. One can see this by splitting V, at any point x other than
the origin, into radial and tangential components. The radial component
has a magnitude which depends only on ρ. The tangential component is
transformed non-trivially by the isotropy group, so invariance requires it
to vanish.

A bit more abstractly, the tangent space at x is d-dimensional, and
under SO(d − 1) splits into the direct sum of irreducible modules

1 ⊕ d − 1 . (4.50)

A rotationally invariant vector field is associated with the singlet, which
transforms trivially under SO(d−1), and therefore there is just one func-
tion of ρ in the ansatz (4.49).

In two dimensions, the isotropy group is trivial except at the origin,
so a rotationally invariant vector field has both radial and tangential
components. The ansatz is

(
V 1

V 2

)

=
(

g(ρ)x1 − h(ρ)x2

g(ρ)x2 + h(ρ)x1

)

. (4.51)

Similar considerations apply to tensors. If d > 2, a rotationally invari-
ant, rank 2 symmetric tensor field has the form

gij(x) = f(ρ)δij + g(ρ)xixj . (4.52)
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The representation theory of the isotropy group again explains the pres-
ence of two functions of ρ. The action of SO(d − 1) on the symmetrized
tensor product of the tangent space of a point is given by the tensor
product representation

(1 ⊕ d − 1) ⊗S (1 ⊕ d − 1) , (4.53)

whose decomposition into irreducibles has two singlet pieces.
We come finally to symmetric gauge fields. This is potentially quite

complicated. For a more substantial analysis see refs. [243, 346, 136].
Again, let us consider rotations in Rd, with d > 2, and let the gauge
group be the non-abelian group G. (The abelian case is not very differ-
ent.) A 1-form gauge potential A(x) is rotationally symmetric if each
rotation R combined with a suitable gauge transformation leaves the field
unchanged. One says that the rotation leaves the field invariant “up to
a gauge transformation”. Since a gauge transformation has no physical
effect, we have in a geometrical sense invariance under the rotation. In
terms of spatial components, A is invariant if

RjiAj(Rx) = gR(x)Ai(x)g−1
R (x) − ∂igR(x)g−1

R (x) . (4.54)

(This says that R has the same effect as the gauge transformation gR; or
equivalently that the combined effect of R and g−1

R leaves A invariant.)
If the gauge field A is coupled to a scalar field Φ, gauge transforming
under the fundamental representation of G as in Eq. (2.127), then Φ is
also invariant under the rotation if

Φ(Rx) = gR(x)Φ(x) . (4.55)

There is a condition on the gauge transformations gR, coming from the
composition rule for rotations. This can be derived from (4.54), but more
easily from (4.55). We have Φ(R1R2x) = gR1R2(x)Φ(x) and also

Φ(R1R2x) = gR1(R2x)Φ(R2x) = gR1(R2x)gR2(x)Φ(x) . (4.56)

For consistency, and to avoid an unnecessary constraint on Φ, gR(x) must
satisfy

gR1R2(x) = gR1(R2x)gR2(x) . (4.57)

This is a “cocycle” condition, which arises in several contexts. It is
more subtle than the previous “homomorphism” condition (4.36). The
interpretation of (4.57) is that the pairs {R, gR} lift the action of the
rotation group on Rd to the bundle over Rd of which Φ is a section, and
on which A is a connection 1-form. Logically, (4.57) should come first;
subsequently one can impose the symmetry conditions (4.54) and (4.55)
on the fields.
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These symmetry conditions for a gauge field coupled to a scalar field
are themselves gauge invariant. If Φ %→ gΦ and A %→ gAg−1−dgg−1, then
the transformed fields still satisfy (4.54) and (4.55) but gR(x) must be
replaced by g(Rx)gR(x)g−1(x). The cocycle condition remains satisfied.

The solution of (4.57) is not difficult. Note first that (4.57) implies that
gI(x) = I and gR−1(Rx) = gR(x)−1, for all x and R. Next, consider the
point x0 = (0, . . . , 0, ρ), with ρ > 0. Let R1 and R2, and hence R1R2,
lie in the isotropy group SO(d − 1) of x0. Since R2x0 = x0, Eq. (4.57)
simplifies to

gR1R2(x0) = gR1(x0)gR2(x0) . (4.58)

This is a homomorphism condition. It is solved by choosing a homo-
morphism

λ : SO(d − 1) %→ G . (4.59)

λ can be chosen to be independent of ρ. We denote the image of this
homomorphism, which is a subgroup of G, by Gλ, and we denote the
centralizer of Gλ in G by H. H is the subgroup of G whose elements
commute with all elements of Gλ.

Given λ, one can solve (4.57) as follows. Fix a neighbourhood of x0

on the sphere of radius ρ (actually, the whole sphere except the point
(0, . . . , 0,−ρ)). For each point x in this neighbourhood, there is a special
rotation Rx that takes x0 to x. It is defined by decomposing the Lie
algebra of SO(d) as

so(d) = so(d − 1) ⊕ m . (4.60)

m is the orthogonal complement of so(d − 1) with respect to the Killing
form (or trace), and is also invariant under conjugation by any element of
SO(d−1). The dimension of m is the dimension of the orbit space Sd−1 =
SO(d)/SO(d−1). The exponential map, acting on a neighbourhood of the
origin in m, in fact an open ball of radius π, gives the desired rotations.
For each point x, there is a unique element of m in this ball, whose
exponential Rx rotates x0 to x.

We may use the gauge freedom to choose, for all x,

gRx(x0) = I , (4.61)

where Rx is the special rotation. Now let R be a general rotation, that
sends x to Rx. The rotations Rx, R, and R−1

Rx send x0 successively to x,
Rx and back to x0, so R−1

RxRRx belongs to the isotropy group of x0. It
is Wigner’s “little group element” associated with R and x. The cocycle
condition implies that

gR−1
RxRRx

(x0) = gR−1
Rx

(Rx)gR(x)gRx(x0) . (4.62)
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The third factor on the right-hand side is the identity, because of our
gauge choice (4.61), and so is the first factor, because it is equal to
gRRx(x0)−1. Therefore we obtain the solution of the cocycle condition

gR(x) = gR−1
RxRRx

(x0) = λ(R−1
RxRRx) . (4.63)

For all R and x, gR(x) lies in Gλ.
This solution of the cocycle condition has the following nice property.

Let R be an element of the isotropy group of x0, and x a general point in
the G-orbit of x0. Rx as before denotes the special rotation sending x0

to x. Observe that
RRxR−1x0 = Rx , (4.64)

so RRxR−1 sends x0 to Rx. Recall also that conjugation by R maps m
to itself. Therefore RRxR−1, like Rx, is the exponential of an element
of m. Indeed, if Rx = exp(w) then RRxR−1 = exp(RwR−1), and if w is
in the ball of radius π, so is RwR−1. So RRxR−1 is the special rotation
RRx. The formula (4.63) therefore simplifies to

gR(x) = λ(RR−1
x R−1RRx) = λ(R) (4.65)

for R an element of the isotropy group of x0. gR is independent of x for
such R.

Now let us consider the invariance conditions for the scalar field and
gauge field at x0. For R in the isotropy group SO(d − 1), Eq. (4.55)
reduces to

Φ(x0) = λ(R)Φ(x0) . (4.66)

Thus Φ(x0) must be invariant under the subgroup Gλ. This condition
means that if one decomposes the fundamental module (representation)
of G into irreducible modules of Gλ, then the invariant singlets in the
decomposition are the surviving components of Φ, and each contributes
one function of ρ. The remaining components are zero. The non-zero
components combine into one or more multiplets of H, the centralizer of
Gλ.

Similarly, the invariance condition (4.54) at x0 reduces to

RjiAj(x0) = λ(R)Ai(x0)λ(R)−1 (4.67)

for R ∈ SO(d − 1). (The final, derivative term vanishes because gR is
independent of x.) The equation (4.67) is a linear algebraic constraint
and can be solved using Schur’s lemma. Generally, A(x0) lies in the
module of SO(d) × G

d ⊗ Lie(G) , (4.68)

where d is the cotangent space at x0, and G acts on Lie(G) by conjugation.
The action of the elements R ∈ SO(d − 1) decomposes d into irreducible
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SO(d − 1) modules 1 ⊕ d − 1, where the first factor corresponds to the
radial direction, and the second to the tangent space to the sphere at x0.
The corresponding decomposition of the gauge potential is into its radial
part Arad and its tangential part Atan. Similarly, the action of λ(R) by
conjugation turns Lie(G) into a module of SO(d − 1). Equation (4.67)
implies that A(x0) lies in the submodule invariant under the action of the
SO(d− 1) subgroup defined by the pairs (R,λ(R)), where the first factor
acts on d, and the second factor acts by conjugation.

R acts trivially on Arad, so (4.67) implies that

Arad(x0) = λ(R)Arad(x0)λ(R)−1 , (4.69)

which constrains Arad to lie in the subspace of Lie(G) consisting of the
SO(d − 1) singlets in the decomposition of Lie(G). This subspace is in
fact the subalgebra Lie(H). Within this subspace, Arad is an arbitrary
function of ρ. Therefore, the part Arad of a rotationally symmetric gauge
potential in Rd reduces to a gauge potential for the gauge group H on
the radial half-line.

The tangential components Atan(x0) are constrained by (4.67) in the
following way. Under the SO(d − 1) spatial rotations these form the
module d − 1. Each module d − 1 in the decomposition of Lie(G) into
SO(d − 1) irreducibles can be paired with this, and by Schur’s lemma,
gives a non-zero component of Atan. These are arbitrary functions of ρ,
that behave as scalar fields from the point of view of the reduced gauge
theory on the radial half-line. Like the scalars coming from Φ, they can
be combined into one or more multiplets of H.

Having determined the components of A and Φ which can be non-
vanishing at x0, one can calculate completely the form of A and Φ over
the orbit of x0, using equations (4.54) and (4.55). Using the special
rotations Rx, and the fact that gRx(x0) = I, one finds

Φ(x) = Φ(x0) (4.70)

(Rx)jiAj(x) = Ai(x0) − ∂igRx(x̃)

∣∣∣∣∣
x̃=x0

= Ai(x0) − ∂iλ(R−1
Rxx̃

RxRx̃)

∣∣∣∣∣
x̃=x0

, (4.71)

where the derivatives are with respect to x̃. The first of these equations,
which says that Φ is constant on spheres, looks very different from the
hedgehog ansatz for a scalar field, but this is mainly a consequence of our
gauge choice.

We should not forget here the excluded points of the form (0, . . . , 0,−ρ).
The fields can be extended smoothly and symmetrically to include these
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points, but sometimes only by introducing another patch of Rd, together
with a non-trivial transition function to relate the fields on the different
patches. There can also be constraints on the choice of homomorphism λ
to make this possible.

There is another important point that is relevant for rotationally sym-
metric gauge fields in Rd. Remember that there is a special orbit, the
origin, whose isotropy group is SO(d). A similar analysis as above ap-
plies there. One needs to choose a homomorphism

Λ : SO(d) %→ G , (4.72)

and the homomorphism λ : SO(d−1) %→ G must be the restriction of Λ to
the appropriate SO(d−1) subgroup, otherwise there will be discontinuities
at the origin. Because of this, one may choose a different gauge than
(4.61), namely

gRx(x0) = Λ(Rx) . (4.73)

Much of the theory above now simplifies. One finds that

gR(x) = Λ(R) (4.74)

for all x and R, i.e. gR is independent of x. This clearly satisfies (4.57),
and one can prove that any other choice for gR(x) (with the desired limit
Λ(R) at the origin) is gauge equivalent to this.

This observation justifies the assumption made in much of the literature
on spherically symmetric non-abelian monopoles, that the fields should
be invariant under combined rotations and global (x-independent) gauge
transformations. However, the earlier approach, using just λ, clarifies the
structure of the reduced gauge theory on the radial half-line, and explains
why it has gauge group H.

A Dirac monopole in a U(1) gauge theory is singular at the origin,
and one can not impose a rotational invariance condition there. The
Dirac monopole is spherically symmetric in the earlier sense, involving the
choice of a homomorphism λ from the isotropy group SO(2) (in R3) to the
gauge group U(1). A consequence of this is that Dirac monopoles have
an infinite range of possible magnetic charges. In contrast, spherically
symmetric non-abelian monopoles, which smoothly extend to the origin,
have far more restricted charges.

This completes our description of the ansatz for a rotationally sym-
metric gauge field. The ideas can be applied to more general continuous
symmetries than just rotations. The key points are i) the symmetric gauge
fields are completely described in terms of dimensionally reduced gauge
and scalar fields defined on the parameter space of orbits, ii) one must
choose a homomorphism λ from the isotropy group of a point on a generic
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orbit to the gauge group G, iii) H, the centralizer of its image Gλ, is the
reduced gauge group, iv) the invariant gauge potential splits into parts
tangential and normal to the orbits. The normal part acts as a gauge po-
tential of the dimensionally reduced gauge theory, whereas the tangential
part contributes scalar fields to the reduced theory, transforming under
some representation of H, v) the global topology, and the existence of
special orbits, can put constraints on the choice of homomorphism λ.

We have assumed, for simplicity, that the fields are time independent,
but it is a trivial matter to relax this assumption.

For dynamical scalar and gauge fields, rotational symmetry leads to the
same ansatz, but all functions depend on the radius and on the time, and
the reduced gauge potential has both radial and time components. The
field equations reduce from PDEs in (d + 1)-dimensional space-time to
PDEs in (1 + 1) dimensions. The latter are the field equations of a gauge
theory with Higgs scalar fields, and gauge group H.

We can have a smaller rotational symmetry, e.g. SO(2) symmetry in
R3, or SO(3) symmetry in R4. In both cases the field equations reduce to
those for a theory in two space dimensions. We shall also be interested in
fields which are invariant under a discrete subgroup K of SO(d). For ex-
ample, in three dimensions, K could be the symmetry group of a Platonic
solid. Higher charge solitons, both monopoles and Skyrmions, sometimes
have these symmetries. However, discrete symmetry groups do not lead
to a reduction in dimension of the field equations.

Rather interesting is the possibility of higher symmetry. Pure Yang-
Mills theory in R4 is invariant under the conformal group SO(5, 1). The
basic instanton solution is not just rotationally invariant under SO(4), but
is actually invariant under an SO(5) subgroup of the conformal group
which acts transitively on R4. The fields are completely determined,
algebraically, by this symmetry.

4.4 Principle of symmetric criticality

Let Ψ be the (generic) fields of some Lagrangian field theory with action
S(Ψ), and let C temporarily denote the space of all field configurations
Ψ(x) depending on both space and time. If a field configuration is trans-
formed by any element of the symmetry group of the theory, then the
action is unchanged.

Let K be a subgroup of the symmetry group, and let CK ⊂ C denote the
configuration space of all K-invariant fields, that is, field configurations
Ψ satisfying k(Ψ) = Ψ for all k ∈ K. (The dependence on x is suppressed
in this somewhat compact notation.) Let SK(Ψ) denote the action of the
theory restricted to CK . As we have seen, this is often a theory defined
in a lower-dimensional space-time.
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Let Ψ0(x) be a K-invariant field configuration which is a stationary
point of the restricted action SK . Then the principle of symmetric crit-
icality states that Ψ0(x) is automatically a stationary point of the full
action S. The principle undoubtedly has a long history. In the context
of solitons in field theory it was enunciated and given a brief proof by
Coleman [88]. Palais gave a more careful discussion, with various proofs
adapted to varying assumptions [322]. He also showed that the principle
is not universally valid, and gave some counterexamples. We shall outline
the proof that is valid if K is a finite, discrete group (e.g. a group of
reflections, or a Platonic symmetry group) or if K is a compact Lie group
(e.g. a rotation group).

We need to consider infinitesimal variations Ψ0 + δΨ of Ψ0. δΨ lies in
TC, the tangent space to C at Ψ0. The group K acts on C, and an element
k ∈ K transforms Ψ0 + δΨ to

k(Ψ0 + δΨ) = k(Ψ0) + k′(δΨ) = Ψ0 + k′(δΨ) , (4.75)

where k′ denotes the derivative. Because Ψ0 is invariant under K, K acts
linearly on TC through the derivative; and the map k %→ k′ is a represen-
tation of K. This infinite-dimensional representation can be completely
decomposed into finite-dimensional irreducible representations if K is
finite or compact. Some subspace TC∥ of TC transforms trivially under
K, and a complementary space TC⊥ transforms non-trivially (i.e. when
decomposed into irreducibles, all the non-trivial modules lie in TC⊥, and
all the invariant singlets lie in TC∥).

Now CK consists of all K-invariant fields. If δΨ lies in TC∥ then it is
invariant under K. Thus Ψ0 + δΨ is in CK , to linearized approximation.
We conclude that TC∥ = TCK , the tangent space to CK at Ψ0.

Consider next the action S evaluated on Ψ0 + δΨ. By the functional
Taylor series, we have

S(Ψ0 + δΨ) = S(Ψ0) + S′(δΨ) + O(δΨ)2 . (4.76)

S′ is the functional derivative, or first variation, of S at Ψ0, and is a linear
map from TC to R. To show that Ψ0 is a stationary point of S we need
to show that S′(δΨ) is zero for any δΨ.

On the subspace TC∥, S′ vanishes. This is because, by assumption, Ψ0

is a stationary point of the restricted action SK , so S′ vanishes for all δΨ
in TCK , which is the same as TC∥.

The non-trivial part of the proof is to show that S′ vanishes on TC⊥.
Let V be an irreducible K-module in TC⊥, and suppose v ∈ V . Consider
the orbit of v under K,

{v(1), v(2), . . . , v(n)} , (4.77)
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with v(1) = v. (This is written as a finite set, assuming that K is a finite
group.) By K-invariance, S′(v(i)) has the same value for all i. Therefore
S′(v) can be expressed as the average

S′(v) =
1
n

n∑

i=1

S′(v(i)) . (4.78)

But S′ is a linear function, so

S′(v) = S′
(

1
n

n∑

i=1

v(i)

)

. (4.79)

Now 1
n

∑n
i=1 v(i) is invariant under K, because K acts by permuting points

in the orbit. But the only invariant element of a vector space V on
which K acts irreducibly and non-trivially is the zero vector (otherwise
V would contain a proper subspace invariant under K – the subspace of
individually invariant vectors). Thus the right-hand side of (4.79) is zero,
so

S′(v) = 0 . (4.80)

Since v ∈ V was arbitrary, S′ must be zero on all of V , and by running
through all irreducible pieces of TC⊥ we conclude that S′ is zero on this
whole space. Thus S′ vanishes on both TC∥ and TC⊥ and hence vanishes
identically. This completes the proof.

For a compact Lie group K the set (4.77) becomes a continuous orbit
of vectors {k′(v) : k ∈ K}. S′(v) can again be expressed as an average by
using a normalized K-invariant measure dΩK , which exists on K. Then

S′(v) =
∫

K
S′(k′(v)) dΩK = S′

(∫

K
k′(v) dΩK

)
, (4.81)

using the invariance and linearity of S′. The argument of S′ in the last
expression is again K-invariant, and must vanish to avoid a contradiction
with the irreducibility of V . The proof is completed as before.

The interpretation of the principle of symmetric criticality is that the
solutions of the reduced field equations for symmetric fields are in fact
solutions of the full field equation of the theory.

We are particularly interested in static fields of finite energy. Let C
revert to denoting the space of field configurations at a given time. The
principle of symmetric criticality applies here too. A stationary point of
the reduced energy functional for K-symmetric fields is a solution of the
full field equation. In particular, a minimal energy field configuration for
the restricted problem in CK is a stationary point of the energy in C. It
is not necessarily a minimum in the full configuration space. One needs
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to investigate the second variation of the energy in the directions TC⊥ to
see if the field is a minimum or saddle point.

To establish if a K-symmetric solution minimizes the energy among all
K-symmetric fields is often straightforward. One needs to use an analytic
argument, or perhaps study an eigenvalue problem for an ODE and show
that all eigenvalues are positive. To show that this solution minimizes
the energy among all fields, one may need to investigate an infinite set
of eigenvalue problems, one associated with each irreducible module of K
in TC⊥. Such an investigation has been successfully carried out for the
spherically symmetric SU(2) monopole (and not just in the Bogomolny
case). The monopole is a minimum of the energy in its topological class.

Even these arguments only establish that a solution is a local minimum
of the energy. The proof that it is a global minimum is still usually
lacking.

The fact that symmetric minima are sometimes saddle points in the
complete theory is actually a virtue, for this is a way to find saddle point
solutions. One should choose a symmetry group which is distinct from,
and not a subgroup of, the complete symmetry group of the minimal
energy solution. If one finds a solution with this symmetry, then it can
not be the minimal energy solution, and is likely to be a saddle point,
although it could be a local minimum. Many saddle points of the Skyrme
energy function have been found this way.

4.5 Moduli spaces and soliton dynamics

It is a challenging problem, when studying any complicated physical sys-
tem or a mathematical model of it, to reduce the number of degrees of
freedom to those that are essential. For example, consider an elastic body
pivoted at its centre of mass and free to rotate. It is experimentally veri-
fied that a body like this behaves as a “rigid” body whose essential degrees
of freedom are the Euler angles specifying its orientation. However, rigid
body motion is only an approximation. It is valid provided the frequencies
of the motion are small compared with the elastic vibration frequencies
of the body.

Let us look at this in more detail. There is an elastic potential energy
function for the body, and a kinetic energy obtained as the integral of the
kinetic energy density of the constituent matter. The minimum of the
potential is attained when the body is in its “rigid” equilibrium shape.
This minimum is not unique. It occurs on a copy of the manifold SO(3)
of possible orientations, embedded in the infinite-dimensional space of
shapes.

For the reduced dynamics of the body one restricts the full Lagrangian
to the SO(3) of minima of the potential. Equivalently, one supposes that
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the body has its static equilibrium shape, with orientational angles that
vary with time. The restriction of the kinetic energy function gives the
kinetic energy expression on SO(3) for the rigid body. The coefficient
matrix is a left-invariant metric on SO(3), whose exact form depends on
the moments of inertia of the body. The potential function on SO(3) is
simply constant, by rotational symmetry, so does not contribute to the
reduced dynamics. The reduced Lagrangian is therefore purely kinetic,
and the rigid body motion is geodesic motion on SO(3), given by an
equation of the form (2.12).

The potential energy is a positive quadratic form for small elastic defor-
mations orthogonal to the manifold of minima. The vibrational frequen-
cies depend on this quadratic form and the kinetic energy expression.
For very slow rotational motion, there is a rescaling of time which brings
the rotational motion back to an angular speed of order 1, and makes
the vibrational frequencies large. The limit of negligibly slow rotation is
equivalent to rotation at finite speed, but with the vibrational frequen-
cies becoming infinite, so the potential is infinitely steep away from the
minimum. In the limit, the kinetic energy is insufficient to deform the
body, and the potential becomes effectively a constraint forcing the body
to be in its equilibrium shape. This role for the potential explains why
the body behaves as rigid, with only three dynamical degrees of freedom,
when it is rotating slowly.

This formal argument has been rigorously justified mathematically [356,
49, 139]. At any non-zero speed of rotation (in the original unscaled
time) there is some excitation of the transverse, elastic modes of the
body. However, this is an adiabatic effect, and small at slow speeds.
The body’s shape smoothly adjusts to accommodate the rotation, for ex-
ample, by a centrifugal stretching. Over modest time intervals, there is
negligible transfer of the energy of rotational motion to genuine vibra-
tions of the elastic body, provided there are no elastic vibrations initially.
There can be significant transfer of energy only over a time scale of or-
der exp(ωvib/ωrot)ν where ωvib/ωrot is the ratio of the lowest vibrational
frequency (determined by the properties of the body) to the frequency
associated with rotational motion (determined by the initial state of
motion of the body), and ν is some positive power.

Another example to keep in mind is a slow bobsleigh on a frictionless
bobsleigh track. Assume this is on the level. To first approximation, the
dynamics reduces to a one-dimensional motion along the bottom of the
track, at constant speed. One knows that, as the bobsleigh enters a curve
it has to rise up from the bottom of the track, but as it exits the curve
it returns to the bottom, and its initial speed is almost exactly regained.
This adiabatic effect modifies, but does not invalidate the reduction of
the motion to one dimension. In addition, there is a small residual trans-
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verse vibration after the bobsleigh has exited the curve, but provided the
curve is completely smooth, and connects segments that are asymptoti-
cally straight, the amplitude of vibration is exponentially small, being of
the form exp(−const/v), where v is the speed of the bobsleigh.

A first application of these ideas to solitons is to the kink. This is
the minimal energy static solution of some Lorentz invariant scalar field
theory defined on a line, stabilized by its topological charge. It is unique
apart from its location. Let us write the solution as φ(x − a), where a
is the location. The manifold of minima of the energy is the line itself,
parametrized by a. This is called the one-kink moduli space, M1 = R.
Now suppose the kink is slowly moving. We make the “rigid motion”
ansatz

φ(t, x) = φ(x − a(t)) . (4.82)

The effective Lagrangian of the rigid kink has a kinetic term given by the
field kinetic energy

T =
1
2

∫ ∞

−∞
(∂0φ)2 dx (4.83)

which reduces to T = 1
2Mȧ2, where M is the kink mass. The potential

energy is constant and can be neglected. The reduced equation of motion
is ä = 0, whose solution is a(t) = vt + const, i.e. motion at constant
velocity v. This example sounds even more trivial than that of the rigid
body, since the moduli space has no intrinsic curvature. However, it is
not completely trivial. The ansatz (4.82) is not an exact solution for
any varying function a(t). An exact solution is the Lorentz boosted kink
φ(γ(x−vt)) where γ = 1/

√
1 − v2. The interpretation is that a quasi-rigid

motion is possible, but the shape of the kink is adiabatically deformed and
the potential energy increased as a result of the motion. The deformation
is small for small v, as γ is close to 1. (An analogy is with a bobsleigh
going steadily round a circular track, slightly above the bottom.) If the
static kink were set in motion in its undeformed shape, then its shape
would vibrate and it would radiate – a relativistic phenomenon verified
in numerical simulations. The conclusion is that there is an effective
one-dimensional dynamics on moduli space which is valid for low speed
motion, but one needs to be a little careful. The speed should be non-
relativistic, but it doesn’t have to be negligibly slow.

A slightly more complicated example is the dynamics of one Skyrmion.
There is a unique shape for the static soliton, but it has six degrees of
freedom associated with the symmetries of the underlying Lagrangian,
three for translations in R3 and three for rotations. The Skyrmion is
very like a spherical rigid body free to move and rotate. There is an
effective dynamics on M1 = R3 ×SO(3), which depends on the mass and
moment of inertia of the Skyrmion. However, the rotational motion and
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also the centre of mass motion adiabatically deform the Skyrmion. There
is also a new phenomenon. A slowly rotating Skyrmion can lose energy
by exciting the asymptotic pion radiation field. This effect can not be
avoided, as it is by the Lorentz boosted kink, but it is algebraically small
if the pion field is massless. The effect is probably exponentially small or
possibly absent if the pion field is massive and the rotational frequency is
much less than the lowest vibrational frequency of the pion field, which
is proportional to the pion mass parameter. The “rigid” dynamics of a
Skyrmion is therefore accurate at slow speeds, but it has its limitations.

The most interesting extension of the ideas here occurs in a Lagrangian
field theory with solitons satisfying a Bogomolny equation, of which we
shall later discuss a number of examples, including critically coupled vor-
tices and BPS monopoles. Here there is an integer topological charge N ,
and the minimal energy static fields have energy E = c|N | for some posi-
tive constant c. The minimal energy is attained by fields satisfying a PDE
which is first order in spatial derivatives – this is the Bogomolny equation.
Furthermore, there is a surprisingly large moduli space of solutions of the
Bogomolny equation. The moduli space MN of solutions of topological
charge N has dimension k|N | for some integer k (k = 2 for vortices, and
k = 4 for monopoles). For most values of N , this is much bigger than
the dimension of the symmetry group of the theory. The interpretation
is that there are N -soliton solutions which are nonlinear superpositions
of N individual solitons, where each constituent has its own k degrees
of freedom. At least, this is the interpretation when the solitons have a
moderate or large separation. When they are close, the solitons can merge
and lose their identities, and this is reflected in the global geometry of
moduli space. Because the potential energy is constant throughout MN ,
whether the solitons are close together or far apart, there is no interaction
energy between the solitons, provided they are at rest.

The dynamics of solitons can be modelled by a Lagrangian dynamics on
MN with a kinetic energy obtained as the restriction of the kinetic energy
of the full field theory [279]. One assumes the field configuration is exactly
a solution of the Bogomolny equation for all time, with the parameters,
or moduli of the solution, varying slowly with time. The kinetic energy
is a quadratic expression in the time derivatives of the moduli, whose
coefficient matrix can be interpreted as the metric on MN . It is not
easy to calculate this metric explicitly in most cases, but we shall explain
later how progress can be made. One interesting example is the metric
on the two-monopole moduli space, calculated by Atiyah and Hitchin
using a remarkable indirect method. The second ingredient in the reduced
Lagrangian is the potential energy, but this is constant and has no direct
effect. Since the Lagrangian is purely kinetic, as for a rigid body pivoted
at its centre of mass, the reduced dynamics on moduli space is geodesic
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motion at constant speed. The geodesics are interpreted as motion of the
N solitons, either soliton scattering or a bounded motion. In general,
some of the moduli correspond to the soliton positions and some to their
internal orientations, which means that part of the motion of each soliton
is internal, and may be interpreted as an unquantized charge or spin. The
solitons do not move in straight lines, unless they are infinitely separated.
In a naive sense, they experience forces. These forces are not due to the
potential energy, but to the intrinsic curvature of the moduli space. It
is a geometrical effect. It is quite often possible to calculate these forces
in detail for well separated solitons, using physical reasoning. Inevitably,
these forces are proportional to the square of the speed of the solitons,
where speed means speed of the spatial motion and/or internal motion.
An explicit metric can be calculated for N well separated monopoles using
this approach, even though the exact metric on MN is only known for
|N | = 1 or 2.

One general feature of the reduction to moduli space dynamics is that it
is compatible with the spatial symmetries and global internal symmetries
of the original Lagrangian. The symmetry group acts on solutions of the
Bogomolny equation, preserving the minimal energy property, and hence
acts on MN . There are two consequences. First, there are conserved
Noether charges for the reduced dynamics, which are the reductions of
the corresponding expressions in field theory. Second, one may apply the
principle of symmetric criticality to find symmetric motions in moduli
space, and these correspond to similar symmetric motions in the field
theory.

There must be limitations to the accuracy of the reduced dynamics,
just as there are for rigid body dynamics. First of all, one expects some
adiabatic deformation of the solitons, due to their motion. Also one must
anticipate some transfer of energy from the moduli space motion into vi-
brational modes of the transverse field. Physically, soliton motion couples
to radiation. An estimate has been made of this for two-monopole scat-
tering. The total energy radiated is algebraically small at non-relativistic
monopole speeds, v ≪ 1, the total energy radiated being of order v5 com-
pared to the kinetic energy of order v2, and this gives confidence that
for this simple type of soliton scattering, the moduli space dynamics is
reliable. Generally speaking, it appears that the moduli space dynamics
is exact, if it is regarded as the formal, non-relativistic limit of soliton
dynamics in field theory.

A problem with geodesic motion is that it can be incomplete. This
happens for lumps, though not for vortices and monopoles. Geodesic
motion can reach the boundary of moduli space in a finite time. Then
the field becomes singular and the moduli space dynamics breaks down.
However, the moduli space dynamics may not be misleading, because
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similar singularities may form even if the full field equation is solved.
There are some rigorous mathematical studies of the reduction of N -

soliton dynamics in field theory to an effective dynamics on MN , both
for vortices and monopoles, by Stuart [385, 386]. Stuart has proved that
the field dynamics for fields close to moduli space can be uniquely decom-
posed, by orthogonally projecting onto moduli space. A field configura-
tion is characterized, at any instant, by a point in MN , and a residual
field in an orthogonal direction. The field equation is shown to split in
such a way that the equation for geodesic motion on MN is formally the
leading part of the equation for the projected motion. There are cor-
rections to this which are carefully estimated. Provided the initial field
is close to moduli space, and the initial time derivative of the field has
its dominant component parallel to moduli space, and is small, then the
moduli space dynamics is reliable, at least for a finite time. The estimate
of this time is of order 1/v, where v is a characteristic initial soliton speed.
This means the geodesic motion is reliable for a distance of order 1, and
it is plausible that it is reliable for a simple soliton scattering process.
As the solitons approach, and later as they separate, they move along
approximately straight line trajectories at constant speed, reflecting the
exact solutions for well separated solitons. The main scattering process
takes place in a finite distance, of the order of the soliton length scale,
which is 1. Therefore, the result for the scattering angle as a function of
impact parameter, assuming geodesic motion, should be reliable for slow
speeds. However, for bounded soliton motion, Stuart’s results suggest
one can have less confidence in the moduli space dynamics, for large time
intervals.

Finally, we mention some generalizations. Suppose a rigid body is
pivoted at a point other than the centre of mass. Then the reduced
Lagrangian on SO(3) has a kinetic term and a gravitational potential term
which depends on the orientation of the body. The reduced dynamics is
geodesic motion modified by a potential, the equation of motion being
of the type (2.5) with fij = 0. This is still reliable provided the typical
frequencies are small compared with the elastic vibration frequencies. The
frequencies of the rigid body motion are no longer determined so much
by the initial speed, but rather by the strength of the gravitational force.

Similarly, for solitons, there are situations where a moduli space can
be defined, with both a metric and potential on it. There is then a
reduced dynamics on moduli space governing the soliton motion, where
the forces are partly static (the gradient of the potential), and partly
geometrical. For example, if a Lagrangian field theory has couplings close
to the critical values where a Bogomolny equation occurs, then one may
define the moduli space as in the critically coupled case, and restrict the
Lagrangian to motion in this space. This usually gives an unmodified
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metric, and a small potential, working to first approximation. One is
often able to understand the static forces between solitons when they are
well separated, using some physical intuition.

Our discussion so far has focussed exclusively on second order dynami-
cal field theories where the kinetic terms are quadratic in time derivatives,
and the reduced dynamics has kinetic terms quadratic in velocities. We
are also interested in Lagrangian field theories with solitons where the
kinetic terms are linear in time derivatives, but the moduli space of static
solutions is as before. Here again we make the ansatz that the reduced
dynamics on moduli space can be obtained by restricting the Lagrangian
to solutions of the Bogomolny equation with time varying moduli. The
reduced equation of motion is of type (2.22). There is usually no motion
on moduli space unless a small non-constant potential is present. In con-
trast to examples of second order dynamics, there is less mathematical
work, or physical intuition, demonstrating the validity of this approach.

We shall make a similar ansatz when dealing with first order, dissipative
field dynamics, that is, gradient flow. The gradient flow in field configu-
ration space can be restricted to a gradient flow on moduli space, but the
precise or optimal way to define the space is still debatable. At critical
coupling, there is no potential gradient and hence no motion on moduli
space. Here, Demoulini and Stuart have studied rigorously the flow from
a general point in field configuration space down to the moduli space.
Less clear is how to deal with the close-to-critical case. The unmodified
moduli space is one possible stage for a non-trivial gradient flow, with
an equation of motion of type (2.24), but this is only an approximation.
Close by, an exact attractor for the field theory gradient flow appears to
exist. This has been investigated numerically for vortices in the charge 2
sector, but rigorous results are lacking. We discuss this further in Section
7.7.2. Gradient flow on an attractor may also be the best way to obtain
an effective moduli space in systems like the Skyrme model, where there
is no Bogomolny equation; see Section 9.8.
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Kinks

5.1 Bogomolny bounds and vacuum structure

The most elementary topological solitons occur in one space dimension
and involve a single scalar field [343]. Consider the Lagrangian density

L =
1
2
∂µφ∂

µφ− U(φ) , (5.1)

where φ is a real scalar field and U(φ) is a real non-negative function
of φ. The Euler-Lagrange field equation which follows from (5.1) is the
nonlinear wave equation

∂µ∂
µφ+

dU

dφ
= 0 . (5.2)

Let Umin be the global minimum of the potential U(φ). By the addition of
a suitable constant to U , which of course does not alter the field equation,
it is always possible to arrange that Umin = 0, which we will assume to
be the case from now on.

The potential energy is

V =
∫ ∞

−∞

(1
2
φ′2 + U(φ)

)
dx , (5.3)

with contributions from U(φ) and the gradient of the field φ′ = ∂φ
∂x . The

total energy is T + V , where T is the kinetic energy

T =
1
2

∫ ∞

−∞
φ̇2 dx (5.4)

and φ̇ = ∂φ
∂t .

Let V denote the set of vacuum fields (which we assume are isolated)

V = {φ0, such that φ′0 = φ̇0 = 0, and U(φ0) = Umin} . (5.5)
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As described in Chapter 4, the existence of topological solitons depends
on there being multiple vacua, so that V contains more than one com-
ponent. In other words, π0(V) needs to be non-trivial. A finite energy
field configuration is then classified topologically by an element (φ−,φ+)
of π0(V) × π0(V), where φ± = limx→±∞ φ(x). Solutions which interpo-
late between different vacua, that is φ+ ̸= φ−, are known generically as
kinks, a name suggested by the shape of the scalar field when plotted as
a function of x.

If φ+ = φ− then by a continuous deformation, the field can be trans-
formed into the constant vacuum solution φ(x) = φ+, which has zero
energy. If, on the other hand, φ+ ̸= φ−, then the field can not be continu-
ously deformed to a constant zero energy solution by deformations which
keep the energy finite, since any field for which φ(±∞) /∈ V has infinite
energy. This is the fundamental reason for the stability of a kink solution,
since time evolution is an example of a continuous deformation for which
the energy remains finite.

Recall from Chapter 4 that in one space dimension, the combination
in V of a potential term and a term quadratic in the field gradient is
sufficient to evade Derrick’s theorem, and allow static soliton solutions.
Under a spatial dilation the two contributions to the potential energy scale
in opposite ways, producing a balancing effect, and the minimal energy
is attained at the finite and non-zero scale where the virial theorem

∫ ∞

−∞

1
2
φ′2 dx =

∫ ∞

−∞
U(φ) dx (5.6)

holds.
By a series of simple manipulations, it is possible to derive a lower

bound on the energy E of any field configuration in terms of topological
data, the bound only depending on the field values at spatial infinity. The
key inequality is simply

( 1√
2
φ′ ±

√
U(φ)

)2

≥ 0. (5.7)

Expanding this inequality and integrating over space, we obtain
∫ ∞

−∞

(1
2
φ′2 + U(φ)

)
dx ≥ ±

∫ ∞

−∞

√
2U(φ)φ′ dx . (5.8)

Therefore, for static fields

E ≥
∣∣∣∣
∫ ∞

−∞

√
2U(φ)φ′ dx

∣∣∣∣ =
∣∣∣∣
∫ φ+

φ−

√
2U(φ) dφ

∣∣∣∣ . (5.9)

The same bound also holds for time dependent fields, as T is positive.
Since U(φ) ≥ 0, we may introduce a superpotential W (φ) such that
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U(φ) = 1
2(dW

dφ )2, and then the right-hand side of (5.9) can be integrated
to give the bound in the form

E ≥ |W (φ+) − W (φ−)| . (5.10)

This observation is due to Bogomolny [56], and energy bounds of this
general type, where the energy is bounded from below in terms of solely
topological data, are known as Bogomolny bounds.

Clearly, to attain equality in the Bogomolny bound the field must be
static, φ̇ = 0, and satisfy one of the first order Bogomolny equations

φ′ = ±
√

2U(φ) , (5.11)

where solutions of the equation with the + sign (if they exist) are called
kinks and those with the − sign antikinks. For these solutions, the two
contributions to the energy density, 1

2φ
′2 and U(φ), are pointwise the

same, a stronger statement than the virial theorem (5.6).
Solutions of the Bogomolny equations (5.11) are global minima of the

energy within a given topological class of fields, so they are critical points
of the energy function and hence automatically static solutions of the
second order field equation (5.2). It is easy to confirm this explicitly by
differentiating (5.11) to give

φ′′ = ± 1√
2U

dU

dφ
φ′ =

dU

dφ
. (5.12)

Given a static kink solution it is, of course, a trivial task to Lorentz
boost it and obtain a solution in which the kink moves with any speed
less than the speed of light (which is 1 in our units).

5.2 φ4 kinks

In this section we discuss in detail the simplest model with kinks, where
there are just two vacua, that is, π0(V) = Z2. To obtain two vacua with
a potential which is polynomial in φ2 requires at least quartic terms. To
be specific, consider a potential of the form

U(φ) = µ + νφ2 + λφ4 (5.13)

where µ, ν,λ are real constants and λ > 0 in order that the energy is
bounded from below. If ν ≥ 0 then the potential (5.13) has a unique
global minimum at φ = 0, so V has only one component and there are no
kinks. Therefore, from now on we assume that ν < 0, and for convenience
write ν = −2m2λ, where m is a positive real constant. In order to set
Umin = 0 we choose µ = λm4. The potential (5.13) is now

U(φ) = λ(m2 − φ2)2 , (5.14)
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and it is clear that degenerate global minima occur at φ = m and φ = −m,
so there are two vacua, which we denote by V+ and V−.

This example is known as the φ4 model [102, 336] and the full La-
grangian density is

L =
1
2
∂µφ∂

µφ− λ(m2 − φ2)2 , (5.15)

with the corresponding field equation

∂µ∂
µφ− 4λ(m2 − φ2)φ = 0 . (5.16)

The topological content of a given field configuration is captured by the
topological charge

N =
φ+ − φ−

2m
, (5.17)

where φ± are the field values at x = ±∞. This takes the possible values
N ∈ {0, 1,−1}. Although it is rather trivial in this example, note that N
may be written as the integral over space of a topological charge density,

N =
1

2m

∫ ∞

−∞
φ′ dx. (5.18)

The first possibility, N = 0, means that the field interpolates between
the same vacuum values, so it lies in the same topological sector as one
of the vacuum solutions, φ(x) = ±m, to which it may be continuously
deformed.

The minimal energy solution with N = 1 is the kink, which interpolates
between the vacua V− and V+ as x increases from −∞ to ∞. The related
solution with N = −1 is called the antikink and is obtained by making the
replacement φ (→ −φ in the kink solution. Note that there are no multi-
kink solutions with N > 1, since fields of this kind are not compatible
with the finite energy boundary conditions. However, a field configuration
containing a finite mixture of kinks and antikinks alternating along the
line can be constructed, but there are no static solutions of this type. We
discuss the interaction between a kink and an antikink at the end of this
section.

The Bogomolny energy bound for the φ4 model is

E ≥
∣∣∣∣
∫ φ+

φ−

√
2λ(m2 − φ2) dφ

∣∣∣∣ =
∣∣∣∣
√

2λ
[
m2φ− 1

3
φ3

]φ+

φ−

∣∣∣∣ =
4
3
m3

√
2λ|N | .

(5.19)
Both for the kink and antikink, |N | = 1, so the bound in these sectors is
E ≥ 4

3m3
√

2λ. Equality is attained if the Bogomolny equation (5.11) is
satisfied, which in the φ4 model reads

φ′ =
√

2λ(m2 − φ2) . (5.20)
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The choice of the + sign gives a kink, rather than an antikink. This
equation is easily integrated to yield the kink solution

φ(x) = m tanh
(√

2λm(x − a)
)

, (5.21)

where a is an arbitrary constant of integration. The energy density of the
kink is

E =
1
2
φ′2 + λ(m2 − φ2)2 = 2λm4sech4

(√
2λm(x − a)

)
, (5.22)

from which it is easy to confirm that E =
∫ ∞
−∞ E dx = 4

3m3
√

2λ. The
energy E is also the rest mass, M , of the kink. Note that φ has value
0 (the value mid-way between the two vacua ±m) at the point x = a,
which is also the point at which the energy density is maximal, and equal
to 2λm4. The point a is therefore naturally interpreted as the position
of the kink, and is a free parameter, corresponding to the translation
invariance of the Lagrangian. This is the only free parameter in the kink
solution, so the moduli space for a kink is simply M1 = R.
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Fig. 5.1. The field φ(x) of the φ4 kink (solid curve) and its energy density
(dashed curve).

In Fig. 5.1 we plot the kink solution (5.21) and the energy density (5.22)
for the choice of parameters λ = 1

2 , m = 1 and a = 0. The characteristic
kink shape is clear, as is the localized lump-like nature of the energy
density. By a redefinition of the field and length units, the constants λ
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and m in the φ4 model can always be scaled to equal any given positive
values, so the qualitative features of the kink do not depend on them.

By applying a Lorentz boost we obtain the moving kink solution

φ(t, x) = m tanh
(√

2λmγ(x − vt − a)
)

, (5.23)

where −1 < v < 1 is the velocity of the kink and γ = 1/
√

1 − v2 is the
Lorentz factor. This solution has energy E = 4

3γm
3
√

2λ. In the non-
relativistic limit, where |v| ≪ 1, the moving kink simplifies to φ(t, x) =
m tanh

(√
2λm(x − vt − a)

)
and since φ̇ = −vφ′ its kinetic energy is

T =
1
2
v2

∫ ∞

−∞
φ′2 dx . (5.24)

By the virial theorem, this equals 1
2Mv2.

To conclude this section we compute the interaction energy of a well
separated kink-antikink pair, and show that there is an attractive force
between the two, as one might expect. To simplify the presentation, and
given the above comments, we set λ = 1

2 and m = 1, it being possible to
reintroduce arbitrary values of these constants by a simple rescaling.

There are a number of ways to derive the interaction energy. One way
is to compute the energy of a static solution of the field equation in which
delta-function sources are introduced to pin the kink and antikink at a
given separation [342]. Here we follow the procedure of ref. [278], and
compute the interaction energy by identifying the force produced on one
soliton by the other with the rate of change of momentum.

For a general theory of the form (5.1), the momentum on the semi-
infinite interval (−∞, b] is

P = −
∫ b

−∞
φ̇φ′ dx . (5.25)

The force on this interval, F , is given by the time derivative of the mo-
mentum

F = Ṗ = −
∫ b

−∞
(φ̈φ′ + φ̇φ̇′) dx =

[
− 1

2
(φ̇2 + φ′2) + U(φ)

]b

−∞
, (5.26)

where to obtain the final expression we have used the field equation (5.2)
and integrated the total derivative terms. This shows that the force on the
interval can be identified with the difference of pressure at the endpoints.

Now consider a kink-antikink pair, with the antikink at position −a
and the kink at position a, where a ≫ 1. A field configuration of this
form can be obtained by the superposition

φ(x) = φ1(x) + φ2(x) + 1 , (5.27)
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where φ1(x) is the antikink and φ2(x) is the kink, given explicitly by

φ1(x) = −tanh(x + a) , φ2(x) = tanh(x − a) . (5.28)

Let the endpoint of the interval, b, lie between the kink and antikink, and
far from each, that is, −a ≪ b ≪ a. Then throughout the interval the
sum φ2 + 1 is close to zero, so we can linearize in this combination. To
leading order this produces the result

F =
[
− 1

2
φ′21 + U(φ1) − φ′1φ

′
2 + (1 + φ2)

dU

dφ
(φ1)

]b

−∞

=
[
− φ′1φ

′
2 + (1 + φ2)φ′′1

]b

−∞
(5.29)

where, to obtain the second expression, we have used the fact that the
antikink solves the Bogomolny equation (5.11) to cancel the first two
terms in the first expression, and used the static version of the field equa-
tion (5.2) to replace the last term. Since we are dealing with a field
configuration whose spatial derivatives fall off exponentially fast at infin-
ity there is clearly no contribution from the lower limit in the expression
(5.29). To evaluate the contribution from the upper limit we recall that
the point b is far from both the kink and antikink, so we may use the
asymptotic forms

φ1(x) ∼ −1 + 2e−2(x+a) , φ2(x) ∼ −1 + 2e2(x−a) . (5.30)

This leads to the expression for the force

F = 32e−2R =
dEint

dR
, (5.31)

where we have defined the kink-antikink separation R = 2a, and equated
the force with the derivative of the interaction energy Eint. Note that F is
independent of b, as it should be since b was just a parameter introduced
to perform the calculation and has no physical significance. Therefore we
may identify F with the force on the antikink, produced by the kink. The
asymptotic interaction energy is, finally,

Eint = −16e−2R , (5.32)

which is negative and decreases as the separation decreases, indicating an
attractive force between the kink and antikink.

This picture of the kink-antikink interaction is confirmed by numerical
simulations of the full time dependent field equation, starting with a well
separated kink-antikink pair at rest. The kink and antikink move toward
each other and annihilate into radiation. This is also true if they are sent
toward each other with a speed which is much less than the speed of light,
but if the speed is great enough the situation is more complicated and
depends sensitively on the speed [307, 72].
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5.3 Sine-Gordon kinks

The φ4 model is not a very rich system from the point of view of multi-
solitons, since there are no topological sectors which may be thought of
as describing multi-kink fields, except those including antikinks as well.
In this section we turn to the sine-Gordon model [378], in which the
vacua are labelled by an arbitrary integer, so that field configurations
corresponding to any number of solitons are allowed. This is the gen-
eral situation in the more complicated, higher-dimensional theories with
solitons that we discuss later.

The Lagrangian density defining the sine-Gordon model is

L =
1
2
∂µφ∂

µφ− (1 − cosφ) , (5.33)

where we have chosen appropriate length and energy units to scale away
any possible parameters of the model. The sine-Gordon field equation
which follows from this is

∂µ∂
µφ+ sinφ = 0 . (5.34)

It is self-evident that the zero energy vacua of this model are given by
the constant solutions φ = 2πn, where n ∈ Z is any integer, so

π0(V) = Z . (5.35)

Let (φ−,φ+) denote the vacuum values attained by the field at x = ±∞.
The Lagrangian density (5.33) is invariant under 2π shifts of the field,
φ (→ φ ± 2π, so, without loss of generality, we can choose to set φ− = 0,
though we will not insist on this. The topological sectors of the model are
indexed by the integer N = (φ+ − φ−)/2π. Once again, this topological
charge may be trivially written as the integral of a charge density

N =
1
2π

∫ ∞

−∞
φ′ dx . (5.36)

N counts the net number of solitons.
The Bogomolny bound in this case is

E ≥
∫ 2πN

0
2

∣∣∣∣sin
φ

2

∣∣∣∣ dφ = 4|N |
[
− cos

φ

2

]2π

0
= 8|N | (5.37)

where, in evaluating the integral, we have used the periodicity of the
integrand and the fact that the range of integration is an N -fold cover
of the interval [0, 2π]. This bound is attained by solutions of one of the
Bogomolny equations

φ′ = ±2 sin
φ

2
. (5.38)
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Restricting to kink solutions, by choosing the + sign, we can integrate
directly to give

φ(x) = 4 tan−1 ex−a (5.39)

where a is the arbitrary constant of integration. Taking the solution
branch for which φ− = 0, we see that φ+ = 2π, so this solution has
topological charge N = 1, and therefore it describes a single kink. The
antikink solution, which solves the Bogomolny equation with the − sign,
is obtained by the replacement φ (→ −φ.

For the kink solution (5.39), φ(a) = π, and since π is the field value
half-way between the vacuum values 0 and 2π, one should interpret a
as the position of the kink. This is confirmed by examining the energy
density

E = 4 sech2(x − a) , (5.40)

which is maximal at x = a. From this expression it is simple to check
that E =

∫ ∞
−∞ E dx = 8.

Since the general solution of the Bogomolny equation is a kink of unit
topological charge, there are no multi-kink solutions of the Bogomolny
equation. It follows that there is a repulsive force between two kinks. This
is because any field configuration with N = 2 must obey the strict Bogo-
molny bound E > 16, but in the limit in which two kinks are infinitely
separated, the energy will approach E = 16, the sum of the energies of the
two individual kinks. Thus, the potential energy of two kinks decreases as
they separate and there is a corresponding repulsive force. By a similar
calculation as that done in the previous section to compute the asymp-
totic kink-antikink interaction energy in the φ4 model, the asymptotic
interaction energy of two sine-Gordon kinks is found to be

Eint = 32e−R , (5.41)

where R is the separation between the kinks. This result was obtained
by Perring and Skyrme [329], who used the sine-Gordon model as a toy
model for a more realistic three-dimensional field theory, the one now
known as the Skyrme model. The Skyrme model and its soliton solutions
are the subject of Chapter 9.

Although there are no static multi-soliton solutions in the sine-Gordon
model, there are time dependent solutions, which describe the scattering
of two or more kinks. Rather unusually, such solutions can be written
down explicitly in closed form. The reason is that the sine-Gordon model
in one dimension is an integrable system. Integrable soliton equations are
not the topic of this book and it would involve a lengthy digression to
introduce even the main concepts. Here we will content ourselves with a
few comments, and as a simple example, explicitly construct a two-soliton



118 Kinks

solution of the sine-Gordon equation using some of the integrable systems
machinery [2].

Although there is no generally accepted universal definition of an
integrable system, there are a number of common features which arise
in most PDEs considered to belong to this category. They include the
existence of an infinite number of conserved quantities, the property that
the given equation can be written as the compatibility condition of an
overdetermined linear system, known as a Lax Pair, and the applicability
of solution generating techniques such as the inverse scattering method
and Bäcklund transformations. It is this final feature which we now use.

It is convenient here to introduce lightcone coordinates, x± = 1
2(x± t),

and the corresponding derivatives, ∂± = ∂/∂x±, in terms of which the
sine-Gordon field equation (5.34) becomes

∂−∂+φ = sinφ . (5.42)

Now consider the following pair of equations

∂+ψ = ∂+φ−2β sin
(
φ+ ψ

2

)
, ∂−ψ = −∂−φ+

2
β

sin
(
φ− ψ

2

)
, (5.43)

which is known as a Bäcklund transformation, and may be thought of as
determining the field ψ, given the field φ. β is a non-zero real constant,
called the Bäcklund parameter. This pair of equations is subject to the
compatibility condition ∂−∂+ψ = ∂+∂−ψ, because of the symmetry of
second partial derivatives, which implies that

∂−∂+φ− β cos
(
φ+ ψ

2

)
(∂−φ+ ∂−ψ)

= − ∂+∂−φ+
1
β

cos
(
φ− ψ

2

)
(∂+φ− ∂+ψ) . (5.44)

After using Eqs. (5.43) to eliminate the single derivative terms, this simpli-
fies to the sine-Gordon equation, ∂−∂+φ = sinφ. Similarly, subjecting the
Bäcklund transformation (5.43) to the compatibility condition ∂−∂+φ =
∂+∂−φ yields the sine-Gordon equation for ψ, that is, ∂−∂+ψ = sinψ.
Thus, the Bäcklund transformation is a mapping between solutions of
the sine-Gordon equation and can be used to generate new solutions from
known solutions. Since the Bäcklund transformation contains a free
parameter β, this extra parameter is introduced into the new solution,
in addition to a constant of integration.

As an example, if we start with the trivial vacuum solution φ = 0, then
Eqs. (5.43) take the simplified form

∂+ψ = −2β sin
ψ

2
, ∂−ψ = − 2

β
sin

ψ

2
. (5.45)
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These equations are easily integrated to give the solution

ψ(x+, x−) = 4 tan−1 e−βx+−x−/β+α (5.46)

where α is a constant of integration. Making the identifications

v =
1 − β2

1 + β2
, γ =

1√
1 − v2

= −1 + β2

2β
, a =

2βα
1 + β2

(5.47)

where β < 0, this solution can be written as

ψ(t, x) = 4 tan−1 eγ(x−vt−a) , (5.48)

which we recognize as the Lorentz boosted version of the one-kink solution
(5.39).

The real power of the Bäcklund transformation is that it leads to a
purely algebraic method of constructing multi-kink solutions, evading the
task of having to explicitly integrate Eqs. (5.43), which may be tricky for
a complicated seed solution φ. This algebraic construction arises by con-
sidering two solutions ψ1,ψ2, obtained from Eqs. (5.43) by starting with
the same seed solution φ = ψ0 but using two different values, β1,β2, of
the Bäcklund parameter. By manipulating the equations, it can be shown
that a theorem of permutability holds, so that the solution ψ12, obtained
by applying the Bäcklund transformation with parameter β2 to the seed
solution ψ1, is (with an appropriate choice of integration constants) equal
to the solution ψ21, obtained by applying the Bäcklund transformation
with parameter β1 to the seed solution ψ2. The consistency condition
ψ12 = ψ21 leads to the explicit relation

ψ12 = ψ21 = 4 tan−1
[(
β1 + β2

β2 − β1

)
tan

(
ψ1 − ψ2

4

) ]
− ψ0 , (5.49)

giving a new solution ψ from the triplet of known solutions ψ0,ψ1,ψ2.
We have already seen that starting with the vacuum solution ψ0 =

0, the Bäcklund transformation produces the one-kink solutions ψj =
4 tan−1 eθj (j = 1, 2), where θj = −βjx+−x−/βj +αj . Substituting these
into Eq. (5.49) yields the further solution

ψ(x+, x−) = 4 tan−1
[(
β1 + β2

β2 − β1

) sinh θ1−θ2
2

cosh θ1+θ2
2

]
. (5.50)

For simplicity, set β1 = −1/β2 ≡ β, and α1 = α2 = 0. Then (5.50)
becomes

ψ(t, x) = 4 tan−1
[
v sinh(γx)
cosh(γvt)

]
(5.51)
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where v and γ are related to β as before by Eqs. (5.47). Since this solution
interpolates between the vacua −2π and 2π as x increases from −∞ to
∞, it is in the N = 2 sector, and therefore describes a time dependent
two-kink field. As we have already noted, there are no static two-kink
solutions and this is consistent with the fact that (5.51) degenerates in
the limit v → 0.

In order to interpret this solution it is useful to rewrite it in the form

tan
ψ

4
= eγ(x−a) − e−γ(x+a) (5.52)

where a > 0 is the time dependent function

a(t) =
1
γ

log
(2

v
cosh(γvt)

)
. (5.53)

If |vt| ≫ 1 then a ∼ |vt| + δ is also large, where δ = −(log v)/γ. Consid-
ering the expression (5.52) in this limit we see that near the point x = a
the second term on the right-hand side is exponentially small, and may
be neglected, and the remaining term describes a single kink moving with
speed v and located at x = a ∼ |vt| + δ. Similarly, near x = −a the first
term may be neglected, leaving the second term, which describes a kink
moving with speed v and having position x = −a ∼ −(|vt|+δ). We there-
fore see that this solution describes two kinks which are well separated
for |t| large, with both approaching the origin at speed v for t negative,
and separating at the same speed for t positive. They feel the repulsive
kink-kink force, and smoothly bounce back off each other, the time of
closest approach being t = 0. The solution is an even function of t so
the motion is symmetric about t = 0. Note that the interpretation of the
coordinate a as half the separation of two individual kinks is only valid
when a is large, so it should not generally be used near t = 0 to estimate
the distance of closest approach. In Fig. 5.2 we plot the energy density
at various times for the two-kink solution (5.51) with v = 0.2. The total
energy is 16γ. It is worth noting that the two-kink solution was found by
Perring and Skyrme by performing numerical simulations and examining
plots, such as those in Fig. 5.2, from which they were able to guess the
exact solution.

Usually, this scattering solution is given a different interpretation. It is
claimed that the two kinks pass through each other, rather than bouncing
back, with the kinks accelerated through the collision process. The only
effect of the collision is then that each kink position is shifted forward
by an amount 2δ, as compared to the position the kink would have had
if there had been no interaction at all. Since we are dealing with two
identical solitons, there is no way to distinguish between forward and
backward scattering, so both interpretations appear to be equally valid.
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Fig. 5.2. The energy density of a sine-Gordon two-kink solution at times
(a) t = −20, (b) t = 0, (c) t = 20. Each kink has an initial speed v = 0.2.

However, we have already seen that there is a repulsive force between two
kinks, so, at least at low speeds, it clearly only makes physical sense if
the two solitons scatter backwards, since they do not have enough kinetic
energy to overcome the repulsive potential.

It is interesting to compare the exact two-kink solution with the approx-
imate motion one would predict using the asymptotic interaction energy
(5.41). For two kinks with positions ±a(t), the approximate equation of
motion is

ä = 4e−2a , (5.54)

where we have equated the force F = 32e−2a with the product of the kink
acceleration ä and its mass, which is 8. If we impose ȧ(−∞) = −v, so
that the kinks each have an initial speed v, and ȧ(0) = 0, to fix the time
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of closest approach at t = 0, then the solution is

a(t) = log
(2

v
cosh(vt)

)
. (5.55)

This is the low velocity limit of the exact expression (5.53), obtained by
replacing the Lorentz factor γ by 1. Hence the approximate dynamics
accurately models the true motion for low speeds v ≪ 1, validating the
asymptotic force law. The closest approach of the kinks is approximately
2 log(2/v). One source of the error for relativistic speeds is that the two
kinks do not remain far apart for all t, so that the terms neglected in the
asymptotic expression for the force become significant.
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Fig. 5.3. The exact trajectory a(t) for the sine-Gordon two-kink solution (solid
curve) and the approximate trajectory (dashed curve) derived from the asymp-
totic force law. The speeds are (a) v = 0.2, (b) v = 0.6.

In Fig. 5.3 we display the exact kink trajectories given by expression
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(5.53) and the approximate trajectories obtained from (5.55), for speeds
v = 0.2 and v = 0.6.

The integrability of the sine-Gordon model also allows the construc-
tion, for example by the use of Bäcklund transformations, of explicit
solutions describing kink-antikink scattering. Unlike most topological
solitons, which at low speeds annihilate with antisolitons into radiation,
the kink and antikink scatter elastically. This is a consequence of the in-
finite number of conserved quantities which prevent total annihilation. In
fact, the solution describing the symmetric collision of a kink and antikink
gives, at a particular time, a constant vacuum field, so one may think in
terms of the instantaneous annihilation of the kink and antikink, but the
two reappear at a later time with precisely the same form and speeds as
they had initially. There is also an exact time periodic solution in the
charge zero sector, known as a breather, which may be interpreted as a
kink-antikink bound state, with the kink and antikink oscillating around
their centre of mass.

In Chapter 4 we explained that in d space dimensions there are two
main types of topological soliton – those in which the topology arises
due to non-trivial vacuum values of a linear field at spatial infinity and
the topological charge is an element of the homotopy group πd−1(V), and
those in which there is a nonlinear field which is constant at infinity and
the topological charge is associated with the mapping of the whole of
space into a target manifold Y , which gives an element of the homotopy
group πd(Y ). So far in this chapter on kinks we have only encountered
the first type. However, as we now describe, the sine-Gordon model has
an alternative formulation as a nonlinear model with target space a circle,
in which the kink becomes an example of the second type of soliton.

To formulate the sine-Gordon model as a nonlinear scalar field model,
we introduce the two-component unit vector

φ = (φ1,φ2) = (sinφ, cosφ) . (5.56)

In terms of this field the sine-Gordon Lagrangian density (5.33) becomes

L =
1
2
∂µφ · ∂µφ − (1 − φ2) + ν(1 − φ · φ) , (5.57)

where the Lagrange multiplier ν is introduced to constrain φ to lie on
the circle φ · φ = 1. Finite energy now requires that the field takes the
(unique) vacuum value φ = (0, 1) at spatial infinity, which corresponds
in the previous formulation to the field φ being an integer multiple of 2π
at infinity.

Since φ(−∞) and φ(∞) must have the same value, the points x = −∞
and x = +∞ can be identified, thereby compactifying space from R to S1.
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At any given time, the field is therefore a map φ : S1 (→ S1, where the
domain is compactified space and the target is the unit circle. The map
has an associated degree, or winding number, N , which also determines
its class in π1(S1) = Z. This may be computed as

N =
1
2π

∫ ∞

−∞
εabφ

′
aφb dx (5.58)

and is easily seen to be equal to the topological charge (5.36) defined
previously. In the above expression εab is the alternating tensor in two
dimensions, with ε12 = −ε21 = 1, and all other components zero. In
this formulation, the sine-Gordon model is a lower-dimensional analogue,
with the addition of a potential term, of the sigma model we discuss in
Chapter 6, and of the Skyrme model.

5.4 Generalizations

There are a number of generalizations of the kink models we have dis-
cussed so far. The most interesting are, of course, the higher-dimensional
systems admitting localized topological solitons which are our main con-
cern in the rest of this book. However, the kink solutions themselves can
be trivially embedded into a higher-dimensional theory as solutions which
are independent of all but one spatial direction. Thus, if we consider a
general kink model of the form (5.1), but in three space dimensions, and
require the field to be a function only of t and x1, and independent of x2

and x3, then the field equation is the same as for one-dimensional kinks.
The kink-like solutions now have infinite energy, because they have in-
finite extent in two spatial directions, but they have finite energy per
unit area. These types of solution are known as domain walls and are of
importance in condensed matter applications, since they can be formed
in phase transitions. There are also possible cosmological applications, if
phase transitions occurred in the early universe [407].

For a theory in which the potential U has more than two isolated de-
generate minima an interesting phenomenon can occur for domain walls,
namely, there can exist static solutions in which three or more domain
walls meet at a junction. The simplest family of theories with solutions
of this type [151, 73] has a single complex scalar field φ and Lagrangian
density

L =
1
4
∂µφ̄∂

µφ− |W ′(φ)|2 , (5.59)

where W (φ) is a holomorphic function of φ, known as the superpotential.
For the present discussion we restrict to static configurations and con-

sider fields which are independent of x3, so that effectively we have a
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model in the (x1, x2) plane. Here, a single domain wall lies along a line
and the field φ has a non-trivial dependence only on the transverse spa-
tial coordinate, but a domain wall junction involves several domain walls
embedded in different directions, and meeting near a point, so φ has non-
trivial dependence on x1 and x2.

Let z be the complex coordinate in the plane, z = x1 + ix2, and denote
the partial derivatives with respect to z and z̄ by ∂z and ∂z̄ respectively,
i.e.

∂z =
1
2
(∂1 − i∂2) , ∂z̄ =

1
2
(∂1 + i∂2) . (5.60)

Then the static energy associated with (5.59) may be written as

E =
∫ (1

2
(|∂zφ|2 + |∂z̄φ|2) + |W ′(φ)|2

)
d2x . (5.61)

Variation of this energy produces the second order field equation

∂z̄∂zφ = W ′′(φ)W ′(φ) . (5.62)

There is a 1-parameter family of Bogomolny equations associated with
this system, given by

∂zφ = eiαW ′(φ) (5.63)

where α is a constant phase. It is simple to verify that solutions of this
first order Bogomolny equation satisfy the second order field equation.
Explicitly,

∂z̄∂zφ = eiα∂z̄ W ′(φ) = eiαW ′′(φ) ∂z̄φ̄ = W ′′(φ)W ′(φ) , (5.64)

where the penultimate expression is obtained using the holomorphic prop-
erty of the superpotential, ∂W ′(φ)/∂φ = 0, and the final expression makes
use of the complex conjugate of the Bogomolny equation. Note that the
phase factor eiα in (5.63) can be removed by a phase rotation of the
coordinate z, which corresponds to a spatial rotation in the plane.

Fields satisfying the anti-Bogomolny equations ∂z̄φ = eiβW ′(φ) also
satisfy the second order field equation.

Consider now a single domain wall in this type of model, lying along
the x2-axis, and satisfying the Bogomolny equation (5.63). Since the field
is independent of x2, we have ∂z = 1

2∂1 and (5.63) reduces to a one-
dimensional kink equation. (Notice that for a field independent of x2,
∂z = ∂z̄, so the domain wall simultaneously satisfies the anti-Bogomolny
equation, with β = α. A similar remark applies to domain walls in any
direction, but β ̸= α in general.) From the general discussion earlier
in this chapter, we anticipate that there will be kink solutions which
interpolate between pairs of distinct vacua of the potential |W ′|2 as x1



126 Kinks

covers the real line. The superpotential form of the model allows a simple,
but important, observation regarding these kink solutions, which follows
from the equation

|∂1φ|2 = ∂1φ∂1φ̄ = 2eiαW ′(φ)∂1φ̄ = 2eiα∂1W (φ) , (5.65)

where again we have made use of the Bogomolny equation and the fact
that W (φ) is holomorphic. The upshot of this formula is that the com-
bination eiα∂1W is real, implying that the imaginary part of eiαW is
constant as x1 varies. This means that although the kink traces out a
non-trivial curved path in the φ-plane connecting two distinct vacuum
values, when viewed in the W -plane the path is simply a straight line.

To obtain a solution of the Bogomolny equation which is a domain wall
junction we need a potential with at least three distinct vacua. To be
specific, we choose the quartic superpotential

W (φ) = φ− 1
4
φ4 (5.66)

with vacuum values of the potential |W ′|2 occurring at the cube roots
of unity φ = 1,ω,ω2, where ω = e2πi/3. There are therefore three types
of domain wall separating pairs of vacua. It is now easy to imagine di-
viding the plane symmetrically into three sectors, as shown in Fig. 5.4,
with a different vacuum value occurring in the interior of each sector and
the boundary between any two sectors being the domain wall associated
with the kink solution connecting the two corresponding vacua. This is a
domain wall junction. There is no rigorous proof that such a solution of
the Bogomolny equation (5.63) exists, but it has been constructed numer-
ically [360] (and explicit solutions are known in a related model [320]).
When pictured in W -space, the field configuration maps R2 into the in-
terior of the equilateral triangle with vertices φ = 1,ω,ω2, whose sides
are the straight lines associated with the three domain walls which form
the junction, as described above. A domain wall which interpolates be-
tween the vacuum values φA and φB has tension (energy per unit length)
µAB = |W (φA) − W (φB)|. A junction in which three or more domain
walls meet can be associated with a polygon in the W -plane – an equilat-
eral triangle in the example above – and the angles between the domain
walls are precisely those for which there is a balance of tensions. This
means that the directions of the walls and the directions of the associated
sides of the polygon are the same, up to a rigid rotation.

A network of junctions can be formed, connected by domain wall seg-
ments, and leading to tilings of the plane [360], but it is easily seen that
such a network can not be a global solution of the first order Bogomolny
equation. It is a solution of the second order field equation such that
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Fig. 5.4. A sketch of a domain wall junction. The lines represent the domain
walls and the symbol in the interior of each sector denotes the vacuum value
asymptotically attained there.

each junction is locally close to a solution of the Bogomolny equation
∂zφ = eiαW ′(φ) or the anti-Bogomolny equation ∂z̄φ = eiβW ′(φ), with
these two possibilities alternating around the network, and the phases
also differing from junction to junction. Note that because infinitely long
domain walls satisfy both the Bogomolny and anti-Bogomolny equation,
there is no contradiction here along each domain wall segment, provided
it is long.

In the above, we effectively introduced a second real scalar field, by
using a single complex scalar. A related generalization of scalar field
theory is the extension of this idea, to include even more fields, with
potentials such that the vacuum structure becomes more complicated and
allows for the possibility of many different species of soliton, interpolating
between the different vacua. Perhaps the mathematically richest class of
such models is affine Toda field theory with imaginary coupling. There is
an example of affine Toda field theory based on each compact semi-simple
Lie algebra, and the number of fields is equal to the rank of this algebra.
The potential is a sum of exponentials of the fields involving coefficients
which depend on the algebra through data such as the simple roots. With
real fields, this model has a unique vacuum, and hence no soliton solutions,
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but if the fields are allowed to be complex then the Toda potential has
multiple stationary points and there are a number of topological charges,
associated with the weights of the fundamental representations of the
Lie algebra. Although allowing the fields to be complex means that the
energy density is no longer real it turns out that the total energy and
momentum of the soliton solutions are real, so these solitons are worth
studying [189]. The affine Toda theory based on the simplest algebra
A1 has just a single field, and it reproduces the sine-Gordon model if
the field is taken to be purely imaginary. Thus the general imaginary
affine Toda field equation may be considered as a multi-field version of
the sine-Gordon equation, and indeed it shares many of its properties,
such as being integrable, which allows the construction of explicit soliton
solutions. However, even at the classical level there are still a number of
open puzzles concerning these theories, since the number of solitons that
are expected, corresponding to the possible topological charges, is much
greater than the number of solutions currently known; see ref. [92] for a
review.

As a final generalization of kinks we consider a modification in which
the spatial domain R is replaced by a circle, S1, of finite radius. Solitons
on compact and periodic domains are of physical interest because they
model regions of high soliton density, where the solitons are expected to
form a crystal. In the case of kinks, the crystal will be a one-dimensional
kink chain.

An example of a kink chain occurs in the sine-Gordon model [300] if
the field φ(t, x) is taken to be periodic in x with period L, modulo a 2π
shift, that is,

φ(t, x + L) = φ(t, x) + 2π . (5.67)
In the nonlinear interpretation of the sine-Gordon model, the field is
strictly periodic. Let us now consider static fields, and suppress the time
variable t. We can restrict to a unit cell, x ∈ [0, L], with the boundary
conditions φ(0) = 0 and φ(L) = 2π, so that this cell contains precisely
one kink. The energy per kink is given by integrating the usual energy
density over the unit cell,

E =
∫ L

0

(1
2
φ′2 + 1 − cosφ

)
dx , (5.68)

and the energy-minimizing field configuration will satisfy the static sine-
Gordon equation

φ′′ = sinφ . (5.69)
Integrating this equation once (and making a choice of sign) we arrive at

φ′ = 2

√

sin2 φ

2
+

1 − k2

k2
(5.70)
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where k ∈ (0, 1] is a constant of integration which is related to the period
L, as we describe below. Comparing equations (5.70) and (5.38) we see
that the Bogomolny bound is attained only if k = 1, which corresponds
to the limit L → ∞.

To solve Eq. (5.70) we make the changes of variable

ψ = sin
φ

2
, X =

x

k
, (5.71)

which transform the equation into
(

dψ

dX

)2

= (1 − ψ2)(k2ψ2 + 1 − k2) . (5.72)

This is (see for example ref. [5]) the standard form of the equation satisfied
by the Jacobi elliptic function cnk(X), with modulus k. The solution of
Eq. (5.70) is therefore

φ(x) = 2 sin−1 cnk

(
x − L/2

k

)
, (5.73)

where we have set the constant of integration equal to −L/2 in order to
position the kink at the centre of the cell.

The period of the solution (5.73) must be equal to L, which gives the
relation

L = 2kKk (5.74)

where Kk is the complete elliptic integral of the first kind with modulus
k,

Kk =
∫ 1

2π

0

dθ
√

1 − k2 sin2 θ
. (5.75)

Substituting the solution (5.73) into the expression (5.68) gives the energy
per kink

E =
8Ek − 4(1 − k2)Kk

k
, (5.76)

where Ek is the complete elliptic integral of the second kind with modulus
k,

Ek =
∫ 1

2π

0

√
1 − k2 sin2 θ dθ . (5.77)

In Fig. 5.5 we plot the energy (5.76) as a function of the period L. It
tends to the Bogomolny bound, E = 8, in the limit L → ∞ (k → 1), and
is strictly monotonically increasing as the period (and hence k) decreases,
in accordance with the fact that there are repulsive forces between kinks.
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Fig. 5.5. The energy per kink of the sine-Gordon kink chain as a function of
the period L.

There are two limits in which the kink chain simplifies. The first is the
small period limit L ≪ 1, when the gradient term dominates the energy,
leading to the asymptotic linear solution

φ(x) =
2πx

L
. (5.78)

The second is the infinite period limit, L → ∞, when the solution (after
a shift by L/2) reduces to the earlier expression (5.39) for a kink with
position a = 0.

If the period is large, which corresponds to 0 ≤ 1 − k ≪ 1, standard
asymptotic expressions [5] for the elliptic integrals Kk and Ek can be used
to obtain from (5.74) and (5.76) the asymptotic relations

k ∼ 1 − 8e−L , E ∼ 8 + 4(1 − k) (5.79)

from which we can recover the asymptotic interaction energy of a kink
pair

Eint = 32e−L (5.80)

by subtracting off the free kink energy, 8. This agrees with the earlier
relation (5.41) after recognizing that in the periodic case L is also the
separation between kinks.



6
Lumps and rational maps

6.1 Lumps in the O(3) sigma model

One of the simplest systems admitting static topological soliton solutions
is the O(3) sigma model in the plane [436]. Strictly speaking, it is per-
haps incorrect to use the term soliton for these solutions since, as we
describe in detail below, they have an instability associated with changes
in their scale. To reflect this lack of stability these structures are some-
times referred to as lumps, rather than solitons, and we will adopt this
nomenclature here. Despite this shortcoming, it is still worthwhile study-
ing these lumps, particularly because of the simplicity in constructing
exact solutions. Lump solutions are given explicitly by rational maps
between Riemann spheres, and since rational maps will play a vital role
in later chapters on three-dimensional topological solitons, it is useful
to familiarize ourselves with their properties in this concrete setting.

A sigma model is a nonlinear scalar field theory, where the field takes
values in a target space which is a curved Riemannian manifold, usually
with a large symmetry. The simplest example is the O(3) sigma model, in
which the target space is the unit 2-sphere, S2. To formulate the model we
parametrize the field as a three-component unit vector, φ = (φ1, φ2, φ3).
The Lagrangian density, for the model in (d + 1)-dimensional Minkowski
space-time, is simply that of a massless free theory

L =
1
4
∂µφ · ∂µφ + ν(1 − φ · φ) (6.1)

with the constraint φ · φ = 1 enforced by using the Lagrange multiplier
ν. The resulting nonlinear Euler-Lagrange equation, after elimination of
ν, is

∂µ∂µφ + (∂µφ · ∂µφ)φ = 0 . (6.2)
The dot product in ∂µφ · ∂µφ means that the Euclidean metric of R3 is
being used, and this becomes the standard metric on the target S2 when
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the constraint φ ·φ = 1 is imposed. The O(3) in the model’s name refers
to the global symmetry of the target S2, corresponding to rotations

φ "→ Mφ (6.3)

where M ∈ O(3) is a constant matrix. The “sigma” refers to the fact that
the model is sometimes formulated in terms of fields (φ1, φ2, σ), where φ1

and φ2 are locally unconstrained and σ =
√

1 − φ2
1 − φ2

2 is dependent on
these.

From now on we deal only with the situation in which space-time is
(2+1)-dimensional, since there is then the following topological classifi-
cation of finite energy fields. The energy of a static field configuration
is

E =
1
4

∫
∂iφ · ∂iφ d2x , (6.4)

where i = 1, 2 runs over the spatial indices only. For this to be finite
φ must tend to a constant vector at spatial infinity, which without loss
of generality we may take to be φ∞ = (0, 0, 1). In the vacuum, φ takes
this value everywhere. This boundary condition spontaneously breaks
the O(3) symmetry (6.3) to an O(2) symmetry rotating the components
φ1, φ2. Moreover, there is a compactification of space to R2 ∪ {∞} ∼= S2,
so that at a fixed time the field φ is a based map φ : S2 "→ S2. The
relevant homotopy group is π2(S2) = Z, which implies that each field
configuration is characterized by an integer topological charge N , the
topological degree of the map φ. This has an explicit representation as
the integral

N =
1
4π

∫
φ · (∂1φ × ∂2φ) d2x (6.5)

where the integrand is the pull-back of the normalized, standard area
form on S2. The charge N is interpreted as the number of lumps in the
field configuration, since generically there are N well separated, localized
regions where the energy density is concentrated, each supporting one unit
of charge, though this simplified picture breaks down as lumps approach
each other.

Since the static energy density is quadratic in spatial derivatives, and
space is two-dimensional, a spatial rescaling does not change the energy.
The model is in fact conformally invariant. This does not rule out static
solutions, but it means that each solution lies in a 1-parameter family of
solutions related by rescalings.

By integrating the inequality

(∂iφ ± εijφ × ∂jφ) · (∂iφ ± εikφ × ∂kφ) ≥ 0 (6.6)
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over the plane, and using the expressions (6.4) and (6.5) for the energy
and topological charge, it is a simple exercise to derive the Bogomolny
bound

E ≥ 2π|N | , (6.7)

which is a lower bound on the energy in terms of the number of lumps.
Equality occurs if and only if the field is a solution of one of the first order
Bogomolny equations

∂iφ ± εijφ × ∂jφ = 0 . (6.8)

As pointed out by Belavin and Polyakov [46], the Bogomolny equations
(6.8) are best analysed by making the following changes of variable. Let
R denote the Riemann sphere coordinate on the target space, that is,
R = (φ1 + iφ2)/(1 + φ3), and let z = x1 + ix2 be the complex coordinate
in the spatial plane. Generally, R is a function of z and z̄. The Lagrangian
density (6.1) now takes the form

L =
∂µR∂µR̄

(1 + |R|2)2 (6.9)

and there is no constraint. The denominator factor means that the target
space is still the unit 2-sphere with its standard metric. The Lagrangian
density (6.9) is referred to as that of the CP1 sigma model, though it
is equivalent to the O(3) sigma model as far as classical solutions are
concerned. In terms of R(z, z̄), the above expressions for the energy and
topological charge take the form

E = 2
∫ |∂zR|2 + |∂z̄R|2

(1 + |R|2)2 d2x , N =
1
π

∫ |∂zR|2 − |∂z̄R|2

(1 + |R|2)2 d2x (6.10)

where ∂z = ∂
∂z = 1

2(∂1 − i∂2) and ∂z̄ = ∂
∂z̄ = 1

2(∂1 + i∂2). Clearly,
E ≥ 2π|N |. The Bogomolny equation (6.8) (with the + sign) is equivalent
to the Cauchy-Riemann equation

∂z̄R = 0 (6.11)

whose solutions are holomorphic functions R(z), that is, R is independent
of z̄. Choosing the − sign in (6.8) gives the equation ∂zR = 0 satisfied
by antiholomorphic functions R(z̄). It is immediately obvious from the
expressions (6.10) that holomorphic or antiholomorphic functions satu-
rate the Bogomolny bound, E = ±2πN , with the positive sign for the
holomorphic case, which we restrict to from now on. Notice that for holo-
morphic functions the energy density is 2π times the topological charge
density.
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Because the function R(z) is a map to the Riemann sphere, it is accept-
able for R to have poles. If R has a pole at z0, the image is simply the
point (0, 0,−1) on the target S2, and neither the energy density nor the
topological charge density has a singularity there. The requirements that
R(z) has a definite limit as z → ∞, and that the total energy is finite,
force R(z) to be a rational function of z. Recall from Section 3.2 that a
rational map is given by the ratio of two polynomials in the variable z,

R(z) =
p(z)
q(z)

, (6.12)

where p and q have no common factors, that is, no common roots. Also,
by counting preimages, the topological degree of the rational map is kalg =
max{deg(p), deg(q)}, the highest power of z in either the numerator or
denominator. For a function R(z), the expression for N in (6.10) can be
rewritten as

N =
1
4π

∫ ( 1 + |z|2

1 + |R|2 |∂zR|
)2 2idzdz̄

(1 + |z|2)2 , (6.13)

which we recognize as the pull-back under the map R of the normalized
area form 2idRdR̄/4π(1+ |R|2)2 on the target sphere. Of course this defi-
nition of the degree agrees with the degree defined by counting preimages,
so that N = kalg. (In the area element in (6.13) there is an implied wedge
product, so 2idzdz̄ = 2i(dx1 + idx2)(dx1 − idx2) = 4dx1dx2 = 4d2x.)

In summary, a rational map of degree N is a solution of the Bogomolny
equation of the O(3) sigma model with topological charge N and energy
2πN . It is referred to as an N -lump solution. More general meromorphic
functions satisfy the Bogomolny equation, but have infinite energy.

Lumps are also required to satisfy the boundary condition at infinity,
φ(∞) = φ∞, or equivalently, R(∞) = 0. This base point condition means
that N -lump solutions are in one-to-one correspondence with the space
of based rational maps, satisfying deg(p) < deg(q). For such maps, the
denominator q can be normalized to be a monic polynomial of degree
N , a polynomial zN + q1zN−1 + · · · + qN with leading coefficient 1, and
the numerator is a polynomial p1zN−1 + · · · + pN whose coefficients are
not all zero. The condition that the numerator and denominator have no
common roots is a single polynomial inequality in the coefficients

Res(p1, . . . , pN , q1, . . . , qN ) ̸= 0 , (6.14)

where Res is called the resultant (formerly, eliminant) of p and q, and is
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given by the (2N − 1) × (2N − 1) determinant [362]

Res =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pN . . . . . . . . . . . . p1

pN . . . . . . . . . . . . p1

. . . . . . . . . . . . . . . . . . . . . . . .

pN . . . . . . . . . . . . . . . . . . p1

qN . . . . . . . . . . . . q1 1
qN . . . . . . . . . . . . q1 1

. . . . . . . . . . . . . . . . . . . . . . . .

qN . . . . . . . . . . . . . . . . . . q1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6.15)
The moduli space MN of based rational maps of degree N is therefore
naturally a complex manifold of complex dimension 2N , and hence real
dimension 4N . It is the complement, in C2N , of the hypersurface defined
by the equation Res = 0. Multiplying any rational map by a complex
number of unit magnitude preserves the base point condition and has no
effect on the energy density of the map. There is therefore an internal
U(1) global symmetry group, which acts on moduli space.

For N = 1, the four-dimensional moduli space is M1 = C∗ × C, where
C∗ is the set of non-zero complex numbers (which is also a multiplicative
group). A point (λeiχ, a) in M1, with λ real and positive, χ real, and a
complex, corresponds to the lump solution

R(z) =
λeiχ

z − a
. (6.16)

The energy density of this solution has the form of a rotationally sym-
metric lump, with a maximum at z = a. The constant a is therefore the
position of the lump in the plane. Note that at the point z = a, R(a) = ∞
or equivalently φ = (0, 0,−1), so the position of the lump may also be
defined as the point in space where the field takes the value on the target
sphere antipodal to the vacuum value. The constant λ determines the
radius of the lump. More precisely, the integral of the topological charge
density over the disc |z−a| ≤ λ is exactly 1

2 , so λ is a reasonable definition
of the radius. The angle χ is the internal phase of the lump.

The lump solution (6.16) is rotationally symmetric about a in the fol-
lowing sense. For convenience, position the lump at the origin by setting
a = 0. Then, under a spatial rotation z "→ eiθz, the solution R(z) is
mapped to e−iθR(z). But this change can be removed by acting with an
element of the internal U(1) symmetry group of the model. In particular,
this implies that the energy density is strictly invariant under rotations.
The full symmetry group of the solution is O(2), because in addition to
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the rotational symmetry, the solution also satisfies R(z̄) = R(z)e2iχ, so a
reflection in space is equivalent to a reflection in the target space together
with an internal phase rotation.

By definition, all points in M1 correspond to field configurations with
the same energy, E = 2π, so we see that the energy of a single lump
is independent of its radius. This is the source of the instability of a
lump solution in dynamical processes, since collisions of lumps (or the
interaction of a lump with radiation modes of the field) can lead to the
radius of a lump tending either to zero or to infinity. Although this
has not been rigorously proved analytically, there have been a number of
different numerical studies [257, 262, 332, 203] and all the results support
this conjectured behaviour, with the radius evolving essentially linearly
with time. Thus lump collapse, leading to a singular field, can occur in a
finite time.

A generic point in the 4N -dimensional space MN describes N well
separated charge 1 lumps, with φ close to its vacuum value φ∞ in between.
The 4N parameters may be interpreted as a position, radius and phase
for each of the N lumps. In terms of the degree N rational map R(z), the
positions of the lumps are the poles of the map, and the radius and phase
of the lump associated with a particular pole are given by the modulus
and phase of the residue of the pole. The condition that the lumps are
well separated, which is required for this interpretation to be valid, is
that the distance between any two poles is large in comparison with the
modulus of any residue.

From this discussion it is natural to imagine that coincident lumps
correspond to rational maps with higher order poles, so that a pole of
order n may be interpreted as n lumps at the same position. This is indeed
correct, although the lumps highly distort each other as they come close
together, and the picture of individual radii and phases is not applicable.
In particular, a solution of the form

R(z) =
λN

zN
(6.17)

describes N lumps coincident at the origin, but for N > 1 the en-
ergy density is zero at the origin and maximal on a circle of radius
λ ((N − 1)/(N + 1))1/2N , so the solution is a ring rather than a lump.

The dynamics of N lumps can be approximated by geodesic motion in
the moduli space MN , with the metric determined by the restriction to
the moduli space of the kinetic energy

T =
∫ |∂0R|2

(1 + |R|2)2 d2x . (6.18)



6.1 Lumps in the O(3) sigma model 137

Unlike for vortices or monopoles, as described in the following chapters,
this procedure does not lead to a well defined metric in all directions
in MN . The reason is that some tangent vectors have infinite length,
that is, there are moduli space coordinates for which the kinetic energy
associated with changing their values is infinite. One says that these
coordinates have infinite inertia. The simplest example is on M1, whose
four real coordinates appear in the explicit solution (6.16). If the radius
λ is allowed to be time dependent then T is infinite, since the integral
multiplying the term λ̇2 is divergent. So a charge 1 lump can not collapse
or expand in the geodesic approximation. Similarly, a time dependent
phase leads to infinite kinetic energy, so the phase can not change. Only
changes in the position of the lump, a, lead to finite values of the kinetic
energy, so within the geodesic approximation a single lump moves with
constant velocity, with a fixed radius and phase. This is the slow motion
approximation to the exact solution obtained by Lorentz boosting the
static lump. The general situation, for N ≥ 1, can be understood by
expanding the rational map R(z) = p(z)/q(z) in a series in 1/z, that is,
about the point at infinity. This gives

R(z) =
c1

z
+

c2

z2
+

c3

z3
+ · · · (6.19)

recalling that R(∞) = 0. If c1 is time dependent, then the leading contri-
bution to the kinetic energy density for large |z| is |ċ1|2/|z|2. Integrating
this with the measure d2x ∼ |z| d|z| gives a logarithmic divergence. There-
fore c1 has infinite inertia and must be constant in time. Equivalently,
p1, the leading coefficient of p(z), must be constant in time.

Note that for a circularly symmetric multi-lump solution, such as (6.17)
with N > 1, the kinetic energy associated with a time dependent λ (which
is the radius of the ring up to a constant factor) is finite. For example, if
N = 2 then the kinetic energy is simply

T = π2λ̇2 (6.20)

so that the geodesic approximation leads to a radius which evolves linearly
in time, either expanding indefinitely or collapsing to a point in finite time.
The second possibility, in which the geodesic hits the boundary of moduli
space in a finite time, shows that the moduli space M2 is geodesically
incomplete. Generally, for N > 1, MN is geodesically incomplete.

Although lumps have the tendency to shrink to zero radius (or to ex-
pand indefinitely), the scattering of two lumps can still be investigated
within the geodesic approximation, provided the scattering takes place
before the lumps shrink to a point. This aspect was first investigated by
Ward [416] and later by Leese [258], who made a thorough investigation of
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the problem using numerical methods to compute a variety of geodesics.
Here, we briefly recount the main features of the simplest head-on collision
of two lumps.

The eight-dimensional moduli space M2 is parametrized by the com-
plex constants β, γ, δ, ε in the general charge 2 lump solution

R(z) =
βz + γ

z2 + δz + ε
. (6.21)

By fixing the centre of mass at the origin, the constant δ can be set to
zero. At least one of the lumps shrinks to zero radius at points on the
boundary of M2, where the numerator and denominator in the rational
map (6.21) have a common root. This is given by the equation

γ2 + β2ε = 0 (6.22)

which is a special case of the equation Res = 0, involving the resultant of
the numerator and denominator. The inertia term for the parameter β is
infinite, because β is the leading coefficient of the numerator, so β must
take a fixed value. The two remaining parameters, γ and ε, are complex
coordinates on a family of four-dimensional manifolds, Σβ , labelled by
the constant β. Let us now set β = 0. The metric on Σ0 was computed
explicitly in ref. [416] in terms of complete elliptic integrals. There is
a two-dimensional totally geodesic submanifold Σ̃0 ⊂ Σ0 obtained by
imposing the reflection symmetry x2 "→ −x2, realized for the rational
maps as the condition R(z̄) = R(z), which forces both γ and ε to be real.
The interpretation of points in Σ̃0 as two well separated lumps is valid
if |γ| ≪ |ε|. The lumps are then positioned at the points z = ±i

√
ε,

with equal radii |γ/2
√

ε|. Thus if ε is negative the two lumps are located
on the x1-axis, whereas if ε is positive the lumps are on the x2-axis. If
ε = 0 then the solution is circularly symmetric, and the two lumps are
coincident at the origin and form a ring.

In Fig. 6.1 we plot the energy density of the static two-lump solution
with γ = 1 and three values of ε.

If we consider the head-on collision of two lumps approaching along
the x1-axis, then initially we have ε < 0 and ε̇ > 0. Provided that
ε̇ remains positive, ε passes through the value zero and changes sign.
Thus in a head-on collision of this type one expects right-angle scattering
through the ring solution; a generic feature of topological soliton dynam-
ics which we will encounter again when we discuss vortices, monopoles
and Skyrmions. A caveat to the above right-angle scattering result is
that the lumps could shrink to a point before scattering takes place. The
initial values of ε, ε̇, γ, γ̇ determine when (and if) the geodesic flow hits
the boundary of M2, given by (6.22), whose intersection with Σ̃0 is the
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Fig. 6.1. The energy density of a static two-lump solution with parameters
γ = 1 and (a) ε = −1, (b) ε = 0, (c) ε = 1.

line γ = 0. The three possibilities, each of which may be realized, are that
the lumps shrink to zero size before scattering, after right-angle scatter-
ing, or not at all, in which case they scatter at right angles and expand
indefinitely. A numerical simulation of the time dependent field equation
[437] confirms both the dynamical behaviour found from the geodesic
approximation and the fact that radiative effects are small.

More general geodesics in Σβ lead to more complicated dynamics, which
demonstrate that all the parameters of the lumps, in particular their
phases, have a marked influence on the motion. For a detailed exposition
we refer the reader to refs. [258, 416].

The metric on each (4N−2)-dimensional submanifold of MN , for which
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all inertia terms are finite, is Kähler [108]. To see this, introduce coor-
dinates ai and bi which are the zeros and poles of the rational map, so
that

R(z) =
p(z)
q(z)

=
(z − a1) · · · (z − aN )
(z − b1) · · · (z − bN )

. (6.23)

The choice of base point condition is here R(∞) = 1, rather than R(∞) =
0 as earlier. The kinetic energy (6.18) is finite if the condition

∑N
j=1(ȧj −

ḃj) = 0 is imposed. It may be expressed as

T =
∫ |ṗ(z)q(z) − q̇(z)p(z)|2

(|p(z)|2 + |q(z)|2)2 d2x

=
∫ 1

(|p(z)|2 + |q(z)|2)2

∣∣∣∣ȧi
∂

∂ai
− ḃi

∂

∂bi

∣∣∣∣
2

|p(z)|2|q(z)|2 d2x

= u̇α ˙̄uβ

∫
∂

∂uα

∂

∂ūβ
log(|p(z)|2 + |q(z)|2) d2x

= gαβu̇α ˙̄uβ (6.24)

where uα = aα for α = 1, . . . , N , and uα = bα−N for α = N + 1, . . . , 2N .
The metric therefore has the Kähler representation

gαβ =
∂

∂uα

∂

∂ūβ
K (6.25)

where K is the Kähler potential

K =
∫

log(|p(z)|2 + |q(z)|2) d2x . (6.26)

Note that this Kähler potential is divergent, but the divergent term is
independent of the coordinates uα, so does not contribute to the metric.

Ruback [351] was able to generalize the above result and show that the
metric on the moduli space of holomorphic maps, defined by the sigma
model kinetic energy, is Kähler whenever both the domain and target
manifolds are Kähler.

In the following sections we discuss modifications of the O(3) sigma
model in which either the plane is replaced by a different domain or
additional terms are included in the Lagrangian. Before this, we end this
section by briefly describing the generalization in which the target space
CP1 (= S2) is replaced by the complex projective space CPm.

CPm has real dimension 2m and may be defined as the space of com-
plex lines in Cm+1. To introduce explicit coordinates one may use the
equivalence class [f ] of complex (m + 1)-component (column) vectors
f = (f1, . . . , fm+1), with two vectors equivalent if one is a (non-zero)
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constant multiple of the other. One approach to define the CPm sigma
model is to introduce the (m + 1) × (m + 1) hermitian projector

P =
f f †

|f |2 (6.27)

which clearly satisfies P 2 = P = P †. Note that all vectors f within a
given equivalence class produce the same projector P , so that P is well
defined on CPm. The CPm sigma model has Lagrangian density

L = Tr(∂µP∂µP ) , (6.28)

which leads to the field equation

[∂µ∂µP, P ] = 0 . (6.29)

Our previous formulation of the CP1 model (6.9) can be recovered from
this formulation by setting f = (1, R).

As with the CP1 model, the minimal energy static solutions are given by
holomorphic (or antiholomorphic) maps, that is, vectors f in which each
component is a meromorphic function of z. The requirement of finite
energy, and the resulting boundary conditions, mean that these functions
are rational. Using the projective equivalence of f we can multiply by a
common denominator to make all the components of f into polynomials
in z. For example, in the CP1 case, f = (1, R) is replaced by f = (q, p).
Then the degree of the map, N , is the highest degree of these polynomials.
The energy of these CPm lump solutions is 2πN and they satisfy a first
order Bogomolny equation. However, there are some differences between
the CPm model with m > 1 and the CP1 model. Perhaps the most
important is that for m > 1 there are static solutions of the second order
field equation (6.29) that are not solutions of the Bogomolny equation, in
other words, not holomorphic. We shall discuss this aspect a little more
in Chapter 11.

6.2 Lumps on a sphere and symmetric maps

The static O(3) (or CP1) sigma model is conformally invariant, so replac-
ing the domain R2 by the unit 2-sphere S2 leads to the same static energy
and Euler-Lagrange equation, although, as we shall see, the dynamics is
different. To be explicit we will again use the Riemann sphere coordinate
z on the domain, related to the standard angular coordinates θ, ϕ by the
relation z = tan θ

2 eiϕ. For holomorphic fields the static energy may then
be written as

E =
1
2

∫ |∂zR|2(1 + |z|2)2

(1 + |R|2)2
2idzdz̄

(1 + |z|2)2 (6.30)
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where we have isolated the term 2idzdz̄/(1 + |z|2)2, which is the standard
area 2-form sin θ dθdϕ on the unit sphere.

The compactification of the plane in the previous section meant that
topologically we were already considering maps from a 2-sphere, but of
infinite radius rather than unit radius. However, there is a subtle differ-
ence between the model defined on the plane and on the unit 2-sphere,
since in the first case there is an arbitrary, but fixed, field value at spa-
tial infinity which breaks the global O(3) symmetry to an O(2) symme-
try. For maps from the unit sphere, there is no such symmetry breaking
and the whole O(3) symmetry group acts on field configurations, and on
solutions. This means that on the sphere all rational maps correspond
to lump solutions and there is no base point condition. The moduli
space is therefore (4N +2)-dimensional. Moreover, the parameters of the
rational maps can vary with time in an arbitrary way, and the kinetic
energy remains finite.

In later applications to monopoles and Skyrmions we will be dealing
with rational maps between Riemann spheres which are highly symmet-
ric, so it is useful to introduce the main ideas here, where certain lump
solutions on a sphere are given explicitly by such maps. Let us recall what
it means for a rational map to be symmetric under a group K ⊂ SO(3).
This analysis was first presented in ref. [193], in the context of studying
monopoles and Skyrmions.

Consider a spatial rotation k ∈ SO(3), which acts on the Riemann
sphere as an SU(2) Möbius transformation

z "→ k(z) =
γz + δ

−δ̄z + γ̄
where |γ|2 + |δ|2 = 1 . (6.31)

Similarly, a rotation M ∈ SO(3) of the target 2-sphere acts as

R "→ M(R) =
ΓR + ∆
−∆̄R + Γ̄

where |Γ|2 + |∆|2 = 1 . (6.32)

A map is K-symmetric if, for each k ∈ K, there exists a target space
rotation Mk which counteracts the effect of the spatial rotation, that is,

R(k(z)) = Mk(R(z)) . (6.33)

Note that, in general, the rotations on the domain and target spheres
will not be the same, so that (γ, δ) ̸= (Γ, ∆). However, for consistency,
we require that the pairs (k, Mk) have the same composition rule as in
K, so Mk1Mk2 = Mk1k2 ∀k1, k2 ∈ K. The map k "→ Mk is therefore a
homomorphism.

Since the realization of the SO(3) action on the domain and target is
by SU(2) transformations, the group K should really be replaced by its
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double group in SU(2), which we still call K. This is the group with twice
as many elements, obtained by including both elements of SU(2) which
correspond to each element of SO(3). In particular, it includes both ±1
in SU(2). We will then take the map k "→ Mk to be a homomorphism
of K into SU(2). The fact that we are dealing with the double group
is important since it has representations which are not representations of
the original group. From now on it is to be understood that when we
refer to a group K we actually mean the double group.

Determining the existence of symmetric rational maps, and computing
particular ones, is a matter of classical representation theory. We are
concerned with degree N polynomials in z, which form the carrier module
for N + 1, the (N + 1)-dimensional irreducible representation of SU(2).
To see this explicitly, introduce the homogeneous coordinates (z0, z1) on
CP1, with z = z1/z0. Then X± and H, defined by

X+ = z1
∂

∂z0
, X− = z0

∂

∂z1
, H = −z0

∂

∂z0
+ z1

∂

∂z1
(6.34)

act on degree N homogeneous polynomials in z0, z1 and are a basis for
su(2) satisfying

[H, X±] = ±2X± , [X+, X−] = H . (6.35)

As a representation of SU(2), N + 1 is irreducible, but if we consider the
restriction to a subgroup K ⊂ SU(2), N + 1|K , this will in general be
reducible. What we are interested in are its irreducible components, and
tables of these subductions can be found, for example, in ref. [10].

The simplest case in which a K-symmetric degree N rational map exists
is if

N + 1|K = E ⊕ · · · (6.36)

where E denotes any two-dimensional irreducible representation of K. In
this case a basis for E consists of two degree N polynomials which can
be taken to be the numerator p and denominator q of the rational map.
Because E is a two-dimensional representation of K, each element k,
through its action on (z0, z1), acts on this pair by a linear transformation

(p, q) "→ (ap + bq, cp + dq) , (6.37)

but this is precisely what can be compensated by Mk. (p here denotes the
homogenized version of the polynomial p(z), that is, p0zN

1 + p1z0z
N−1
1 +

· · · + pNzN
0 , and similarly for q.) A subtle point which needs to be ad-

dressed is that the two basis polynomials may have a common root, in
which case the resulting rational map is degenerate and does not corre-
spond to a genuine degree N map, but rather one of lower degree.
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More complicated situations can arise. For example, if

N + 1|K = A1 ⊕ A2 ⊕ · · · (6.38)

where A1 and A2 denote one-dimensional representations, then a whole 1-
parameter family of maps can be obtained by taking an arbitrary, constant
multiple of the ratio of the two polynomials which are the basis elements
for A1 and A2. An n-parameter family of K-symmetric maps can be
constructed if the decomposition contains n+1 copies of a two-dimensional
representation, that is,

N + 1|K = (n + 1)E ⊕ · · · (6.39)

where the n (complex) parameters correspond to the freedom in the choice
of one copy of E from (n + 1)E.

For a detailed explanation of how to calculate symmetric maps by com-
puting appropriate projectors, using the characters of the relevant repre-
sentations, see ref. [193].

The simplest example of a symmetric map is the spherically symmetric
one-lump solution R(z) = z. Any rotation of the domain can be counter-
acted by performing the same rotation on the target. It is immediately
clear from the energy formula (6.30) that this solution has an energy
density distributed uniformly over the sphere. The solution R(z) = λz,
where λ is a real constant, is axially symmetric. The energy density at
the North pole (z = 0) is λ2/2 whereas at the South pole (z = ∞) it is
1/2λ2. Therefore if λ2 ≫ 1 the energy density is localized around the
North pole and if λ2 ≪ 1 it is localized around the South pole.

For a degree 1 map the energy density is always positive over the whole
sphere, but from the expression (6.30) it is clear that for a general map
R(z) = p(z)/q(z), the energy density will vanish at the zeros of the Wron-
skian

W (z) = p′(z)q(z) − q′(z)p(z) . (6.40)

Generically, the Wronskian is a polynomial in z of degree 2N − 2, where
N is the degree of R, but it can have lower degree, in which case one
says that it has roots at infinity. In this way, W (z) always has 2N − 2
zeros, counted with multiplicity. These zeros are the locations at which
the multi-valued inverse of the map R : S2 "→ S2 has branch points. For a
K-symmetric map the Wronskian changes only by a (non-zero) constant
factor under a spatial rotation k ∈ K, because the linear transformation
(6.37) just replaces W by (ad − bc)W , so the locations of its 2N − 2
zeros are invariant under K. The zeros of the Wronskian are therefore
an important characteristic of the map and will play a key role in later
chapters of this book.
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Table 6.1. Irreducible representations of T .

irreps of T A A1 A2 E′ E′
1 E′

2 F

dimension 1 1 1 2 2 2 3

Table 6.2. Irreducible representations of O.

irreps of O A A1 E E′
1 E′

2 F1 F2 G′

dimension 1 1 2 2 2 3 3 4

Table 6.3. Irreducible representations of Y .

irreps of Y A E′
1 E′

2 F1 F2 G G′ H I ′

dimension 1 2 2 3 3 4 4 5 6

Rational maps with Platonic symmetries are particularly interesting,
so we will briefly discuss the simplest examples here, using the formalism
introduced above. For this purpose we need to recall some basic facts
about the irreducible representations of the rotation groups of the Pla-
tonic solids. T, O and Y denote, respectively, the groups of rotational
symmetries of the tetrahedron, the octahedron/cube, and the icosahe-
dron/dodecahedron. In Tables 6.1, 6.2 and 6.3 we list our notation for
the irreducible representations of T, O and Y , giving the dimension of
each representation and denoting by a ′ those which are only represen-
tations of the double group. For example, Table 6.1 summarizes the fol-
lowing information: T has three one-dimensional representations, which
are the trivial representation A, and two conjugate representations A1

and A2. There is also a three-dimensional representation F , which is
obtained as 3|T , the restriction of the representation 3 of SO(3) to the
tetrahedral subgroup. In addition to these representations there are three
two-dimensional representations of the tetrahedral double group, which
we denote by E′, E′

1 and E′
2. E′ is obtained as 2|T , the restriction of the

fundamental representation of SU(2) to T , and E′
1 and E′

2 are conjugate
representations.

There are certain important polynomials, known as Klein polynomials
[237], which form one-dimensional representations of the Platonic sym-
metry groups and are constructed as follows. Take the example of the
tetrahedron. Scale a regular tetrahedron so that its vertices lie on the
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unit 2-sphere. Using the Riemann sphere coordinate z, the positions of
the vertices correspond to four values z1, . . . , z4. Now construct the unique
monic polynomial of degree 4 which has these roots. In an appropriate
orientation this procedure yields the Klein polynomial

Tv = z4 + 2
√

3iz2 + 1 (6.41)

associated with the vertices of a tetrahedron. It is invariant under the
action of any element t of T , possibly up to a constant factor, because t
just permutes the roots. Applying the same procedure to the centres of
the faces and to the mid-points of the edges of the tetrahedron (in the
same orientation) produces the two further Klein polynomials

Tf = z4 − 2
√

3iz2 + 1 (6.42)
Te = z5 − z . (6.43)

Note that a tetrahedron has six edges, but the polynomial Te is only of
degree 5. This is because in the orientation we have chosen, the mid-
point of one of the edges is at the South pole, where z = ∞. So Te should
really be regarded as a degree 6 polynomial with one root at infinity. All
three polynomials Tv, Tf , Te transform as one-dimensional representations
under the Möbius transformations of the tetrahedral group T , for the
reason we just gave in the case of Tv. In fact they transform, respectively,
as the representations A1, A2 and A.

Applying the above construction to the vertices, face centres and edge
mid-points of the octahedron and icosahedron produces the Klein poly-
nomials

Ov = z5 − z (6.44)
Of = z8 + 14z4 + 1 (6.45)
Oe = z12 − 33z8 − 33z4 + 1 (6.46)
Yv = z11 + 11z6 − z (6.47)
Yf = z20 − 228z15 + 494z10 + 228z5 + 1 (6.48)
Ye = z30 + 522z25 − 10005z20 − 10005z10 − 522z5 + 1 (6.49)

where the notation is self-explanatory. Recall that the cube and dodec-
ahedron are dual to the octahedron and icosahedron, respectively. Their
Klein polynomials are just as above, but vertices are exchanged with face
centres. For a tetrahedron, exchanging vertices and face centres gives
another tetrahedron, rotated relative to the first one by 90◦. These dual
tetrahedra have the same edge mid-points, and together, their vertices
are those of a cube, since TvTf = Of .

Let us now turn to a concrete example, and construct the rational
map of lowest degree which is tetrahedrally symmetric. Of course, the
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spherically symmetric map R = z is automatically K-symmetric for any
K ⊂ SO(3), but we ignore this degree 1 map. We have already seen
that for a degree N map the 2N − 2 zeros of the Wronskian must be
strictly invariant, and for n points on a sphere to be invariant under
the tetrahedral group requires that n ≥ 4, with the lower limit n = 4
corresponding to placing the four points on the vertices of a tetrahedron.
From this we see that T -symmetric maps must satisfy the condition that
N ≥ 3. We can check the first possibility, N = 3, by applying the group
theory formalism developed above. The relevant decomposition is

4|T = E′
1 ⊕ E′

2 (6.50)

so there is a unique (up to orientations of the domain and target spheres)
T -symmetric degree 3 map corresponding to the first component in the
above decomposition. The map associated with the second component can
be obtained from that of the first by a rotation of the domain, reflecting
the fact that the representations E′

1 and E′
2 are conjugate by an SO(3)

element. The T -symmetric map associated with the E′
1 representation

must be a genuine degree 3 map, since the only T -symmetric map of
lower degree is the N = 1 spherical map. To explicitly calculate the
map, R(z), one can apply the algorithm described in detail in ref. [193],
given the characters of the representation E′

1. However, for a map of
low degree it is simpler and more instructive to compute it by applying
the group generators directly to a general map. For this example we
begin by requiring R(z) to be symmetric under two independent 180◦
rotations contained in the tetrahedral group. In terms of the Riemann
sphere coordinates these two symmetries are realized by

R(−z) = −R(z) and R
(1

z

)
=

1
R(z)

. (6.51)

The first condition implies that the numerator of R is even in z and the
denominator is odd, or vice versa. These two possibilities are related by
a Möbius transformation, so we choose the former and ignore the latter.
Imposing the second condition as well gives us maps of the form

R(z) =
√

3az2 − 1
z(z2 −

√
3a)

(6.52)

with a complex. The inclusion of the
√

3 factor is a convenience. Tetra-
hedral symmetry is obtained by imposing the further condition

R
(

iz + 1
−iz + 1

)
=

iR(z) + 1
−iR(z) + 1

(6.53)
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which is satisfied by (6.52) if a = ±i, the two choices being related by
the 90◦ spatial rotation z "→ iz, followed by a rotation of the target
sphere. Note that z "→ (iz + 1)/(−iz + 1) sends 0 "→ 1 "→ i "→ 0 and hence
generates the 120◦ rotation cyclically permuting three Cartesian axes.

The T -symmetric map

R(z) =
√

3iz2 − 1
z3 −

√
3iz

(6.54)

also has a reflection symmetry, represented by the relation R(iz̄) = iR(z).
This reflection extends the symmetry group T to Td, where the subscript
d denotes that the plane of the reflection symmetry contains a C2-axis,
which is the case for a tetrahedron. Alternatively, the group T could be
extended by inversion z "→ −1/z̄, which produces the group Th, though
from the above discussion it is clear that there are no Th-symmetric maps
of degree 3. The rotation groups O and Y can also be extended by
inversion to produce the groups Oh and Yh, which are the full symmetry
groups of a cube and icosahedron, respectively.

It is interesting to look at the Wronskian of maps of the form (6.52),

W (z) = −
√

3a(z4 +
√

3(a − a−1)z2 + 1) . (6.55)

For a = i, W is proportional to the tetrahedral Klein polynomial Tv, and
for a = −i it is proportional to Tf . In both cases the zeros of the Wron-
skian are tetrahedrally invariant, as anticipated. Thus an examination of
the Wronskian is an alternative, for fixing the coefficient a in the family
of maps (6.52), to the slightly more complicated computation of impos-
ing the 120◦ rotation symmetry (6.53) directly. From the Wronskian, we
know that for a = ±i the energy density is minimal, and in fact zero,
on the face centres of a tetrahedron. A calculation of the energy density
reveals that it is maximal on the vertices of the same tetrahedron.

Turning our attention to octahedrally symmetric maps, the 2N − 2
zeros of the Wronskian must be placed on the sphere with octahedral
symmetry, which requires at least six points, when they can be located
at the vertices of an octahedron. Thus the lowest possible degree for the
map is N = 4. Then the decomposition required is

5|O = E ⊕ F2 , (6.56)

which demonstrates the existence of an O-symmetric degree 4 map asso-
ciated with the two-dimensional representation E. A computation along
the lines illustrated above produces the map

R(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
(6.57)
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which is in fact Oh-symmetric, due to the additional inversion symmetry
R(−1/z̄) = 1/R(z). The Wronskian of this map is proportional to the
Klein polynomial Ov, so the energy density is zero on the six face centres
of a cube, and in fact it is maximal on the eight vertices of the cube.

Finally, for the icosahedral symmetry group the 2N − 2 zeros of the
Wronskian can be placed on the twelve vertices of an icosahedron if N = 7.
The decomposition in this case is

8|Y = E′
2 ⊕ I ′ , (6.58)

again demonstrating the existence of a unique Y -symmetric degree 7 map
corresponding to the two-dimensional representation E′

2. This map can
be written as

R(z) =
z7 − 7z5 − 7z2 − 1
z7 + 7z5 − 7z2 + 1

(6.59)

and is Yh-symmetric. Its Wronskian is proportional to the Klein polyno-
mial Yv, with the energy density being zero on the twelve face centres of
a dodecahedron, and maximal on its twenty vertices.

All these symmetric rational maps are examples of lump solutions on
the 2-sphere. In addition to being symmetric, they illustrate that the
energy density of a degree N lump is not necessarily localized around
N points. Other examples of symmetric maps will be computed in later
chapters, for their application to monopoles and Skyrmions.

So far we have only discussed static lumps on the 2-sphere, but to con-
clude this section we briefly mention the dynamics of lumps. Since the
domain is compact, the metric induced on the moduli space MN from the
sigma model kinetic energy is well defined everywhere. The moduli space
for a single lump, M1, is six-dimensional, and the whole SO(3) symme-
try group of the target sphere acts on it, not just the unbroken SO(2)
symmetry as in the plane. (We ignore the further symmetry combining
spatial and target sphere reflections.) In most of this moduli space, the six
coordinates may be interpreted as a position and size for the lump, plus
the three Euler angles of the target space SO(3) action. The metric on
M1 has been computed explicitly and some geodesics identified [381, 31].
The metric is geodesically incomplete, reflecting the fact that a lump can
shrink to a point in finite time, in agreement with what appears to hap-
pen in the plane, although in the latter case the geodesic approximation
could not be applied to study this issue for a single lump. The lump dy-
namics is surprisingly rich, including not only motion at constant speed
on a great circle but also more complicated dynamics in which a spinning
lump bounces indefinitely between antipodal points on the sphere with a
time dependent size.

The fixed point set of a symmetry group action is a totally geodesic
submanifold, this being an example of the principle of symmetric criti-
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cality, so applying symmetries is a useful way to simplify lump dynamics
in the geodesic approximation. In particular, if the fixed point set of a
symmetry group is a real one-dimensional submanifold then this is au-
tomatically a geodesic and the metric need not even be computed. For
example, a geodesic in the moduli space M4 can be obtained by consid-
ering tetrahedrally symmetric degree 4 maps (with fixed orientations in
both the domain and target space). The appropriate decomposition is

5|T = A1 ⊕ A2 ⊕ F , (6.60)

so there is a 1-parameter family of degree 4 maps obtained as constant
multiples of the ratio of the basis polynomials for the one-dimensional
representations A1 and A2. Since the basis polynomials for A1 and A2

are the tetrahedral Klein polynomials Tv and Tf , the family of maps is

R(z) = c
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
(6.61)

where c is a complex parameter. By imposing a reflection symmetry, c
can be restricted to be real, and the maps are Td-symmetric. This gives
the desired geodesic. The map is degenerate for c = 0 and c = ∞, and a
geodesic corresponds to c monotonically increasing (or decreasing) in the
interval c ∈ (0,∞). The transformation c "→ 1/c is equivalent to the 90◦
rotation z "→ iz, and when c = 1 the map (6.61) becomes the octahedrally
symmetric map (6.57). An examination of the energy density shows that
this geodesic describes a motion in which four highly localized lumps on
the vertices of a tetrahedron (for 0 < c ≪ 1) spread out until the energy
density is localized on the edges and especially the vertices of a cube
(c = 1), and finally becomes highly localized once more, but this time
around the vertices of the tetrahedron dual to the initial one (c ≫ 1).

We can display this behaviour by plotting a surface whose height above
the unit sphere is proportional to the energy density at that point on the
sphere. Five such surfaces are shown in Fig. 6.2 corresponding to the
values c = 4

5 , 9
10 , 1, 10

9 , 5
4 . The whole motion, c ∈ (0,∞), takes place in a

finite time, confirming again the geodesic incompleteness of the moduli
space. We will encounter this motion again in Chapter 8, where it will
have a different interpretation in terms of monopole scattering, and takes
an infinite time. Other geodesics can be obtained by a similar application
of symmetries to maps of a particular degree, and we will see some of
these later, again in the monopole context, which is where they were first
considered. More complicated geodesics in the moduli space of higher
charge lumps on a sphere could be investigated, but this has not been
done.

Finally, it has been shown [359] that the metric on the moduli space
MN of the CP1 model whose domain is any compact Riemann surface
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Fig. 6.2. Surfaces displaying the energy density for five different configurations
of tetrahedrally symmetric 4-lumps.

is well defined but geodesically incomplete, so that (within the geodesic
approximation) a lump can always shrink to a point in finite time. Also,
the metric is well defined on the whole moduli space if gravitational self-
interactions are included for the model in the plane [383], but again the
metric is geodesically incomplete.

In the following section we discuss several modifications of the CP1

model in the plane, which remove the size instability of a lump, so that
the lumps may properly be termed topological solitons.

6.3 Stabilizing the lump

The first, and perhaps most obvious, way in which the O(3) sigma model
can be modified to remove the size instability of a lump is by breaking the
conformal invariance of the static energy. This is done by the introduc-
tion of extra terms into the Lagrangian which scale both as negative and
positive powers of a spatial dilation factor. The example we consider here
is known as the Baby Skyrme model [330] and is given by the Lagrangian



152 Lumps and rational maps

density

L =
1
4
∂µφ · ∂µφ − 1

8
(∂µφ × ∂νφ) · (∂µφ × ∂νφ) − m2

2
(1 − φ3) (6.62)

with the constraint φ · φ = 1 implied. The name derives from the fact
that it is a planar analogue of the three-dimensional Skyrme model, which
we discuss in Chapter 9, and it has a smaller target space.

The first term in (6.62) is that of the O(3) sigma model, the second
term, known as a Skyrme term, is higher order in first derivatives, and
the final contribution with no derivatives becomes a mass term for the
fields φ1, φ2, when these are considered as small fluctuations around the
vacuum φ = (0, 0, 1).

Although any term which is more than quadratic in first derivatives
would suffice from the point of view of providing a preferred scale, the
Skyrme term above is uniquely selected out as the lowest order Lorentz
invariant expression that leads to a field equation involving time deriva-
tives of no more than second order. The mass term is far from unique,
and indeed any term which contains no field derivatives would do equally
well. The particular mass term in (6.62) is motivated by an analogy with
the one traditionally used in the three-dimensional Skyrme model, but
other possibilities have been investigated [263, 388, 421]. The term in
(6.62) has its minimum at just one point on the target, φ = (0, 0, 1);
the alternatives have minima at the two points (0, 0,±1), or possibly on
the whole circle φ3 = 0. These mass terms all depend just on φ3, and
therefore maintain the O(2) symmetry between φ1 and φ2. Nevertheless,
these different choices lead to very different qualitative results, such as
whether multi-lump bound states exist or not, and from that point of
view the model is not so elegant since there is no motivation to prefer one
particular choice over another. In the three-dimensional Skyrme model a
mass term is not essential, so this complication does not assume the same
importance.

The static energy associated with the Lagrangian density (6.62) is

E =
∫ (1

4
∂iφ · ∂iφ +

1
4
(∂1φ × ∂2φ) · (∂1φ × ∂2φ) +

m2

2
(1 − φ3)

)

d2x .

(6.63)
Let us apply Derrick’s scaling argument to this expression, denoting by
Ej the contribution to the energy from the term which is of order j in
derivatives. We see that under a rescaling, x "→ µx, the energy transforms
to e(µ), where

e(µ) = E2 + µ2E4 +
E0

µ2
. (6.64)
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For any map of non-zero degree, E2, E4 and E0 are all positive. The
minimum of the energy therefore occurs at a finite non-zero value of µ.
A soliton solution will have a preferred size, at which the energy contri-
butions from the Skyrme and mass terms, E4 and E0, are equal.

Of course, the topological classification of field configurations is the
same as in the O(3) sigma model, with the topological charge N given
by (6.5), and since the additional terms can only increase the energy, the
Bogomolny bound (6.7) is still valid, though it can no longer be attained.

The charge 1 soliton, known as a Baby Skyrmion, has the circularly
symmetric form (see Eq. (4.46))

φ = (sin f(ρ) cos θ, sin f(ρ) sin θ, cos f(ρ)) (6.65)

where ρ, θ are polar coordinates in the plane and f(ρ) is a real profile
function satisfying the boundary conditions f(0) = π and f(∞) = 0. Note
that the single lump solution in the O(3) sigma model can be written in
this form, with f(ρ) = cos−1

(
(ρ2 − λ2)/(ρ2 + λ2)

)
, where λ is the radius

of the lump. Substituting the ansatz (6.65) into the energy of the Baby
Skyrme model (6.63) gives

E = π
∫ ∞

0

(
1
2
f ′2 +

sin2 f

2ρ2
(1 + f ′2) + m2(1 − cos f)

)

ρ dρ . (6.66)

The profile function f must satisfy the variational equation
(

1+
sin2 f

ρ2

)
f ′′+

(
1− sin2 f

ρ2

)
f ′

ρ
+

sin 2f

2ρ2
(f ′2−1)−m2 sin f = 0 . (6.67)

Linearizing this equation reveals the large ρ asymptotic behaviour

f(ρ) ∼ A
√

ρ
e−mρ (6.68)

so that the soliton has an exponential decay, unlike the algebraic decay
of a lump. The profile function can only be obtained by solving equation
(6.67) numerically, but this is a simple task using a shooting method,
and leads to an energy of E = 1.57 × 2π for the choice m2 = 0.1 [330].
The energy of a Baby Skyrmion therefore exceeds the Bogomolny bound
by around 50%, although this value is highly dependent on the choice
of m, with the energy approaching the Bogomolny bound 2π as m → 0.
However, the limit can not be reached, because the size of the Baby
Skyrmion becomes infinite in the limit.

As in the pure sigma model, each soliton in the Baby Skyrme model has
an internal phase corresponding to the freedom to rotate the components
φ1, φ2. The interaction of two well separated solitons depends upon their
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relative phase, and by a suitable choice of this the asymptotic forces can
be made attractive. This leads to multi-soliton bound states, with the
minimal energy charge 2 soliton being circularly symmetric (the analogue
of the lump solution R(z) = λ2/z2), but higher charge solutions are less
symmetric. For more details we refer the reader to the papers [330, 331],
in which soliton dynamics is also investigated, and it is verified that in
a head-on collision of two solitons in the attractive channel there is the
ubiquitous right-angle scattering.

Structures very similar to Baby Skyrmions are of importance in con-
densed matter physics where, amongst other applications, they play an
important role in quantum Hall ferromagnets [380]. In a classical field
theory approach to quantum Hall ferromagnets the static energy function
is given by

E = ν2
∫

∂iφ ·∂iφ d2x+η2
∫ ∫

φ∗(x)φ∗(x′)
|x − x′| d2x d2x′ +m2

∫
(1−φ3) d2x

(6.69)
where ν, η,m are constants and φ∗ = 1

4πφ · (∂1φ× ∂2φ) is the topological
charge density. The first term in (6.69) is that of the pure sigma model,
representing the exchange interaction between Heisenberg spins. The sec-
ond term is a non-local Coulomb energy, with the electric charge density
expressed in terms of the topological charge density since the solitons are
electric charge carriers. The final term is the standard Zeeman energy for
spins in a background magnetic field. The energy is very similar to that
of the Baby Skyrme model, but the Skyrme term has been replaced by
the non-local Coulomb term. The Coulomb term provides the same stabi-
lizing effect as the Skyrme term, since it also scales as a positive power of
the rescaling factor µ (but this time linearly, rather than quadratically).
The circularly symmetric soliton solution of unit charge has been com-
puted numerically [3] and recently multi-soliton solutions have also been
investigated [410].

There is an alternative approach to stabilizing the sigma model lump
due to Leese [259], which is mathematically elegant, and involves intro-
ducing a (classical) internal spin which prevents the lump from collapsing
to a point. In terms of the CP1 formulation the model is defined by the
Lagrangian density

L =
∂µR∂µR̄ − α2|R|2

(1 + |R|2)2 (6.70)

where α is a positive constant. Note that if α = 0 then we recover the
CP1 sigma model. If we were to consider static fields then the additional
term would not stabilize a lump, since there is no higher order derivative
term to provide a scaling balance. Instead, we consider time dependent
fields of a very special form. The additional term respects the global U(1)
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symmetry, R "→ eiχR. The associated Noether charge, Q, is given by

Q = i
∫

R̄∂0R − R∂0R̄

(1 + |R|2)2 d2x . (6.71)

If we recall the expression for the topological charge

N =
i

2π

∫
εij∂iR∂jR̄

(1 + |R|2)2 d2x , (6.72)

then the simple inequality
∫ (∂iR ± iεij∂jR)(∂iR̄ ∓ iεik∂kR̄) + |∂0R ± iαR|2

(1 + |R|2)2 d2x ≥ 0 (6.73)

implies a lower bound on the total energy

E ≥ 2π|N | + |αQ| (6.74)

in terms of the topological and Noether charges. The bound (6.74) is
clearly attained when

∂iR ± iεij∂jR = 0 and ∂0R ± iαR = 0 . (6.75)

The first equation in (6.75) is the same as in the pure sigma model and
requires that in its spatial dependence, R is a holomorphic (or antiholo-
morphic) function of z = x1 + ix2. The second equation is new and
implies that the field has an internal spin, a constant motion in the global
U(1) phase direction with frequency ±α. Choosing both N and Q to be
positive we have the solution

R(t, z) = e−iαtR0(z) (6.76)

where R0(z) is a degree N rational map in z, with the base point condition
R0(∞) = 0.

These solutions were termed Q-lumps in ref. [259], in analogy with a
type of non-topological soliton known as a Q-ball [349, 256, 86], which is
stabilized by a Noether charge alone and similarly spins in internal space.
Despite these similarities, the properties and dynamics of Q-lumps [259]
are very different from those of Q-balls [44] (even in (2 + 1) dimensions),
due to the topological aspects of Q-lumps.

Although Q-lumps are not static solutions their time dependence resides
only in the internal phase, which means that all physical quantities, such
as the energy density, are static. These solutions may therefore be termed
stationary.
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As the Q-lump solutions (6.76) minimize the energy for fixed values of
Q and N , they are automatically critical points of the constrained varia-
tional problem and hence solve the second order field equation. Moreover,
because they represent the global energy minima (for given Q and N)
there can be no unstable modes. The zero modes associated with scale
invariance of lumps in the pure sigma model are absent for Q-lumps, due
to the fact that the internal spin lifts the degeneracy between solitons of
different radii. This is illustrated by the family of circularly symmetric
Q-lumps

R(t, z) =
e−iαtλN

zN
. (6.77)

Using formula (6.71) we find this solution carries the λ-dependent Noether
charge

Q =
2π2αλ2

N2
cosec

π

N
, (6.78)

and the energy bound (6.74) is attained, with E depending non-trivially
on λ.

Q-lumps are therefore stable against a change in radius, as are Baby
Skyrmions, but in contrast to the latter the radius is not fixed but is de-
termined by the value of the Noether charge Q, which is a free parameter.
Note that equation (6.78) shows that a unit charge Q-lump (N = 1) is
not a finite energy configuration, so we must restrict to N > 1. Unit
charge Q-lumps can occur, well separated from other Q-lumps, but they
must be part of a larger configuration with total topological charge N > 1
and a rational map R0(z) which has no 1/z term in its expansion around
z = ∞.

The scattering of Q-lumps can be investigated using the geodesic ap-
proximation, which reveals that even in a head-on collision the scattering
can be exotic, due to the internal spin of the Q-lumps. For more details
we refer the reader to ref. [259].

The CP1 Q-lumps discussed above can be generalized to a whole class of
Kähler sigma models with potential terms, provided the target manifold
has a Killing vector field with at least one fixed point [4].

A final method of stabilizing the O(3) sigma model lump is by gauging
the unbroken U(1) symmetry and including a Maxwell term for the gauge
field [366]. The static energy in this model is given by

E =
1
4

∫ (
B2 + Diφ · Diφ + (1 − φ3)2

)
d2x , (6.79)

where ai is the U(1) gauge potential with magnetic field B = ∂1a2−∂2a1,
and again the constraint φ · φ = 1 is implied. The covariant derivative
Diφ is given by

Diφ = ∂iφ + ai φ
∞ × φ (6.80)
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where, as earlier, φ∞ = (0, 0, 1) is the vacuum vector.
As for Q-lumps, there is no finite energy solution for a single gauged

lump, but for N > 1 there is a whole moduli space of gauged lumps,
with energy E = 2πN , satisfying Bogomolny equations. The Bogomolny
equations for positive N are

D1φ = −φ × D2φ (6.81)
B = 1 − φ3 (6.82)

but unfortunately, unlike in the pure sigma model or its Q-lump version,
these Bogomolny equations are not integrable, so the solutions must be
constructed numerically. Thus gauged lumps are similar to vortices in
this respect. Another similarity with vortices is that the solitons carry
magnetic flux, though unlike for vortices, the flux is related to the size of
the soliton, and is not quantized. The energy is degenerate with respect
to the size, or equivalently the flux, but there is no zero mode instability,
since it requires infinite energy to change the flux.



7
Vortices

7.1 Ginzburg-Landau energy functions

Vortices are solitons in two dimensions, with a finite core size. When
considered in a three-dimensional theory vortices become extended ob-
jects whose core is a straight line or curve, but we shall present the two-
dimensional theory, in which the vortices are particle-like. This theory
also describes the three-dimensional situation where all the fields are con-
stant in one spatial direction, so that one has one or more straight, parallel
vortices. For the theory and applications of genuinely curved, interact-
ing vortices in three dimensions (a spaghetti of vortices), see the book of
Vilenkin and Shellard [407].

For most of this chapter, we suppose space is the two-dimensional plane
R2. A general space-time point is denoted by x or (t,x), and in Cartesian
coordinates x = (x1, x2). Sometimes, the coordinates are combined as
xµ (µ = 0, 1, 2) where x0 = t. We shall sometimes identify R2 with the
complex plane C, and denote a spatial point by z, where z = x1 + ix2.
Where there is the possibility of fields with circular symmetry, we shall
use polar coordinates ρ, θ.

The basic field theory with vortices is one having a scalar field with two
real components (φ1(x),φ2(x)), and the internal symmetry

φa(x) !→ Rabφb(x) (7.1)

where R ∈ SO(2). This symmetry ensures that an individual vortex can
be circularly symmetric.

It is very often convenient to combine the two field components into a
single complex field

φ(x) = φ1(x) + iφ2(x) . (7.2)

158
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The SO(2) rotation

Rab(α) =
(

cosα − sinα
sinα cosα

)
(7.3)

is then replaced by the U(1) phase rotation

φ(x) !→ eiαφ(x) . (7.4)

Heuristically, a field configuration contains a vortex centred at a point
X if X is an isolated point where φ vanishes, and if along a small circle
enclosing X anticlockwise, the phase of φ increases by 2πn, with n a
non-zero integer called the multiplicity of the vortex. n is generically ±1,
since higher multiplicity vortices break up under small perturbations of
the field.

Field theories with vortices are of two types, global and gauged, and
their solutions are called, correspondingly, global vortices and gauged
vortices. In a global theory there is only the complex scalar field φ(x). In a
gauged theory this is coupled to an electromagnetic field with gauge group
U(1). The fields are now φ(x) and the electromagnetic gauge potential
aµ(x), with time and space components a0(x) and a(x) = (a1(x), a2(x)).

Several types of vortex dynamics may be considered, depending on
the physical application. There are correspondingly several types of La-
grangian and field equations, some Lorentz invariant, and others not.
There is also dissipative vortex dynamics, which has no Lagrangian for-
mulation.

We start by discussing static fields. The expressions defining their
energy are known as Ginzburg-Landau (GL) energy functions [152]. In a
global theory, the GL energy is of the form

V =
∫ (1

2
∇φ̄ · ∇φ+ U(φ̄φ)

)
d2x , (7.5)

which is invariant under the global internal symmetry (7.4). The single
complex field equation, obtained by varying V with respect to φ̄, is

∇2φ− 2U ′(φ̄φ)φ = 0 , (7.6)

where ∇2 is the two-dimensional Laplacian. Its real and imaginary parts
are what one obtains by working directly with φ1 and φ2. The equation
obtained by varying V with respect to φ is the complex conjugate of (7.6),

∇2φ̄− 2U ′(φ̄φ)φ̄ = 0 , (7.7)

and is automatically satisfied if (7.6) is satisfied.
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U depends only on |φ|, the magnitude of φ, and is usually assumed to
be a polynomial of at most quartic or sextic order in |φ|, which means it
is quadratic or cubic in |φ|2 = φ̄φ. In the former case,

U = µ + νφ̄φ+
λ

8
(φ̄φ)2 (7.8)

where µ, ν,λ are real, constant coefficients. (The factor 1
8 will be con-

venient later.) For a stable theory λ must be positive. We adjust µ so
that Umin, the minimal value of U , is zero. Thus, for ν negative, we can
rewrite U in the form

U =
λ

8
(m2 − φ̄φ)2 (7.9)

where m is positive. The vacuum manifold V is the circle |φ| = m, with
π1(V) = Z. This is the interesting case, with the possibility of vortices.
If ν is positive or zero, then V is the one point φ = 0, with trivial first
homotopy group. There is no possibility of topological solitons in the
plane in this case, so we do not discuss it further.

For U of the form (7.9) the global GL energy is

V =
1
2

∫ (
∇φ̄ · ∇φ+

λ

4
(m2 − φ̄φ)2

)
d2x (7.10)

and the field equation simplifies to

∇2φ+
λ

2
(m2 − φ̄φ)φ = 0 , (7.11)

which is the classic, complex Ginzburg-Landau equation in two dimen-
sions. For the remainder of this chapter we shall assume that in both
the global and gauged theory U has the symmetry-breaking, quartic form
(7.9), unless explicitly stated otherwise.

The vacuum solutions, which minimize V , are of the form φ = meiχ,
where χ is an arbitrary phase which must be constant for the gradient
energy to vanish. The choice of χ spontaneously breaks the global U(1)
symmetry. Derrick’s theorem, discussed in Section 4.2, actually rules out
any other finite energy, static solutions in the global theory. By the scaling
argument, such a solution has to satisfy

E0 =
λ

8

∫
(m2 − φ̄φ)2 d2x = 0 , (7.12)

so |φ| = m everywhere. If we write φ = meiχ, and substitute into (7.11),
we find that ∇2χ = 0 and ∇χ · ∇χ = 0. Therefore χ is constant, so φ
is a vacuum solution. We shall return to the global theory later, and see
that interesting vortex solutions of the field equation do exist, but they
have logarithmically divergent energies.
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The Ginzburg-Landau energy in the gauged theory is

V =
1
2

∫ (
B2 + DiφDiφ+

λ

4
(m2 − φ̄φ)2

)
d2x , (7.13)

the two-dimensional version of (2.102). This is invariant under a gauge
transformation

φ(x) !→ eiα(x)φ(x) (7.14)
ai(x) !→ ai(x) + ∂iα (x) , (7.15)

where eiα(x) is a spatially varying phase rotation. The ingredients of V
are the gauge invariant quantity φ̄φ, the covariant gradient of the scalar
field Diφ = ∂iφ− iaiφ, and the magnetic field

B = f12 = ∂1a2 − ∂2a1 . (7.16)

In two space dimensions, the Maxwell field tensor has only three indepen-
dent components. There is the single magnetic component B, which from
a three-dimensional viewpoint is the magnetic field in the −x3 direction.
The spatial part of the field tensor can be expressed in terms of B as
fij = εijB. The two components of the electric field are e1 = ∂0a1 − ∂1a0

and e2 = ∂0a2−∂2a0, but they do not contribute to the static GL energy.
The field equations associated with the energy (7.13) are obtained by

varying with respect to φ̄, a1 and a2 as the independent fields. They are

DiDiφ+
λ

2
(m2 − φ̄φ)φ = 0 (7.17)

εij∂jB +
i

2
(φ̄Diφ− φDiφ) = 0 . (7.18)

Equation (7.18) is a two-dimensional version of Ampère’s equation
∇ × b = J. Therefore

Ji =
i

2
(φ̄Diφ− φDiφ) (7.19)

can be interpreted as the electric current in the plane. (The sign is con-
sistent with (2.106) as a spatial index has been lowered.)

The vacuum is unique in the gauged GL theory. The energy is mini-
mized if |φ| = m, Diφ = 0 and B = 0, everywhere. The first condition
requires that φ(x) = meiχ(x), and the last condition requires ai to be pure
gauge, i.e.

ai(x) = ∂iα(x) . (7.20)

Diφ then vanishes if
im(∂iχ− ∂iα)eiχ = 0 , (7.21)
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so ∂i(χ− α) = 0 and therefore α = χ + const. Thus a vacuum field is of
the form

φ = meiχ, ai = ∂iχ . (7.22)

By the gauge transformation e−iχ, it becomes the simple vacuum

φ = m, ai = 0 . (7.23)

The field φ = meiχ, ai = 0, with χ a constant, is a vacuum too, but it
is gauge equivalent to (7.23). So the vacuum is unique. Nevertheless, the
fact that the minima of (m2 − φ̄φ)2 lie on a circle is still significant – it
leads to vortices.

Note that the condition Diφ = 0 is by itself quite strong. It implies
that φ̄Diφ+φDiφ = φ̄∂iφ+φ∂iφ̄ = ∂i(φ̄φ) = 0, so |φ| is constant. It also
implies that

[D1 , D2]φ = −if12 φ = 0 , (7.24)

so B = f12 must vanish wherever φ ̸= 0. Since |φ| is constant, B = 0
everywhere if φ ̸= 0 at just one point, and in particular if φ is required to
be non-zero at spatial infinity.

Derrick’s theorem does not rule out non-vacuum, finite energy solutions
in the gauged GL theory. The scaling argument just shows that for such
solutions, the two contributions to the energy

E4 =
1
2

∫
B2 d2x , E0 =

λ

8

∫
(m2 − φ̄φ)2 d2x (7.25)

are equal. Indeed, the gauged GL theory with U = λ
8 (m2 − φ̄φ)2 is the

paradigm for a theory possessing topological solitons in two dimensions.
It will be helpful, in the following sections, to have an expression for

the gauged and global GL energies in polar coordinates. Cartesian and
polar coordinates and their differentials are related by

x1 = ρ cos θ , x2 = ρ sin θ (7.26)
dx1 = cos θ dρ− ρ sin θ dθ , dx2 = sin θ dρ+ ρ cos θ dθ , (7.27)

so dx1 ∧ dx2 = ρ dρ ∧ dθ. The 1-form gauge potential a is coordinate
invariant, so

a = a1 dx1 + a2 dx2 = aρ dρ+ aθ dθ , (7.28)

and therefore

aρ = a1 cos θ + a2 sin θ , aθ = −a1ρ sin θ + a2ρ cos θ . (7.29)

The field tensor has the one component fρθ = ∂ρaθ − ∂θaρ = ρB. The
general energy expression for a gauge theory on a Riemannian manifold
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X is the integral of the spatial part of the Lagrangian density (2.103).
Here, X is R2, with the metric dρ2 + ρ2dθ2, so hρρ = 1, hθθ = ρ2, hρθ = 0.
The gauged GL energy in polars is therefore

V =
1
2

∫ ∞

0

∫ 2π

0

( 1
ρ2

f2
ρθ + DρφDρφ+

1
ρ2

DθφDθφ+
λ

4
(m2 − φ̄φ)2

)
ρdρ dθ

(7.30)
where the covariant derivatives are Dρφ = ∂ρφ − iaρφ and Dθφ = ∂θφ −
iaθφ. The analogous expression in the global theory is

V =
1
2

∫ ∞

0

∫ 2π

0

(
∂ρφ̄∂ρφ+

1
ρ2
∂θφ̄∂θφ+

λ

4
(m2 − φ̄φ)2

)
ρ dρ dθ . (7.31)

7.2 Topology in the global theory

Let us consider a field configuration φ(x) in the global GL theory whose
energy density approaches zero rapidly as |x| → ∞. From (7.31), the
energy in polars, we see that |φ| → m and ∂ρφ → 0 as ρ → ∞. Let us
assume that limρ→∞ φ(ρ, θ) exists. Denote the limiting form φ∞(θ) =
meiχ∞(θ), and call this the value of φ on the circle at infinity. For such a
field, φ∞ is a map from the circle at infinity S1

∞ to the vacuum manifold
V = S1,

φ∞ : S1
∞ !→ S1 . (7.32)

φ∞ is single-valued, so χ∞(θ) must have the property χ∞(2π) = χ∞(0)+
2πN , for some integer N . N is the winding number, or degree, of the
map (7.32), and is the topological charge of the field configuration.

Despite the non-trivial topology of the vacuum manifold, there are no
finite energy field configurations with non-zero topological charge in the
global theory. This is because the contribution of the angular gradient
of φ to the energy density is O

(
1
ρ2

)
provided χ∞(θ) is differentiable. Its

contribution to the total energy, outside a circle of sufficiently large radius
ρ0, is

1
2
m2

∫ ∞

ρ0

∫ 2π

0

1
ρ

(∂θχ
∞)2 dρ dθ . (7.33)

The angular and radial integrals separate, and the radial one is loga-
rithmically divergent unless

∫ 2π
0 (∂θχ∞)2 dθ vanishes. Thus finite energy

requires that limx→∞ φ = meiχ∞ for some constant phase χ∞, and hence
N = 0. The vacuum manifold therefore plays no significant role for finite
energy fields in the global theory.
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7.3 Topology in the gauged theory

Suppose that {φ(x), ai(x)} is a finite energy field configuration in the
gauged GL theory. Finite energy imposes the boundary condition |φ| → m
as |x| → ∞. We would like to deduce that φ has a limiting form on the
circle at infinity. Because of gauge invariance this is not immediately pos-
sible. However, from the energy expression in polars, (7.30), we see that
the radial covariant derivative Dρφ tends to zero as |x| → ∞. Consider
any radial line 0 ≤ ρ < ∞, with θ fixed. For large ρ, φ ∼ meiχ, so
asymptotically

Dρφ = im(∂ρχ− aρ)eiχ = 0 (7.34)

and therefore aρ = ∂ρχ. Let us now transform the field to the radial
gauge aρ = 0. If aρ ̸= 0 initially, then the gauge transformation

g(ρ, θ) = exp
(
−i
∫ ρ

0
aρ(ρ′, θ) dρ′

)
(7.35)

does this. g is a smooth function everywhere, and limx→0 g(x) = 1. The
gauge transformation also changes φ and aθ, but these are still smooth
functions in the plane if aρ was initially smooth. In the new gauge, ∂ρφ→
0 as |x| → ∞, so φ has a limiting value along each radial line

lim
ρ→∞

φ(ρ, θ) = φ∞(θ) = meiχ∞(θ) , (7.36)

and this defines φ on the circle at infinity. The only remaining gauge
freedom is to multiply φ by a constant phase factor eiα. One might
imagine that gauge transformations of the type eiα(θ) are still allowed,
but these are ill defined at x = 0 if α(θ) is a non-constant function. In
this sense the radial gauge is different from an axial gauge, e.g. a1 = 0,
where more gauge freedom remains.

The finiteness of the integrals of 1
ρ2 DθφDθφ and 1

ρ2 f2
ρθ implies that

Dθφ → 0 and fρθ → 0 as |x| → ∞. In the radial gauge, fρθ = 0 implies
that ∂ρaθ = 0, so aθ has a limit

lim
ρ→∞

aθ(ρ, θ) = a∞θ (θ) (7.37)

which defines the gauge potential on the circle at infinity. The vanishing
of Dθφ now implies that

∂θχ
∞ − a∞θ = 0 , (7.38)

so the gauge potential equals the derivative of the phase of φ on the circle
at infinity. Note the important difference from the global theory – it is
not necessary for χ∞ to be constant.
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φ∞ is again a map from the circle at infinity S1
∞ to the vacuum manifold

V = S1,
φ∞ : S1

∞ !→ S1 , (7.39)

and has the integer winding number

N =
1
2π

∫ 2π

0
∂θχ

∞(θ) dθ =
1
2π

(
χ∞(2π) − χ∞(0)

)
. (7.40)

N is the topological charge of the field configuration {φ(x), ai(x)}. The
actual value of χ∞ is not quite fixed, even in the radial gauge, because
the constant gauge transformation eiα shifts χ∞(θ) to χ∞(θ) + α.

N does not in fact depend on the gauge choice we have made. To see
this, consider a smooth gauge transformation g(x). For each ρ ≥ 0, g is
a map from the circle of radius ρ to U(1), with winding number Ng(ρ),
say. This gauge transformation would change N to N +Ng(∞). However,
by continuity, Ng is independent of ρ, and smoothness of g at the origin
implies that Ng(0) = 0. So Ng(∞) = 0, and hence the topological charge
N is gauge invariant.

We have defined N in terms of the winding of the scalar field φ at
infinity. However, because of the correlation (7.38) between the scalar
field and gauge potential, N equals c1, the first Chern number of the
magnetic field. Recall from Section 3.4 that (by Stokes’ theorem)

c1 =
1
2π

∫

R2
B d2x =

1
2π

∫ 2π

0
a∞θ (θ) dθ . (7.41)

From (7.38) and (7.40) it follows that the last expression is equal to N .
So magnetic flux is quantized in the gauged GL theory, in units of 2π,
and the total flux Φ is 2πN .

There is a third topological characterization of the winding number N .
It is the total vortex number, that is, the number of points in the plane,
with multiplicity taken into account, where φ = 0. For this, we need to
assume that the zeros of φ are a finite set of isolated points {A, B,C, . . .}
with multiplicities {nA, nB, nC , . . .} (see Fig. 7.1). The winding number
of φ along the circle at infinity, N , is just the sum of these multiplicities

N = nA + nB + nC + · · · . (7.42)

To see this, consider the deformation of the circle CA into the curve C ′
A.

By continuity, the increase of the phase of φ around CA, which is 2πnA,
is the same as that around C ′

A, as no new zero is enclosed. Then the
increase of phase around CAB is the sum of the increases around C ′

A and
CB, and hence CA and CB. By extending this construction to enclose
more zeros, and eventually all of them, we arrive at (7.42).
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Fig. 7.1. The points A,B,C denote isolated zeros of φ. The circle CA is de-
formed into the curve C ′

A. The increase of phase of φ around the curve CAB is
equal to the sum of the increases around the curves CA′ and CB , which is equal
to the sum of the increases around the curves CA and CB .

A is a simple zero of φ if nA = ±1. If φ has winding number N > 0,
and only simple zeros, then there are at least N of them. If there are
N + N ′ zeros of multiplicity 1, there must be N ′ zeros of multiplicity −1.
A sufficiently small, smooth deformation of a field with isolated simple
zeros simply shifts those zeros. They therefore have a certain stability.
However, by a continuous deformation of the field, it is possible to have
simple zeros of multiplicity 1 coalesce into higher multiplicity zeros. Also
zeros of opposite multiplicities can coalesce into a zero of φ with zero
multiplicity, and then annhilate, leaving φ no longer vanishing at all in
the neighbourhood of the annihilation point. Both these processes can
also be reversed.

We shall see later that static and time dependent solutions of the GL
equations generally have their energy density and magnetic field peaked
around the zeros of φ. Hence the zeros of φ give not just global topological
data, but also local dynamical information about the fields. We shall
identify the zeros of φ with the locations of vortices. Note that the energy
density at a zero of φ is at least λ

8m4.
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7.4 Vortex solutions

In the gauged GL theory, for all values of the coupling constant λ ex-
cept λ = 1, all known finite energy static solutions of the field equations
have circular symmetry about some point, and a reflection symmetry. By
translational symmetry we can choose that point to be the origin. Some
consequences of circular symmetry were presented in Section 4.3, but we
shall go into further detail here. In the global GL theory too, there are
circularly symmetric solutions, although with a logarithmically divergent
energy. The basic solution in each case, with winding number N = 1, we
shall call a vortex [6]. The discrete transformation φ !→ φ̄, together with
a !→ −a in the gauged theory, converts a vortex into an antivortex, with
the same energy and N = −1. Solutions with higher winding number,
|N | > 1, are multi-vortices.

It is natural to discuss these circularly symmetric solutions in polar
coordinates. Thus the fields are φ(ρ, θ) in the global theory, supplemented
by aρ(ρ, θ) and aθ(ρ, θ) in the gauged theory. We shall use the circular and
reflection symmetries to obtain a reduced GL energy function, an integral
just over the radial coordinate ρ. Its variational equations are the reduced
field equations. By the principle of symmetric criticality, described in
Section 4.4, solutions of these reduced equations give solutions of the full
field equations in the plane.

The action of an element R(β) of the spatial rotation group SO(2) is
{ρ !→ ρ, θ !→ θ+β}, and the operator generating rotations is ∂

∂θ . A scalar
field configuration φ(ρ, θ) is rotationally invariant in the naive sense if
φ(ρ, θ+ β) = φ(ρ, θ) for all β, that is, φ depends only on ρ. Equivalently,
∂φ
∂θ = 0. Such a φ has zero winding number. If φ is also assumed to have
the reflection symmetry φ(ρ, θ) = φ̄(ρ,−θ), then it is real. The global GL
energy for a field of this type is

V = π
∫ ∞

0

((
dφ

dρ

)2

+
λ

4
(m2 − φ2)2

)

ρ dρ , (7.43)

and the corresponding variational equation is

d2φ

dρ2
+

1
ρ

dφ

dρ
+
λ

2
(m2 − φ2)φ = 0 . (7.44)

The energy is minimized by the vacuum solution φ = m (and the equiv-
alent solution φ = −m). Derrick’s theorem, which is applicable for cir-
cularly symmetric fields with zero winding number, rules out any other
non-singular solution with |φ| → m as ρ→ ∞.

In the gauged theory, naive rotational invariance means that

∂φ

∂θ
=
∂aρ

∂θ
=
∂aθ

∂θ
= 0 . (7.45)
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φ, aρ and aθ depend only on ρ, so N = 0. It is still possible to perform a ρ-
dependent gauge transformation, without introducing any θ-dependence,
and transform to the radial gauge aρ = 0. Reflection symmetry makes φ
real. The GL energy reduces to the expression

V = π
∫ ∞

0

(
1
ρ2

(
daθ

dρ

)2

+
(

dφ

dρ

)2

+
1
ρ2

a2
θφ

2 +
λ

4
(m2 − φ2)2

)

ρ dρ ,

(7.46)
whose variational equations are

d2φ

dρ2
+

1
ρ

dφ

dρ
− 1
ρ2

a2
θφ+

λ

2
(m2 − φ2)φ = 0 (7.47)

d2aθ

dρ2
− 1
ρ

daθ

dρ
− aθφ

2 = 0 . (7.48)

Again, the solution of minimal energy is the vacuum, φ = m, aθ = 0.
There are no other finite energy solutions, satisfying the boundary con-
ditions φ(∞) = m, aθ(∞) = 0 and φ(0) finite, aθ(0) = 0. This is because
Eq. (7.48) excludes the possibility of aθ having a positive maximum or
negative minimum. So aθ has to vanish, and then Eq. (7.47) reduces to
the equation (7.44) of the global GL theory, with only the vacuum as a
solution.

A more interesting realization of circular symmetry is possible, which
exploits the internal symmetry of the GL theory under global phase ro-
tations R̃(α) : φ !→ eiαφ. Consider the SO(2) action by the combined
rotations and phase rotations (R(β), R̃(κβ)), with κ a constant. This is
a lift of the naive SO(2) action, because

(R(β1), R̃(κβ1)) · (R(β2), R̃(κβ2)) = (R(β1 + β2), R̃(κ(β1 + β2))) . (7.49)

κ must be an integer, so that (R(2π), R̃(2πκ)) is the identity. (If not,
φ would need to be invariant under a 2π rotation, which does nothing,
together with a non-trivial phase rotation by 2πκ. This would force φ to
vanish, and is incompatible with the boundary conditions.)

Invariance of φ under this combined SO(2) action requires

φ(ρ, θ + β) = eiκβφ(ρ, θ) . (7.50)

Let φ(ρ) denote φ(ρ, 0). Then (7.50) is satisfied if and only if

φ(ρ, θ) = eiκθφ(ρ) . (7.51)

It is clear that the winding number of such a field (at ρ = ∞) is N = κ.
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We may assume that N ̸= 0, since N = 0 is the case of naive rotational
symmetry. Since the winding number is such an important quantity, we
rewrite the formula for φ as

φ(ρ, θ) = eiNθφ(ρ) . (7.52)

Infinitesimally, the generator of the combined SO(2) action is ( ∂
∂θ , iN),

and φ is invariant if it is annihilated by the operator ∂
∂θ − iN . For a field

of the form (7.52), with φ(ρ) real, the global GL energy is

V = π
∫ ∞

0

((
dφ

dρ

)2

+
N2

ρ2
φ2 +

λ

4
(m2 − φ2)2

)

ρ dρ , (7.53)

and the field equation reduces to

d2φ

dρ2
+

1
ρ

dφ

dρ
− N2

ρ2
φ+

λ

2
(m2 − φ2)φ = 0 (7.54)

with boundary conditions φ(∞) = m and φ(0) = 0.
From now on we make the choice of parameters m = 1 and λ = 2 in

the global GL theory. Other values of m and λ correspond to a rescaling
of the field φ, and of the length scale, and hence also of the energy. The
equation (7.54) becomes

d2φ

dρ2
+

1
ρ

dφ

dρ
− N2

ρ2
φ+ (1 − φ2)φ = 0 . (7.55)

Solutions exist for any N ̸= 0 [177], and can be found numerically [317].
Near ρ = 0, φ(ρ) ∼ ρN , so φ(ρ, θ) ∼ ρNeiNθ. The solution with winding
number N is therefore a vortex of multiplicity N . The asymptotic form
of φ as ρ → ∞ is φ(ρ) ∼ 1 − N2

2ρ2 − N2(N2+8)
8ρ4 with corrections involving

higher even powers of 1
ρ . The only difficulty with these solutions is their

logarithmically divergent energy, but one may regularize the energy, for
example by the method discussed in Section 7.13.

Even without this regularization, there is an interesting variant of the
virial theorem, which gives some information about the energy. Let us
multiply Eq. (7.55) by 2ρ2 dφ

dρ , obtaining

d

dρ

(

ρ2
(

dφ

dρ

)2

− N2φ2 − 1
2
ρ2(1 − φ2)2

)

+ ρ(1 − φ2)2 = 0 . (7.56)

Integrating, and using the boundary conditions, we conclude that
∫ ∞

0
(1 − φ(ρ)2)ρ dρ = N2 , (7.57)
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or equivalently

E0 =
1
4

∫
(1 − φ̄φ)2 d2x =

1
2
πN2 , (7.58)

where the integral is over the whole plane. This is an example of a Derrick-
Pohozaev identity [124].

Let us now turn to the gauged GL theory. Here also, we shall fix m = 1.
λ is left as a free parameter, as the vortices depend on it in a non-trivial
way. The phase rotation eiNβ accompanying a rotation by β is a global
one, independent of ρ and θ. It has no action on the gauge potential
(aρ, aθ). Therefore, the combined SO(2) action leaves the fields invariant
provided

φ(ρ, θ) = eiNθφ(ρ)
aρ(ρ, θ) = aρ(ρ) (7.59)
aθ(ρ, θ) = aθ(ρ) .

Again, a ρ-dependent gauge transformation is possible, which changes
φ(ρ) and can be used to set aρ = 0. The reflection symmetry φ(ρ, θ) =
φ̄(ρ,−θ) again makes φ(ρ) real. The boundary conditions are φ(∞) = 1,
aθ(∞) = N and φ(0) = 0, aθ(0) = 0. The conditions at ρ = ∞ ensure
that

Dθφ = ∂θφ− iaθφ = (iN − iN)eiNθ = 0 . (7.60)

The conditions at ρ = 0 ensure that φ is single-valued and the gauge
potential is non-singular there.

So we see the three different meanings of N appearing. N is the winding
number of φ at infinity. Since

∫ 2π
0 aθ(∞) dθ = 2πN , the total magnetic

flux is 2πN . Since φ vanishes at ρ = 0, there is a vortex or multi-vortex
centred at the origin. The increase of the phase of φ around the origin
is 2πN , so the multiplicity of the vortex is N . There can be no further
zeros of φ if all zeros are isolated.

For fields of the form (7.59), with aρ = 0 and φ(ρ) real, the gauged GL
energy is

V = π
∫ ∞

0

(
1
ρ2

(
daθ

dρ

)2

+
(

dφ

dρ

)2

+
1
ρ2

(N − aθ)2φ2 +
λ

4
(1 − φ2)2

)

ρ dρ ,

(7.61)
and the field equations reduce to

d2φ

dρ2
+

1
ρ

dφ

dρ
− 1
ρ2

(N − aθ)2φ+
λ

2
(1 − φ2)φ = 0 (7.62)

d2aθ

dρ2
− 1
ρ

daθ

dρ
+ (N − aθ)φ2 = 0 . (7.63)
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Harden and Arp calculated the basic solution, with N = 1 [171]. Plohr
[333] and Berger and Chen [50] have established rigorously that solutions
satisfying the boundary conditions exist for all N ̸= 0 and all λ > 0. They
are minima of the energy in the class of fields with circular symmetry. The
fields are smooth, including at the origin. By the principle of symmetric
criticality, they give solutions of the full field equations in the plane, but
not necessarily absolute minima of the energy. If N > 0, both φ(ρ) and
aθ(ρ) are strictly increasing as ρ increases from 0 to ∞.

Solutions have been obtained numerically, and Fig. 7.2 shows the pro-
file functions φ(ρ), aθ(ρ) of the basic N = 1 vortex, for λ = 1

2 , 1 and 2.
The vortex has a core size of order 1, beyond which the fields approach
the vacuum values exponentially fast. It is of interest to plot some fur-
ther physical quantities. Figure 7.3 shows, for the λ = 1 solution, the
energy density and the magnetic field B = 1

ρ∂ρaθ, both as functions of ρ.
Ampère’s equation and the circular symmetry of the magnetic field imply
that the current is

J = ∂ρ

(1
ρ
∂ρaθ

)
t̂ , (7.64)

where t̂ is the unit vector in the positive θ direction.
Figure 7.4 shows profiles of multi-vortices with N = 2, 3, 4 and λ = 1.

Figure 7.5 displays the associated energy densities and magnetic fields.
Finally, Fig. 7.6 plots the energies of vortices with 1 ≤ N ≤ 4 and λ = 1

2 ,
1 and 2. Notice that for λ = 1, the energy grows linearly with N , for
λ > 1 the growth is faster than linear, and for λ < 1 it is slower than
linear.

We can understand the asymptotic form of the profile functions φ(ρ)
and aθ(ρ), both for ρ ∼ 0 and ρ → ∞. Near the origin, Eqs. (7.62)
and (7.63) imply that there are expansions for φ and aθ of the form
φ(ρ) = ρNF (ρ2) and aθ(ρ) = ρ2G(ρ2), where F and G are series in ρ2

with non-zero constants as leading terms. This behaviour is observed in
Fig. 7.4. If we convert to Cartesian coordinates, which are better than
polars near the origin, we find that

φ = eiNθρNF (ρ2)
a1 = −x2 G(ρ2) (7.65)
a2 = x1 G(ρ2) ,

since a1 = − 1
ρ2 x2aθ and a2 = 1

ρ2 x1aθ if aρ = 0. Since ρNeiNθ = (x1 +
ix2)N and ρ2 = (x1)2 + (x2)2, it follows that the vortex solutions are real
analytic functions of x1 and x2 in a neighbourhood of the origin. A similar
analyticity result would hold even for solutions which are not circularly
symmetric. In particular, |φ| ∼ ρn near a vortex of multiplicity n, where
ρ is the distance from the vortex. We shall use this later.
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Fig. 7.2. The profile functions φ(ρ) (solid curves) and aθ(ρ) (dashed curves)
for the N = 1 vortex with λ = 0.5, 1.0, 2.0. The curves move to the left with
increasing λ.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

Fig. 7.3. The energy density (solid curve) and magnetic field B (dashed curve)
for the N = 1 vortex with λ = 1.
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Fig. 7.4. The profile functions φ(ρ) and aθ(ρ) for the vortex with N = 2 (solid
curves), N = 3 (dashed curves) and N = 4 (dotted curves). Here λ = 1.
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Fig. 7.5. Energy densities (solid curves) and magnetic fields B (dashed curves)
for vortices with N = 2, 3, 4. The curves move to the right with increasing N,
and λ = 1.
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Fig. 7.6. The energy (in units of π) for vortices with N = 1, 2, 3, 4 and λ = 0.5
(dashed curve), λ = 1.0 (solid line) and λ = 2.0 (dotted curve).

To understand the behaviour as ρ→ ∞, let

φ(ρ) = 1 − σ(ρ) (7.66)
aθ(ρ) = N − ψ(ρ) . (7.67)

The linearized forms of Eqs. (7.62) and (7.63) are the modified Bessel
equations

d2σ

dρ2
+

1
ρ

dσ

dρ
− λσ = 0 (7.68)

d2ψ

dρ2
− 1
ρ

dψ

dρ
− ψ = 0 , (7.69)

whose decaying solutions give the asymptotic expressions

φ(ρ) ∼ 1 − As

2π
K0(

√
λρ) (7.70)

aθ(ρ) ∼ N − Am

2π
ρK1(ρ) . (7.71)

The leading exponential term in the modified Bessel functions K0(ρ) and
K1(ρ) for large ρ is

√
π
2ρe−ρ [5]. The coefficients As and Am, associated

with the decay of the scalar and magnetic fields, need to be determined nu-
merically, by solving the full nonlinear equations with appropriate bound-
ary conditions at ρ = 0.
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In fact, the asymptotic expressions (7.70) and (7.71) have somewhat
limited validity. For λ ≪ 1 they are valid only for very large ρ, much
greater than 1/

√
λ. For λ > 4 they are not valid, because of forcing

terms neglected in the linearization leading to (7.68) and (7.69) [333, 328].
Instead, for λ ≫ 1, the solution of the nonlinear equations (7.62) and
(7.63), except in a very small neighbourhood of ρ = 0, is approximately

φ(ρ) = 1 − 1
λ

(
A∞

m

2π
K1(ρ)

)2

(7.72)

aθ(ρ) = N − A∞
m

2π
ρK1(ρ) , (7.73)

so φ is very close to 1 for almost all ρ. The constant A∞
m is 2πN [50].

The asymptotic forms of the scalar field and gauge potential inform us
of the forces to expect between well separated vortices. This is discussed
in Section 7.6.

At the critical value of the coupling constant, λ = 1, there are more
solutions of the static equations than just the circularly symmetric ones.
There is a whole moduli space MN of N -vortex solutions, which has
dimension dimMN = 2N , because the vortices can be at arbitrary lo-
cations. All these solutions satisfy first order Bogomolny equations, and
they minimize the potential energy in the charge N sector of the theory.
They are discussed further in Section 7.8.

7.5 Forces between gauged vortices

This section is concerned with the energetics of two or more gauged vor-
tices as a function of their separation. If the energy decreases as the
vortices separate, we shall say that there is a repulsive force between
them; if it increases then they attract. We will need to specify a complete
dynamical version of the GL theory before we can deduce how the vortices
actually move relative to one another. The discussion of forces between
global vortices is postponed until Section 7.13.

We shall assume that λ is of order 1, being neither very close to zero
nor very large. There are several ways to investigate the energy of multi-
vortex configurations, some more rigorous than others. From all of these,
a coherent picture emerges. For λ < 1 vortices attract, and for λ > 1
vortices repel. For λ = 1 the vortices are in neutral equilibrium, which
allows static multi-vortex solutions, with the vortex locations at arbitrary
points of the plane. Vortices and antivortices always attract.

Consider first the energies EN of the circularly symmetric N -vortex
solutions discussed in the last section. Since EN < NE1 for λ < 1,
N coincident vortices have an energy less than N vortices “at infinity”.
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This implies that vortices attract, provided an N -vortex configuration
with N well separated vortices has energy arbitrarily close to NE1. Such
a configuration can be constructed as follows.

Take a set of N circular discs in the plane, each with radius R and with
minimal separation L, where 1 ≪ R ≪ L. Let Σ̃ denote the complement
of all the discs. In Σ̃ we may construct a field configuration with |φ| = 1,
Diφ = 0 and B = 0, and with the phase of φ having winding 2π around
each disc. To get the windings right, take the complex polynomial

p(z) =
N∏

r=1

(z − Zr) (7.74)

where Zr is the centre of the rth disc (we are here identifying R2 with C).
Then set

φ =
p(z)
|p(z)| (7.75)

in Σ̃. argφ increases by 2π around each point Zr. We define the gauge
potential in Σ̃ by

ai = ∂i(argφ) . (7.76)

This ensures that Diφ = 0, and also B = 0. As |z| → ∞, φ ∼ zN/|z|N ,
so in polar coordinates φ = eiNθ along the circle at infinity. Therefore,
the winding number of φ is N .

To complete the construction, we need to glue a one-vortex solution into
each disc. For the rth disc, take the exact, circularly symmetric solution,
and deform it slightly – an exponentially small change – so that |φ| = 1
and Diφ = 0 exactly for |x| ≥ R. Then, automatically, B = 0 for |x| ≥ R.
Next, translate the vortex so that its centre is at Zr, and perform a gauge
transformation so that the phase of φ, which is arg(z − Zr), matches the
phase of p(z)/|p(z)| along the boundary of the disc. This is possible,
because the windings are the same. What is required is approximately a
constant phase rotation, because

arg p(z) = arg(z − Zr) +
∑

q ̸=r

arg(z − Zq) (7.77)

and the final sum is approximately constant on the boundary of the rth
disc, since R ≪ L.

The resulting field configuration is continuous, and can be smoothed
out by smoothing the transition across the boundaries of the discs. Its
energy differs by an amount of order e−2

√
λR from NE1. This is because

the field in Σ̃ has zero energy, and the vortex inside each disc differs from
a true solution of the field equations only in that its tail (|x| > O(R)) has
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been adjusted. The energy difference becomes arbitrarily small as R, and
L, become sufficiently large.

A more refined discussion shows that smooth field configurations with
winding number N can be constructed with φ having simple zeros at
any N given points. It is plausible, although we do not here offer a
proof, that the solution with N coincident vortices (and energy EN ) can
be continuously deformed into a configuration of well separated vortices
(and asymptotic energy NE1), with a monotonic increase of energy. That
would show that the vortices everywhere attract.

For λ > 1, a very similar argument can be given, showing that vortices
repel. The only change is that the energy difference is of order e−2R rather
than e−2

√
λR. Since EN > NE1 in this case, the vortices can probably

be separated from coalescence to infinite separation with a monotonically
decreasing energy.

Further insight comes from the stability or otherwise of the circularly
symmetric N -vortex solution. For N = 1, the solution is stable for all λ.
For N > 1, the stability depends on λ. If λ < 1, the solution is stable, as
one expects if vortices attract. If λ > 1 it is unstable, and the number of
unstable modes corresponds to the number of ways the multiple zero can
split up into simple zeros, as one expects if vortices repel. These stability
results were conjectured by Jaffe and Taubes [223], and an argument for
the instability in the λ > 1 case was given by Bogomolny [56]. They have
been rigorously established by Gustafson and Sigal [167].

A numerical investigation of the vortex interaction energy was carried
out by Jacobs and Rebbi [222]. They considered two-vortex configura-
tions, with simple zeros of φ separated (along the x1-axis) by s. They cal-
culated numerically the minimal energy field configuration {φ(x), ai(x)}
with these given zeros. This is an example of constrained minimization.
The energy, for 0 ≤ s ≤ 12 and for λ = 1

2 , 1 and 2, is plotted in Fig. 7.7.
The graphs show clearly that two vortices attract if λ < 1 and repel if
λ > 1, and that the energy is independent of s if λ = 1. The fields sat-
isfying the constrained minimization problem need to have discontinuous
derivatives at the zeros, but otherwise they satisfy the field equations.

7.6 Forces between vortices at large separation

In this section we shall discuss more precisely how the interaction energy
of two well separated gauged GL vortices depends on distance. It is not
easy to give a completely rigorous analysis of this. However, a number of
different approaches all yield the same answer.

The interaction energy Eint(s) of two unit winding vortices at a sepa-
ration s ≫ 1 is the total energy E minus the constant 2E1, representing
the energy of infinitely separated vortices. Eint is calculated for a field
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Fig. 7.7. The energy (in units of π) of two vortices as a function of their sep-
aration s for λ = 0.5 (dashed curve), λ = 1.0 (solid line), λ = 2.0 (dotted
curve).

where each vortex minimally distorts the other vortex. This is possible
for s ≫ 1. The field equations are linearized in the region well away from
the vortex cores. One has to be more careful than in Section 7.5 where
we rather crudely glued together an N -vortex field. There are two con-
tributions to Eint, coming physically from the scalar field and from the
magnetic field. These both decay exponentially with s, but at different
rates. The result is

Eint(s) = −A2
s

2π
K0(

√
λs) +

A2
m

2π
K0(s) (7.78)

where As and Am are the coefficients in the asymptotic expressions (7.70)
and (7.71).

A result of this kind for Eint was first obtained by Bettencourt and
Rivers [52] by a method that is outlined below (with rather crude ap-
proximations for the values of As and Am). Speight rederived (7.78) from
a different point of view, explained below, and calculated the constants
As and Am numerically for a range of values of λ [382]. For λ = 1,
As = Am = 10.6. As λ increases, As increases whereas Am decreases, so,
for example, As = 14.5 and Am = 8.9 when λ = 2. Using a remarkable
indirect approach, involving dualities in string theory, Tong has obtained
the analytic value As = Am = 2π 81/4 ≃ 10.57, for λ = 1 [404], but this
value has not yet been understood directly from the vortex equations.
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The important point is that in (7.78) the scalar A2
s term is negative and

the magnetic A2
m term is positive, with both decaying exponentially as s

increases. Thus the scalar field produces an attraction and the magnetic
field produces a repulsion. For λ < 1, the scalar term dominates and
vortices attract. For λ > 1, the magnetic term dominates and vortices
repel. For λ = 1, the interaction energy is exactly zero, to this level of
approximation.

Subleading exponential corrections to Eint might be expected. However,
there is no sense in actually calculating these, because the separation
between extended objects has a degree of uncertainty, albeit exponentially
small in the vortex case. So further corrections to the formula (7.78) would
not be physically meaningful. Although the separation of the zeros of the
scalar field may be regarded as a precise quantity, there is nothing that
says that this is physically the precise separation of the vortices.

If λ is close to unity, then the two terms in (7.78) are both significant,
even though one dominates the other, as both are larger than the uncer-
tainties just mentioned. If λ > 4, the asymptotic form of φ is not given
by (7.70), and one should just retain the second term in (7.78), which in
any case completely dominates the first.

Let us now turn to the calculations of Eint. Let {φ(1), a(1)
i } be the

fields of vortex 1 (in the absence of vortex 2) and {φ(2), a(2)
i } the fields of

vortex 2 (in the absence of vortex 1). A neat way to construct the desired
superposition of the two vortices is Abrikosov’s product ansatz

φ = φ(1)φ(2)

ai = a(1)
i + a(2)

i . (7.79)

φ is topologically correct. It has simple zeros at the zeros of φ(1) and φ(2),
and its winding at infinity is the sum of the windings of φ(1) and φ(2).
The ansatz is gauge invariant in the sense that if {φ(1), a(1)

i } is gauge
transformed by eiα(1) (not necessarily constant), and {φ(2), a(2)

i } gauge
transformed by eiα(2) , then {φ, ai} is (consistently) gauge transformed by
ei(α(1)+α(2)).

One has φ(1) = (1 − σ(1))eiχ(1) , φ(2) = (1 − σ(2))eiχ(2) in the region
far from both vortex cores, where σ(1) and σ(2) are exponentially small.
Therefore

φ = (1 − σ(1) − σ(2))ei(χ(1)+χ(2)) , (7.80)

with a negligible correction, so the physically important, gauge invariant
magnitudes σ(1) and σ(2) are linearly superposed. Also, the magnetic
fields are exactly superposed, since

B = (∂1a
(1)
2 − ∂2a

(1)
1 ) + (∂1a

(2)
2 − ∂2a

(2)
1 ) = B(1) + B(2) . (7.81)
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Further, the covariant derivative Djφ is a linear superposition of D(1)
j φ(1)

and D(2)
j φ(2), since

Djφ = (∂j − i(a(1)
j + a(2)

j ))φ(1)φ(2)

= ∂jφ
(1)φ(2) + φ(1)∂jφ

(2) − ia(1)
j φ(1)φ(2) − ia(2)

j φ(1)φ(2)

= (D(1)
j φ(1))φ(2) + φ(1)(D(2)

j φ(2)) . (7.82)

In the region far from the vortex cores, φ(1) and φ(2) can be approxi-
mated by eiχ(1) and eiχ(2) respectively. The sum in (7.82) is therefore a
superposition of D(1)

j φ(1) and D(2)
j φ(2) in a gauge coherent sense.

Now suppose one vortex is at a distance s from the other, with s ≫ 1.
Bettencourt and Rivers showed that the dominant contribution to the
interaction energy comes from the overlap between the tails of the fields
of the two vortices, which are given by the asymptotic expressions (7.70)
and (7.71). The vortex cores can be treated as regularized delta-function
sources for these asymptotic fields. The energy depends only on the gauge
invariant quantities, and can be simplified using the formulae (7.80)–
(7.82), and reduced to an integration over products of Bessel functions.
The integration can be carried out, leading to the formula (7.78).

Speight has calculated the interaction energy by giving the vortices the
following physical interpretation [382]. It is as if each vortex, when viewed
from far away, behaves as a point-like object in the plane, carrying both a
scalar charge As and a magnetic dipole moment Amn̂, where n̂ is the unit
vector perpendicular to the plane. The scalar charge As is interpreted as
a source for a (new) scalar field φ̃ obeying the linear equation

(−∇2 + λ)φ̃ = Asδ
2(x − X) (7.83)

where X is the vortex centre and δ2 denotes the two-dimensional delta-
function. The scalar interaction energy of the vortex with a second vortex
at X̃ of charge As is −Asφ̃(X̃). The solution of (7.83) is

φ̃ =
As

2π
K0(

√
λ|x − X|) , (7.84)

so the scalar interaction is −A2
s

2π K0(
√
λs) where s = |X̃ − X|, as in the

first term of (7.78).
The dipole moment Amn̂ can be thought of as due to a small current

loop in the plane. It is interpreted as a source for a (new) gauge potential
ã. The equation satisfied by ã, analogous to (7.83), is

(−∇2 + 1)ã = −Amn̂ ×∇δ2(x − X) . (7.85)
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The solution is
ã = −Am

2π
n̂ ×∇K0(x − X) . (7.86)

In terms of polar coordinates centred at X, ãρ = 0 and

ãθ =
Am

2π
ρK1(ρ) (7.87)

since K1 = −K ′
0. Now we can calculate the magnetic interaction between

a dipole at X̃ and the potential ã due to the dipole at X. The magnetic
field associated with ã is

B̃ =
1
ρ

dãθ

dρ
=

Am

2π

(1
ρ
K1(ρ) + K ′

1(ρ)
)

= −Am

2π

(1
ρ
K ′

0(ρ) + K ′′
0 (ρ)

)

= −Am

2π
K0(ρ) , (7.88)

using the equation satisfied by K0. Therefore, the dipole-dipole interac-
tion between two vortices at separation s is A2

m
2π K0(s), as in the second

term of (7.78).
Together, the scalar interaction and the magnetic interaction give the

interaction energy between the vortices.

7.7 Dynamics of gauged vortices

The Ginzburg-Landau energy function determines how the energy of a
configuration with several vortices depends on the vortex separations.
However, this does not by itself determine how the vortices move. We shall
discuss three types of dynamical field equations, which lead to three types
of vortex motion. These are not equally well understood theoretically.

7.7.1 Second order dynamics

This type of dynamics comes from the Lorentz invariant extension of
GL theory, which is called scalar electrodynamics, or the abelian Higgs
model, and was introduced in Section 2.6. The spatial and time deriva-
tives of both the scalar field and gauge potential appear quadratically in
the Lagrangian density L. With the standard symmetry-breaking quartic
potential, the Lagrangian is

L =
∫ (

−1
4
fµνf

µν +
1
2
DµφDµφ− λ

8
(1 − φ̄φ)2

)
d2x . (7.89)
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Its kinetic part is

T =
1
2

∫ (
e2
1 + e2

2 + D0φD0φ
)

d2x (7.90)

with e1 and e2 the components of the electric field. The potential part, V ,
is the GL energy (7.13), with m = 1. The Euler-Lagrange field equations
are

DµDµφ− λ

2
(1 − φ̄φ)φ = 0 (7.91)

∂µfµν +
i

2
(φ̄Dνφ− φDνφ) = 0 . (7.92)

The general, finite energy solution of these equations is complicated. It
can involve vortices and antivortices colliding and annihilating, with a
complicated radiation pattern.

We collect here the set of conserved quantities. First of all there is
the conserved topological charge, N . N is the winding number of φ on
the circle at infinity, and the total magnetic flux is 2πN . One also has
the conservation laws for the geometrical Noether charges, the energy,
momentum and angular momentum. The conserved energy is

E = T + V =
1
2

∫ (
eiei + B2 + D0φD0φ

+ DiφDiφ+
λ

4
(1 − φ̄φ)2

)
d2x . (7.93)

To find the conserved momentum, it helps to use the improvement method
first mentioned at the end of Section 2.6. Momentum is associated with
translation invariance of the Lagrangian. Naively, an infinitesimal trans-
lation in the xi direction gives variations

∆φ = ∂iφ

∆φ̄ = ∂iφ̄ (7.94)
∆aj = ∂iaj .

To improve these, we include the effect of an infinitesimal gauge transfor-
mation with parameter −ai. This gives gauge covariant variations

∆̃φ = ∂iφ− iaiφ = Diφ

∆̃φ̄ = ∂iφ̄+ iaiφ̄ = Diφ (7.95)
∆̃aj = ∂iaj − ∂jai = εijB .

The conserved momentum is then

Pi = −
∫ (

∂L
∂(∂0φ)

∆̃φ+
∂L

∂(∂0φ̄)
∆̃φ̄+

∂L
∂(∂0aj)

∆̃aj

)

d2x
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= −
∫ (1

2
D0φDiφ+

1
2
D0φDiφ+ εijejB

)
d2x . (7.96)

Angular momentum is associated with rotational invariance. In two
dimensions, the vector field generating rotations is ξ = (−x2, x1) and the
naive variation of a dynamical field is its Lie derivative in the direction
ξ. For the fields we are considering here, the variations are

∆φ = x1∂2φ− x2∂1φ

∆φ̄ = x1∂2φ̄− x2∂1φ̄

∆a1 = x1∂2a1 − x2∂1a1 + a2 (7.97)
∆a2 = x1∂2a2 − x2∂1a2 − a1 ,

the final terms in ∆a1 and ∆a2 arising because a1 and a2 are compo-
nents of a 1-form. Improvement is achieved by including the effect of an
infinitesimal gauge transformation with parameter −(x1a2 − x2a1). This
gives covariant variations

∆̃φ = x1∂2φ− x2∂1φ− i(x1a2 − x2a1)φ = x1D2φ− x2D1φ

∆̃φ̄ = x1∂2φ̄− x2∂1φ̄+ i(x1a2 − x2a1)φ̄ = x1D2φ− x2D1φ

∆̃a1 = x1∂2a1 − x2∂1a1 + a2 − ∂1(x1a2 − x2a1) = −x1B (7.98)
∆̃a2 = x1∂2a2 − x2∂1a2 − a1 − ∂2(x1a2 − x2a1) = −x2B ,

recalling that B = ∂1a2 − ∂2a1. The conserved angular momentum is

ℓ =
∫ (

∂L
∂(∂0φ)

∆̃φ+
∂L

∂(∂0φ̄)
∆̃φ̄+

∂L
∂(∂0a1)

∆̃a1 +
∂L

∂(∂0a2)
∆̃a2

)
d2x

=
∫

x1
(1

2
D0φD2φ+

1
2
D0φD2φ− e1B

)

−x2
(1

2
D0φD1φ+

1
2
D0φD1φ+ e2B

)
d2x . (7.99)

Finally, there is the conserved electric charge

Q = − i

2

∫
(φ̄D0φ− φD0φ) d2x . (7.100)

Within this theory, an N = 1 vortex behaves like a particle [318] whose
rest mass M is the static GL energy, E1. The static solution can be
Lorentz boosted to give an exact solution representing a vortex moving
at an arbitrary speed up to the speed of light. A superposition of such
solutions is possible, representing well separated vortices released from
rest, or given arbitrary individual velocities, and set to collide.

The geometry of a two-vortex collision is indicated in Fig. 7.8.
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Θa

Fig. 7.8. The geometry of a two-vortex collision. The impact parameter is a
and the scattering angle is Θ.

In the frame of reference where the centre of mass remains at rest at
the origin, the initial trajectories are parallel straight lines, separated by
a distance a, known as the impact parameter. A collision at slow speed
is almost adiabatic, and the outgoing vortices carry approximately the
same energy as the ingoing ones. There are always just two zeros of
the scalar field, symmetrically located. If a is small, or zero, the field
can instantaneously pass very close to the circularly symmetric static
solution, where the zeros coincide. The asymptotic trajectories of the
outgoing vortices are also parallel lines with separation a (to conserve
angular momentum). The interesting quantity is the scattering angle Θ
and its dependence on a.

While the vortices are separated by a distance much greater than 1, and
the speeds are non-relativistic, the motion of each vortex is determined
by a Newtonian equation of motion

M ẍ = F (7.101)

where M is the rest mass of the vortex, and F is minus the gradient of the
interaction energy Eint, given by Eq. (7.78). Because the force is central,
the angular momentum ℓ = 2Mεijxiẋj is conserved. (The factor of 2
occurs because there are two vortices.) From the asymptotic trajectories,
one sees that ℓ = 1

2Mva, where v is the initial relative speed and a the
impact parameter.
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The Newton equation is not valid if the vortices approach to a distance
of order unity, and here numerical simulations are usually needed. Not
only is the force not well defined, but neither is the rest mass. Numerical
studies of two-vortex scattering have been carried out by Matzner [299],
by Shellard and Ruback [374], and by Moriarty, Myers and Rebbi [306].
The result for Θ(a), when λ = 1, is shown in Fig. 7.9.
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Fig. 7.9. The scattering angle Θ as a function of the impact parameter a for
two-vortex scattering.

In relativistic collisions, radiation is produced. Wave-like oscillations
are emitted from the collision region, and carry away energy. The amount
of radiated energy is negligible (of order 1% of the kinetic energy of the
vortices, or less) until the vortex speeds reach about half the speed of light
[306]. Numerically, it is quite hard to see the radiation directly. However,
the vortices emerging from a collision are observed to have slower speeds
than the incoming ones, and this is interpreted as evidence for energy loss
via radiation. The radiation is easily seen numerically in higher speed
collisions, for example, at 0.9 times the speed of light.

Probably the most interesting phenomenon in two-vortex dynamics is
the right-angle scattering that occurs in a head-on collision (a = 0) [352].
For λ < 1, vortices attract, and in a head-on collision the field can easily
pass through a configuration in which the zeros of φ coincide at the origin.
Following this, the vortices always emerge at right angles, and usually
they escape to infinity. The same phenomenon occurs when λ = 1. When
λ > 1, the vortices repel, so for slow initial speeds the kinetic energy
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is not sufficient for them to reach a coincident two-vortex configuration.
The vortices bounce back off each other, as in a collision of billiard balls.
The scattering angle is 180◦. However, if the kinetic energy is sufficiently
large, the vortices will scatter at right angles. The energy threshold is
just slightly larger than that needed to produce the circularly symmet-
ric two-vortex solution, as the dynamical field must pass close to this.
Figure 7.10 displays the energy density during the right-angle scattering
of two vortices with λ = 1.

Fig. 7.10. Energy density plots at increasing times during the right-angle scat-
tering of two vortices in a head-on collision.

The phenomenon of right-angle scattering shows in an essential way
that vortices are not just Newtonian point particles, or extended Newto-
nian particles (hard discs). Unlike in Newtonian dynamics, the vortices
are classically indistinguishable and can not be labelled. This is because
the fields are the fundamental objects, and the vortex locations are simply
the zeros of the scalar field. Two zeros can be followed until coincidence,
and treated as particle trajectories, but when the zeros emerge at right
angles, one can no longer say which outgoing zero corresponds to which
incoming one. One interpretation of what happens in the collision is that
some of the matter making up each vortex is exchanged. Each outgoing
vortex is made up of one half of each ingoing vortex. In contrast, point
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particles or rigid extended ones maintain their identities, and have precise
trajectories which satisfy Newton’s laws. Sudden changes of their velocity,
as in ideal billiard ball collisions, are interpreted as due to impulses (in-
finite forces acting instantaneously). The right-angle scattering of vortex
zeros does not involve hard objects and an impulse. Quite the contrary;
the zeros are completely soft, and they move superluminally (faster than
light) close to their collision, so they can not carry any energy or momen-
tum at the moment of collision. Also the fields deform quite smoothly as
the zeros scatter.

A good analogy is with the evolution of an ellipse as the parameters
change. Consider the equation

(x1)2

(1 − ε)2
+

(x2)2

(1 + ε)2
= 1 (7.102)

as ε moves through zero. This defines an ellipse whose shape for ε < 0,
ε = 0, and ε > 0 is shown in Fig. 7.11.

Fig. 7.11. The smooth evolution of an ellipse and the right-angle scattering of
its foci.

The foci are at (±2
√
|ε|, 0) for ε ≤ 0, and at (0,±2

√
ε) for ε ≥ 0.

They scatter through a right angle while the ellipse smoothly changes
shape. For another analogy, consider the complex polynomial z2 + c. The
polynomial evolves smoothly if c moves at constant speed along the real
axis through c = 0, but its roots scatter at right angles in the complex
plane, and just before and after scattering, the roots have arbitrarily large
speeds. Note that the foci of an ellipse, and the roots of a quadratic poly-
nomial, are a pair of unlabelled, and hence unordered points. This seems
to preclude a Newtonian equation of motion for them, accommodating
collisions.

The right-angle scattering of vortices has been investigated in other
ways too. An argument based purely on topology and symmetry has
been given by Rosenzweig and Srivastava [350]. Abdelwahid and Burzlaff
have given a more analytic explanation in terms of an initial value problem
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[1]. They consider a dynamical field which at t = 0 is the exact static
solution of two coincident vortices, and whose first time derivative splits
the zeros. There is a symmetry under the operation

(t, x1, x2) !→ (−t,−x2, x1) , (7.103)

which combines a 90◦ rotation with time reversal. The leading part of
the solution for the scalar field, at small |x| and small t, is

φ = α(x1 + ix2)2 + βt (7.104)

with α and β real and positive. This just changes sign (a global gauge
transformation) under the operation (7.103). The zeros of φ are at x1 +
ix2 = ±

√
−β

α t, and scatter through a right angle at t = 0. The solution
represents vortices approaching coincidence along the x1-axis, and sepa-
rating along the x2-axis. The solution is not quite physical. It represents
incoming vortices together with radiation, turning into outgoing vortices
with radiation. Nevertheless, this is close to the physical situation of
colliding vortices with no incoming radiation, since at slow speeds the
radiation field is small.

The right-angle scattering of two vortices in a head-on collision has
a generalization for N vortices [272, 14]. If N vortices approach non-
relativistically in a symmetric star-shaped formation, along radial lines
separated by an angle 2π/N , and simultaneously collide, then N vortices
emerge from the collision in a similar star, but rotated relative to the in-
coming one by π/N . Again a reasonable interpretation is that the matter
making up each outgoing vortex is acquired equally from the two vortices
which are on the closest lines of the incoming star. See Fig. 7.12 for the
example of four colliding vortices.

In a high speed N -vortex collision, the final configuration may consist
of N + N ′ vortices and N ′ antivortices (of unit winding). There is a
threshold kinetic energy 2M for a vortex-antivortex pair to be produced.
The mechanism of pair production is not well understood, and surpris-
ingly, numerical simulations show that in the gauged GL theory such pair
production seems hardly ever to occur, even at very high energy [305].

At critical coupling (λ = 1), one can say considerably more about
non-relativistic vortex motion, because one can model the dynamics by
geodesic motion on the moduli space of exact static solutions. This will
be discussed from Section 7.8 onwards.

7.7.2 Gradient flow

Here, we consider the dissipative dynamics of gauged vortices, which arises
from the gradient flow equations for the static GL energy function [83].



7.7 Dynamics of gauged vortices 189

Fig. 7.12. Energy density plots at increasing times during the π/4 scattering of
four vortices with C4 symmetry.

Following the discussion in Section 2.8, we take the field equations of
the Lorentz invariant theory, and in a gauge covariant way, replace terms
with double time derivatives by terms with a single time derivative. The
resulting gradient flow equations are

κD0φ = DiDiφ+
λ

2
(1 − φ̄φ)φ (7.105)

κei = −εij∂jB − i

2
(φ̄Diφ− φDiφ) (7.106)

with κ positive, a special case of Eqs. (2.167) and (2.168). These are
known as the Gorkov-Eliashberg, or TDGL (Time Dependent Ginzburg-
Landau) equations [164].

Recall that these equations should be supplemented by Gauss’ law

∂iei = − i

2
(φ̄D0φ− φD0φ) , (7.107)

but this follows automatically for any choice of a0 by taking the divergence
of (7.106) and using the expression for DiDiφ in (7.105). In particular, one
can safely choose the gauge a0 = 0, and then the gradient flow equations
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are

κ∂0φ = DiDiφ+
λ

2
(1 − φ̄φ)φ (7.108)

κ∂0ai = −εij∂jB − i

2
(φ̄Diφ− φDiφ) , (7.109)

and Gauss’ law simplifies too. The geometrical reason for these simplifi-
cations was discussed in Section 2.8.

Note that (7.106) is a two-dimensional Ampère equation, −εij∂jB =
J total

i , where Jtotal is the sum of the supercurrent JS = i
2(φ̄Dφ − φDφ)

and a normal current JN = κe. So κ is the Ohmic conductivity.
The key property of the gradient flow is that it is in the direction

in which the GL energy V decreases. In addition, the momentum and
angular momentum, given by the formulae (7.96) and (7.99), vanish. This
is because these quantities measure the rate of flow in field configuration
space in the directions defined by spatial translations and rotations. But
these directions are tangent to the hypersurfaces V = const, whereas the
gradient flow is orthogonal to them. The electric charge Q is also zero.

What solutions to the gradient flow equation does one expect if the
initial data are a non-coincident multi-vortex configuration? For λ < 1,
vortices attract, so vortices approach and coalesce. For λ > 1, vortices
repel each other and separate, eventually moving out to infinity. When
the vortices are far apart, the velocity of each vortex is proportional to
the force acting on it, but the forces are exponentially small. The motion
is therefore very slow.

The circularly symmetric, coincident N -vortex solution is static, but
it is unstable, and if perturbed, will generally split up into separated
vortices. Let us consider in more detail the two-vortex case. We may
define a submanifold M2 of the field configuration space C2, as follows.
The circularly symmetric solution has two linearly independent unstable
modes. One of these separates the vortex zeros in the x1 direction, and
the orthogonal mode separates them in the direction at 45◦ to this (since
separation in the x2 direction is the negative of separation in the x1

direction). Having perturbed the vortices by the first mode, the gradient
flow evolves the field to two well separated vortices. The zeros of φ move
along the x1-axis in opposite directions at the same speeds, by reflection
symmetry. This gives one gradient flow curve in C2. Acting with the
rotation group SO(2) we obtain all the gradient flow curves which descend
from the circularly symmetric solution. The union of these curves forms
a smooth two-dimensional surface embedded in C2. If we allow for all
possible translations of these fields, we get a four-dimensional manifold
M2 ⊂ C2, invariant under the gradient flow.

M2 is the unstable manifold of the circularly symmetric solution and its
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translates, and is probably an attractor of the gradient flow in C2. Starting
with almost any finite energy field configuration in the two-vortex sector,
the flow descends rapidly towards the two-vortex configurations lying on
M2, and then evolves as in M2. Rather special initial data of codimension
two in C2 will flow to one of the circularly symmetric solutions, and form
the stable manifold of these solutions. The stable manifold includes all
fields with the same circular symmetry as the solutions, but different
radial dependence.

Moore [305] has solved the gradient flow equations and determined the
geometry of the manifold M2 numerically, showing that it has a similar
structure to M2, the moduli space of static two-vortex solutions at λ = 1.
However, it is difficult to accurately calculate the intrinsic geometry of M2,
whereas we shall be able to determine the geometry of M2 in considerable
detail.

Rather more precise properties of the gradient flow have been proved
in the case λ = 1. In this critical case, in the sector of vortex number
N , Jaffe and Taubes have shown that there are no static solutions of
the gauged GL equation except those with minimal energy [223], and the
solutions of minimal energy form the moduli space MN . The absence of
higher stationary points means that a gradient flow curve in CN can not
end anywhere except on MN . Demoulini and Stuart have proved that for
arbitrary finite energy initial data in CN , the gradient flow equation has a
solution well defined at all later times, and the fields remain smooth [106].
MN is a global attractor. Moreover, the fields approach a definite point
in MN (after suitable gauge fixing). This is not quite obvious. Although
the potential energy function V is constant on MN , there are gradients of
V in the neighbourhood of MN . However, these are not sufficient to push
the vortices out to infinite separation. The vortices approach a particular
configuration with zeros at finite points of the plane.

It may appear that the gradient flow equations and their solutions are
of rather limited interest, as they simply describe relaxation to a stable
configuration. However, they rather accurately model the field evolution
in real thin superconductors. This is perhaps a surprise, as superconduc-
tors are associated with currents that persist indefinitely, and not with
the dissipative Ohmic currents that occur in ordinary conductors. How-
ever, vortex motion is a dissipative process in superconductors. This is
simply illustrated by what happens if a steady current passes through a
superconductor which contains a vortex, as sketched in Fig. 7.13. The
detailed gradient flow dynamics is quite complicated to calculate, but the
conclusion is that the vortex moves at right angles to the current, and
this is confirmed experimentally [326]. (If one thinks of the applied cur-
rent as circulating around a distant multi-vortex, then the motion of the
vortex is towards or away from the multi-vortex.) Part of the current
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Fig. 7.13. The motion of a vortex when a steady current J is passed through a
superconductor.

passes through the normal core of the vortex, where the superconducting
condensate, represented by φ, is absent, and here there is Ohmic dissipa-
tion. The physical reason is that the moving vortex generates an electric
field perpendicular to both the vortex velocity and the magnetic field in
the vortex core (thought of as perpendicular to the plane of the super-
conductor). The electric field is therefore in the direction opposite to the
current, and hence there is dissipation. In real superconductors, carrying
large currents, it is inevitable that some vortices penetrate the supercon-
ductor, because the current produces large magnetic fields. Unless the
vortices can be pinned, there is dissipation, and this limits the size of the
currents that can be set up. Thus the technology of superconductors re-
quires a careful choice of geometry for the current-carrying wires, plus the
introduction of vortex pinning centres into the superconducting material.

Chapman has studied the gradient flow equations for superconductors
of finite extent. The main interest is that the external conditions of a
superconductor can be suddenly changed, and one can ask how the fields
then evolve, and how the vortices move. The external changes can include
change of temperature, affecting the sign of λ − 1, change of externally
imposed current, or change of externally imposed magnetic field [81, 82].
Suppose, for example, that a thin superconductor of finite size is bathed
in a perpendicular magnetic field. If λ > 1, which corresponds to a Type
II superconductor, there will be vortices penetrating the superconductor.
If the field is switched off, the vortices will drift towards the boundary
under gradient flow and eventually there will be no more magnetic flux.
The details of this are somewhat more complicated than what is described
by Eqs. (7.105) and (7.106) because of the boundary conditions and the
three-dimensional structure of the field. Analogously, flux flows in from
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the boundary if the external field is switched on. The flux enters the su-
perconductor at the point on the boundary where the curvature is great-
est. The end point of this process is the establishment of the Abrikosov
lattice of vortices, whose lattice spacing is determined by the strength of
the external field. The Abrikosov lattice is discussed further in Section
7.14.2.

A further interesting process involving relaxation to equilibrium is the
annihilation of vortex-antivortex pairs. It is theoretically straightforward
to set up an initial field with a well separated vortex and antivortex.
There is an attraction between vortex and antivortex (for all λ) because
the magnetic and scalar forces act in the same direction. The gradient
flow leads to annihilation of the pair, and the fields evolve to the vac-
uum. This is rigorously proved in the case λ = 1 [106]. In principle, this
process can be observed experimentally by setting up a large magnetic
field gradient, so there are vortices and antivortices in different parts of
the superconductor. Vortices will tend to drift towards and annihilate
antivortices, being replaced by new vortices entering at the boundary.

7.7.3 First order dynamics

In the gauged GL theory, defined in two space and one time dimension, it
is possible to add to the Lagrangian density a Chern-Simons term 1

2f ∧ a
(or a multiple of this) [216, 364]. Its component form is

LCS =
1
4
εµνσfµνaσ =

1
2
(Ba0 + e1a2 − e2a1) , (7.110)

which in no way depends on the Lorentz metric of space-time. In particu-
lar, it is invariant under the Euclidean group of translations and rotations,
but it is parity odd.

We showed in Chapter 3 that the Chern-Simons action

SCS =
∫ t2

t1
LCS d2x dt (7.111)

is gauge invariant, provided suitable boundary conditions are satisfied.
Also the formal variation of SCS with respect to aσ is 1

2ε
µνσfµν , which is

gauge invariant. Thus the field equations get this additional term if SCS

is added to the GL action.
One effect of the Chern-Simons term is to modify Gauss’ law. It now

has the form
∇ · e + B = j0 (7.112)

where j0 is the electric charge density. Generally, the electric field decays
rapidly as |x| → ∞, so integration of (7.112) over the plane gives the
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relation
Q = Φ (7.113)

between the total magnetic flux Φ and the total electric charge Q. There-
fore vortices become charged [217].

Another effect of the Chern-Simons term on vortices is to deflect their
motion away from the direction in which the static force acts. So λ > 1
vortices, which would tend to move directly away from each other, will
now move along spiral trajectories, consistent with the parity violation.

Many Chern-Simons variants of GL theory have been studied, and we
discuss two of them. The first is called pure Chern-Simons theory [169].
Here, the Maxwell term in the Lagrangian of scalar electrodynamics (2.99)
is removed, and replaced by a Chern-Simons term. The Lagrangian is the
Lorentz invariant expression

L =
∫ (1

2
DµφDµφ+

1
4
εµνσfµνaσ − U(φ̄φ)

)
d2x , (7.114)

where U is not necessarily quartic in |φ|. The field equations are

DµDµφ+ 2U ′(φ̄φ)φ = 0 (7.115)
1
2
εµνσfµν +

i

2
(φ̄Dσφ− φDσφ) = 0 , (7.116)

a mixture of second order dynamics for the scalar field and first order
dynamics for the gauge field. The σ = 0 component of (7.116) is the
Gauss law

B +
i

2
(φ̄D0φ− φD0φ) = 0 , (7.117)

which has no ∇·e term any more. The magnetic field is therefore precisely
equal to the electric charge density at every point.

One may seek stationary solutions for this system, with a0 non-zero,
satisfying the field equations

a2
0φ+ DiDiφ− 2U ′(φ̄φ)φ = 0 (7.118)

εij∂ja0 −
i

2
(φ̄Diφ− φDiφ) = 0 (7.119)

B + a0φ̄φ = 0 . (7.120)

For the special sextic potential

U =
1
8
(1 − φ̄φ)2φ̄φ (7.121)

these equations can be reduced to a first order system of Bogomolny
equations with static vortex solutions [190, 217]. We shall discuss this
further in Section 7.8.
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We turn now to the second variant. Since the Chern-Simons term is
linear in the time derivative of the gauge potential, it is natural in the
GL Lagrangian to replace the quadratic term in the time derivative of the
scalar field by the linear term i

2(φ̄D0φ−φD0φ), which is gauge invariant
and real. This breaks Lorentz invariance, although it does not violate
the two-dimensional Euclidean symmetry. Particularly interesting is the
Schrödinger-Chern-Simons model with Lagrangian [287]

LSCS =
∫ ( iγ

2
(φ̄D0φ− φD0φ) + µ(Ba0 + e1a2 − e2a1) − γa0

−1
2
B2 − 1

2
DiφDiφ− λ

8
(1 − φ̄φ)2 + aiJ

T
i

)
d2x (7.122)

where γ, µ,λ are real constants, and JT
i a constant vector. This contains

the static GL potential energy, including the B2 term, but no eiei term.
The contribution γa0 is rather unusual [32]. Under a gauge transformation
eiα(t,x) it varies by the time derivative γ∂0α, so the action is invariant
provided α is the same at the initial and final time.

The field equations obtained from this Lagrangian are

iγD0φ = −1
2
DiDiφ− λ

4
(1 − φ̄φ)φ (7.123)

−εij∂jB = JS
i − JT

i + 2µεijej (7.124)
2µB = γ(1 − φ̄φ) . (7.125)

The first equation is a gauge covariant nonlinear Schrödinger equation.
The second is an Ampère equation. The total current is the combination
of JS

i , the usual supercurrent (7.19), JT
i , the constant external “transport”

current, and a Hall current orthogonal to the electric field [114]. 2µ is the
Hall conductivity. The third equation is the Gauss law for this system,
and involves no time derivatives. It is a constraint on initial data, and is
preserved by the time evolution, since one can show using the first two
equations that

∂

∂t

(
2µB − γ(1 − φ̄φ)

)
= 0 . (7.126)

The term γa0 in the Lagrangian contributes the γ in Gauss’ law, and
allows the possibility that asymptotically, |φ| = 1 and B = 0. This means
the model can accommodate vortices of the kind we have been discussing.

A noteworthy feature of this model is its Galilean invariance. This
generalizes the Galilean invariance of the nonlinear Schrödinger equation.
A Galilean transformation involves a boost in velocity by v, so x !→ x′ =
x − vt. It is the low velocity limit of a Lorentz boost. The fields {φ, aµ}
transform to

φ′(t,x) = φ(t,x′)eiγ(v·x− 1
2 |v|

2t) (7.127)
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a′(t,x) = a(t,x′) (7.128)
a′0(t,x) = a0(t,x′) − v · a(t,x′) . (7.129)

These satisfy the field equations if the original fields do, provided we
transform the transport current to (JT)′ = JT − γv. If the original fields
describe some motion of vortices, then the transformed fields describe a
similar motion but with a superimposed drift velocity v.

Physically, the Galilean transformation changes the transport current
because it changes the asymptotic fields. If B and ei are asymptotically
zero, then JT is the asymptotic value of JS. Suppose that |φ| → 1 and
Dφ → 0 as |x| → ∞, so JT = 0. After the transformation, |φ| → 1 and
Dφ → iγvφ, so (JT)′ = −γv. The drift of vortices, at velocity v, is the
response.

The motion of a vortex parallel to a superimposed external current is
non-dissipative, and characteristic of Chern-Simons dynamics [104, 319].
It is the analogue of the Magnus drift of fluid vortices. Having understood
the role of the transport current, we from now on only consider the closed
system where JT = 0.

Another feature of this Schrödinger-Chern-Simons model is seen most
easily in the gauge a0 = 0. Assuming that Gauss’ law is satisfied, the
field equations reduce to

iγ∂0φ = −1
2
DiDiφ− λ

4
(1 − φ̄φ)φ (7.130)

2µεij∂0aj = −εij∂jB − JS
i . (7.131)

Notice how similar these are to the gradient flow equations of GL the-
ory (7.108) and (7.109). Schrödinger-Chern-Simons dynamics and gradi-
ent flow dynamics are in fact orthogonal in configuration space, in the
sense discussed in Section 2.6, because at each point x, {i∂0φ, εij∂0aj} is
orthogonal to {∂0φ, ∂0ai}. This suggests that vortex motion in this model
will be at right angles to the vortex motion occurring in gradient flows.
In particular, two vortices should circle around one another, like fluid
vortices of equal strength. We shall establish this later, for a rather
restricted range of the parameters γ, µ and λ, using the moduli space
approach to vortex dynamics.

We conclude by noting some of the conservation laws for finite energy
fields satisfying the boundary conditions |φ| → 1, Diφ → 0 and B → 0
as |x| → ∞ [288, 174]. Since the Lagrangian density is linear in the
time derivatives of the fields, no time derivatives appear in the conserved
quantities. There is, as usual, a conserved winding number N , which
defines the net vortex number. From (7.125) it follows that, at all times,

∫
B d2x =

γ

2µ

∫
(1 − φ̄φ) d2x = 2πN . (7.132)
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The conserved energy is the standard GL expression

E =
1
2

∫ (
B2 + DiφDiφ+

λ

4
(1 − φ̄φ)2

)
d2x . (7.133)

The conserved momentum has the two components

Pi = −γ
∫

(JS
i − εijxjB) d2x . (7.134)

Because the Lagrangian density is not gauge invariant, it is necessary to
use the improvement method and to add a further total derivative term
to obtain this result. The conserved angular momentum is

ℓ = −γ
∫

(εijxiJ
S
j +

1
2
|x|2B) d2x . (7.135)

The preceeding conservation laws can be reexpressed in terms of a field
vorticity density W = −εij∂iJS

j +B. This was noted in a slightly different
model by Papanicolaou and Tomaras [325]. The integral of W is 2πN ,
and

Pi = γεij

∫
xjW d2x , ℓ = −γ

2

∫
|x|2W d2x , (7.136)

as is easily verified by integrating by parts. The Schrödinger-Chern-
Simons model therefore has analogies with ideal fluid dynamics in two
dimensions [37], and also with certain ferromagnetic models [324], where
the conserved momentum and angular momentum are moments of a vor-
ticity density.

7.8 Vortices at critical coupling

It has been recognized for a long time that the gauged GL model has
physically and mathematically special properties when λ = 1, the critical
value of the coupling [152]. This value separates Type I (λ < 1) and Type
II (λ > 1) superconductivity. Some real materials are close to this critical
value. Pure niobium has λ ≃ 2.4, and certain alloys (for example, lead
with 1%−2% thallium) have λ arbitrarily close to critical coupling [326].

Interest in the λ = 1 case really started with the famous paper of
Bogomolny [56]. At critical coupling, the static GL energy function

E = V =
1
2

∫ (
B2 + DiφDiφ+

1
4
(1 − φ̄φ)2

)
d2x (7.137)

can be rewritten as

E =
1
2

∫ {(
B − 1

2
(1 − φ̄φ)

)2
+
(
D1φ− iD2φ

)(
D1φ+ iD2φ

)

+ B − i
(
∂1(φ̄D2φ) − ∂2(φ̄D1φ)

)}
d2x . (7.138)
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The last expression is a two-dimensional curl, so its integral can be re-
expressed as a line integral around the circle at infinity. If the energy is
finite, so that |φ| → 1 and Diφ → 0 as |x| → ∞, then this line integral
vanishes. Also, the integral of B is 2π times the winding number of the
field, N . Thus

E =
1
2

∫ {(
B − 1

2
(1− φ̄φ)

)2
+
(
D1φ− iD2φ

)(
D1φ+ iD2φ

)}
d2x + πN .

(7.139)
Since the integrand in (7.139) is non-negative, we deduce that E ≥ πN ,
which is non-trivial if N > 0 (since it is clear from (7.137) that E ≥ 0).
Similarly, by reversing some signs, we can show (for any N) that E ≥
π(−N). Thus, generally, the energy satisfies the Bogomolny bound

E ≥ π|N | . (7.140)

The Bogomolny bound is said to be saturated if there is equality, and
E = π|N |. For N = 0 this only occurs for the vacuum field. For N > 0,
the bound is saturated if and only if the fields satisfy

D1φ+ iD2φ = 0 (7.141)

B − 1
2
(1 − φ̄φ) = 0 , (7.142)

which we shall call the first and second Bogomolny equations. For N < 0,
one has E = π|N | if D1φ− iD2φ = 0 and B + 1

2(1− φ̄φ) = 0. The sign of
N is reversed by a reflection, e.g. (x1, x2) !→ (x1,−x2), together with the
sign reversal of a2. From now on we consider only the case of N > 0.

Fields satisfying the Bogomolny equations (7.141) and (7.142) (assum-
ing there are some) are automatically minima of the energy within their
topological class, and hence guaranteed to be stable. Let us check that
they also satisfy the GL field equations (7.17) and (7.18), which represent
the weaker condition for a stationary point of the energy. The Bogomolny
equations imply that

(D1 − iD2)(D1 + iD2)φ = 0 , (7.143)

so

(D1D1 + D2D2)φ = −i[D1, D2]φ = −Bφ = −1
2
(1 − φ̄φ)φ , (7.144)

which is one of the field equations. Also

∂1B =
1
2
∂1(1 − φ̄φ) = −1

2
(φ̄D1φ+ D1φφ) =

i

2
(φ̄D2φ− φD2φ) , (7.145)
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and similarly ∂2B = − i
2(φ̄D1φ − φD1φ), which are the remaining equa-

tions.
The two equations (7.141) and (7.142) are of a different character. The

first is a covariant generalization of the Cauchy-Riemann equations, and
occurs in other variants of the GL theory. The second equation is char-
acteristic of the specific GL energy (7.137).

A deep study of the Bogomolny equations was made by Taubes [396,
397], and presented in the book by Jaffe and Taubes [223]. One result
is that for a field obeying the Bogomolny equations, the multiplicities of
the zeros of φ are all positive. Thus solutions of the Bogomolny equations
with winding number N have a finite number of positive multiplicity
zeros, with the sum of the multiplicities being N . The solutions therefore
represent N vortices, located at these points, with no antivortices present.

Another observation of Taubes is that (7.141) can be used to eliminate
the gauge potential ai from the pair of Bogomolny equations. Let us write
φ = |φ|eiχ and then define

h = log |φ|2 , (7.146)

so φ = e
1
2h+iχ. h is gauge invariant and finite, except at the points where

φ = 0. h vanishes on the circle at infinity, where |φ| = 1. Equation (7.141)
becomes

∂1

(1
2
h + iχ

)
− ia1 + i∂2

(1
2
h + iχ

)
+ a2 = 0 (7.147)

so
a1 =

1
2
∂2h + ∂1χ , a2 = −1

2
∂1h + ∂2χ . (7.148)

The magnetic field B is now

B = ∂1a2 − ∂2a1 = −1
2
∇2h . (7.149)

Hence the equation (7.142) becomes

∇2h + 1 − eh = 0 , (7.150)

and χ is eliminated.
This equation is valid except at the zeros of φ, where h has logarithmic

singularities, and becomes infinitely negative. We can allow for these
singularities by including delta-function sources, giving the final equation
for h

∇2h + 1 − eh = 4π
N∑

r=1

δ2(x − Xr) (7.151)
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where {Xr} are the positions of the (simple) zeros of φ. To verify that
Eq. (7.151) has the correct delta-functions, recall that near a simple zero
X, |φ| ∼ |x − X|, so h ∼ 2 log |x − X| and ∇2h = 4πδ2(x − X). Since
eh ∼ |x − X|2, eh has no singularity. If the zero has multiplicity n,
then |φ| ∼ |x − X|n, so h ∼ 2n log |x − X| and the delta-function source
needs a coefficient 4πn. But this is implied by (7.151), because a zero
of multiplicity n contributes n times to the sum. We also observe that
since a1 and a2 are not singular at X, Eqs. (7.148) require ∇χ to have a
singularity to cancel the singularity in ∇h. In terms of polar coordinates
ρ, θ centred at X, h ∼ 2n log ρ and therefore ∂ρh ∼ 2n/ρ, ∂θh ∼ 0. Hence
∂ρχ ∼ 0, ∂θχ ∼ n, so the increase of χ around X is 2πn. This confirms
Taubes’ more rigorous argument that only zeros of positive multiplicity
can occur for solutions of the Bogomolny equations.

The strategy for solving the Bogomolny equations with winding number
N is to first fix N points in the plane {X1,X2, . . . ,XN}. These points
are unordered, and not necessarily distinct. Then solve (7.151) subject
to the boundary condition h → 0 as |x| → ∞. For N = 1 there is a
unique circularly symmetric solution, centred at the origin. This is the
basic Bogomolny vortex, with energy, and hence mass, equal to π. Taubes
has proved that there exists a unique solution for any N -tuple of points.
This is what one expects at critical coupling, where there are no forces
between vortices. An important property of this N -vortex solution is that
h is everywhere negative, so |φ| < 1 and B > 0 everywhere [223]. This is
because the boundary condition and absence of positive singularities of h
imply that if h were anywhere positive it would attain a maximal positive
value at some point; and there, ∇2h ≤ 0 and 1 − eh < 0, contradicting
(7.151). h carries all the gauge invariant information. Thus |φ|2 = eh,
B = −1

2∇
2h, and Ji = 1

2εij∂jh eh. The electric current flows along the
contours of h, and 1

2eh plays the role of a stream function.
Solutions of (7.151) can be constructed numerically. After fixing the

points {Xr}, small discs of radius ε centred at those points are inserted,
on the boundary of which h is set equal to 2 log ε (or 2n log ε if the point
is of multiplicity n). On a large circle or square (representing infinity)
h is set equal to zero. The equation (7.150) is then solved in the region
between. Examples of solutions are shown in Fig. 7.14.
MN , the moduli space of solutions of the Bogomolny equations with

winding number N , is the space of unordered N -tuples of points in the
plane. As a manifold this is (R2)N/SN where SN is the permutation
group on N objects. Normally, a “manifold” of the type XN/SN – the
Nth symmetrized power of a manifold X – is not smooth. There are
singularities where two or more points of X coincide, because the orbit
under SN of such a point in XN is of smaller size than the generic orbit
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Fig. 7.14. Contour plots of |φ|2 for two vortices with separation s, for (a) s = 4,
(b) s = 2, (c) s = 0.

of size N !. If X is R2 (or any other two-dimensional manifold) this argu-
ment doesn’t apply. Identify R2 with C, and use the standard complex
coordinate z. Let the complex vortex positions be {Z1, . . . , ZN}, where
Zr = X1

r + iX2
r , and define

p(z) =
N∏

r=1

(z − Zr) . (7.152)

p is a polynomial of degree N and monic (the leading coefficient is unity),
and has an expansion

p(z) = zN + p1z
N−1 + · · · + pN . (7.153)

There is a one-to-one correspondence between the set of complex coef-
ficients {p1, . . . , pN} and the set of unordered points {Z1, . . . , ZN}. The
points determine the coefficients, since there are explicit formulae for {pr}
as elementary symmetric polynomials in the roots

p1 = −(Z1 + · · · + ZN ) , . . . , pN = (−1)NZ1Z2 · · ·ZN , (7.154)

and conversely, the coefficients determine p(z) and hence its N unordered
roots. Now the set of coefficients {p1, . . . , pN} is an ordered set of arbitrary
complex numbers. Therefore MN = CN , with these coefficients as global
coordinates. It is perhaps rather paradoxical that CN/SN is diffeomorphic
to CN , but that is what this argument shows. The moduli space can be
regarded as having the usual smooth manifold structure of CN .

This moduli space structure can immediately be seen to be consistent
with the right-angle scattering of two vortices, or the π/N scattering of
N vortices. For suppose we consider the smooth trajectory in MN

p1 = 0 , p2 = 0 , . . . , pN = t (7.155)

where t (real) can be thought of as time. The corresponding polynomial
is

p(z; t) = zN + t (7.156)



202 Vortices

whose roots for t ≤ 0 are Zr = |t|1/N e2πir/N , r = 1, . . . , N , and whose
roots for t ≥ 0 are Zr = |t|1/Neπi(2r−1)/N , r = 1, . . . , N . This implies that
the star of outgoing vortex trajectories is rotated by π/N with respect to
the star of incoming trajectories.

We conclude this section with a brief discussion of the Bogomolny equa-
tions for pure Chern-Simons vortices [190, 217], and their solutions [213].
The static equations to be solved are (7.118)–(7.120), where U(φ̄φ) =
1
8(1− φ̄φ)2φ̄φ, so 2U ′(φ̄φ) = 1

4 − φ̄φ+ 3
4(φ̄φ)2. They are satisfied provided

the first order Bogomolny equations

D1φ+ iD2φ = 0 (7.157)

B − 1
2
(1 − φ̄φ)φ̄φ = 0 (7.158)

a0 +
1
2
(1 − φ̄φ) = 0 (7.159)

hold. Equation (7.120) is obviously satisfied. Equation (7.118) follows
by a similar calculation to that leading to (7.144), because here −B =
2U ′(φ̄φ) − a2

0. Differentiating (7.159) and using (7.157), one shows that
(7.119) is satisfied.

As for the GL vortices, one can make the ansatz φ = e
1
2h+iχ. The first

Bogomolny equation determines the spatial part of the gauge potential
as before, and the second equation becomes the gauge invariant scalar
equation

∇2h + eh − e2h = 0 . (7.160)

Finally, a0 = −1
2(1 − eh).

Two types of boundary condition and vortex are possible. Topological
vortices have |φ| → 1 as |x| → ∞, so h → 0. There is an integer winding
number N , and quantized flux 2πN . Taubes’ methods, and index theory
calculations, show that there is a 2N -dimensional moduli space of N -
vortex solutions. The vortex centres, where φ vanishes, are again N
arbitrary points in the plane. The main difference between the Chern-
Simons vortices and GL vortices is that the magnetic field is peaked on
an annulus around each vortex centre, rather than having a maximum at
the centre. The non-topological vortices have boundary condition |φ| → 0
as |x| → ∞, so h diverges. For more on these solutions, see [213, 232].

7.9 Moduli space dynamics

Here, we begin to explore the idea that at or near critical coupling, we
may approximate the field theory dynamics of GL vortices by a reduced
dynamics on the moduli space, provided the vortices are slowly moving.
We refer back to Section 4.5 for the basic formalism and its justification.
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As we explained in the last section, the moduli space MN for N crit-
ically coupled GL vortices is the 2N -dimensional manifold CN , whose
complex Cartesian coordinates are the coefficients {p1, . . . , pN} of the
polynomial p(z) whose roots {Z1, . . . , ZN} are the vortex positions. How-
ever, we usually find it most convenient to use as coordinates {Z1, . . . , ZN}
themselves. These are locally well defined (with some arbitrary choice of
order) when the vortices are separated. We can check, after certain calcu-
lations, that the structures on MN are smooth as some or all of the vor-
tices coincide. Occasionally we will use real coordinates {yi : 1 ≤ i ≤ 2N}
on MN .

At critical coupling, the second order dynamics reduces to free, geodesic
motion on the moduli space. The reduced Lagrangian for N -vortex mo-
tion is purely kinetic, and defines a metric on MN , which we need to
study and calculate. Using the coordinates {Z1, . . . , ZN}, one may write
the metric as

ds2 =
N∑

r,s=1

(
grsdZrdZs + grs̄dZrdZ̄s + gr̄s̄dZ̄rdZ̄s

)
, (7.161)

where grs, grs̄, gr̄s̄ are functions of the coordinates and their complex con-
jugates. Reality of the metric requires that gr̄s̄ = ḡrs and grs̄ = ḡsr̄, so
that as an N × N matrix, grs̄ is Hermitian. We shall see in the next
section that grs = gr̄s̄ = 0, and that the metric is actually Kähler. The
reduced Lagrangian is then

Lred =
1
2

N∑

r,s=1

grs̄Żr
˙̄Zs , (7.162)

leading to the equation for geodesic motion at constant speed on MN .
(The subscript s̄ is just a convenient shorthand; s̄, like s, runs from 1 to
N , and the bar simply indicates the pairing with dZ̄s or ˙̄Zs.)

If one is slightly away from critical coupling, that is, λ ≃ 1, then N -
vortex motion is still well approximated by a motion on the moduli space
MN . The metric need not be changed, but one should include the per-
turbation of the potential energy

Vred =
λ− 1

8

∫
(1 − φ̄φ)2 d2x (7.163)

as a potential on MN . In principle, this can be evaluated. Given a set of
vortex positions {Z1, . . . , ZN}, one must solve for h, and then

Vred =
λ− 1

8

∫
(1 − eh)2 d2x . (7.164)
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The total reduced Lagrangian is

Lred =
1
2

N∑

r,s=1

grs̄Żr
˙̄Zs − Vred . (7.165)

Varying the action with respect to Z̄s leads to the equation for geodesic
motion modified by the effect of small forces

grs̄Z̈r +
∂grs̄

∂Zu
ŻrŻu +

∂grs̄

∂Z̄u
Żr

˙̄Zu − ∂grū

∂Z̄s
Żr

˙̄Zu + 2
∂Vred

∂Z̄s
= 0 . (7.166)

Because of the Kähler property, the third and fourth terms cancel, and
the equation of motion simplifies to

grs̄Z̈r +
∂grs̄

∂Zu
ŻrŻu + 2

∂Vred

∂Z̄s
= 0 . (7.167)

At critical coupling, λ = 1, the field theory gradient flow has the moduli
space MN as an attractor, but the motion on MN itself is trivial. Close
to critical coupling, the attractor appears to persist. For λ > 1 it is
the unstable manifold of the circularly symmetric, coincident N -vortex
solution (and its translates). We assume that this can be approximated
by MN with its unchanged metric, on which Vred is the potential. The
reduced N -vortex gradient flow dynamics is then given by the equation
of motion on MN [387]

κgrs̄Żr + 2
∂Vred

∂Z̄s
= 0 , (7.168)

which is a complex version of Eq. (2.24). The potential energy Vred pro-
duces a force, and hence motion in the direction of the force.

The first order Schrödinger-Chern-Simons dynamics of vortices leads to
a reduced Lagrangian [287]

Lred = −
2N∑

i=1

Ai(y)ẏi − Vred(y) , (7.169)

analogous to Eq. (2.21). This will be shown in Section 7.12. Lred is
again defined on the moduli space MN , but is expressed in terms of real
coordinates {y1, . . . , y2N}. Ai is an abelian gauge potential, or connection,
on moduli space. The equation of motion is

Fij ẏ
j +

∂Vred

∂yi
= 0 (7.170)

where
Fij =

∂Aj

∂yi
− ∂Ai

∂yj
. (7.171)
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It turns out that Fij is the symplectic, Kähler 2-form associated with
the metric on MN . At critical coupling, Vred vanishes, and there is no
motion. Away from critical coupling, the motion is along a curve in one
of the hypersurfaces Vred = const, determined by the initial data. It
remains unclear whether the equation of motion on moduli space (7.170)
actually provides a good approximation to the Schrödinger-Chern-Simons
field theory dynamics of the vortices, even for initial data close to the
moduli space.

7.10 The metric on MN

In this section, we explain the method of Samols for determining the form
of the metric grs̄ on moduli space [363]. This developed from Strachan’s
study [384] of the moduli space metric for an integrable model of vortices
on the hyperbolic plane, which we consider in Section 7.14.3. Although
the metric is defined initially as an integral over the plane, and can not be
given explicitly, it is a remarkable feature of the Bogomolny equations that
the metric can be expressed in terms of local data in the neighbourhood
of each vortex.

Suppose that {φ(t), ai(t)} is a family of N -vortex solutions of the Bo-
gomolny equations (7.141) and (7.142), with distinct vortex locations
{Zr(t)} slowly varying with time. The time derivatives of the fields are
{∂0φ, ∂0ai} and they satisfy the time derivatives of the Bogomolny equa-
tions. Suppose they also satisfy Gauss’ law, with a0 = 0,

∂i∂0ai +
i

2
(φ̄∂0φ− φ∂0φ̄) = 0 . (7.172)

The kinetic energy is then

T =
1
2

∫
(∂0ai∂0ai + ∂0φ̄∂0φ) d2x . (7.173)

Our task is to express T in terms of {Żr} and { ˙̄Zr}, and from this to
extract the metric on MN .

By analogy with (5.60), we define

az =
1
2
(a1 − ia2) , az̄ =

1
2
(a1 + ia2) , (7.174)

and reexpress the kinetic energy as

T =
1
2

∫
(4∂0az̄∂0az + ∂0φ̄∂0φ) d2x . (7.175)

As earlier, let φ = e
1
2h+iχ, and define

η = ∂0(log φ) =
1
2
∂0h + i∂0χ , (7.176)
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so
∂0φ = φη . (7.177)

The first Bogomolny equation can be written as

∂z̄φ− iaz̄φ = 0 . (7.178)

Therefore az̄ = −i∂z̄ log φ, and hence

∂0az̄ = −i∂z̄η . (7.179)

Combining (7.177) and (7.179), and their complex conjugates, we can
rewrite the kinetic energy (7.175) in terms of η as

T =
1
2

∫
(4∂z η̄∂z̄η + ehη̄η) d2x . (7.180)

From (7.175), it follows that the integrand here is finite.
We establish next a differential equation obeyed by η. Recall that the

Laplacian is
∇2 = 4∂z̄∂z . (7.181)

The second Bogomolny equation reduces, as we have seen, to ∇2h + 1 −
eh = 0 away from the zeros of φ. Taking the time derivative, we obtain

(∇2 − eh)∂0h = 0 . (7.182)

Also, since

∂i∂0ai = 2(∂z∂0az̄ + ∂z̄∂0az) = −2i∂z∂z̄η + 2i∂z̄∂z η̄ = ∇2∂0χ (7.183)

and
i

2
(φ̄∂0φ− φ∂0φ̄) =

i

2
(φ̄φη − φφ̄η̄) = −eh ∂0χ , (7.184)

Gauss’ law (7.172) takes the form

(∇2 − eh)∂0χ = 0 . (7.185)

Combining Eqs. (7.182) and (7.185), we deduce that

(∇2 − eh)η = 0 . (7.186)

The non-singular real operator ∇2 − eh plays an important role in what
follows.

Equation (7.186) is only valid away from the zeros of φ, where η has
singularities. Near the moving zero Zr,

φ = (z − Zr)ek (7.187)
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where k is smooth and finite, so

log φ = log(z − Zr) + k . (7.188)

Taking the time derivative gives

η =
−Żr

z − Zr
+ O(1) . (7.189)

Thus η has a pole singularity at each vortex location Zr, with residue
−Żr.

Now recall the basic result ∇2 log |z − Zr|2 = 4πδ2(z − Zr), or equiva-
lently

∇2(log(z − Zr) + log(z̄ − Z̄r)) = 4πδ2(z − Zr) . (7.190)

Differentiating with respect to Zr we obtain

∇2
( −1

z − Zr

)
= 4π

∂

∂Zr
δ2(z − Zr) = −4π∂zδ

2(z − Zr) . (7.191)

The completed version of equation (7.186) is therefore

(∇2 − eh)η = −4π
N∑

r=1

Żr ∂z δ
2(z − Zr) , (7.192)

where we have noted that ehη has no singularity, since near Zr, eh ∼
|z − Zr|2, which cancels the pole in η.

The solution of this equation is found as follows. Differentiating the
equation for h,

∇2h + 1 − eh = 4π
N∑

r=1

δ2(z − Zr) , (7.193)

gives

(∇2 − eh)
∂h

∂Zr
= −4π ∂z δ

2(z − Zr) . (7.194)

By comparing (7.194) and (7.192), and noting that ∂h
∂Zr

has a pole at Zr,
we deduce that

η =
N∑

r=1

Żr
∂h

∂Zr
. (7.195)

There is no ambiguity here, since the operator ∇2−eh is negative definite
and has no zero modes (non-singular, bounded eigenfunctions with zero
eigenvalue).
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Let us now divide up the integral (7.180) as

T =
1
2

∫

R2−D
(4∂z η̄∂z̄η+ ehη̄η) d2x+

1
2

∫

D
(4∂z η̄∂z̄η+ ehη̄η) d2x , (7.196)

where D is a union of non-overlapping discs Dr centred at Zr, of radius ε.
We can neglect the second integral in the limit ε → 0. The first integral
we can reexpress as

T = 2
∫

R2−D
∂z(η̄∂z̄η) d2x − 1

2

∫

R2−D
η̄(∇2 − eh)η d2x

= 2
∫

R2−D
∂z (η̄∂z̄η) d2x (7.197)

using (7.186). This can be turned into a sum of line integrals along the
boundary of D using the following integral identity. Let S be a domain in
the plane with boundary ∂S, and f(z, z̄) a differentiable function. Then

∫

S
∂zf d2x =

i

2

∫

∂S
f dz̄ . (7.198)

This is a consequence of the more familiar identity
∫

S

∂f

∂xj
d2x =

∫

∂S
f nj dl (7.199)

where n is the outward normal on ∂S, and the observation that (n1 −
in2)dl = idz̄ on ∂S. Using (7.198), we obtain

T = −i
N∑

r=1

∫

Cr

η̄∂z̄η dz̄ (7.200)

where Cr is the boundary of the disc Dr (taken anticlockwise). There is
no contribution from the circle at infinity as η decays exponentially fast
as |x| → ∞. This is a localized expression for T , but not our final one.

Let us now expand h around the point Zr, say. The expansion has the
form

h(z, z̄) = 2 log |z − Zr| + ar +
1
2
b̄r(z − Zr) +

1
2
br(z̄ − Z̄r) + c̄r(z − Zr)2

+ dr(z − Zr)(z̄ − Z̄r) + cr(z̄ − Z̄r)2 + O(|z − Zr|3) , (7.201)

combining a log term and a convergent Taylor series, with ar and dr real
[223]. It is straightforward to verify that (7.193) is satisfied to the order
shown provided dr = −1

4 . There are no local constraints on ar, br or cr.
These coefficients are completely determined by the positions of the other
vortices, but not in an explicitly known way.



7.10 The metric on MN 209

The coefficient br (and its complex conjugate b̄r) is the most important
for us. It is twice the value of the derivative with respect to z̄ of the
regularized function h(z, z̄) − 2

∑
r log |z − Zr|, at Zr. Geometrically, it

measures the extent to which contours of h close to Zr differ from circles
centred at Zr. In fact, the contours remain circular to leading order in
their size, but the centre shifts, because of the effect of the other vortices.
More precisely, one can show starting with (7.201) that the contour of
radius ε has centre at Zr − 1

2ε
2br for small ε (see Fig. 7.15). We shall

show, shortly, that the kinetic energy T can be expressed in terms of
derivatives of br.

Fig. 7.15. Sketch showing the contours of h close to Zr. The contours remain
circular but the centre drifts from Zr due to the effect of the other vortices.

We digress briefly to derive some symmetry properties of derivatives
of ∂h

∂Zr
, and hence of br. Equation (7.194) shows that ∂h

∂Zr
is a type of

Green’s function for the operator ∇2 − eh, decaying as |z| → ∞, and
with a derivative of a delta-function as source. We temporarily use the
notation G(z; Zr) for ∂h

∂Zr
. G has a pole-type singularity at Zr, but is

smooth elsewhere. (h itself has singularities at all points Zs, but the
singular terms are independent of Zr if r ̸= s.) For r ̸= s we have
∫

G(z; Zs)(∇2 − eh)G(z; Zr) d2x = −4π
∫

G(z; Zs) ∂zδ
2(z − Zr) d2x

= 4π
∫
∂zG(z; Zs) δ2(z − Zr) d2x

= 4π ∂zG(Zr; Zs) , (7.202)

where ∂z acts on the first argument. If we integrate by parts, to make ∇2

act on G(z; Zs) we get the same result with Zr and Zs exchanged. Thus,



210 Vortices

in the earlier notation, we have the symmetry property

∂z
∂h

∂Zs

∣∣∣∣∣
z=Zr

= ∂z
∂h

∂Zr

∣∣∣∣∣
z=Zs

. (7.203)

The calculation is not valid for r = s because in (7.202) we would be
multiplying a delta-function by a function with a singularity at the same
location.

Since the operator ∇2 − eh and the basic delta-function are both real,
the complex conjugate of (7.194) is

(∇2 − eh)
∂h

∂Z̄r
= −4π∂z̄δ

2(z − Zr) , (7.204)

and a similar calculation as above leads to the second symmetry property

∂z
∂h

∂Z̄s

∣∣∣∣∣
z=Zr

= ∂z̄
∂h

∂Zr

∣∣∣∣∣
z=Zs

. (7.205)

This is valid for all r and s, because neither quantity here is singular if
r = s.

From (7.201), we evaluate that for r ̸= s

∂z
∂h

∂Zs

∣∣∣∣∣
z=Zr

= ∂z

(
∂ar

∂Zs
+

1
2
∂b̄r

∂Zs
(z − Zr) +

1
2
∂br

∂Zs
(z̄ − Z̄r) + · · ·

) ∣∣∣∣∣
z=Zr

=
1
2
∂b̄r

∂Zs
, (7.206)

and similarly

∂z
∂h

∂Zr

∣∣∣∣∣
z=Zs

=
1
2
∂b̄s

∂Zr
. (7.207)

Hence the symmetry property (7.203) implies that

∂b̄r

∂Zs
=

∂b̄s

∂Zr
(7.208)

together with the complex conjugate of this

∂br

∂Z̄s
=

∂bs

∂Z̄r
. (7.209)

We have demonstrated these results only for r ̸= s, but they are clearly
trivially valid if r = s too. The second symmetry property (7.205) implies
that

∂b̄r

∂Z̄s
=

∂bs

∂Zr
(7.210)
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and this is valid for all r, s. This completes our digression.
Now we shall obtain formulae for η̄ and ∂z̄η on Cs, and evaluate the

integral (7.200). Near Zs, we have

h = log(z − Zs) + log(z̄ − Z̄s) + as +
1
2
b̄s(z − Zs) +

1
2
bs(z̄ − Z̄s)

+ c̄s(z − Zs)2 −
1
4
(z − Zs)(z̄ − Z̄s) + cs(z̄ − Z̄s)2

+ O(|z − Zr|3) , (7.211)

so

∂h

∂Zr
= − δrs

z − Zs
+
∂as

∂Zr
+

1
2
∂b̄s

∂Zr
(z − Zs) −

1
2
b̄sδrs

+
1
2
∂bs

∂Zr
(z̄ − Z̄s) − 2c̄s(z − Zs)δrs +

1
4
(z̄ − Z̄s)δrs

+ O(|z − Zs|2) (7.212)

(no sum over s). Also

∂z̄

(
∂h

∂Zr

)
=

1
2
∂bs

∂Zr
+

1
4
δrs + O(|z − Zs|) . (7.213)

Therefore, using (7.195),

η̄ =
N∑

r=1

˙̄Zr

( −δrs

z̄ − Z̄s

)
+ O(1) =

− ˙̄Zs

z̄ − Z̄s
+ O(1) , (7.214)

and similarly,

∂z̄η =
N∑

r=1

Żr

(1
2
∂bs

∂Zr
+

1
4
δrs

)
+ O(|z − Zs|) . (7.215)

The pole term in η̄ will give a finite result when we integrate around
Cs. Combining (7.214) and (7.215) we obtain

∫

Cs

η̄∂z̄η dz̄ = 2πi ˙̄Zs

N∑

r=1

Żr

(1
2
∂bs

∂Zr
+

1
4
δrs

)
, (7.216)

using the antiholomorphic version of the residue theorem. By summing
over all the circles Cs, we find that the kinetic energy expression (7.200)
reduces to

T =
1
2
π

N∑

r,s=1

(
δrs + 2

∂bs

∂Zr

)
Żr

˙̄Zs . (7.217)
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This is our fundamental result. The symmetry relation (7.210) implies
that T is real. (In the work of Strachan and Samols, the physical reality
of T was used to argue that (7.210) had to hold. The Green’s function
argument above gives a more direct understanding.∗) From (7.217) we
read off that the metric on the N -vortex moduli space MN is

ds2 = π
N∑

r,s=1

(
δrs + 2

∂bs

∂Zr

)
dZr dZ̄s , (7.218)

so
grs̄ = π

(
δrs + 2

∂bs

∂Zr

)
. (7.219)

As promised, there are no dZr dZs or dZ̄r dZ̄s terms.
For well separated vortices, the contours of |φ| close to each zero of

φ are hardly affected by the other vortices – the effect is exponentially
small in the separation. Therefore bs and its derivatives are exponentially
small, and if we ignore their contribution completely, the kinetic energy
is

T =
1
2
π

N∑

r=1

Żr
˙̄Zr , (7.220)

and the corresponding asymptotic metric is

ds2 = π
N∑

r=1

dZr dZ̄r , (7.221)

the standard flat metric on CN multiplied by π, the mass of a vortex.
More precisely, because the vortices are indistinguishable, the asymptotic
form of the moduli space is CN/SN , with this flat metric. Asymptotically,
the geodesic motion on moduli space corresponds to each vortex having
an independent straight line motion in C at constant velocity.

An important consequence of the symmetry property (7.210) is that
the metric on MN is Kähler (a property first noted by Ruback [353]). A
Hermitian metric tensor grs̄ is Kähler if the associated 2-form

ω =
i

2

N∑

r,s=1

grs̄dZr ∧ dZ̄s (7.222)

is closed, that is, dω = 0. For the metric tensor (7.219), the Kähler 2-form
is

ω =
iπ

2

⎛

⎝
N∑

r=1

dZr ∧ dZ̄r + 2
N∑

r,s=1

∂bs

∂Zr
dZr ∧ dZ̄s

⎞

⎠ , (7.223)

∗ N. S.M. thanks H. Brezis for this wizard idea.
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so

dω = iπ
∑

r,s,t

(
∂2bs

∂Z̄t∂Zr
dZ̄t ∧ dZr ∧ dZ̄s +

∂2bs

∂Zt∂Zr
dZt ∧ dZr ∧ dZ̄s

)

= iπ
∑

r,s,t

(
∂2b̄r

∂Z̄t∂Z̄s
dZ̄t ∧ dZr ∧ dZ̄s +

∂2bs

∂Zt∂Zr
dZt ∧ dZr ∧ dZ̄s

)

= 0 , (7.224)

where we have used (7.210) to rewrite the first term, and used the sym-
metry property of second partial derivatives.

The Kähler property is intrinsically interesting. It shows that the com-
plex coordinates we are using to parametrize moduli space are natural.
It will allow certain calculations of a global nature using methods of co-
homology when we generalize to the situation of vortices on a compact
manifold.

One consequence is that there is locally a real function K on MN , such
that

br =
∂K
∂Z̄r

, (7.225)

and hence

ds2 = π
N∑

r,s=1

(

δrs + 2
∂2K

∂Zr∂Z̄s

)

dZr dZ̄s . (7.226)

The Kähler potential is

π
N∑

r=1

ZrZ̄r + 2πK . (7.227)

Both the symmetry relations (7.208) and (7.210) follow from (7.225).
Since MN is topologically trivial, K should be globally well defined. Re-
grettably, we have no formula for K in terms of other quantities that we
have been considering.

The Kähler property is also at the root of the following results. If all
the vortices are translated by the same amount, then the contours of h
translate rigidly, so the coefficients bs are unaltered. Thus

(
N∑

r=1

∂

∂Zr

)

bs =
(

N∑

r=1

∂

∂Zr

)

b̄s = 0 . (7.228)

Using (7.208) and (7.210), we deduce that

∂

∂Z̄s

(
N∑

r=1

b̄r

)

=
∂

∂Zs

(
N∑

r=1

b̄r

)

= 0 , (7.229)
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so
∑

r b̄r, and hence
∑

r br, is constant on moduli space. Since br → 0 as
the vortices separate, this constant is zero, so [363]

N∑

r=1

br = 0 . (7.230)

Similarly, by considering a rotation we find that
∑

r Z̄rbr is real [347].
The result (7.230) can be presented in the following way. If we define

the centre of mass coordinate Z = 1
N (
∑

r Zr), and define a set of relative
coordinates Wr = Zr − Z , 1 ≤ r ≤ N − 1, which are unaffected by an
overall translation, then the metric separates in the form

ds2 = Nπ dZ dZ̄ +
N−1∑

r,s=1

g̃rs̄dWr dW̄s , (7.231)

with the coefficient of dZ dZ̄ independent of the relative positions of the
vortices.

The functions br on moduli space have singularities as vortices coincide.
To calculate the nature of the singularity, suppose just two vortices are
very close, at Z1 = Z + ε and Z2 = Z − ε. Then the equation for h near
these two vortices has a solution of the form

h = 2 log |z− (Z +ε)|+2 log |z− (Z−ε)|+a+
1
2
b̄(z−Z)+

1
2
b(z̄− Z̄)+ · · ·

(7.232)
where a and b remain finite as ε → 0. We now expand around Z + ε,
writing z − (Z − ε) as 2ε+ (z − (Z + ε)). Provided |z − (Z + ε)| < |2ε|,
we can reorganize the expansion (7.232) as

h = 2 log |z − (Z + ε)| + a + 2 log |2ε| + 1
2
b̄ε+

1
2
bε̄

+
1
2ε

(z − (Z + ε)) +
1
2ε̄

(z̄ − (Z̄ + ε̄))

+
1
2
b̄(z − (Z + ε)) +

1
2
b(z̄ − (Z̄ + ε̄)) + · · · . (7.233)

We see that
b1 =

1
ε̄

+ b (7.234)

as ε gets small. A similar expansion around Z−ε implies that b2 = −1
ε̄ +b.

Thus the coefficients b1 and b2 develop pole-type singularities as vortices
1 and 2 approach each other. b1 + b2 has no pole, consistent with the
general property

∑
r br = 0. If a number of vortices cluster together,

then the corresponding coefficients br all develop poles, whose strengths
depend on the relative configuration of the cluster.
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7.11 Two-vortex scattering

The metric on M2 is rather simple, as a result of translational and rota-
tional symmetry. Let the two vortices have locations Z + W and Z −W .
The centre of mass motion decouples, and the metric has the form

ds2 = 2πdZ dZ̄ + f2(W, W̄ ) dW dW̄ , (7.235)

where, by rotational invariance, f depends only on |W |. In polar coordi-
nates ρ, θ, with W = ρeiθ, the metric is

ds2 = 2πdZ dZ̄ + f2(ρ)(dρ2 + ρ2dθ2) . (7.236)

For the rest of this section we shall only discuss centred vortices, whose
reduced moduli space M0

2 is the circularly symmetric surface with metric

ds2 = f2(ρ)(dρ2 + ρ2dθ2) . (7.237)

We can express f in terms of the coefficients b1 and b2 that occur in
the expansion of h around the vortex locations. Rotation and reflection
symmetry imply that b1 = b(ρ)eiθ and b2 = −b(ρ)eiθ, where b(ρ) is real.
The general formula (7.218) for the metric then implies that

f2(ρ) = 2π
(

1 +
1
ρ

d

dρ
(ρb(ρ))

)
. (7.238)

By solving the equation for h numerically, Samols [363] calculated b(ρ),
and hence f2(ρ). The result is shown in Fig. 7.16.

As expected, b(ρ) decays exponentially as ρ → ∞, so f2 → 2π. For
small ρ, b(ρ) has the form b(ρ) ∼ 1

ρ − 1
2ρ + αρ3 + · · ·, so f2(ρ) ∼ 8παρ2.

Recall that the vortices are unordered, and that replacing W = ρeiθ by
W = ρei(θ+π) just exchanges them. The range of θ is therefore 0 ≤ θ ≤ π,
with θ = 0 and θ = π identified. Recall also that the polynomial p(z)
associated with a pair of vortices at W and −W is

p(z) = (z − W )(z + W ) = z2 − W 2 , (7.239)

so w = W 2 is a good complex coordinate on the reduced moduli space.
Since w = ρ2e2iθ we expect ρ2 and 2θ to be “good” polar coordinates on
the moduli space (with ranges ρ2 ≥ 0, 0 ≤ 2θ ≤ 2π). A smooth metric
should therefore have the structure, for small ρ,

ds2 = γ(d(ρ2)2 + (ρ2)2 d(2θ)2) = 4γρ2(dρ2 + ρ2dθ2) . (7.240)

But this is exactly what we have found, with γ = 2πα.
M0

2 can be isometrically embedded in R3 as a surface of revolution
(since d(log f)/d(log ρ) ≤ 1, and therefore the circumference of the circles
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Fig. 7.16. The function b(ρ), used in the computation of the two-vortex metric,
and the metric coefficient f2(ρ).
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ρ = const does not grow too rapidly with ρ). A metrically correct sketch
of the surface is shown in Fig. 7.17. As ρ→ ∞, the metric becomes flat,
up to exponentially small corrections. M0

2 is asymptotically a plane with
opposite points (ρ, θ) and (ρ, θ+π) identified, and is therefore a smoothed
cone of half-opening angle 30◦.

Fig. 7.17. A representation of (part of) the manifold M0
2 as a surface of revo-

lution isometrically embedded in R3.

The leading exponentially small correction for large ρ has been cal-
culated, by directly studying the equation (7.151) for h with two well
separated sources [295]. One finds that

b(ρ) ∼ A2
s

2π2
K1(2ρ) (7.241)

where As is the constant introduced in Section 7.6, whose numerical value
is 10.6, and K1 is the modified Bessel function. It follows that

f2(ρ) ∼ 2π
(

1 − A2
s

π2
K0(2ρ)

)

. (7.242)

The result can also be understood using the model mentioned in Section
7.6, where the vortices are point-like and carry a scalar charge and a
magnetic dipole moment. Two such objects in relative motion interact,
because the scalar and magnetic interactions have a different dependence
on velocity and do not exactly cancel. From the effective Lagrangian for
the vortices, which is purely kinetic, one can extract the metric on the
moduli space for two well separated vortices. We shall explain in detail
in Section 8.12 how a similar analysis for BPS monopoles allows one to
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calculate the asymptotic form of the metric on the N -monopole moduli
space.

Samols made an interesting observation about the global geometry of
the moduli space M0

2. Clearly, the rounded cone has smaller area than
the flat cone which it approaches asymptotically. The two metrics are
ds2 = f2(ρ)(dρ2 + ρ2dθ2) and ds2 = 2π(dρ2 + ρ2dθ2), with ρ ≥ 0, 0 ≤
θ ≤ π. The difference in area is [363]

π
∫ ∞

0
(2π − f2(ρ))ρ dρ = −2π2

∫ ∞

0

d

dρ
(ρb(ρ)) dρ = −2π2[ρb(ρ)]∞0 = 2π2 .

(7.243)
The possibility of giving a precise value for this stems from the Kähler
property of the metric.

Geodesics on the moduli space can easily be found. Geodesic motion
conserves energy

E =
1
2
f2(ρ)(ρ̇2 + ρ2θ̇2) (7.244)

and angular momentum
ℓ = f2(ρ)ρ2θ̇ . (7.245)

For given ℓ, the radial motion is determined by solving

dρ

dt
=

1
f(ρ)

√

2E − ℓ2

f(ρ)2ρ2
. (7.246)

ρ decreases from infinity to the finite value given by f(ρ)ρ = ℓ/
√

2E and
then increases to infinity again. Knowing the radial motion, the angular
motion follows by solving

dθ

dt
=

ℓ

f2(ρ)ρ2
. (7.247)

Some geodesics are shown using Cartesian coordinates (x1 = ρ cos θ, x2 =
ρ sin θ) in Fig. 7.18. The time dependence is not indicated here, and the
motion is not at a constant speed in these coordinates, except asymptot-
ically. Each geodesic (ρ(t), θ(t)) gives the time dependent position of one
vortex, and the second vortex is at (ρ(t), θ(t) + π). Therefore Fig. 7.18
shows the actual trajectories of the vortices in the plane. Because this
is geodesic motion, we can change the relative speed of the vortices, but
the trajectories are unaffected while the geodesic approximation remains
valid. Notice that the vortices always repel each other. This is a purely
geometrical effect related to their motion – there is no repulsive potential
at critical coupling.

There is right-angle scattering in head-on collisions, as anticipated ear-
lier. It is a clear consequence of the rounded cone structure of the moduli
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Fig. 7.18. The trajectories of the zeros of the Higgs field for several two-vortex
scatterings with non-zero impact parameter.

space [374]. One type of geodesic goes straight through the apex of the
cone. The incoming part of the geodesic is at a fixed angle θ = θ0, and
the outgoing part is at θ = θ0 + π

2 , because going right round the cone
corresponds to increasing θ by π. This jump in angle on moduli space
corresponds to right-angle scattering of the vortices in the plane.

The detailed geometrical structure of the moduli spaces MN , for N > 2,
is little understood. However, we know that the centre of mass decouples,
and that the moduli space is asymptotically CN/SN , where SN is the
permutation group, and CN has its flat metric. The leading exponentially
small corrections to the flat metric are given in ref. [295]. It is likely
that the geodesic motion always makes the vortex trajectories repel each
other. A consequence would be that there are no closed, or even bounded,
geodesics on MN . This is definitely the case on M2, because a bounded
geodesic can only occur if f(ρ)ρ has the same value for two different values
of ρ, and the numerical evidence rules this out.

In MN there is a geodesic submanifold consisting of centred N -vortex
configurations with CN symmetry, where CN is the cyclic group of ro-
tations by multiples of 2π/N . This is a surface of revolution, which is
asymptotically a cone of half-opening angle sin−1

(
1
N

)
. The simplest
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geodesic, which passes through the apex, represents the π/N scattering
of N vortices that we discussed in Section 7.7.1.

7.12 First order dynamics near critical coupling

We turn now to the first order, Schrödinger-Chern-Simons model, intro-
duced in Section 7.7.3, show that it has vortices, and discuss how, close to
critical coupling, the vortex motion can be modelled by motion on moduli
space [287]. Let us set the transport current JT

i to zero, and first seek
static solutions of the field equations. Setting time derivatives to zero,
and a0 = 0, we see that the field equations (7.123) and (7.124) reduce to
the static equations of GL theory, which have circularly symmetric vortex
solutions for all λ. However, these solutions do not generally satisfy the
third field equation (7.125), and the resolution of this paradox is that a0

is non-zero, and there is a radial electric field accompanying the vortex.
The electric field is absent if we make the special choice of parameters

µ = γ and λ = 1. Then, static N -vortex solutions of the Bogomolny
equations

(D1 + iD2)φ = 0 (7.248)

B − 1
2
(1 − φ̄φ) = 0 (7.249)

satisfy (7.123) and (7.124), and remarkably, the second Bogomolny equa-
tion coincides with Gauss’ law (7.125), so we have a solution of the com-
plete system of equations, for vortices at arbitrary locations. (Note that
this works only because of the term γa0 in the Lagrangian which leads to
the term γ in (7.125).)

Horváthy and collaborators noted a neat extension of this, for λ =
(2γµ − γ2)/µ2 and γ/µ in the range where λ is positive [175]. There
is a modified set of Bogomolny equations, including a non-zero a0, and
stationary N -vortex solutions.

From now on, we assume that µ = γ and that λ is close to, but not
necessarily equal to 1. We assume that the field is an N -vortex solu-
tion of the Bogomolny equations, with time dependent vortex locations
{Z1(t), . . . , ZN (t)}. Gauss’ law is satisfied. There is a reduced Lagrangian
on the moduli space MN , obtained from the kinetic and potential terms
of the Schrödinger-Chern-Simons Lagrangian, and this determines the
motion of the vortices.

The residual potential term is, as earlier,

Vred =
λ− 1

8

∫
(1 − eh)2 d2x , (7.250)
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where eh = |φ|2. This is a well defined function on moduli space, smoothly
varying with the vortex locations. There is no singularity as vortices
coalesce. Unfortunately, we have little explicit information about this
potential. However, we know numerically that for two vortices, the inte-
gral (without the factor λ−1

8 ) decreases as the vortex separation increases.
More can be said about the kinetic term [287]

T = γ
∫ ( i

2
(φ̄D0φ− φD0φ) + Ba0 + e1a2 − e2a1 − a0

)
d2x . (7.251)

If we set φ = φ1 + iφ2, and integrate by parts, we find

T = −γ
∫

(φ1∂0φ2 − φ2∂0φ1 + a1∂0a2 − a2∂0a1) d2x

+γ
∫

(2B − 1 + φ2
1 + φ2

2) a0 d2x . (7.252)

For fields obeying the Bogomolny equations, the second integral vanishes,
so we need not worry about the value of a0. Remarkably, the first integral
can be calculated by a similar method as for the metric on the moduli
space. The integrand is a total derivative and the integral can be reduced
to line integrals along small circles around each vortex location Zr. The
result is a sum of terms linear in Żr and ˙̄Zr, whose coefficients depend
only on Zr and on the quantity br that occurs in the expansion of h around
Zr. In addition there is a contribution from the time derivative of a phase
χr which can be associated to each vortex. It is convenient to use real
notation here, writing Zr = X1

r + iX2
r and br = b1

r + ib2
r . Then the final

expression for the kinetic energy is

Tred = πγ
N∑

r=1

(
(X2

r + 2b2
r)Ẋ

1
r − (X1

r + 2b1
r)Ẋ

2
r

)
+ 2πγ

N∑

r=1

χ̇r . (7.253)

The last term, involving the phases, is a total time derivative, and has no
effect on the reduced equations of motion. However, its presence ensures
that Tred has no singularity as the vortices coincide, despite the pole-type
singularity of br.

The complete Lagrangian on moduli space is

Lred = Tred − Vred (7.254)

with Tred and Vred given by (7.253) and (7.250). This is of the general form
(7.169), where {y1, . . . , y2N} = {X1

1 , X2
1 , . . . , X1

N , X2
N}. The equation of

motion for the rth vortex,

d

dt

(
∂Lred

∂Ẋi
r

)

− ∂Lred

∂Xi
r

= 0 , (7.255)
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has components

2πγ
[

Ẋ1
r +

(
∂b1

r

∂X1
s

+
∂b2

s

∂X2
r

)

Ẋ1
s +

(
∂b1

r

∂X2
s
− ∂b1

s

∂X2
r

)

Ẋ2
s

]

− ∂Vred

∂X2
r

= 0 (7.256)

2πγ
[

Ẋ2
r +

(
∂b2

r

∂X2
s

+
∂b1

s

∂X1
r

)

Ẋ2
s +

(
∂b2

r

∂X1
s
− ∂b2

s

∂X1
r

)

Ẋ1
s

]

+
∂Vred

∂X1
r

= 0 , (7.257)

and is of the form (7.170).
Translational symmetry leads to a conserved momentum with compo-

nents

P1 = 2πγ
N∑

r=1

(X2
r + b2

r) , P2 = −2πγ
N∑

r=1

(X1
r + b1

r) . (7.258)

We saw earlier that
∑

r b1
r =

∑
r b2

r = 0, so the conservation of momentum
means that the naive centre of the N -vortex system

X =
1
N

N∑

r=1

Xr (7.259)

does not move. Rotational symmetry implies a conserved angular mo-
mentum

ℓ = −πγ
N∑

r=1

Xr · (Xr + 2br) . (7.260)

Since
∑

r Xr · br does not become singular as vortices coalesce, conser-
vation of ℓ implies that |Xr|2 can not become infinite. Therefore vortex
motion is bounded for this type of dynamics. It was verified in [288] that
the same conserved quantities are obtained from the field theoretic ex-
pressions (7.136), when the vortices satisfy the Bogomolny equations and
have slowly moving locations.

We have yet to show that the symplectic form underlying this first
order vortex dynamics is actually the Kähler form of the Samols metric
on moduli space. To see this, note that

πγ
N∑

r=1

(
(X2

r + 2b2
r)Ẋ

1
r − (X1

r + 2b1
r)Ẋ

2
r

)
(7.261)

can be expressed in complex form as

N∑

r=1

(ArŻr + Ar̄
˙̄Zr) , (7.262)
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where

Ar =
iπγ

2
(Z̄r + 2b̄r) , Ar̄ = − iπγ

2
(Zr + 2br) . (7.263)

These are the components of a connection on moduli space whose field
strength is the 2-form

F =
∑

r,s

(∂As̄

∂Zr
− ∂Ar

∂Z̄s

)
dZr ∧ dZ̄s

= −iπγ
∑

r,s

(
δrs + 2

∂bs

∂Zr

)
dZr ∧ dZ̄s , (7.264)

which is −2γ times the Kähler 2-form (7.223).
It is easy to understand the motion of two vortices. Suppose their

positions are X + Y and X−Y. The centre, X, is a constant of motion.
Let Y = ρ(cos θ, sin θ). Then b1 = b(ρ)(cos θ, sin θ), and b2 = −b1. Also,
χ̇1+ χ̇2 = 2θ̇. The potential depends only on ρ. The Lagrangian therefore
simplifies to

Lred = −2πγ
(
ρ2 + 2ρb(ρ)

)
θ̇ + 4πγθ̇ − Vred(ρ) . (7.265)

The term 4πγθ̇ does not affect the equations of motion, but it cancels the
singularity produced by the term b(ρ) ∼ 1

ρ for small ρ.
The equations of motion arising from (7.265) are

ρ̇ = 0 (7.266)

2πγ
d

dρ

(
ρ2 + 2ρb(ρ)

)
θ̇ = −dVred

dρ
. (7.267)

ρ is constant, and so is the angular velocity θ̇. The vortices circulate
around one another at constant separation and constant speed. If ρ is
large, θ̇ is exponentially small. If ρ is close to zero, dVred/dρ = O(ρ3),
because Vred has a stationary point at ρ = 0, and is a smooth function
of the “good” radial coordinate ρ2. The coefficient of θ̇ is O(ρ3) too.
Therefore the angular velocity approaches a finite limit as ρ → 0. If
γ > 0, and also λ > 1, so dVred/dρ is negative, then the two vortices circle
each other anticlockwise.

Symmetry implies that if there are p vortices at the vertices of a regular
p-gon and q coincident vortices at the centre, possibly with q = 0, then
the p-gon will rigidly rotate about the centre.

7.13 Global vortex dynamics

In this section we briefly discuss the dynamics of global vortices. We con-
sider first the Lorentz invariant dynamics, with the field equation second
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order in time derivatives, although the vortices do not necesarily move at
relativistic speeds. The first important issue is that of the static forces
between vortices. For gauged vortices we could determine these by exam-
ining the potential energy of two vortices as a function of their separation.
However, for global vortices even the potential energy of a single vortex
is infinite, as we showed earlier, so this issue is clearly more subtle. A
regularized energy must first be found, so that one can deal with finite
quantities. The problem has been addressed by Ovchinnikov and Sigal
in a series of papers [321], together with other aspects of global vortex
dynamics which we shall mention below. Fortunately, the divergent part
of the energy depends only on N and not on the vortex positions, so
the regularization just removes a divergent constant. Hence the forces
between the vortices are unaffected by the regularization.

As before, we fix the parameter values m = 1, λ = 2. The regularized
potential energy is defined by

Ṽ =
1
2

∫ (

∇φ̄ · ∇φ+
1
2
(1 − φ̄φ)2 − N2

ρ2
η(ρ)

)

d2x , (7.268)

where N is the topological charge of the configuration and η is a smooth
cutoff function with the properties that η(ρ) = 0 for ρ ≤ 1 and η(ρ) = 1 for
ρ ≥ 2, with a smooth interpolation in between, the details of which are not
important for the well separated vortices that we are interested in. Clearly
the purpose of the additional negative contribution to the energy is to
subtract off the divergent part. The next step is to define a configuration,
C, by specifying k points in the complex plane, {Z1, . . . , Zk}, and k non-
zero integers, {n1, . . . , nk}. These points give the positions of the vortices
(or antivortices) and the integers are the associated multiplicities (which
can be of either sign). A field φ has configuration C, and one writes
config(φ) = C, if φ has a zero of multiplicity nr at z = Zr, for 1 ≤ r ≤ k,
and has no other zeros. N = n1 + · · ·+ nk is the total topological charge.
The potential energy of a configuration, V (C), is defined as

V (C) = inf{Ṽ | config(φ) = C} . (7.269)

Physically, the energy of a configuration is the minimal regularized energy
compatible with the given positions and multiplicities of the vortices. If
the dependence of the energy V (C) on the vortex positions Zr can be
found, then we have determined the static vortex forces. It can be shown
that, for k > 1 and providing all inter-vortex separations are much greater
than 1, there are no stationary points of V (C) with respect to variations
of all the vortex positions. In other words, as expected, there are no
static well separated multi-vortex configurations. Moreover, when all the
vortices are well separated the leading order contributions to V (C) are
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given by [321]

V (C) =
k∑

r=1

Vnr − π
k∑

r,s=1
r ̸=s

nrns log |Zr − Zs| + · · · , (7.270)

where Vnr denotes the regularized energy of a single charge nr vortex.
If we consider two unit charge vortices with separation L ≫ 1 then the

above formula yields

V (L) = 2V1 − 2π log L , (7.271)

so that there is a repulsive force between two global vortices which is
inversely proportional to their separation. In the case of second order
dynamics, the vortices accelerate away from each other. For a similar
vortex-antivortex configuration the potential is

V (L) = 2V1 + 2π log L , (7.272)

so there is an attraction. The effective inertial mass of these vortices has
been calculated by Moore [305]. It is not constant but has a logarithmic
dependence on the distance to the other vortex.

These qualitative features have been confirmed by numerical simula-
tions of the field equation

∂0∂0φ−∇2φ− (1 − φ̄φ)φ = 0 , (7.273)

which indeed show a repulsion between vortices and an attraction between
a vortex and an antivortex. There are static axially symmetric multi-
vortex solutions, but these are all unstable and decay into well separated
single vortices if perturbed. Because the dynamics is second order in time
derivatives, two vortices can be set in motion toward each other with any
given speed. If this speed is low then there is not enough kinetic energy to
overcome the potential repulsion. The vortices do not collide but instead
scatter back-to-back. If the speed is increased then there is a critical
value at which the repulsion is overcome, and the two vortices scatter at
right angles in a head-on collision, as for gauged vortices. If the initial
speed is very close to the speed of light then many vortex-antivortex pairs
are produced during the collision, although these subsequently annihilate
[407, 39].

Let us now turn to the first order dynamics given by the equation

i∂0φ = −∇2φ− (1 − φ̄φ)φ . (7.274)

This is the Gross-Pitaevski, or nonlinear Schrödinger equation, modelling
the dynamics of a superfluid. The motion of well separated superfluid vor-
tices has been investigated by Fetter [130] and many others. The following
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remarks are based on more recent work of Ovchinnikov and Sigal [321],
and Colliander and Jerrard [90]. The potential V (C) is again relevant.
By substituting well separated configurations into an effective action the
dynamics can be approximated by a Hamiltonian system with the Hamil-
tonian proportional to V (C). Explicitly, the leading order contribution
to the dynamics of the vortices is given by

Żr = − 2i

πnr

∂V

∂Z̄r
(7.275)

where, of course, there is no sum on the repeated index. For a well sepa-
rated vortex-vortex configuration (n1 = n2 = 1) the equations become

Ż1 = −Ż2 = 2i
(Z1 − Z2)
|Z1 − Z2|2

, (7.276)

so the centre of vorticity 1
2(Z1 + Z2) is conserved during the dynamics.

Without loss of generality we can set this to be the origin, and then the
solution is

Z1 = −Z2 =
L

2
e4it/L2

, (7.277)

so the two vortices rotate around each other anticlockwise with period
1
2πL2 while their separation is L ≫ 1. The above Hamiltonian description
neglects the effects of radiation in the system, but this can also be studied
(though it is a much more difficult problem) and leads to the result that
the rotating pair radiate and move apart with a growth law L ∼ t1/6 [321].

For a vortex-antivortex pair (n1 = −n2 = 1) the equations are

Ż1 = Ż2 = −2i
(Z1 − Z2)
|Z1 − Z2|2

(7.278)

so this time Z1 − Z2 = L is the conserved quantity, which we may take
to be real without loss of generality. The relevant solution in this case is

Z1 =
L

2
− 2it

L
, Z2 = −L

2
− 2it

L
(7.279)

so the vortex-antivortex pair simply translate at constant speed 2/L, de-
termined by their separation L ≫ 1, and in the direction perpendicular
to the line joining them. Clearly this description must break down for
small L since the speed has a maximal value. In fact there is a critical
separation L∗ such that for L > L∗ there is a travelling wave solution
which describes a vortex-antivortex pair moving parallel to each other,
whereas for L ≤ L∗ an initialized vortex-antivortex pair emits a shock
wave and eventually annihilates [228, 321].
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Similar results are found for the gradient flow, controlled by the equa-
tion

∂0φ = ∇2φ+ (1 − φ̄φ)φ . (7.280)

This has been studied by Neu [317] and E [117]; and more recently by
Lin [266] and Jerrard and Soner [227]. Vortices now repel, and a vortex-
antivortex pair attract. The equations of motion for well separated vor-
tices or antivortices are the gradient flow equations for the regularized
potential V (C).

There are many other interesting mathematical results on global vor-
tices and their dynamics, particularly in cases of extreme parameter val-
ues. We refer the interested reader to the book by Bethuel, Brezis and
Hélein [51] and the papers by Jerrard and collaborators.

7.14 Varying the geometry

We have so far considered several aspects of gauged vortex dynamics in
the plane. However, there are a number of reasons for being interested in
non-planar geometries. A thin superconductor may be formed in a non-
planar shape. Alternatively, we may be interested in vortices in the plane
at a certain density. This can be achieved by imposing periodic boundary
conditions in the plane – giving a torus – and specifying a finite number of
vortices on the torus. There are some novel results for critically coupled
vortices on a general, compact Riemann surface, X, without boundary.
First, the number of vortices that may satisfy the Bogomolny equations
is constrained by the area of the surface. Second, the moduli space is
compact, and its total volume can be calculated. Making certain approx-
imations, we can use the result to consider the statistical mechanics of a
fluid of vortices by taking the limit, as N, A → ∞, of the dynamics of N
vortices on a surface of area A. Finally, it is mathematically interesting
to consider vortices on the hyperbolic plane of curvature −1

2 . Here the
Bogomolny equations for critically coupled vortices reduce to Liouville’s
equation, which is solvable in terms of rational functions.

To discuss vortices on a compact surface X, we need to use the for-
malism introduced in Section 3.4, where the scalar field is a section and
the gauge field a connection on a U(1) bundle over the surface X. The
scalar field φ is locally a complex function on X, and the gauge potential
components ai are combined into a connection 1-form a = a1dx1 +a2 dx2.
The spatial part of the field tensor, the magnetic field, is the 2-form
f = da = (∂1a2 − ∂2a1) dx1 ∧ dx2. The first Chern number

c1 =
1
2π

∫

X
f (7.281)
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takes an integer value N , and is the only topological invariant of the
bundle. It can be demonstrated that the number of zeros of φ, counted
with multiplicity, equals N . So the first Chern number is the net number
of vortices minus antivortices.

We also need a Riemannian metric on X. Locally, we can choose co-
ordinates (x1, x2) which are “isothermal”, meaning that the metric is the
flat metric times a conformal factor Ω(x1, x2). Space-time is R×X, with
metric

ds2 = dt2 − Ω(x1, x2)((dx1)2 + (dx2)2) . (7.282)

The Lagrangian for scalar electrodynamics on X is

L =
∫

X

(
−1

4
fµνf

µν +
1
2
DµφDµφ− λ

8
(1 − φ̄φ)2

)
Ω d2x . (7.283)

The same patches {Up} and transition functions {e−iα(qp)} on X can be
used as in the static theory. φ and ai are defined on these patches as
before, and a0 is a global function. The Lagrangian is then globally well
defined and gauge invariant. As usual, it can be split into kinetic and
potential terms, L = T − V . For the metric (7.282),

T =
1
2

∫

X

(
e2
1 + e2

2 + ΩD0φD0φ
)

d2x (7.284)

V =
1
2

∫

X

(
Ω−1B2 + D1φD1φ+ D2φD2φ+

λΩ
4

(1 − φ̄φ)2
)

d2x ,

(7.285)
where B, as usual, denotes f12.

We may apply the Bogomolny argument to V at critical coupling, λ = 1,
obtaining

V =
1
2

∫

X

{
Ω−1

(
B − Ω

2
(1 − φ̄φ)

)2

+
(
D1φ− iD2φ

)(
D1φ+ iD2φ

)
+ B

}
d2x . (7.286)

Thus, if N > 0, we have the usual bound

V ≥ πN , (7.287)

with equality for fields satisfying the Bogomolny equations [363]

D1φ+ iD2φ = 0 (7.288)

B − Ω
2

(1 − φ̄φ) = 0 . (7.289)

As before, one may reduce these to a single gauge invariant equation by
setting φ = e

1
2h+iχ. Here χ depends on the choice of gauge within each
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patch, and will vary discontinuously from patch to patch. Nevertheless,
after eliminating a1 and a2 using (7.288), one obtains

∇2h + Ω − Ωeh = 0 (7.290)

where ∇2 is the standard Laplacian. As in the plane, this equation is only
valid away from the zeros of φ. The zeros of φ, which all have positive
multiplicity, are delta-function sources for h, and the full equation for h
is

∇2h + Ω − Ωeh = 4π
N∑

r=1

δ2(x − Xr) . (7.291)

A simple, but astute observation was made by Bradlow [67] concerning
these equations. Integrating (7.289) over X, one obtains

2
∫

X
B d2x +

∫

X
|φ|2Ω d2x =

∫

X
Ω d2x . (7.292)

Therefore
4πN +

∫

X
|φ|2Ω d2x = A , (7.293)

where A is the total area of X, since Ω d2x is the area element. From this
follows Bradlow’s inequality

A ≥ 4πN (7.294)

since |φ|2 is non-negative. For a given number of vortices N , there can
be no solutions of the Bogomolny equations unless the area of X is at
least 4πN . Equivalently, for a surface of given area A, the number of
Bogomolny vortices can not exceed the integer part of A/4π. The same
bound emerges from (7.291) by integrating over X.

If A > 4πN , there is no simple way to solve (7.291) for a general surface.
However, at the Bradlow bound A = 4πN , one may solve both Bogomolny
equations. Note from (7.293) that in this case φ = 0 on all of X (so it
doesn’t make sense to introduce h). Equation (7.288) is trivially solved,
and from (7.289), B = Ω

2 , implying that the magnetic flux per unit area
has the constant value 1

2 . Implicitly, the gauge potential is determined
by this, up to a choice of gauge. (There is some choice for the holonomy
around non-contractible loops if π1(X) is non-trivial.)

Close to the Bradlow bound, with A slightly larger than 4πN , the
magnetic field is approximately B = Ω

2 , and this again determines the
gauge potential. Equation (7.288) is then a linear equation for φ, the
same as that which defines the lowest Landau level of electron states in
a background magnetic field. The normalization of φ is determined by
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(7.293). So we see that in this case the moduli of the vortices are very
closely related to the parameters of Landau level states.

In general, the solutions of (7.291) on a compact surface X have rather
similar properties to those on the plane. It is convenient to use the lo-
cal complex coordinate z = x1 + ix2. One may specify any N points
{Z1, . . . , ZN} on the surface as the vortex locations, and then (for A >
4πN) there is a unique solution to (7.291). This was established by Brad-
low [67] and also by Garćıa-Prada [142]. h has an expansion of the
form (7.201) in the neighbourhood of the point Zr, with leading term
h ∼ 2 log |z − Zr|. The modification from the flat space case is that
dr = −1

4Ω(Zr). MN , the N -vortex moduli space, is XN/SN , the sym-
metrized Nth power of X. As in the planar case, this has a smooth
manifold structure, even though the orbits of SN are not all of the same
type. Samols calculated that the metric on MN is

ds2 = π
N∑

r,s=1

(
Ω(Zr)δrs + 2

∂bs

∂Zr

)
dZr dZ̄s . (7.295)

This is again Kähler.
The simplest example is where X is a 2-sphere. The 2-sphere may

be identified with the complex projective line CP1, the complex plane C
together with a point at infinity. The points {Z1, . . . , ZN} may then be
identified with the roots of a polynomial

p(z) = p0z
N + p1z

N−1 + · · · + pN , (7.296)

where the only constraint on the coefficients is that they are not all zero.
Generically p0 ̸= 0, and this polynomial has N finite roots. However, if the
leading non-zero coefficient is pn, then there are N−n finite roots, and we
interpret the polynomial as having a root of multiplicity n at infinity. So in
all cases there are N roots, giving N unordered points on CP1. Note that
multiplying the entire polynomial by a non-zero complex constant does
not change the roots. So the moduli are the N+1 coefficients {p0, . . . , pN}
modulo multiplication by such a constant. The moduli space is therefore
CPN , and we have shown explicitly that

(CP1)N/SN = CPN . (7.297)

For a surface X of higher genus g, there is also a geometrical description
of XN/SN [270]. This is simplest if N > g. Then XN/SN is a CPN−g

bundle over the Jacobian of X, which is a complex g-torus Tg. The
projection from XN/SN to Tg is the standard Abel-Jacobi map obtained
by integrating the g independent, holomorphic 1-forms on X from a base
point Z0 to each of the points Zr and summing over r. For N ≤ g,
XN/SN is a complex submanifold of Tg.
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7.14.1 Volume of moduli space

Here, we show that for Bogomolny vortices on a compact surface X, the
total volume of the moduli space MN = XN/SN can be calculated, even
though the metric is not known explicitly [289].

The metric on MN is as given by the formula (7.295). If the second
term were absent, it would be

ds2 = π
N∑

r=1

Ω(Zr)dZr dZ̄r (7.298)

which is π times the naive metric on XN/SN , determined by the given
metric on X. The total volume would be πNAN/N !, where A is the area of
X. However, this naive metric has conical singularities when two or more
vortex positions coincide. Recall now the area deficit of the moduli space
of two centred vortices in the plane, given by (7.243). Compared to the
naive conical metric, the true metric has area 2π2 less. This calculation
suggests that one may be able to calculate the exact volume of MN , a
volume likely to be less than πNAN/N !.

The starting point of the volume calculation is the Kähler 2-form asso-
ciated with the metric (7.295),

ω =
iπ

2

N∑

r,s=1

(
Ω(Zr)δrs + 2

∂bs

∂Zr

)
dZr ∧ dZ̄s . (7.299)

The volume form on moduli space is ωN/N !, so the total volume is

Vol(MN ) =
∫

MN

ωN

N !
. (7.300)

This is because, on any Kähler manifold of complex dimension N , there
are local, complex, normal coordinates w1, . . . , wN such that the metric is∑

r dwrdw̄r and the Kähler form is ω = i
2

∑
r dwr∧dw̄r. The local volume

element is then
∏

r(
i
2dwr ∧ dw̄r) = ωN/N !. Similarly, the integral of ω

over any complex curve in MN (but not an arbitrary real 2-surface) is its
area.

Since ω is a closed 2-form, we can use the homology ring structure of
MN to express Vol(MN ) in terms of [ω], where [ω] denotes the integral
of ω over the one or more generating 2-cycles of the homology ring. If
such a cycle is represented by a complex curve, then [ω] is its area.

The easiest case where a calculation of the volume is possible is for
the moduli space of N vortices on a standard 2-sphere of radius R, with
conformal factor Ω = 4R2/(1 + |z|2)2 and area A = 4πR2 [285]. When
X = S2, then MN = CPN , and the homology of CPN is generated by
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a single 2-cycle, which may be taken to be any complex line in CPN . A
complex line arises if the coordinates {p0, . . . , pN} depend linearly on a
CP1 parameter t, for example, p0, . . . , pN−1 fixed, and pN = t.

Now consider the 2-cycle in CPN corresponding to all vortices being
coincident at a variable point t. The associated polynomial is

p(z) = (z − t)N = zN − NtzN−1 + · · · + (−1)N tN . (7.301)

The coefficients depend on t as p0 = 1, p1 = −Nt, . . . , pN = (−1)N tN ,
so this cycle is homologically N times the generating line. To see this,
consider its intersection with an (N − 1)-dimensional hyperplane of the
form

c0p0 + · · · + cNpN = 0 (7.302)

(for some constants c0, . . . , cN ). The intersection gives the equation for t

c0 − c1(Nt) + · · · + cN (−1)N tN = 0 (7.303)

which has N solutions. This number of intersection points is the same
as for N copies of a generating line, each of which would intersect the
hyperplane once.

The restriction of the Kähler metric to this 2-cycle where all vortices
are coincident is of the form

ds2 = Nπ
(

Ω(t) + 2
∂b

∂t

)
dt dt̄ . (7.304)

b is the coefficient in the expansion of h,

h = 2N log |z − t| + a +
1
2
b̄(z − t) +

1
2
b(z̄ − t̄) + · · · , (7.305)

where it is assumed that all zeros of φ are at z = t. We can now calculate
the area of this 2-cycle because we can evaluate the dependence of b on t
explicitly.

Recall the interpretation of b in terms of the contours of h close to t.
In general, these are approximately circles, and the circle in the z-plane
of radius ε is centred at t− 1

2N ε
2b, to this order in ε. Now the symmetry

helps. On a sphere of radius R, the square of the chordal distance between
z and t is

4R2|z − t|2

(1 + |z|2)(1 + |t|2) , (7.306)

and for given t, h can only depend on this. Therefore, the contours of h
in the z-plane are given by the equation

|z − t|2

(1 + |z|2) = const , (7.307)



7.14 Varying the geometry 233

so are all exactly circular. The circle of radius ε has centre t+ε2t/(1+|t|2)
so b = −2Nt/(1 + |t|2). It follows that

∂b

∂t
= − 2N

(1 + |t|2)2 . (7.308)

Therefore the metric (7.304) on the 2-cycle of N coincident vortices is

ds2 = N
(

1 − N

R2

) 4πR2

(1 + |t|2)2 dt dt̄ . (7.309)

This is a simple multiple of the metric of the underlying 2-sphere, as it
must be, by symmetry. The area of this 2-cycle in MN , obtained by
integrating over the t-plane, is

4π2R2N
(

1 − N

R2

)
. (7.310)

The generating 2-cycle of MN therefore has area

[ω] = 4π2R2
(

1 − N

R2

)
= π(A − 4πN) , (7.311)

so the total volume of moduli space is

Vol(MN ) =
[ω]N

N !
=
πN (A − 4πN)N

N !
. (7.312)

Note that this vanishes at the Bradlow limit.
For one vortex, the volume is π(A−4π). This is less than πA, because of

the factor (1 − 1
R2 ) from (7.309) which can be interpreted as a curvature

effect reducing the inertia of a vortex. For N vortices, the volume is
not only less than πNAN/N !, but it is less than πN (A − 4π)N/N !. The
interpretation is that each vortex occupies a finite area, reducing the space
available to other vortices.

To generalize this result to vortices on a Riemann surface X of genus g,
with an arbitrary metric, one needs to understand the cohomology ring
of MN = XN/SN . Macdonald has given a presentation of the 2-cocycles
which are generators of the integral cohomology ring, and their product
relations [270]. In [289] it has been shown that the cohomology class of
the Kähler 2-form ω is the real linear combination

π (4πσ + (A − 4πN)η) (7.313)

where σ and η are integer cohomology classes directly related to the topo-
logical fibration of XN/SN with the Jacobian Tg of X as base and the
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complex projective space CPN−g as fibre. Hence [ω] is known for any 2-
cycle, and consequently the volume form ωN/N ! can be integrated using
Macdonald’s algebraic formulae to give

Vol(MN ) = πN
g∑

j=0

(4π)j(A − 4πN)N−jg!
j!(N − j)!(g − j)!

(7.314)

for N ≥ g. For N < g one should retain the terms in the sum up to j = N .
Thus the volume of moduli space depends only on the vortex number, the
area of the surface X and the genus of X, but not on the detailed structure
of the metric on X. In particular, (7.312) is the volume of MN for N
vortices on any surface of area A that is topologically a sphere.

Note that for N > g, the volume always tends to zero in the Bradlow
limit A → 4πN . This is consistent with what happens to the fields. Close
to the Bradlow limit, B is approximately constant, and φ is small. Thus
as the vortices move around, the magnetic field hardly changes, and the
scalar field changes only a little. There is little kinetic energy associated
with this. Nasir has checked, using the explicit metric close to the Bradlow
limit, that the leading term

Vol(MN ) =
22gπN+g(A − 4πN)N−g

(N − g)!
(7.315)

gives the correct moduli space volume to leading order in A− 4πN [316].
However, even at the Bradlow limit, the holonomy of the connection
around non-contractible loops can change significantly, and this is why
the volume of moduli space remains finite if N ≤ g.

7.14.2 Toroidal geometry – the Abrikosov lattice

A physically interesting surface on which to study vortices is the torus T
with a flat metric. Any solution we find can be interpreted as a spatially
periodic solution in the plane. We define the torus as a parallelogram with
opposite sides identified, of sides u, v and internal angle β as sketched in
Fig. 7.19.

The fields need to be periodic only up to a gauge transformation. One
may choose a gauge so that the periodicity conditions are

φ(x1 + u, x2) = φ(x1, x2) (7.316)

φ(x1 + v cosβ, x2 + v sinβ) = φ(x1, x2)e−2πiNx1/u (7.317)
ai(x1 + u, x2) = ai(x1, x2) (7.318)

ai(x1 + v cosβ, x2 + v sinβ) = ai(x1, x2) − 2πN

u
δi1 , (7.319)
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Fig. 7.19. The fundamental parallelogram of the torus.

and such fields have first Chern number c1 = N , because, using Stokes’
theorem, one can check that

∫

T
f12 d2x = 2πN . (7.320)

Provided the Bradlow condition uv sinβ > 4πN is satisfied, there is a
moduli space of solutions to the Bogomolny equations, a manifold of the
form MN = TN/SN , with local coordinates the zeros of φ, as usual.

When N = 1, the moduli space metric is

ds2 = π dZ dZ̄ , (7.321)

proportional to the metric on the underlying torus. This is a consequence
of reflection symmetries, which require b, the coefficient of the linear term
in the expansion of h, to vanish.

Generally, for N vortices on a torus, we find using (7.314) that the
volume of the moduli space is [373, 289]

Vol(MN ) =
πN (A − 4πN)N−1A

N !
. (7.322)

In particular, Vol(M1) = πA, in agreement with (7.321).
Special shapes of tori have more than reflection symmetry. For example

if u = v and β = π/2, the torus has square geometry, and if u = v
and β = π/3, it has hexagonal geometry. In both these cases, one may
consider solutions of the full second order static GL equations, for λ > 1,
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with one vortex on the torus. These solutions give the Abrikosov lattices
of vortices in Type II superconductors [6], with the density of vortices,
and hence of magnetic flux, fixed by the length unit u. (The analogous
solutions for λ < 1 give unstable lattices, since the vortices in the plane
tend to coalesce.) It is of interest to know for which geometry the energy
is minimized, given the density of vortices. It has been shown that a
hexagonal lattice of vortices, with lattice spacing u, has lower energy
than a square lattice of vortices with lattice spacing (3

4)1/4u (and hence
the same density) [238]. So if a large number of vortices penetrate a
region of given area A, they tend to form a hexagonal lattice. This is
verified experimentally by placing a sample of Type II superconductor in
an external magnetic field.

7.14.3 Vortices on the hyperbolic plane

An interesting, integrable case of vortices on a non-compact surface occurs
when X is the hyperbolic plane of curvature −1

2 . This was studied by
Strachan, who found a general formula for the metric on the N -vortex
moduli space, and showed that the metric was Kähler (an early result of
this kind) [384].

In the Poincaré disc model, the metric of the hyperbolic plane is

ds2 =
8

(1 − |z|2)2 dz dz̄ (7.323)

where |z| < 1. If we set h = 2g + 2 log 1
2(1 − |z|2), the equation (7.291)

for h becomes

∇2g − e2g = 2π
N∑

r=1

δ2(z − Zr) . (7.324)

This is Liouville’s equation with sources, which can be solved exactly.
The solution is

g = − log
1
2
(1 − |f |2) +

1
2

log
∣∣∣∣
df

dz

∣∣∣∣
2

, (7.325)

where f(z) is an arbitrary, complex analytic function. From this we can
reconstruct the scalar field, finding that

|φ| =
1 − |z|2

1 − |f |2

∣∣∣∣
df

dz

∣∣∣∣ . (7.326)

A simple choice of phase is to set

φ =
1 − |z|2

1 − |f |2
df

dz
. (7.327)
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Then the first Bogomolny equation, Dz̄φ = 0, is satisfied if

az̄ = −i∂z̄ log
(

1 − |z|2

1 − |f |2

)

. (7.328)

The vortex locations {Zr} are the points where df
dz , and hence φ, vanishes.

We still need to ensure that |φ| = 1 on the boundary of the disc, the
circle |z| = 1, and that φ has no singularities inside the disc. This requires
that |f | = 1 on the boundary, and |f | < 1 inside. These constraints are
satisfied by choosing f to be a Blaschke product of the form

f(z) =
N+1∏

i=1

(
z − ci

1 − c̄iz

)
(7.329)

where |ci| < 1 ∀i. Each factor in this product has magnitude less than
1 inside the unit disc, magnitude 1 on the boundary, and its phase is
strictly increasing along the boundary. It follows that f has the same
three properties. Therefore |φ| has no singularity in the unit disc, and
it follows fairly easily from (7.327) that because df

dz is non-zero on the
boundary, |φ| = 1 there, and the radial derivative of |φ| vanishes too.

It should be noted that this solution does not depend on N +1 complex
parameters, but only on N , because there is a 1-parameter family of
Möbius transformations of f that only produce a gauge transformation
of φ, and leave the zeros of φ fixed.

A simple example of a solution is that representing N coincident vor-
tices at z = 0. Set ci = 0 ∀i, so f = zN+1. Then

φ =
(N + 1)zN

|z|2N + |z|2N−2 + · · · + 1
(7.330)

which clearly has an N -fold zero at the origin, satisfies the boundary con-
dition, and has winding number N along the boundary. Any deformation
of this solution will also have winding number N , and hence N vortices,
provided no parameter ci crosses the unit circle.

Since the solutions are fairly explicit, one may hope to calculate the
metric on moduli space explicitly. This is algebraically complicated for
vortex numbers greater than two, because one needs the expansion of h
around the vortex zeros, and these are only implicitly given as the zeros
of df

dz . However, calculations have been done for centred 2-vortices, and
geodesics representing vortex scattering have been found, analogous to
those shown in Fig. 7.18.

We shall indicate here how the metric on the moduli space M1 is cal-
culated. Take the Blaschke function

f(z) =
(

z − Z

1 − Z̄z

)2

(7.331)
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with Z inside the unit disc. This has a double zero at Z, so df
dz has a

simple zero, and therefore there is one vortex at Z. h has an expansion
of the type (7.201) about Z, with b = 2Z/(1 − |Z|2). Using (7.295) we
find that the metric is

ds2 =
12π

(1 − |Z|2)2 dZ dZ̄ , (7.332)

just a multiple of the metric on the underlying surface. The effective
inertial mass of the vortex is 3

2π, whereas its potential energy (analogous
to its rest mass) is π as usual.

It is possible to consider one vortex on the hyperbolic plane with metric

ds2 =
4R2

(1 − |z|2)2 dz dz̄ (7.333)

and hence curvature − 1
R2 . The metric on the moduli space M1 can

be computed by a symmetry argument, even though φ is not explicitly
known, and is found to be [363]

ds2 =
(

1 +
1

R2

) 4πR2

(1 − |Z|2)2 dZ dZ̄ . (7.334)

This is consistent with the result (7.332) for R =
√

2, and also with the
analogous result for a vortex on a sphere.

There is a close connection between vortices on the hyperbolic plane of
curvature −1

2 and Yang-Mills instantons with SO(3) cylindrical symme-
try. This will be clarified in Section 10.1.

7.15 Statistical mechanics of vortices

Consider N vortices at critical coupling on a compact surface X of area
A, with the second order dynamics, and suppose the system is raised to
a temperature T high enough to allow the vortices to move around, but
not high enough to excite the field modes orthogonal to the moduli space
MN [285]. The effective dynamical system is free, geodesic motion on
the moduli space. Since there is a mass gap in the theory, with both
the gauge and scalar fields having mass 1, the temperature range we are
talking about is 0 < T ≪ 1. Suppose further that we can use classical
statistical mechanics. This is valid if the temperature is much greater
than a typical quantum energy. For a vortex of mass π on a surface
of typical length dimension

√
A, energy quanta are ∼ h̄2

A , so we require
T ≫ h̄2

A , where h̄ is Planck’s constant (in appropriate units).
In classical statistical mechanics one uses the Gibbs distribution on

phase space. For free motion on MN , the phase space is the cotangent
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bundle of MN , with {yi} real coordinates on MN and {pi} the conjugate
momenta. The partition function is

Z =
1

(2πh̄)2N

∫
e−E(p,y)/T d2Ny d2Np (7.335)

where E(p,y) = 1
2gij(y)pipj and gij is the (inverse) metric on MN . The

Gaussian integrals over the momenta can be done explicitly, leaving

Z =
(

T

2πh̄2

)N ∫

MN

√
det(gij(y)) d2Ny . (7.336)

The last integral is simply the volume of MN . Let us suppose that the
N vortices are moving on a 2-sphere of area A. Then from the result
(7.312), we conclude that

Z =
1

N !
(A − 4πN)N

(
T

2h̄2

)N

. (7.337)

Note the presence of the N ! factor here, which arises naturally because
the vortices are indistinguishable even at the classical level. In the histor-
ical treatment of classical statistical mechanics of N point particles, this
factor had to be inserted by hand, and its justification is usually based
on quantum mechanics.

Let us now suppose that N and A are large, so the 2-sphere is almost
flat on the scale of the vortex core size. Take the limit N → ∞, A → ∞
with N/A finite. The free energy F = −T logZ is

F = −NT
(

log(A − 4πN) − log N + log
eT

2h̄2

)
, (7.338)

where we have used Stirling’s approximation, log N ! ≃ N log N −N . The
pressure of the N -vortex system is P = −∂F/∂A so

P =
NT

A − 4πN
. (7.339)

This is Clausius’ special case of the van der Waals equation of state
(

P +
αN2

A2

)

(A − βN) = NT (7.340)

with α = 0, β = 4π. The interpretation is that the vortices are interacting,
but in a purely geometrical way. The vortices neither attract nor repel,
but each vortex occupies space that is unavailable to the others. Equation
(7.339) has the virial expansion

PA = NT
(
1 + 4πρ+ (4π)2ρ2 + (4π)3ρ3 + · · ·

)
(7.341)
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where ρ = N/A is the number density of vortices. To second order in the
virial expansion (the term 4πρ), the equation of state for a gas of hard
discs each of area 2π is the same as (7.341). However, (7.341) is an exact
result, whereas the higher order terms in the virial expansion for the hard
disc gas are different and increasingly hard to calculate [344]. Curiously,
the equation of state (7.339) is closely analogous to that for a gas of hard
rods in one dimension [178].

One could assume that the N vortices are moving on a different surface,
for example, a 2-torus of area A. Then one should use the formula (7.322)
for the volume of moduli space. However, in the large N , large A limit it
makes no difference to the equation of state.

There is one caveat about these calculations. When the density of
vortices is large, and approaches the Bradlow limit N/A → 1/4π, then
the scalar field is everywhere close to zero, and the magnetic field close to
constant. One now needs to reconsider the field fluctuations orthogonal to
moduli space. There is no longer a mass gap of order 1. As a consequence,
the singularity in the pressure at ρ = 1/4π is probably not real, but
smoothed out.

There is another physical situation where the moduli space volume
plays an important role. Recall that in the reduced dynamics of the
Schrödinger-Chern-Simons vortex system, the moduli space itself is the
phase space. Romão has carried out the geometrical quantization of the
reduced dynamics and calculated the dimension of the Hilbert space of
states [347]. In the semi-classical limit, where A → ∞ and N/A is fixed,
this dimension is asymptotic to Vol(MN )/(2πh̄)N , as one expects on the
basis of the Bohr-Sommerfeld quantization ideas.
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Monopoles

8.1 Dirac monopoles

The idea of magnetic monopoles goes back to the early history of mag-
netism, since magnets appear to have two poles of opposite strength. But
isolated magnetic poles are never seen. In the nineteenth century, it was
recognized that electric currents are a source of magnetism, and later, the
magnetism of materials was understood as due either to currents at the
atomic scale, or to the magnetic dipole moments associated with funda-
mental particles, like the electron. Modern elementary particle theory
has no need for monopoles, and no monopoles have been experimentally
confirmed, despite intensive searches throughout the accessible cosmos
[161].

The absence of monopoles is built into Maxwell’s theory of electromag-
netism. The equation ∇ · b = 0 for the magnetic field b implies there is
no source of magnetic flux, and the flux of b through any closed surface
vanishes. Simply inserting a magnetic charge density ρm and postulating
that ∇ · b = ρm leads to contradictions with other equations of electro-
magnetism, for example, Faraday’s law ∇ × e + ∂b

∂t = 0, where e is the
electric field. Taking the divergence of this equation leads to ∂

∂tρm = 0,
so the magnetic charge density would be unchanging for all time, which
is implausible in an evolving universe. A more subtle objection to a mag-
netic charge density is that it would forbid the introduction of a covariant
vector potential a, satisfying −∇× a = b. There is ample evidence that
although the existence of a vector potential is not essential in classical
electromagnetism, it is vital in the formulation of the quantum mechan-
ics of electrically charged particles.

Despite all these arguments, Dirac reconsidered the matter in a famous
paper published in 1931 [109]. He showed that the quantum mechanics
of an electrically charged particle can be consistently formulated even in

241
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the presence of a point magnetic charge, provided the magnitude of the
charge obeys a certain condition.

A point magnetic charge of strength g, at rest at the origin, is by
definition an object with a magnetic field

b =
g

4πr2
x̂ . (8.1)

Away from the origin, all the usual vacuum Maxwell equations are satis-
fied, but there is a delta-function source for the magnetic field

∇ · b = g δ3(x) (8.2)

and the flux of the magnetic field out of any closed surface S, with the
origin inside, is ∫

S
b · dS = g . (8.3)

There is, in fact, no problem finding a solution of Maxwell’s equations for
several point monopoles moving along arbitrary world lines. The fields
obey the equations away from the world lines, and the singularity along
each world line is that obtained from the field (8.1) by a translation and
Lorentz boost. We shall present formulae for the fields due to a moving
monopole later, in Section 8.12. But for the moment, let us just consider
the static field (8.1).

Dirac’s argument is essentially mathematical in nature, and quantum
mechanics plays only a peripheral role. Dirac insisted that a vector poten-
tial for the field (8.1) should, in some sense, exist. Such a vector potential
will have a singularity at the origin, but this doesn’t matter. The more
significant difficulty is that no smooth vector potential can be defined in
R3, even with the origin excluded. For if b = −∇ × a, then by Stokes’
theorem ∫

S
b · dS = −

∫

S
∇× a = 0 (8.4)

for any closed surface S with no boundary, and this contradicts (8.3).
But Dirac realized that the vector potential a need not be globally well

defined. It is sufficient, in the mathematical language that we discussed
in Chapter 3, for a to be a connection. This should be defined in R3 with
the origin, 0, removed. It is possible to cover R3 − {0} with just two
regions. Let us use spherical polar coordinates (r, θ,ϕ) and introduce a
pair of angles θ0, θ1 satisfying 0 < θ0 < θ1 < π. One region is taken to
be 0 ≤ θ < θ1, the other θ0 < θ ≤ π, with r,ϕ taking their full range
of values, 0 < r < ∞ and 0 ≤ ϕ ≤ 2π. The important property of each
of these regions is that they are contractible, hence topologically trivial.
In each region there is no difficulty finding a local vector potential for
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the magnetic field of a monopole. In the first, an example of a suitable
potential is

a(1) =
g

4πr

(−1 + cos θ)
sin θ

eϕ (8.5)

where eϕ = (− sinϕ, cosϕ, 0). In the second, a suitable potential is

a(2) =
g

4πr

(1 + cos θ)
sin θ

eϕ . (8.6)

Not surprisingly, the first formula becomes singular if extended to include
θ = π, and the second is singular at θ = 0. These singularities are
called Dirac strings, but they are not physical. The gauge transformation
relating a(1) and a(2) in the region of overlap θ0 < θ < θ1 (which is not
simply connected, but this does not matter) is

a(2) = a(1) −∇α(21) (8.7)

where α(21) = − g
2πϕ. Now ∇α(21) is single-valued, but α(21) is not, since

α(21)(ϕ = 2π) = α(21)(ϕ = 0)−g. Does this matter? We need to consider
the charges of the fields coupled to the monopole. Suppose there is a field
φ of unit charge, coupled as in scalar electrodynamics with a covariant
derivative ∂iφ− iaiφ. In the presence of the monopole, φ should be well
defined in each of the regions, and its values where the regions overlap
should be related by the appropriate gauge transformation,

φ(2)(x) = e−iα(21)(x)φ(1)(x) . (8.8)

This equation is consistent, provided e−iα(21)(x) is single-valued, and this
requires g to be 2π times an integer.

Further fields may be introduced, having any integer charge n. The
analogue of Eq. (8.8) has a factor e−inα(21)(x), and this is single-valued
since eing = 1 if g/2π is an integer.

Therefore, with the above assumptions, the magnetic charge of the
monopole, g, must be an integer multiple of 2π. This conclusion is usually
given in a somewhat more general form. Suppose the field φ with smallest
charge has charge e, its covariant derivative being ∂iφ−ieaiφ, and suppose
that all other fields have charges ne, with n integral. Then g must be an
integer multiple of 2π/e. Now, when a field of charge e is quantized, the
particles associated with the field have electric charge q = −eh̄. This can
be seen from the operator occurring in the Schrödinger equation for one
particle −ih̄∂i + qai, which is −ih̄ times the covariant derivative ∂i− ieai.
So we have the constraint on the magnetic charge of a monopole

gq = −2πh̄N, N ∈ Z , (8.9)
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which is the quantization condition given by Dirac. It remains satisfied
if q is the electric charge not of a minimally charged particle, but of any
particle with a charge that is an integer multiple of the minimal value.

Dirac subtly interpreted the result as follows. If there is at least one
monopole in the universe, of magnetic charge g, then electrically charged
particles must all have charges q which are integer multiples of 2πh̄/g.
This is an elegant possible explanation of electric charge quantization. We
will take the more mathematical line, which is to set the coupling e and
also h̄ to unity, and to postulate that the gauge group of electromagnetism
is U(1), which means that a constant gauge transformation e−iα should
have no effect on any field if α is an integer multiple of 2π. That implies
that fields and particles have integer charges, and it also implies that
monopoles have magnetic charges that are integer multiples of 2π.

The Dirac monopole is not a topological soliton because of its singular
behaviour at r = 0. Naively, it has an infinite mass because the energy
density in the magnetic field is proportional to 1/r4, and when integrated
over R3 there is a linear divergence as r → 0. This infinity can be regu-
larized by supposing there is some unknown structure at short distances,
which gives the monopole less singular fields there, and a finite mass. The
classical dynamics of a monopole of charge g in an electromagnetic field
is determined by the Lorentz force

F = g(b− v × e) , (8.10)

which should be compared to the force on an electric particle of charge q

F = q(e + v × b) . (8.11)

Equation (8.10) is a postulate, consistent with Lorentz invariance.
Quantizing the dynamics of Dirac monopoles and electrically charged

particles is rather difficult [440]. There is not yet a quantum field the-
ory of Dirac monopoles, including processes like monopole-antimonopole
pair production. These matters can, however, be sensibly considered in
theories with monopoles as topological solitons, but it is still difficult to
calculate anything.

The Dirac quantization condition can be directly related to the inte-
grality of the first Chern number c1, as presented in Section 3.4. The
vector potentials of the Dirac monopole need first to be reexpressed as
coordinate invariant 1-forms. The 1-form in region 1 is

a(1) = a1 dx1 + a2 dx2 + a3 dx3 . (8.12)

Transforming to spherical polars, via x1 = r sin θ cosϕ, x2 = r sin θ sinϕ,
x3 = r cos θ, and thus dx1 = sin θ cosϕ dr+r cos θ cosϕ dθ−r sin θ sinϕ dϕ,
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etc., we find
a(1) =

g

4π
(−1 + cos θ) dϕ , (8.13)

and similarly
a(2) =

g

4π
(1 + cos θ) dϕ . (8.14)

The gauge transformation relating a(2) to a(1) is now

a(2) = a(1) − dα(21) (8.15)

where dα(21) = − g
2πdϕ. The field strength, calculated either from a(1) or

a(2), is the 2-form
f = da = − g

4π
sin θ dθ ∧ dϕ (8.16)

which is simply −g times the normalized area form on the 2-sphere. We
see from this that the field of a Dirac monopole is essentially a two-
dimensional notion, defined on a 2-sphere; there is no dependence on r,
except for the singularity at r = 0.

The flux of f through a 2-sphere of any radius is −g. But we showed
quite generally, in Section 3.4, that for any closed surface X,

c1 =
1
2π

∫

X
f (8.17)

is an integer, N . So if c1, evaluated on a 2-sphere enclosing a monopole,
is N , the monopole’s magnetic charge is g = −2πN , in agreement with
the Dirac quantization condition.

The connection viewpoint is extremely powerful in situations where
space has a non-trivial topological structure. The space R3−{0} is topo-
logically non-trivial, as is the 2-sphere of fixed radius onto which it re-
tracts, and the Dirac monopole field is a connection on a U(1) bundle
over either of these spaces. However, for most of this chapter, we shall
be interested in monopoles without singularities, defined in all of R3.
Bundles over R3 always have a trivial structure, which means that a con-
nection can always be expressed as a smooth gauge potential throughout
R3. There is no need for more than one region to cover R3. Nevertheless,
these monopoles are similar in important ways to the Dirac monopole,
and they have a topological character, as we shall see.

We conclude this section by showing that the Dirac monopole of charge
g = −2πN is spherically symmetric. Since the 2-form field strength f , at
any distance r from the origin, is proportional to the area element of the
2-sphere of radius r centred at the origin, the monopole looks spherically
symmetric. However, we should check this more carefully, by considering
the connection 1-form too.
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A basis for the vector fields generating rotations in R3 is

ξ1 = − sinϕ
∂

∂θ
− cot θ cosϕ

∂

∂ϕ
(8.18)

ξ2 = cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ
(8.19)

ξ3 =
∂

∂ϕ
, (8.20)

with Lie brackets [ξm, ξn] = −εmnpξp. The connection 1-form a, on any
region, is spherically symmetric if it satisfies the conditions

Lξma = dαm (8.21)

where Lξm denotes the Lie derivative in the direction of ξm, and dαm

represents an infinitesimal gauge transformation. This is as in Eq. (2.31),
and is also the infinitesimal version of the rotational symmetry condition
that we discussed in Section 4.3, appropriate for a U(1) gauge theory.

There is an elegant general expression for the Lie derivative of a 1-form,
namely

Lξa = d(i(ξ)a) + i(ξ)da (8.22)

where i(ξ) denotes the interior product of the vector field ξ with the form
that follows. Therefore (8.21) can be rewritten as i(ξm)da = d(αm −
i(ξm)a), or better, as

i(ξm)f = dψm (8.23)

where f is the 2-form field strength and (as in Eq. (2.38)) ψm = αm −
i(ξm)a. The connection is symmetric if for some choice of ψm, its field
strength obeys (8.23). ψm, unlike αm, is gauge invariant.

We can now easily calculate that for f = N
2 sin θ dθ ∧ dϕ,

i(ξ1)f =
N

2
(cos θ cosϕ dθ − sin θ sinϕ dϕ) (8.24)

i(ξ2)f =
N

2
(cos θ sinϕ dθ + sin θ cosϕ dϕ) (8.25)

i(ξ3)f = −N

2
sin θ dθ . (8.26)

This is of the form (8.23), with

ψ1 =
N

2
sin θ cosϕ , ψ2 =

N

2
sin θ sinϕ , ψ3 =

N

2
cos θ . (8.27)

So, for all N , the Dirac monopole is spherically symmetric.
Using (8.27) we can find the angular momentum for a particle moving

in the background field of the monopole. Suppose the particle has mass
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m and unit electric charge (with h̄ = 1), and the vector potential of the
monopole is a. The Lagrangian for the particle is

L =
1
2
mẋiẋi − ai(x)ẋi , (8.28)

as in (2.13). In Cartesian coordinates, the rotation generators and the
quantities ψm are

ξm = εmnpx
n ∂

∂xp
, ψm =

N

2
xm

r
, (8.29)

so the particle’s conserved angular momentum, according to the general
formula (2.37), is [334]

l = mx× ẋ +
N

2
x̂ . (8.30)

The actual value of l depends on the initial data. From (8.30) we deduce
that

l · x̂ =
N

2
, (8.31)

the equation of a cone with vertex at the origin. The orbit of the particle
is an in-and-out spiralling motion on this cone (intrinsically, it is along a
geodesic at constant speed).

To understand how the above discussion of the spherical symmetry of a
Dirac monopole relates to the formalism of Section 4.3 we should evaluate
the quantities αm, because from these we can identify the homomorphism
λ. Let us take the non-singular expression for the 1-form gauge potential
a in region 1,

a =
N

2
(1− cos θ) dϕ . (8.32)

Then, from the formula αm = ψm + i(ξm)a, we find that

α1 =
N

2
(1− cos θ)

sin θ
cosϕ , α2 =

N

2
(1− cos θ)

sin θ
sinϕ , α3 =

N

2
.

(8.33)
Let us select the points lying on the positive x3-axis as the preferred points
x0, one on each S2-orbit of the rotation group. Their isotropy group is the
SO(2) of rotations about the x3-axis, generated by ξ3. The constant value
of α3, associated with this generator, suggests that the homomorphism
λ : SO(2)→ U(1), where SO(2) is the isotropy group and U(1) the gauge
group, maps a rotation by χ to a gauge transformation with phase 1

2Nχ.
However, this argument is suspect, since only dα3 occurs in the symmetry
equation, and a constant α3 is annihilated by the d operator. We need to
look more closely at α1 (or α2).
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So, let us consider Eq. (4.54). In the case of an abelian gauge theory,
it may be written as

(Rjiaj(Rx)− ai(x))dxi = −i dgR(x)g−1
R (x) = d(arg gR(x)) (8.34)

where, using (4.63), gR(x) = λ(R−1
RxRRx), and R−1

RxRRx is Wigner’s little
group element. By using 1-form notation here, we can pass easily between
Cartesian and polar coordinates. Let us choose R to be a rotation about
the x1-axis through an infinitesimal angle ε. The left-hand side of (8.34)
is, by definition, εLξ1a, expressed in Cartesian form. It may be evaluated
most easily using the Cartesian components of the gauge potential (8.5),
and the rotation matrix

R =

⎛

⎝
1 0 0
0 1 −ε
0 ε 1

⎞

⎠ . (8.35)

The result can be converted to polar coordinates, and one finds as before
that Lξ1a = dα1, with α1 as in (8.33). We now need to evaluate the
Wigner little group element and verify that for some choice of λ, the
right-hand side of (8.34) is εdα1. In polar coordinates, the general point
x, of length 1, is

x = (sin θ cosϕ, sin θ sinϕ, cos θ) , (8.36)

and the special rotation Rx, which takes the point x0 = (0, 0, 1) to x, is

Rx =

⎛

⎝
cos θ cos2 ϕ+ sin2 ϕ (cos θ − 1) cosϕ sinϕ sin θ cosϕ
(cos θ − 1) cosϕ sinϕ cos θ sin2 ϕ+ cos2 ϕ sin θ sinϕ
− sin θ cosϕ − sin θ sinϕ cos θ

⎞

⎠ .

(8.37)
This matrix represents a rotation by θ about the axis (− sinϕ, cosϕ, 0).
The axis is orthogonal to (0, 0, 1), which is what we require, as the matrix
should be generated by an element in the subspace m ⊂ so(3) orthogonal
to the so(2) subalgebra of the isotropy group.

It is now straightforward, but a bit tedious, to evaluate R−1
RxRRx. This

is a rotation about the x3-axis by an infinitesimal angle that is propor-
tional to ε, depending non-trivially on θ and ϕ. One may find the rotation
angle by evaluating the action on (− sin θ cosϕ, − sin θ sinϕ, cos θ). Rx

maps this point to (0, 0, 1), which is mapped by R to (0,−ε, 1). RRx, the
analogue of the matrix (8.37) for the rotated vector

Rx = (sin θ cosϕ, sin θ sinϕ− ε cos θ, cos θ + ε sin θ sinϕ) , (8.38)

is found by expressing the entries of (8.37) in terms of the three com-
ponents of x, and replacing these by the components of Rx. R−1

Rx is its
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transpose. After acting with this on (0,−ε, 1), one deduces that R−1
RxRRx

is a rotation about the x3-axis by

ε
(1− cos θ)

sin θ
cosϕ . (8.39)

By dropping the factor ε and multiplying by 1
2N , one again obtains α1.

Therefore, at the Lie algebra level, the homomorphism λ is just multipli-
cation by 1

2N . At the Lie group level, λ maps a rotation by χ about the
x3-axis to a U(1) gauge transformation by exp(1

2Niχ). This is just what
was indicated by the value of α3. In conclusion, the Dirac monopole is
spherically symmetric in the sense of Eq. (4.54) for any integer N , but
the homomorphism λ depends on N .

The fact that exp(1
2Niχ) = −1 when χ = 2π, for N odd, is rather

strange but not contradictory; it means that a scalar field of unit charge
coupled to the monopole has a spinorial character. A quantized scalar
particle of unit electric charge, coupled to the monopole, has half integer
angular momentum [131, 159].

8.2 Monopoles as solitons

In 1974, ’t Hooft [401] and Polyakov [336] made the important discovery
that non-abelian gauge theories can have magnetic monopole solutions
with no singularities. We have seen in Chapter 4 that the Derrick theo-
rem implies that the pure Yang-Mills equation has no topological soliton
solutions in three space dimensions. However, when Yang-Mills fields are
coupled to Higgs scalar fields, then topologically stable monopole solu-
tions with finite energy are possible. The core has a rather complicated
nature, but the long-range electromagnetic fields are the same as those
of a Dirac monopole. These solitons can be regarded as Dirac monopoles
embedded in Yang-Mills-Higgs theory, with the singularity smoothed out.
They are stable because the magnetic charge has a topological character,
and so can not change under any smooth deformation of the field.

It is possible to define Yang-Mills-Higgs theory with any compact Lie
group G as the gauge group, and the Higgs field transforming under any
finite-dimensional representation of G. In this chapter we shall suppose
the Higgs field transforms via the adjoint representation of G. That is,
the Higgs field Φ is valued in the Lie algebra of G, and transforms by con-
jugation. Our main example is the Yang-Mills-Higgs theory with gauge
group SU(2). (This theory can be regarded alternatively as having gauge
group SO(3) and a Higgs field transforming via the fundamental three-
dimensional representation of SO(3).) If the gauge symmetry is sponta-
neously broken to U(1) by the Higgs mechanism, then there are monopole
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solutions. For a short time, before the experimental status of the “neu-
tral currents” mediated by the Z boson was clarified, this Georgi-Glashow
SU(2) theory [146] was a competitor to the U(2) Glashow-Weinberg-
Salam electroweak theory with a complex doublet Higgs field. In the
electroweak theory the Higgs field also breaks the gauge symmetry to
U(1), leaving just the electromagnetic field massless. Despite this, the
electroweak theory has no monopoles; instead it has unstable, sphaleron
solutions that we shall consider in Chapter 11.

We shall later briefly consider gauge groups SU(m) for general m. Of
particular interest is the SU(5) theory with adjoint Higgs, where the
Higgs field spontaneously breaks the SU(5) gauge symmetry to SU(3)×
U(2). This is a simplified version of the simplest Grand Unified Theory
(GUT), unifying the gauge groups of QCD and electroweak theory [147].
This theory and more complicated variants with further Higgs fields, and
possibly a larger gauge group, have monopole solutions.

Why should one be interested in monopoles, despite the absence of any
experimental evidence for them? There are several reasons. If one believes
in GUTs then the monopoles are a crucial signal and constraint. It is pre-
dicted that monopoles should have been plentifully produced in the very
early history of the universe, and although monopoles and antimonopoles
would have appeared in roughly equal numbers, they would not all have
annhilated by now. Even if most had annihilated, we would still be able
to detect the relic radiation produced. Current cosmic data rule out this
scenario of a dense sea of monopoles in the early universe, and severely
constrains the parameters of GUT models [407]. GUTs themselves can be
an approximation to a grander unified theory including gravity – perhaps
string theory. Such theories can also have monopoles, so again there are
constraints from the cosmic data. One of the motivations for inflationary
models of the early universe is to remove almost all primordial monopoles
[168]. So one reason, a rather negative one, for studying monopoles in
various theories is to constrain such theories so that monopoles do not
make an appearance.

A positive reason is that monopoles are a paradigm for solitons in three
dimensions, and they are of great mathematical interest and beauty. It
has been discovered that the SU(2) gauge theory with an adjoint Higgs
can be analysed in great mathematical detail in the Bogomolny-Prasad-
Sommerfield (BPS) limit, where the Higgs field is massless. It is now fairly
straightforward to construct a variety of multi-monopole solutions and
to predict the outcome of various multi-monopole scattering processes.
Moreover, although the theory is not physical, it gives considerable in-
sight into the physics of Higgs fields and solitons more generally. For
example, study of monopole-antimonopole dynamics helped to uncover
and clarify the significance of the sphaleron solution of the electroweak
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theory. The understanding of monopoles and multi-monopole dynamics
has also helped towards the understanding of Skyrmions and their dy-
namics. Skyrmions are discussed in Chapter 9, where we shall explain
the analogy with monopoles in detail.

Finally, monopoles have been under much scrutiny recently, because
gauge theories with adjoint Higgs fields have various supersymmetric ex-
tensions, and the BPS limit is natural from the supersymmetric point
of view. It is now understood that in certain quantized supersymmetric
theories with monopoles, there is an exact duality symmetry [304], and
the masses of the monopoles can be precisely predicted [429]. This is
despite the apparent limitation of perturbative quantum field theory to
deal with monopoles. The dynamics of monopoles, and in particular the
lowest energy bound states, are also of great interest in supersymmetric
theories [372, 371].

In the remainder of this section we shall describe the SU(2) Yang-
Mills-Higgs theory and its basic monopole solution. The fields are the
SU(2) gauge potential Aµ and the adjoint Higgs field Φ, both valued in
the Lie algebra su(2). The covariant derivative of the Higgs field and the
Yang-Mills field tensor are, respectively,

DµΦ = ∂µΦ + [Aµ, Φ] (8.40)
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (8.41)

We choose the basis {ta = iτa : a = 1, 2, 3} for su(2), where {τa} are
the Pauli matrices, with commutation relations [ta, tb] = −2εabctc and
normalization Tr(tatb) = −2δab. With respect to this basis the Higgs
field and gauge potential can be expressed in terms of their component
fields as

Φ = Φata , Aµ = Aa
µta . (8.42)

The field tensor automatically satisfies the Bianchi (or Jacobi) identity

εστµνDτFµν = 0 , (8.43)

where εστµν is the alternating tensor in Minkowski space (with ε0123 = 1).
The theory has the Lorentz invariant Lagrangian density

L =
1
8
Tr(FµνF

µν)− 1
4
Tr(DµΦDµΦ)− λ

4
(1− |Φ|2)2 (8.44)

where |Φ|2 = −1
2Tr Φ2 is the non-negative squared norm of the Higgs

field. It will be convenient to split the Lagrangian

L =
∫

L d3x (8.45)
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into its kinetic energy and potential energy parts, L = T − V , where

T =
∫ (
−1

4
Tr(EiEi)−

1
4
Tr(D0ΦD0Φ)

)
d3x (8.46)

and

V =
∫ (
−1

8
Tr(FijFij)−

1
4
Tr(DiΦDiΦ) +

λ

4
(1− |Φ|2)2

)
d3x , (8.47)

and the integrations are over R3. Here Ei = F0i is the SU(2) electric
field, and we shall frequently use the notation Bi = −1

2εijkFjk for the
SU(2) magnetic field. We see from the expression for V that the classical
vacuum, which minimizes V , is a field configuration with |Φ|2 = 1 and
Φ covariantly constant, so DiΦ = 0; also Fij = 0, which means that
the gauge potential is pure gauge, Ai = −∂ig g−1 for some SU(2)-valued
function g(x). By a gauge transformation, we can make Ai vanish, and
then Φ is a constant. By a further global gauge transformation Φ )→
g0Φg−1

0 , with g0 constant, we can bring Φ to the standard form Φ = t3.
Because Φ has a non-zero vacuum expectation value, the SU(2) gauge

symmetry is spontaneously broken to U(1). The unbroken group is as-
sociated with gauge transformations of the form g(x) which satisfy the
equation g(x)t3g(x)−1 = t3. Such g(x) are in the U(1) subgroup gener-
ated by t3. This can be restated in a gauge invariant way: if {Φ(x), Ai(x)}
is the vacuum field in an arbitrary gauge, the unbroken part of the gauge
symmetry consists of gauge transformations g(x) which are at each point
in the subgroup of SU(2) generated by Φ(x). Such gauge transforma-
tions preserve Φ, but change Ai while preserving both DiΦ = 0 and
Fij = 0. As a consequence of the spontaneous symmetry breaking, the
theory (when perturbatively quantized) has a massless photon associated
with the unbroken U(1), and two massive gauge particles W+ and W−.
The masses can be calculated by diagonalizing −1

4Tr([Aµ, t3][Aµ, t3]), the
adjoint Higgs analogue of the expression (2.165).

We can not insist, as a general boundary condition, that Φ → t3 in
all directions as r → ∞, as that would exclude any non-trivial topolog-
ical structure in the Higgs field at infinity. However, it will turn out to
be useful when we come to discuss monopoles to impose as a boundary
condition Φ(0, 0, x3) → t3 as x3 → ∞. We shall also define the class
of based gauge transformations to be those satisfying g(0, 0, x3) → 1 as
x3 →∞. That leaves a residual global action of the unbroken U(1) gauge
group on fields, by the transformations g0 = exp(αt3) with α real, which
preserve the boundary condition. This U(1) acts non-trivially on generic
fields but leaves the vacuum invariant. Fields that are identified modulo
based gauge transformations are said to be framed, and fields that differ
by an element of the residual global U(1) (possibly combined with a based
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gauge transformation) are said to differ in their framing. If one quotients
out by all gauge transformations one gets unframed fields.

The field equations obtained from the Lagrangian density (8.44) are

DµDµΦ = λ(1− |Φ|2)Φ (8.48)
DµFµν = [DνΦ, Φ] . (8.49)

The general solution of these nonlinear PDEs is not known. It is worth-
while to write down the linearization of these equations, around the vac-
uum. So let Φ = (1+φ)t3 and Aµ = W 1

µt1+W 2
µt2+aµt3, where φ, W 1

µ , W 2
µ

and aµ are all small. We have fixed the gauge to eliminate the small
coefficient functions of t1 and t2 in Φ. The equations reduce to

∂µ∂
µφ = −2λφ (8.50)

∂µ(∂µW 1ν − ∂νW 1µ) = −4W 1ν (8.51)
∂µ(∂µW 2ν − ∂νW 2µ) = −4W 2ν (8.52)

∂µ(∂µaν − ∂νaµ) = 0 . (8.53)

From these wave equations we read off that the Higgs particle has mass√
2λ, the W particles have mass 2, and the photon is massless.
’t Hooft and Polyakov independently found the static solution of the

field equations of this theory, representing a magnetic monopole [401, 336].
We shall present this solution first and then discuss the topological reason
for its existence. Static fields obey

DiDiΦ = −λ(1− |Φ|2)Φ (8.54)
DiFij = −[DjΦ, Φ] , (8.55)

the equations for a stationary point of the potential energy V . To solve
these, one may try fields of the spherically symmetric and reflection sym-
metric form

Φ = h(r)
xa

r
ta (8.56)

Ai = −1
2
(1− k(r)) εija

xj

r2
ta (8.57)

where h(r) and k(r) are functions just of the distance from the origin,
r. These fields are spherically symmetric in the sense that a rotation has
the same effect as a spatially independent gauge transformation. The
gauge transformation paired with the rotation R is D(R) = R. (This
makes immediate sense if the gauge group is SO(3). If the gauge group is
SU(2) then there are two elements of SU(2) corresponding to D(R), but
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they act in the same way on the fields.) For fields of this form, a simple
calculation shows that the equations (8.54) and (8.55) simplify to

d2h

dr2
+

2
r

dh

dr
=

2
r2

k2h− λ(1− h2)h (8.58)

d2k

dr2
=

1
r2

(k2 − 1)k + 4h2k . (8.59)

These ODEs can not be solved analytically for general values of λ, but
a numerical solution is straightforward. The boundary conditions to be
imposed at the origin are that h(0) = 0 and k(0) = 1, so as to avoid a
singularity. Also h should tend to 1 and k tend to 0 as r → ∞, so that
asymptotically |Φ|2 = 1 and both DiΦ and Fij vanish, to ensure that the
solution has finite energy. Note that Φ(0, 0, x3)→ t3 as x3 →∞.

The existence, though not uniqueness, of the solution is rigorously es-
tablished [301] for general λ ≥ 0. But numerically it seems clear that
there is just one smooth solution for each non-negative value of λ. This
was discovered by ’t Hooft and Polyakov, and a more systematic study
over a large range of values of λ was carried out by Bogomolny and Mari-
nov [57]. The forms of h(r) and k(r), for a few values of λ, are shown in
Fig. 8.1. Figure 8.2 gives the energy, or mass M of the monopole, as a
function of λ.
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Fig. 8.1. The monopole profile functions h(r) and k(r) for λ = 0 (solid curves),
λ = 0.1 (dashed curves), and λ = 1.0 (dotted curves).
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Fig. 8.2. The monopole energy (in units of 2π) as a function of λ for 0 ≤ λ ≤ 1,
and for 0 ≤ λ ≤ 1000, with the asymptotic value E(λ =∞) = 2π×1.787 marked
as a dashed line.
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For small λ, the mass has an expansion of the form [234, 143]

M = 2π
(

1 +
1
2
δ +

1
2
δ2 log δ + 0.7071 δ2 + · · ·

)
(8.60)

whereas the asymptotic mass for large λ is [234]

M = 2π
(

1.787− 2.228
δ

+ · · ·
)

. (8.61)

Here δ =
√
λ/2, which is the ratio of the Higgs mass to the W mass.

To evaluate the magnetic charge of these solutions we need to have a
definition of the magnetic field. In a pure SU(2) Yang-Mills theory there
is no unambiguous definition, but in a spontaneously broken theory, with
unbroken group U(1), things are different. Provided the fields are close
to the vacuum, a magnetic field can be defined. The analysis that follows
applies to any finite energy, possibly time dependent solution of the Yang-
Mills-Higgs equations, and in particular, to solutions of the Bogomolny
equation that we will consider below [275].

Suppose in some region of space-time the Higgs field can be expressed
as Φ = hΦ̂, where h is positive and |Φ̂|2 = 1. Φ̂ is well defined provided
|Φ| is nowhere zero in the region. Suppose also that DµΦ̂ = 0. We
shall now show that these assumptions imply that the Yang-Mills-Higgs
theory abelianizes, and the field equations become a version of Maxwell’s
equations. (One might have imposed the condition DµΦ = 0, but this is
unnecessarily restrictive.) The condition DµΦ̂ = 0 can be solved for the
gauge potential. The general solution is

Aµ =
1
4
[∂µΦ̂, Φ̂] + aµΦ̂ (8.62)

where aµ is an arbitrary smooth 4-vector function. The field tensor is
therefore

Fµν =
(1

8
Tr([∂µΦ̂, ∂νΦ̂]Φ̂) + ∂µaν − ∂νaµ

)
Φ̂ (8.63)

and so is in the direction Φ̂ in su(2). The covariant derivative of Φ reduces
to

DµΦ = (∂µh)Φ̂ . (8.64)
Let us define

fµν = −1
2
Tr(FµνΦ̂) =

1
8
Tr([∂µΦ̂, ∂νΦ̂]Φ̂) + ∂µaν − ∂νaµ (8.65)

to be the Maxwell field tensor. With our assumptions, we now see that
the Yang-Mills-Higgs equations (8.48) and (8.49) reduce to

∂µ∂
µh = λ(1− h2)h (8.66)

∂µfµν = 0 . (8.67)
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The first equation is a nonlinear scalar wave equation which simplifies fur-
ther if h is close to 1. The second is the inhomogeneous Maxwell equation,
but with vanishing current source. Also, fµν satisfies the homogeneous
Maxwell equation (the abelian Bianchi identity)

εστµν∂τfµν = 0 . (8.68)

This is because, from (8.65),

εστµν∂τfµν =
1
8
εστµνTr([∂µΦ̂, ∂νΦ̂]∂τ Φ̂) . (8.69)

Since Φ̂ is a unit element of su(2), ∂µΦ̂, ∂νΦ̂ and ∂τ Φ̂ (with µ, ν, τ distinct)
are linearly dependent, being all orthogonal to Φ̂, and therefore (8.68)
follows. For static fields, satisfying our assumptions, we can interpret

bi = −1
2
εijkfjk = −1

2
εijk

(1
8
Tr([∂jΦ̂, ∂kΦ̂]Φ̂) + ∂jak − ∂kaj

)
(8.70)

as the magnetic field, and it satisfies ∇× b = 0 and ∇ · b = 0.
For the ’t Hooft-Polyakov monopole solution, it can be checked that as

r →∞, DiΦ̂ tends to zero exponentially fast, and also h→ 1. Therefore,
outside the core region of the monopole, which has a radius of order 1, the
fields abelianize and there is a radial magnetic field. One may calculate
the magnetic field to be

bi = − xi

2r3
. (8.71)

This is the magnetic field of a magnetic monopole of charge −2π.
One might ask where the source of the magnetic field is. If one uses the

formula (8.70) throughout space, then the answer is that there is a point
source at the origin, as for a Dirac monopole, but other formulae for the
magnetic field have been suggested, which imply that there is a smooth
magnetic charge density in the core of the monopole. However, from a
mathematical point of view, there is no unambiguous answer, because
the magnetic field and hence its divergence are simply not well defined
in a region where the full SU(2) nature of the Yang-Mills-Higgs fields
manifests itself – as in the core region of the monopole. Physically also,
there is no unambiguous way to measure the charge density, as Coleman
has argued [87]. Only the total charge, and its assignment in a general
way to the core of the monopole, makes sense.

We shall now investigate the topological character of the monopole and
its magnetic charge. Consider any smooth finite energy field configuration
(at a given time) which approaches the vacuum at spatial infinity, that
is, |Φ|2 approaches 1, and DiΦ̂ vanishes. The magnetic field is given by
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the formula (8.70) and we may integrate over S2
∞, the 2-sphere at infinity,

to find the total flux, which equals the magnetic charge g. In differential
form notation,

g = −
∫

S2
∞

f , (8.72)

where
f =

1
8
Tr([dΦ̂, dΦ̂]Φ̂) + da . (8.73)

By Stokes’ theorem, the contribution of a vanishes, so

g = −1
8

∫

S2
∞

Tr([dΦ̂, dΦ̂]Φ̂) . (8.74)

Now Φ̂ restricts to a map Φ̂ : S2
∞ )→ S2, where the target is the unit

sphere in su(2). This map has some degree N , and it is easy to verify
that the right-hand side of (8.74) is −2π times this. Therefore g = −2πN .
N is called the monopole number.

So, finite energy implies that the asymptotic Higgs field Φ̂ has associ-
ated with it a topological charge, its degree N , and the magnetic charge
of the field configuration is −2πN . The correlation between these things
is because DiΦ̂ = 0 asymptotically, which relates the gauge and Higgs
fields. N is also the number of zeros of the Higgs field in R3 (assuming
the zeros are isolated), counted with multiplicity. In the special case of
the monopole solution with spherical symmetry, with fields of the form
(8.56) and (8.57), it is easy to see that Φ̂ : S2

∞ )→ S2 is the identity map,
of degree 1, and hence the magnetic charge is −2π. The Higgs field has
its single zero at the origin.

If the fields vary smoothly with time, which they do if they satisfy the
field equations, then the integer N can not change. The magnetic charge
is therefore topologically conserved, and that is why the monopole is a
topological soliton.

The charge quantization condition g = −2πN looks similar to the Dirac
quantization condition. Let us consider more carefully why this is so [157].
Suppose we try to go to the unitary gauge. This is the gauge where Φ̂ = t3,
a constant. But clearly, if Φ̂ : S2

∞ )→ S2 has degree N , then there is no
smooth transformation which changes Φ̂ to a constant map. We can,
however, transform to the unitary gauge separately over two regions of
S2
∞, which together cover S2

∞ and overlap on the equator. Let g(1) be
the gauge transformation in region 1 and g(2) the gauge transformation
in region 2. On the overlap of the regions Φ̂ = t3 after either of the gauge
transformations. So g(1)g(2)−1 preserves Φ̂ = t3 and therefore lies in the
U(1) subgroup of SU(2) generated by t3. Let us therefore write, on the
equator of S2

∞,
g(1)g(2)−1 = exp(α(ϕ)t3) (8.75)
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where ϕ is the azimuthal coordinate. Since g(1) and g(2) are both well
defined in their own regions, α(2π) = α(0)+2πÑ for some integer Ñ . Here
we have used the result that the smallest positive α for which exp(αt3) = 1
is α = 2π.

Next, let us compare the abelian gauge potentials on the overlap. Before
the gauge transformations, a was well defined over the whole S2

∞. After
the gauge transformations, one obtains a(1) and a(2), which on the overlap
are related by the U(1) transformation g(1)g(2)−1. Therefore

a(1) − a(2) = −dα(ϕ) (8.76)

on the equator. Also, since Φ̂ is now constant, the formula (8.70) implies
that the 2-form field strength is f = da(1) = da(2). We therefore see
that the total magnetic flux is determined as for a Dirac monopole. It
depends not on the details of the field, but simply on the amount by which
α increases around the equator. The total magnetic flux through S2

∞, and
hence the magnetic charge, is −2πÑ . It is easy to show directly that Ñ ,
as determined from the form of g(1)g(2)−1, is the original degree of Φ̂,
even though there is considerable ambiguity in g(1) and g(2) themselves.
So Ñ = N , and g = −2πN as before.

Because monopoles in this theory have magnetic charges that are in-
teger multiples of 2π, the Dirac quantization condition (8.9) implies that
the minimal unit of electric charge is 1. If the gauge group is SU(2) (but
not if it is SO(3)) this charge occurs when the gauge and Higgs field are
coupled to a further SU(2) doublet field. The W± particles have charges
±2, in our units.

Let us conclude this section with a brief summary of some of the further
properties of the ’t Hooft-Polyakov magnetic monopole.

It has been shown by numerically assisted analysis that, for a large
range of values of λ, any small deformation increases its energy [25].
Therefore, the monopole is a local minimum of the Yang-Mills-Higgs en-
ergy in the sector with N = 1, and hence stable. However, there is no
proof that it is a global minimum of the energy except in the limit λ = 0
(see Section 8.3).

The monopole centre can be shifted to an arbitrary location, and the
framing can also be changed, so the monopole has four collective coordi-
nates. In many ways the monopole behaves like a point particle, despite
its finite core size. In particular, it has no rotational moment of inertia.
This is because the fields are spherically symmetric in the sense described
earlier, so a rotation has no physical effect at all. It follows that in the
quantized field theory, if there are no additional fields, the monopole has
spin 0.

There is a second solution of the equations (8.54) and (8.55), obtained
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by reversing the sign of Φ. This is the antimonopole, which has the same
mass but opposite magnetic charge to the monopole. The antimonopole
can also be obtained from the monopole by inversion in the origin, x )→
−x.

Because of the Poincaré invariance of the theory, the monopole can be
set into motion along any line in space, and there are the usual relations
between energy, momentum and the rest mass. There have been no sub-
stantial, purely numerical studies of multi-monopole motion in this partic-
ular theory, but initial fields could be set up describing several monopoles
in relative motion. The force between well separated monopoles is pri-
marily due to the magnetic Coulomb force. Two monopoles each with
magnetic charge g = −2π, and separated by a distance R, will experience
a repulsive force of π/R2. A monopole attracts an antimonopole with a
force of the same magnitude.

Although the Coulomb repulsion of monopoles is expected, it is
nevertheless a remarkable result. Recall that in electromagnetism, an elec-
trically charged particle is a source of a Coulomb electric field, but that it
requires an additional postulate – the Lorentz force law – to say that an-
other charge experiences the Coulomb force. The SU(2) Yang-Mills-Higgs
theory, through its field equations, not only supports magnetic monopole
solutions but also predicts the forces they exert on each other. The the-
ory, like others with solitons, is a theory of particle structure and particle
interactions.

There is more than one way to calculate the force between monopoles,
other than by simulating the time dependent dynamics. One may con-
struct a static approximation to a two-monopole field. This is not too
difficult if the cores do not overlap. The field outside the cores is taken to
be a superposition of the usual magnetic fields (easiest to do in patches, in
the unitary gauge). It is possible to estimate the minimal energy assum-
ing that the zeros of the Higgs field are constrained to a fixed separation.
The gradient of this energy is the force between the monopoles [273].

Alternatively, using the energy-momentum tensor of the Yang-Mills-
Higgs theory, one can calculate the net momentum flux into a sphere
enclosing one of the monopoles, and this can be identified with the force
acting on that monopole [158]. It is found that the force is the magnetic
Coulomb force. It is conceivable that if the fields were now allowed to
evolve according to the field equations, the momentum would flow into a
variety of field modes inside the sphere. In practice, the monopole starts
to accelerate rigidly. The consistency of this has been established by
showing that an accelerated one-monopole solution is possible so long as,
asymptotically, there is both the Coulomb field of the monopole, and the
additional constant or approximately constant magnetic field produced
by other, more distant monopoles [275]. This is discussed in more detail
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in Section 8.10.

8.3 Bogomolny-Prasad-Sommerfield monopoles

Shortly after ’t Hooft and Polyakov’s discovery of a magnetic monopole in
Yang-Mills-Higgs theory, Prasad and Sommerfield found an analytic form
for the solution in the special case λ = 0 [340]. Apparently, Prasad and
Sommerfield were attempting to fit the numerical solution with simple
analytic functions when they discovered that what they thought was an
approximate solution was in fact exact. The equations which they were
considering were

d2h

dr2
+

2
r

dh

dr
=

2
r2

k2h (8.77)

d2k

dr2
=

1
r2

(k2 − 1)k + 4h2k , (8.78)

the λ = 0 case of (8.58) and (8.59). These equations have the solution

h(r) = coth 2r − 1
2r

k(r) =
2r

sinh 2r
. (8.79)

The energy (rest mass) of the monopole in this special case is 2π.
The limit λ → 0 of the Lagrangian is somewhat strange. For any

positive value of λ, finite energy can only occur if |Φ| = 1 asymptoti-
cally. When λ = 0, the condition of finite energy no longer constrains
the asymptotic value of |Φ|; nevertheless one may impose as a boundary
condition |Φ| = 1. More generally, one can impose the boundary condi-
tion |Φ| = v, where v is an arbitrary positive constant. The vacuum field
is Φ = vt3. It is not compatible with finite energy for |Φ| to approach
different values in different directions as one moves off to infinity, because
of the contribution of the derivatives of Φ. The value of v also can not
change with time. However, by a simple rescaling, v can be reset to unity.
One needs to replace Φ by 1

vΦ, and rescale lengths and energies by v. We
shall fix v = 1 from now on.

The perturbative quantization of the theory around the vacuum Φ = t3

gives a spectrum of particles. For λ = 0, and calculating at tree level, one
finds W+ and W− gauge particles with mass 2 and electric charges ±2, a
massless photon, and a neutral Higgs particle that is also massless. The
monopole solution of Prasad and Sommerfield reflects the masslessness
of the Higgs particle in that the Higgs field approaches its vacuum value
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rather slowly. The expansion of h(r) for large r is

h = 1− 1
2r

+ O(e−4r) . (8.80)

Bogomolny gave a much deeper understanding of the λ = 0 limit of
the Yang-Mills-Higgs theory [56]. Bogomolny noted that the energy of a
static field

E = −1
4

∫ (
Tr(BiBi) + Tr(DiΦDiΦ)

)
d3x , (8.81)

where Bi = −1
2εijkFjk, can be rewritten as

E = −1
4

∫
Tr(Bi + DiΦ)(Bi + DiΦ) d3x +

1
2

∫
∂i(Tr(BiΦ)) d3x . (8.82)

To obtain this expression we have made use of the following identity
∂i(Tr(BiΦ)) = Tr((DiBi)Φ) + Tr(BiDiΦ) = Tr(BiDiΦ), which depends
on the Bianchi identity DiBi = 0. The second integral in (8.82) can be
expressed as a surface integral over the 2-sphere at infinity,

E = −1
4

∫

R3
Tr(Bi + DiΦ)(Bi + DiΦ) d3x−

∫

S2
∞

bi dSi , (8.83)

where bi is the abelian magnetic field introduced earlier, which is equal
to −1

2Tr(BiΦ) on the 2-sphere at infinity. Recalling the quantization of
magnetic flux, one obtains

E = −1
4

∫

R3
Tr(Bi + DiΦ)(Bi + DiΦ) d3x + 2πN (8.84)

where N is the monopole number. For N > 0 there is therefore the
non-trivial energy bound

E ≥ 2πN , (8.85)

with equality if
Bi = −DiΦ . (8.86)

Equation (8.85) is the Bogomolny energy bound, and (8.86) is the Bogo-
molny equation for this theory.

Bogomolny showed that the Prasad-Sommerfield monopole solution sat-
isfies Eq. (8.86), and has monopole number 1, hence explaining why its
energy is 2π. If one inserts into the Bogomolny equation the spherically
symmetric ansatz for the fields (8.56) and (8.57), one obtains the coupled
first order equations

dh

dr
=

1
2r2

(1− k2) (8.87)

dk

dr
= −2hk . (8.88)
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These can be simplified by the substitution h = h̃ − 1
2r , k = 2rk̃, and

then integrated to give, as before, the solution (8.79).
The second order field equations for static fields (8.54) and (8.55) are

the condition for a stationary point of the energy, whereas the first or-
der Bogomolny equation is the condition for the global minimum of the
energy in the sector with monopole number N . A minimum should be a
stationary point (in a smooth function space), and we now verify this. If
the Bogomolny equation Bi = −DiΦ is satisfied, then firstly

DiDiΦ = −DiBi = 0 , (8.89)

using the Bianchi identity, and secondly

DiFij = −εijkDiBk = εijkDiDkΦ =
1
2
εijk[Di, Dk]Φ

=
1
2
εijk[Fik, Φ]

= [Bj , Φ]
= −[DjΦ, Φ] , (8.90)

where we have used the basic result that the commutator of two covariant
derivatives gives the field tensor. So both field equations are satisfied.

For negative N there is an analogous bound, whose derivation requires
changes of sign in (8.84). The result is that

E ≥ 2π|N | (8.91)

with equality if Bi = DiΦ.
The Prasad-Sommerfield solution has charge N = 1. Are there solu-

tions of the Bogomolny equation with N > 1? Spherically symmetric
solutions do not exist for N > 1. A physical argument, suggesting the
existence of further solutions, is as follows. One may calculate the forces
between two monopoles, or between a monopole (N = 1) and an anti-
monopole (N = −1), in the case where λ = 0. This is done by construct-
ing an approximate field which superposes two well separated monopoles,
and then calculating the value of the acceleration of each monopole that
is compatible with the field equations. It is found that for two monopoles
the acceleration is zero, whereas for a monopole and antimonopole it is
double the value that occurs if λ ̸= 0 [275]. The reason for the change
is the masslessness of the scalar Higgs field, leading to the long-range,
Coulomb tail (8.80). A monopole can therefore be thought of as having
a scalar Coulomb charge 2π in addition to its magnetic charge. Scalar
charges, like gravitational masses, are always positive, and scalar inter-
actions are always attractive. At separation R, the scalar attraction has
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strength π/R2, both for monopoles and antimonopoles. This cancels the
Coulomb magnetic repulsion of two monopoles, and doubles the magnetic
attraction of a monopole and antimonopole.

The absence of a force between two monopoles, when λ = 0, suggests
that two-monopole static solutions of the Bogomolny equation might ex-
ist, with the separation being an adjustable parameter. Such solutions
would all have the same energy 4π, independently of the separation, and
this is of course compatible with the absence of forces.

Two-monopole solutions do indeed exist, as do N -monopole solutions
for any integer N > 0. They were originally very difficult to find, and
this difficulty attracted a deep investigation of the Bogomolny equation
by mathematicians.

One observation inspired various efforts to understand BPS monopoles.
This is that the Bogomolny equation is the time independent version of
the self-dual Yang-Mills equation [77, 268]. A pure Yang-Mills gauge field
in four-dimensional Euclidean space, with coordinates {xµ : µ = 1, 2, 3, 4},
is self-dual if

Fµν =
1
2
εµνστFστ , (8.92)

where εµνστ is the totally antisymmetric tensor in four dimensions (with
ε1234 = −1). Equation (8.92) can be written alternatively as

F4i =
1
2
εijkFjk . (8.93)

Finite-action solutions of this equation are known as multi-instantons,
and they minimize the action for a given value of the topological charge
of the Yang-Mills field, the second Chern number; see Chapter 10 for a
detailed discussion. Suppose now that the Yang-Mills gauge potential Aµ

is independent of the Euclidean time x4. Then Eq. (8.93) simplifies to

−∂iA4 − [Ai, A4] =
1
2
εijkFjk . (8.94)

If we now identify −A4 with the Higgs field Φ, then (8.94) becomes the
Bogomolny equation in three dimensions, DiΦ = 1

2εijkFjk.
This identification makes a lot of sense. From a three-dimensional point

of view, A4 is a scalar field. Gauge transformations g(x) in four dimen-
sions simplify if they are assumed to be independent of x4, and A4 then
transforms in the same way as Φ, namely Φ )→ gΦg−1.

A static monopole solution, then, is a time independent self-dual gauge
field. (This analogy does not extend to dynamical Yang-Mills-Higgs fields
in Minkowski space-time.) Its four-dimensional action is infinite, because
of the time translation invariance, and the boundary conditions are dif-
ferent from those of a finite-action instanton. Nevertheless, of the various
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techniques developed to find instantons, some can be adapted to the time
independent case, and used to construct monopoles. In fact, only the
simplest Prasad-Sommerfield solution, with N = 1, was rederived in this
way initially [276], but more sophisticated techniques led to progress with
the construction of both the instantons and monopoles.

Two important results concerning BPS monopoles were established,
before any explicit solutions for N > 1 were found. First, the dimension
of the space of solutions of charge N was calculated. It is necessary to
assume that at least one solution of charge N exists, and that the space
of solutions is a manifold. The tangent space to this manifold is the
space of solutions of the linearized Bogomolny equation. Let {Φ, Ai} be
the presumed N -monopole solution, and consider fields {Φ + φ, Ai + ai},
where φ and ai are small. Substituting in the Bogomolny equation and
linearizing gives

1
2
εijk(DA

j ak −DA
k aj) = DA

i φ+ [ai, Φ] . (8.95)

Note that these equations have infinitely many solutions of the form
φ = [α, Φ], ai = −DA

i α, with α valued in su(2), which simply repre-
sent infinitesimal gauge transformations of the original solution, and do
not physically change it. To avoid these, one requires that the deforma-
tions {φ, ai} are orthogonal to infinitesimal gauge transformations, in the
sense that ∫ (

−Tr(aiD
A
i α) + Tr(φ[α, Φ])

)
d3x = 0 (8.96)

for any (compactly supported) α. Integrating by parts, and rearranging,
one sees that this orthogonality requirement is that

DA
i ai + [Φ,φ] = 0 , (8.97)

which is known as the background gauge condition. The true deformation
space of the monopole is the space of solutions of the combined equations
(8.95) and (8.97) subject to suitable boundary conditions (φ and ai de-
caying towards infinity).

E. Weinberg made the first calculation of the dimension of this space
[422], using methods used to establish the Atiyah-Singer index theorem.
There are some subtleties because the problem is set up on R3, which
is non-compact, and the boundary conditions are not strong enough to
compactify R3. Nevertheless the dimension is determined purely by the
topological charge N of the background field {Φ, Ai}, and it is 4N − 1.
For framed monopoles, the dimension is 4N .

The result 4N is rather surprising. The force argument suggests that
solutions of the Bogomolny equation with N monopoles at N arbitrary
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positions in R3 might exist, but that would give only a 3N -dimensional
space. In fact, the monopoles each have an additional phase parameter,
making 4N all together.

The second result was a tour de force of analysis by Taubes, in which
the existence of N -monopole solutions of the Bogomolny equation, for all
N > 0, was established [223]. Taubes constructed a field configuration
which is a superposition of N well separated unit charge monopoles, with
the magnetic fields and the difference of the Higgs fields from the vacuum
linearly superposed outside the core region of each monopole. This gives
an approximate solution of the Bogomolny equation. He then showed that
close to this approximate solution there is an exact solution. A technical
difficulty, that Taubes overcame, is to ensure that as the exact solution
is approached, the monopoles do not simply drift off to infinity. Morally
speaking, Taubes’ method establishes a continuous family of solutions,
parametrized by the locations of the N well separated monopoles, but
more precisely, it only establishes the existence of a discrete but fairly
dense subset of such solutions. The construction throws some light on
the additional phase parameter associated with each monopole. It has
to do with an approximate U(1) gauge invariance in the way a single
monopole is glued into the abelian background field produced by the
other monopoles. However, the global structure of the 4N -dimensional
space of solutions is not greatly clarified.

Taubes’ result, combined with the index calculations, establishes the
existence of a 4N -dimensional manifold MN of gauge inequivalent solu-
tions to the Bogomolny equation, for monopole number N . MN is known
as the moduli space of N -monopole solutions. Coordinates on it are re-
ferred to equivalently as moduli, parameters, or collective coordinates for
the monopoles. MN turns out to be connected, although it takes further
analysis to establish this.

8.4 Dyons

In addition to magnetic monopole solutions, the Yang-Mills-Higgs theory
with an adjoint Higgs field has dyon solutions. By definition, a dyon is a
particle or soliton with both magnetic and electric charge. The name was
coined by Schwinger [369]. Dyons are not strictly static, although they
are stationary in certain gauges, and they have non-zero kinetic energy.

Julia and Zee [229] showed that there is a generalization of the ’t Hooft-
Polyakov monopole which is electrically charged. The time component of
the gauge potential, A0, is non-vanishing and of the form

A0 = j(r)
xa

r
ta . (8.98)
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The spatial components of the gauge potential, and the Higgs field, have
the same form as in (8.56) and (8.57), but h and k are modified. The
Yang-Mills electric field

Ei = ∂0Ai − ∂iA0 + [A0, Ai] (8.99)

simplifies to Ei = −DiA0 because the fields are time independent.
Asymptotically, DµΦ̂ = 0 still decays exponentially fast, so the U(1)

electric field ei can be defined as the projection on to the Higgs field of
the non-abelian electric field ei = −1

2Tr(EiΦ̂).
Julia and Zee found a 1-parameter family of solutions, all of which have

the same magnetic charge g = −2π, but a variable electric charge, whose
strength q is seen from the form of the asymptotic electric field

e =
q

4πr2
x̂ . (8.100)

These solutions were found numerically for a number of values of q,
the energy increasing with |q|. Dyons are therefore more massive than
monopoles but there is no simple formula for the dependence of mass on
electric charge.

Prasad and Sommerfield, we recall, found the exact monopole solution
in the limit where the Higgs coupling constant λ vanishes. They also
found analytic formulae for the fields of a dyon, and a simple expression
for the mass, in this limit. One can rederive their results using a type of
Bogomolny argument, as follows [89].

Suppose that the fields are time independent, and that D0Φ = 0. There
is no particular reason for this last assumption, but we shall find that it
is satisfied by the dyon solution. The energy of the fields is

E = −1
4

∫
(Tr(EiEi) + Tr(BiBi) + Tr(DiΦDiΦ)) d3x . (8.101)

This may be rewritten as

E = −1
4

∫
Tr(Ei + sinµDiΦ)(Ei + sinµDiΦ) d3x

−1
4

∫
Tr(Bi + cos µDiΦ)(Bi + cos µDiΦ) d3x (8.102)

+
1
2

sin µ
∫

Tr(EiDiΦ) d3x +
1
2

cos µ
∫

Tr(BiDiΦ) d3x

where µ is an arbitrary constant angle. Physical fields must satisfy Gauss’
law, which takes the form DiEi = 0 if D0Φ = 0. The last two terms can
therefore be expressed as surface integrals over the 2-sphere at infinity, so

E = −1
4

∫
Tr(Ei + sinµDiΦ)(Ei + sinµDiΦ) d3x
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−1
4

∫
Tr(Bi + cos µDiΦ)(Bi + cos µDiΦ) d3x

− sinµ
∫

S2
∞

ei dSi − cos µ
∫

S2
∞

bi dSi (8.103)

where ei and bi are the asymptotic electric and magnetic fields. If g and q
are both negative, we therefore have the Bogomolny bound on the energy

E ≥ |q| sinµ + |g| cos µ . (8.104)

Equality occurs if

Ei = − sinµDiΦ (8.105)
Bi = − cos µDiΦ . (8.106)

Given the Prasad-Sommerfield monopole solution, it is straightforward
to solve this pair of equations, for any µ. Set A0 = sinµΦ, and set Ai and
Φ̃ = cos µΦ to be spatially rescaled monopole fields. To have the correct
asymptotic behaviour for Φ it is necessary that |Φ̃| → cos µ as r → ∞.
The dyon solution is therefore (8.56), (8.57) and (8.98) with

h(r) = coth(2r cos µ)− 1
2r cos µ

(8.107)

k(r) =
2r cos µ

sinh(2r cos µ)
(8.108)

j(r) = coth(2r cos µ) sin µ− tan µ

2r
. (8.109)

It is easy to check that D0Φ = 0 for these fields, and that Gauss’ law
DiEi = 0 is satisfied.

The asymptotic Higgs field is the same as for the monopole, and has
the same topology. It satisfies the boundary condition Φ(0, 0, x3) → t3

as x3 → ∞. Since DiΦ → 0 asymptotically, the magnetic charge has
the unchanged value g = −2π. From (8.105) and (8.106) we deduce
that the electric charge is q = g tan µ, so sin µ = |q|/(g2 + q2)1/2 and
cos µ = |g|/(g2 + q2)1/2. It follows from (8.104) that the dyon has energy,
or mass,

M = (g2 + q2)1/2. (8.110)

Although the dyon fields are time independent, there is net kinetic
energy, because A0 and hence Ei are non-vanishing. We can see this
more explicitly by going to the gauge A0 = 0. This is achieved by the
time dependent gauge transformation

g(t,x) = exp(tA0(x)) . (8.111)
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Φ is unchanged, but Ai acquires a rather complicated time dependence,
while remaining spherically symmetric. Notice that the gauge transfor-
mation (8.111) does not satisfy the condition g(0, 0, x3) → 1 as x3 → ∞
at all times, but only if t is an integer multiple of 2π/ sin µ. The framing
of the fields is therefore steadily rotating, and this is the origin of the
kinetic energy. Fields separated in time by the period 2π/ sin µ differ by
a based gauge transformation, and are hence physically the same. The
dyon therefore appears in this gauge to be periodic with period 2π/ sin µ.

(Note that the gauge transformation at time t = 2π/ sin µ is a map from
R3 )→ SU(2), satisfying the boundary condition g → 1 as |x| → ∞, but
which can not be smoothly deformed to the identity g = 1 everywhere
while preserving this boundary condition. It is therefore topologically
non-trivial.)

We shall see below how the idea of a dyon as a periodic solution is built
into the moduli space picture of monopole dynamics. The periodicity also
implies that the electric charge of a dyon is quantized, in a manner com-
patible with the Dirac quantization condition (8.9), when one considers
the quantum dynamics of monopoles.

8.5 The Nahm transform

Direct construction of solutions of the Bogomolny equation with monopole
numbers greater than 1 is very difficult. To circumvent this problem
a number of brilliant ideas have been put forward for transforming a
monopole into an alternative mathematical structure, which can be more
concretely constructed. In this section, and the following one, we describe
in detail the transformation of BPS monopoles discovered by Nahm [313].
Other approaches will be discussed in subsequent sections.

Many solutions of the Bogomolny equation have been discovered using
the Nahm transform, although this does not mean that analytic expres-
sions for the gauge and Higgs field are known.

The Nahm transform is a two-way transformation, like the Fourier
transform. It takes monopole solutions of the Bogomolny equation

Bi = −DiΦ (8.112)

defined in R3, and satisfying certain boundary conditions, to solutions of
the Nahm equation

dTi(s)
ds

=
1
2
εijk [Tj(s), Tk(s)] . (8.113)

Here T1(s), T2(s) and T3(s) are matrices defined on the interval −1 ≤ s ≤
1, and subject to certain symmetry and antihermiticity conditions. The
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matrices are smooth on the interval but diverge at the endpoints in such
a way that they have simple poles there. If the monopole has charge N
then the Nahm matrices are N ×N matrices.

The inverse transformation takes a solution of the Nahm equation to a
solution of the Bogomolny equation. Moreover, acting on a monopole, the
Nahm transform followed by its inverse gives back the same monopole.

Neither the Nahm transform nor its inverse are easily performed explic-
itly. Nevertheless, the transform is valuable for a number of reasons. The
first is that, given a solution of the Nahm equation satisfying the various
subsidiary conditions, it can be shown that the gauge potential and Higgs
field it transforms to give a smooth solution of the Bogomolny equation.

Secondly, it is possible to solve the Nahm equation analytically in a
number of non-trivial cases. It is then also possible to carry out the
(inverse) Nahm transform numerically. In this way a number of interesting
monopoles of various charges have been constructed numerically. It is
particularly convenient to find the magnitude of the Higgs field, and from
this the energy density of the monopole can be calculated and displayed
by making use of Ward’s formula [413] for the energy density

E =
1
2
∇2|Φ|2. (8.114)

This formula follows from the fact that for solutions of the Bogomolny
equation, the two terms in the energy density (the integrand of (8.81))
are identically equal, so E = −1

2Tr(DiΦDiΦ). Using the covariant Leibniz
rule twice, and the field equation DiDiΦ = 0, one can reexpress the energy
density as E = ∂i(−1

2Tr(ΦDiΦ)) = ∇2(−1
4Tr(ΦΦ)), which is equivalent

to (8.114).
Thirdly, symmetries of monopoles imply certain algebraic constraints

on the Nahm matrices. Analytic solutions of the Nahm equation are eas-
ier to obtain in these cases. Some of the symmetries are rather surprising.
The most symmetric monopole solutions of a given charge N are usually
solutions in which N single monopoles have coalesced and lost their in-
dividual identities. These are solutions for which Taubes’ approach gives
no information.

Fourthly, the Nahm transform and its inverse are isometries. We shall
see that there is a natural metric on the moduli space of monopoles, and
there is a similar metric on the moduli space of solutions of the Nahm
equation. The metrics have been shown to be the same, by Nakajima
[314]. The metric can be calculated explicitly from the Nahm data in a
number of cases where direct calculation of the metric on the monopole
moduli space has not been possible.

We shall now discuss the transformation from a BPS monopole to Nahm
matrices. The following aims to explain the main point, but for a mathe-
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matically more complete presentation, see refs. [184, 97]. Our presentation
follows that of Corrigan and Goddard [97].

Consider a Dirac spinor field Ψ(x), transforming via the fundamental
representation of the gauge group SU(2), and coupled to the gauge field
A and Higgs field Φ of a monopole of charge N . Ψ can be written as a
pair of Weyl two-component spinors

(
Ψ−

Ψ+

)

. (8.115)

Let S− and S+ denote the spaces of such Weyl spinor fields.
Motivated by the Dirac operator in the background of a four-dimen-

sional instanton, Nahm introduced the Dirac equation in three dimensions
(

0 i(τ · D− iΦ− s)
i(τ · D + iΦ + s) 0

) (
Ψ−

Ψ+

)

= 0 (8.116)

where τ are Pauli matrices, D is the gauge covariant derivative and s
is a constant real parameter. Of course, (8.116) reduces to the pair of
equations

DΨ− = 0 (8.117)
D†Ψ+ = 0 (8.118)

where D = i(τ · D + iΦ + s) and D† = i(τ · D− iΦ− s) is its adjoint.
Let ker D and kerD† denote the vector spaces of normalizable solu-

tions of (8.117) and (8.118) respectively. The possibility that these vector
spaces are non-trivial depends on the asymptotic eigenvalues of iΦ + s,
which are 1 + s and −1 + s. These eigenvalues must have opposite sign,
so that solutions can decay in all directions. Therefore s is restricted to
the interval −1 < s < 1. It can be proved using the Atiyah-Singer index
theorem that for s in this interval

dim ker D − dim kerD† = N . (8.119)

But, as we now show, ker D† is trivial, so kerD has dimension N . We
shall refer to the normalizable solutions of DΨ− = 0 as zero modes of D.

To see that kerD† is trivial consider the operator DD† : S+ )→ S+. A
simple calculation shows that

DD† = −(τ · D + iΦ + s)(τ · D− iΦ− s)
= −D · D + ΦΦ† + s2 + iτ · (B + DΦ) (8.120)

using τiτj = δij + iεijkτk, and the commutation relation [Di, Dj ] = Fij .
For fields satisfying the Bogomolny equation B + DΦ = 0, therefore,

DD† = −D · D + ΦΦ† + s2 (8.121)
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and this is a positive operator, since ⟨Ψ+,−D·DΨ+⟩ = ⟨DΨ+,DΨ+⟩ > 0.
A positive operator has no normalizable zero modes, and if DD† has no
zero modes, then D† has no zero modes.

We therefore have the following picture. We may split S− into the direct
sum S− = S−

0 ⊕ S̃− where S−
0 is the N -dimensional kernel of D, and S̃−

is its orthogonal complement. The operators D and D† act schematically
as in Fig. 8.3.

Fig. 8.3. A sketch illustrating the action of the operators D and D†, and their
Green’s functions.

Since DD† : S+ )→ S+ is invertible, D : S̃− )→ S+ and D† : S+ )→ S̃−

are both invertible. Let us introduce Green’s functions for these operators.
The most important is the Green’s function G(x,y) of the operator DD†

satisfying
(−D · D + ΦΦ† + s2)G(x,y) = δ(x− y) . (8.122)

Let us also introduce a Green’s function λ(x,y) for the restricted operator
D : S̃− )→ S+. A solution of the equation

DΨ− = χ+ (8.123)

where Ψ− ∈ S̃− is then Ψ− =
∫
λ(x,y)χ+(y) d3y. The general solution

of (8.123) has an additional piece in kerD. Similarly, let the Green’s
function of D† be µ(x,y).

Both λ and µ can be expressed in terms of G. Formally, λ = D†G
and µ = GD. Clearly D†G is a (matrix-valued) function. The expression
GD can also be made into a function by integrating by parts wherever µ
occurs in an integral. Then µ = G

←−
D , which means

µ(x,y) = iτ · (−∇yG + GA)−GΦ + iGs . (8.124)
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By construction, D†µ is the identity operator on S̃−. Let {Ψ0
a : 1 ≤

a ≤ N} be an orthonormal basis of zero modes of D; that is,
∫

Ψ0†
a (x)Ψ0

b(x) d3x = δab . (8.125)

Then
δ(x− y)−Ψ0

a(x)Ψ0†
a (y) (8.126)

is the projection operator from S− to S̃−, and it is the identity operator
on S̃−. Therefore

D†
xµ(x,y) = δ(x− y)−Ψ0

a(x)Ψ0†
a (y) , (8.127)

and this is the most important result concerning these Green’s functions.
The Nahm matrices are constructed from the zero modes Ψ0

a(x). These
zero modes depend on the parameter s, and we may specify more carefully
how we choose the basis Ψ0

a by requiring that
∫

Ψ0†
a (x)

∂

∂s
Ψ0

b(x) d3x = 0 . (8.128)

(More geometrically, the left-hand side is an SO(N) connection on the
s-axis, but a connection in one dimension can be gauged to zero.) The
formula for the Nahm matrices Ti is then

(Ti)ab = −i
∫

xiΨ0†
a (x)Ψ0

b(x) d3x , (8.129)

i.e., three N ×N matrices, depending on s. To show that these obey the
Nahm equation, we use the Green’s function identities established above.
First, we have

(TiTj)ab = −
∫

xiyjΨ0†
a (x)Ψ0

c(x)Ψ0†
c (y)Ψ0

b(y) d3x d3y

=−
∫

xiyjΨ0†
a (x)(δ(x− y)−D†

xµ(x,y))Ψ0
b(y) d3x d3y

=−
∫

xixjΨ0†
a (x)Ψ0

b(x) d3x−
∫

(Dx(xiΨ0
a(x)))†µ(x,y)yjΨ0

b(y) d3x d3y

=−
∫

xixjΨ0†
a (x)Ψ0

b(x) d3x + i
∫

Ψ0†
a (x)τiµ(x,y)yjΨ0

b(y) d3x d3y ,

(8.130)

using (8.127), then integrating by parts, and finally using the fact that Ψ0
a

is in the kernel of D. Now, replacing µ(x,y) by the operator G(x,y)Dy,
and again noting that Dy annihilates Ψ0

b(y), we obtain

(TiTj)ab = −
∫

xixjΨ0†
a (x)Ψ0

b(x) d3x−
∫

Ψ0†
a (x)τiτjG(x,y)Ψ0

b(y) d3x d3y.

(8.131)
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The commutator of Ti and Tj is therefore

[Ti, Tj ]ab = −2iεijk

∫
Ψ0†

a (x)τkG(x,y)Ψ0
b(y) d3x d3y . (8.132)

We need to compare this with the s-derivative of the Nahm matrix Tk

(
dTk

ds

)

ab
= −i

∫
xk ∂Ψ0†

a (x)
∂s

Ψ0
b(x) d3x− i

∫
xkΨ0†

a (x)
∂Ψ0

b(x)
∂s

d3x .

(8.133)
Taking the s-derivative of DxΨ0

a(x) = 0, we have

D
∂Ψ0

a

∂s
+ iΨ0

a = 0 . (8.134)

In this equation, iΨ0
a should be interpreted as in S+ and ∂Ψ0

a/∂s in S−.
The choice of basis implied by (8.128) means that ∂Ψ0

a/∂s is in S̃−, so
we may invert (8.134) using the Green’s function λ(x,y) = D†

xG(x,y).
Therefore,

∂Ψ0
a(x)
∂s

= −i
∫

D†
xG(x,y)Ψ0

a(y) d3y . (8.135)

Substituting this and its adjoint into (8.133), and integrating by parts,
and again remembering that Dx annihilates Ψ0

a(x), we obtain finally
(

dTk

ds

)

ab
= −2i

∫
Ψ0†

a (x)τkG(x,y)Ψ0
b(y) d3x d3y . (8.136)

Equations (8.132) and (8.136) show that the Nahm equation (8.113) is
satisfied.

Let us conclude by stating more precisely the properties of the Nahm
matrices which emerge from this transformation [313]. Given a charge N
BPS monopole, the matrices Ti obey the following:

(i) The Nahm equation

dTi

ds
=

1
2
εijk[Tj , Tk] (8.137)

(ii) Ti(s) is regular on −1 < s < 1, but has simple pole behaviour at
s = 1 and s = −1. Near s = 1,

Ti(s) ∼
Ri

s− 1
+ O(1) (8.138)

where the matrix residues {Ri : i = 1, 2, 3} define the irreducible
representation of su(2) of dimension N, with commutation relations
R1 = −[R2, R3], etc.
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(iii)
Ti(s)† = −Ti(s) (8.139)

(iv)
Ti(−s) = T t

i (s) , (8.140)

where the superscript t denotes the transpose.

Comments: The normalizable zero modes of the operator D are less
and less localized around the monopole as s approaches ±1; hence the
moments which define the Nahm matrices (8.129) diverge as s → ±1.
Property (ii) states that this divergence gives a simple pole. Substituting
(8.138) into the Nahm equation, the s−2 term is Ri = −1

2εijk[Rj , Rk], so
{Ri} defines an N -dimensional representation of su(2). The irreducibility
of the representation is a consequence of having the correct number of zero
modes. It is often convenient to express Nahm data in a basis in which
property (iv) is not manifest. The existence of a basis in which relation
(iv) is explicitly satisfied can then be guaranteed by the properties of other
basis independent objects, such as the spectral curve which we introduce
later.

Let us now, more briefly, describe the inverse Nahm transform. Struc-
turally it is rather similar to the Nahm transform. Start with a triple
of N × N Nahm matrices {Tj(s) : −1 < s < 1} obeying the conditions
(8.137)–(8.140). Then consider the one-dimensional Weyl equations on
−1 < s < 1

(
12N

d

ds
+ iTj(s)⊗ τj − 1N ⊗ xjτj

)
v−(s) = 0 (8.141)

(
−12N

d

ds
+ iTj(s)⊗ τj − 1N ⊗ xjτj

)
v+(s) = 0 (8.142)

where x is now a parameter. The Nahm equation implies that
(

12N
d

ds
+ iTj(s)⊗ τj − 1N ⊗ xjτj

)(
−12N

d

ds
+ iTj(s)⊗ τj − 1N ⊗ xjτj

)

= −12N
d2

ds2
+ (iTj − 1Nxj)(iTj − 1Nxj)⊗ 12 (8.143)

which is a positive operator. It follows that (8.142) has no solutions. An
analysis of the boundary conditions on the Nahm data, and in particular
the fact that the residues form the irreducible representation, reveals that
(8.141) has precisely two solutions which do not diverge at either s = 1 or
s = −1. Let us choose an orthonormal basis for these solutions {va(s) :
a = 1, 2}, satisfying ∫ 1

−1
v†a(s)vb(s) ds = δab , (8.144)
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and varying smoothly with the parameter x. From these we define a Higgs
field and gauge potential in R3, with matrix components

Φ(x)ab = i
∫ 1

−1
sv†a(s)vb(s) ds (8.145)

Ai(x)ab =
∫ 1

−1
v†a(s)

∂

∂xi
vb(s) ds . (8.146)

It can be shown not only that {Φ, Ai} obey the Bogomolny equation and
boundary conditions for a charge N monopole, but also that the fields
are smooth functions of x. Further, the Nahm transform followed by its
inverse gives back the monopole one starts with.

The gauge arbitrariness of a monopole arises because of the ambiguity
in the choice of basis {va} as x varies. In three dimensions, there is no
analogue of the condition (8.128), so we can not simply make Ai vanish.
However, we may choose a basis so that one component, say A1, vanishes.
This is an axial gauge choice.

8.6 Construction of monopoles from Nahm data

The Nahm transform clearly provides a powerful tool for constructing
N -monopole solutions. Even so, only a limited number of solutions with
a high degree of geometrical symmetry have been found using it. We
shall first describe the Nahm data for N = 1 and N = 2 solutions;
here, all solutions are obtained. We shall then consider a class of N = 4
solutions with tetrahedral symmetry, and briefly mention some further
examples with N = 3 and N = 7. Although the Nahm data are known
analytically in all these cases, it is necessary in most of them to use
numerical calculations to apply the inverse Nahm transform and construct
the Higgs (and gauge) fields.

For N = 1, the Nahm matrices are 1 × 1 matrices, with trivial com-
mutators. The Nahm equation is solved by Ti(s) = ici, where ci is
a constant vector. This constant solution satisfies all the requirements
(8.137)–(8.140) provided ci is real. The only one-dimensional representa-
tion of su(2) is the trivial one, so there are no poles at s = 1 or s = −1. It
is fairly clear from the form of the operator 12N

d
ds +iTj(s)⊗τj−1N⊗xjτj

that a shift of ci corresponds to a translation in R3. The centred N = 1
monopole corresponds to ci = 0.

It is remarkable that the trivial Nahm data, Ti(s) = 0, give a monopole.
We now demonstrate this. The equation (8.141) reduces to

(
d

ds
− τ · x

)
v(s) = 0 (8.147)
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which we must solve for all x. It is straightforward to integrate (8.147),
since τ · x is independent of s. We find

v(s) = exp(sτ · x)v(0)
= (cosh sr + sinh sr x̂ · τ )v(0) (8.148)

where r = |x| and x̂ = x/r. Two independent solutions are

v1(s) =
√

r

sinh 2r
( cosh sr + sinh sr x̂ · τ )

(1
0

)
(8.149)

v2(s) =
√

r

sinh 2r
( cosh sr + sinh sr x̂ · τ )

(0
1

)
. (8.150)

These obey the orthogonality condition
∫ 1

−1
v†1(s)v2(s) ds = 0 (8.151)

since cosh sr sinh sr integrates to zero on [−1, 1]. The factor
√

r/ sinh 2r
ensures the normalization conditions

∫ 1

−1
v†1(s)v1(s) ds =

∫ 1

−1
v†2(s)v2(s) ds = 1 . (8.152)

We can now reconstruct the Higgs field Φ. Its matrix components are

Φab = i
∫ 1

−1
sv†a(s)vb(s) ds . (8.153)

Only the terms linear in x̂ · τ contribute to this integral. One finds

Φab = i
r

sinh 2r
(x̂ · τ )ab

∫ 1

−1
2s cosh sr sinh sr ds

= i
r

sinh 2r
(x̂ · τ )ab

(cosh 2r

r
− sinh 2r

2r2

)

= i
(

coth 2r − 1
2r

)
(x̂ · τ )ab , (8.154)

which is the Higgs field of the Prasad-Sommerfield solution. A similar
calculation, using (8.146), recovers the gauge potential.

The Nahm data for N = 2 monopoles can also be given in closed form
[69]. It is known that any N = 2 monopole has a Z2 × Z2 symmetry,
this being the group of 180◦ rotations about three perpendicular axes,
together with the identity. If the monopole is centred at the origin and
oriented suitably, then it is invariant under 180◦ rotations about the three
Cartesian axes, and the Nahm data simplify.
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The Nahm matrices are antihermitian 2×2 matrices, and therefore lin-
ear combinations of the matrices {iτj}. Because of the Z2×Z2 symmetry,
they can be expressed as

T1(s) =
i

2
f1(s)τ1 , T2(s) =

i

2
f2(s)τ2 , T3(s) = − i

2
f3(s)τ3 . (8.155)

The conditions (8.137)–(8.140) reduce to

df1

ds
= f2f3 ,

df2

ds
= f3f1 ,

df3

ds
= f1f2 (8.156)

with f1, f2 and f3 having simple poles of residue ±1 at both s = 1 and
s = −1; also fi(s) = fi(−s) and fi(s) is real for −1 < s < 1.

Equations (8.156) are the well known Euler equations for a rigid body.
There are three constants of integration, independent of s,

f2
2 − f2

1 = c2
21 , f2

1 − f2
3 = c2

13 , f2
2 − f2

3 = c2
23 , (8.157)

where we have chosen to order the functions so that f2
2 ≥ f2

1 ≥ f2
3 . The

constants are related by c2
21 + c2

13 = c2
23

There is a scaling symmetry of Eqs. (8.156) so that

fj(s) = LFj(u) , u = L(s + s0) (8.158)

is again a solution of Eqs. (8.156), where L and s0 are arbitrary constants,
if the Fj satisfy the Euler equations dF1

du = F2F3, and cyclically.
We fix the scaling symmetry by setting the constants to be

c2
21 = L2k2 , c2

13 = L2(1− k2) , c2
23 = L2 , (8.159)

where k ∈ [0, 1] to be consistent with our choice of ordering. Using these,
we can express F1 and F3 in terms of F2 as

F 2
1 = F 2

2 − k2 , F 2
3 = F 2

2 − 1 , (8.160)

leaving the equation for F2

(
dF2

du

)2

= (F 2
2 − k2)(F 2

2 − 1) . (8.161)

Writing F2 = −1/y, this becomes
(

dy

du

)2

= (1− y2)(1− k2y2) , (8.162)

which is the standard form of the equation satisfied by the Jacobi elliptic
function y(u) = snk(u), where k is the modulus.
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This gives the following elliptic solution of the Nahm equation,

f1 =
−L dnk(u)

snk(u)
, f2 =

−L

snk(u)
, f3 =

−L cnk(u)
snk(u)

. (8.163)

The function snk(u) has zeros at u = 0 and u = 2Kk, where

Kk =
∫ 1

2π

0

dθ
√

1− k2 sin2 θ
(8.164)

is the complete elliptic integral of the first kind. Therefore, choosing
L = Kk and s0 = 1, the functions fi have the required poles at s = ±1.
All the Nahm conditions are now satisfied, so we have a 1-parameter
family of Nahm data parametrized by k ∈ [0, 1).

From the Nahm data, the monopole fields, and in particular the Higgs
field and hence the energy density, can be reconstructed via the Nahm
construction. In practice it is convenient to do this numerically. Figure
8.4 exhibits the energy density for various values of k.

Fig. 8.4. Energy density isosurfaces for the N = 2 monopole solution with
elliptic modulus given by (a) k = 0.99, (b) k = 0.7, (c) k = 0.

The parameter k is a measure of the splitting of the N = 2 monopole
into two unit charge monopoles; as k → 1 the separation tends to infinity.
When k = 0,

f1(s) = f2(s) =
−π

2 sin(π(s + 1)/2)
, f3(s) =

−π
2 tan(π(s + 1)/2)

, (8.165)

and since f1 = f2 the fields are axially symmetric about the x3-axis,
giving a toroidal N = 2 monopole.

For all values of k, analytic formulae for the Higgs field can be found
on the Cartesian axes. These involve theta functions and are given in
[69]. The zeros of the Higgs field lie on the x2-axis. Their approximate
locations, for small k, are at x2 = ±(24 − 2π2)−1/2k, whereas as k → 1
they are at x2 = ±1

2Kk. When k = 0, the Higgs field has a double zero
at the origin; and on the x3-axis,

|Φ| =
∣∣∣∣tanh(2x3)− 16x3

16(x3)2 + π2

∣∣∣∣ , (8.166)
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whereas in the (x1, x2) plane,

|Φ| =
∣∣∣∣
2π2cosh a (sinh a− a cosh a)

a(4a2 − π2sinh2 a)
− 1

∣∣∣∣ (8.167)

where a = 1
2

√
16((x1)2 + (x2)2)− π2. These formulae are due to Ward

[413].
Few explicit solutions of the Nahm equation are known for monopole

number N > 2. One family of solutions is modelled on the N = 2
solutions, and exists for all N . Here

T1(s) = −1
2
f1(s)ρ1, T2(s) = −1

2
f2(s)ρ2, T3(s) =

1
2
f3(s)ρ3 (8.168)

where {ρi : i = 1, 2, 3} is a basis of matrices for the N -dimensional irre-
ducible representation of su(2), with [ρi, ρj ] = 2εijkρk, and {fi(s) : i =
1, 2, 3} are the same as in the N = 2 case. In general, this solution
describes a string of N unit charge monopoles equally spaced along the
x2-axis [121]. In the special case k = 0, f1 = f2 and the solution gives a
toroidal monopole of charge N , axially symmetric about the x3-axis.

Further solutions of the Nahm equation are known for N = 3, 4, 5, 7;
they are obtained by imposing Platonic symmetries. Below we shall de-
scribe two examples with N = 4. The first gives a monopole with octahe-
dral symmetry. The second gives a 1-parameter family of monopoles with
tetrahedral symmetry, and for a special parameter value the octahedral
monopole is recovered.

Let us first explain how the symmetry of an N -monopole is reflected in
its Nahm data. Naively, one sees from (8.142) that a rotation R ∈ SO(3),
represented by the matrix Rij , acts on the Nahm data by Ti )→ RijTi.
But it is possible to conjugate the Nahm matrices by a fixed element of
SU(N), preserving the Nahm equation. Such a conjugation arises from a
basis change of the zero modes of the operator D. So Nahm data are said
to be symmetric under a subgroup K ⊂ SO(3) if for each R ∈ K, there
is a matrix M(R) ∈ SU(N) such that

RijTi = M(R)TiM(R)−1 . (8.169)

This equation is trivially satisfied for all R by the N = 1 Nahm data
Ti = 0, so these Nahm data and the resulting monopole are spherically
symmetric. The N = 2 Nahm data (8.155) satisfy (8.169) if M(R) is
taken to be iτj when R is a rotation by 180◦ about the xj-axis.

In general, the matrices M(R) are highly restricted by the pole be-
haviour of Ti near s = 1 and s = −1. The residues are rotated by R and
since the residues define the N -dimensional irreducible representation of
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SU(2), M(R) must be the matrix representing R in this irreducible
representation. We may therefore think of the Nahm matrices as lying in
the tensor product space

R3 ⊗ su(N) (8.170)

and transforming under SO(3) via the representation

3⊗ (N ⊗N)o (8.171)

where 3 is the defining representation of SO(3) and N is the complex
N -dimensional representation, with o denoting the traceless part.

This tensor product representation of SO(3) can be restricted to any
subgroup K. K-invariant Nahm data are constructed from the subspace
of R3 ⊗ su(N) which transforms trivially under K ⊂ SO(3). By the
standard Clebsch-Gordon rules for SO(3) representations, (8.171) can be
decomposed into SO(3) irreducibles as

3⊗ (2N − 1 ⊕ 2N − 3 ⊕ · · ·⊕ 5 ⊕ 3) (8.172)
= 2N + 1 ⊕ 2N − 1 ⊕ · · ·⊕ 5
⊕ 2N − 1 ⊕ 2N − 3 ⊕ · · · ⊕ 3
⊕ 2N − 3 ⊕ 2N − 5 ⊕ · · ·⊕ 1 .

This shows that there is always one SO(3) invariant, which is automati-
cally a K-invariant, but there can be further K-invariants inside the other
irreducible representations of SO(3) that are present here.

The very simplest idea is to try to construct SO(3)-invariant Nahm data
from the 1 in (8.172). This means that the matrices Ti are proportional to
the matrices ρi we introduced earlier, with the coefficient functions being
related. Explicitly,

T1(s) = −1
2
f(s)ρ1 , T2(s) = −1

2
f(s)ρ2 , T3(s) =

1
2
f(s)ρ3 . (8.173)

But the Nahm equation then reduces to df
ds = f2, whose solution is f(s) =

−1/(s + s0). This can not have poles at both s = 1 and s = −1, for any
choice of s0. So there are no SO(3)-symmetric solutions for N > 1.

The next simplest situation occurs when N is just large enough for there
to be one trivial K-singlet in addition to the 1 when the representations
in (8.172) are decomposed into irreducible representations of K; in other
words, the representation 2N + 1 of SO(3) has a trivial K-singlet, but
the lower dimensional representations do not.

For example, if K is the octahedral group O, the critical value is N = 4,
because the nine-dimensional representation of SO(3) has a trivial O-
singlet in it, but the smaller non-trivial representations of SO(3) do not.
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It is therefore possible to find two sets of 4×4 matrices {ρi,χi : i = 1, 2, 3}
such that the Nahm data

Ti(s) = f(s)ρi + g(s)χi (8.174)

are octahedrally symmetric. The matrices χi can be found explicitly –
the method is explained in refs. [187, 194]. Because of the symmetry, the
commutators of the matrices ρi and χi close on themselves. One finds

[ρ1, ρ2] = 2ρ3 , [χ1,χ2] = −48ρ3 − 8χ3 , (8.175)

[χ1, ρ2] + [ρ1,χ2] = −6χ3 , (8.176)

and the cyclic permutations of these relations. Therefore, for Nahm data
of the form (8.174), the Nahm equation reduces to

df

ds
= 2f2 − 48g2 (8.177)

dg

ds
= −6fg − 8g2 . (8.178)

Remarkably, these equations can be solved in terms of a Weierstrass
elliptic function. First note that the following combination,

µ4 = g(f + 3g)(f − 2g)2 , (8.179)

is a conserved quantity for the system (8.177)–(8.178). This is easily
verified by differentiation and direct substitution of the expressions for
the derivatives of f and g. Exchanging f for a new function w, via the
substitution f = (5w2 − 3)g, results in the expression

µ4 = 53g4w2(w2 − 1)2 . (8.180)

This can be used to eliminate g in terms of w and produces the equation
(

dw

ds

)2

= 16
√

5µ2w(w2 − 1) . (8.181)

In terms of the scaled independent variable

u = 2
√

5µ2(s + s0) , (8.182)

the solution of (8.181) is given by w(s) = ℘(u), where ℘(u) is the Weier-
strass function satisfying

℘′(u)2 = 4℘(u)3 − 4℘(u) . (8.183)
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The functions in (8.174) are therefore

f(u) =
2µ(5℘2(u)− 3)

53/4℘′(u)
, g(u) =

2µ

53/4℘′(u)
. (8.184)

The correct linear relation (8.182) between u and s is determined by
requiring that the Nahm matrices have poles at s = −1 and s = 1, and no
poles in between. Note that the period lattice of the Weierstrass function
satisfying (8.183) is a square lattice, since there is the symmetry u )→ iu,
℘ )→ −℘. Let the real and imaginary periods be 2ω and 2iω. It can be
checked that

ω =
∫ 1

0

dt√
1− t4

=
1

4
√

2π

(
Γ
(1

4

))2

(8.185)

where Γ is the standard gamma function. Since ℘ has a double pole at
u = 0, and ℘′ a triple pole, f has a simple pole at u = 0 whereas g is
regular. The Nahm matrices Ti therefore have a simple pole at u = 0, and
they have the required residues, coming from ρi. Wherever ℘′ = 0, f and
g both have simple poles. These are at the half-period points, ω, iω and
(1 + i)ω, where respectively ℘ = 1,−1 and 0. The residues of the Nahm
matrices can be evaluated, and it is seen that only at (1+i)ω, where ℘ = 0,
do the residues define an irreducible four-dimensional representation of
SU(2).

The Nahm matrices are regular for −1 < s < 1, and they have the
required poles at s = ±1, provided we arrange that s = −1 at u = 0 and
s = 1 at u = (1 + i)ω. Thus

u =
(1 + i)ω

2
(s + 1) (8.186)

with the associated constant being

µ =
(1 + i)ω
51/44

. (8.187)

Combining all the above results gives Nahm data of an octahedrally sym-
metric N = 4 monopole. These Nahm data can be used to find the Higgs
field and energy density. A picture of a constant energy density surface
is shown in Fig. 8.5.

A more general solution has been found, by relaxing the octahedral
symmetry O to tetrahedral symmetry T . There are four sets of T -singlets
in (8.172) for N = 4, though one of these sets plays no role, so the ansatz
for the Nahm matrices is of the form

Ti(s) = f(s)ρi + g(s)ψi + h(s)ζi . (8.188)
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Fig. 8.5. Energy density isosurface for the N = 4 monopole with octahedral
symmetry.

The Nahm equation becomes a triple of nonlinear ODEs which may still
be solved in terms of a Weierstrass function ℘(u), but now obeying the
more general equation

℘′(u)2 = 4℘(u)3 − 4℘(u) + 12a2 . (8.189)

For each real constant a in the range (−3−5/4
√

2, 3−5/4
√

2), the solu-
tion satisfies all requirements. Near the ends of this interval the N = 4
monopole constructed from these Nahm data looks like four well separated
unit charge monopoles on the vertices of a tetrahedron, but at a = 0 it is
the octahedrally symmetric monopole discussed earlier. See Fig. 8.6 for
pictures of these monopoles.

8.7 Spectral curves

We recall the properties of a matrix differential equation in Lax form. Let
A(s), B(s) be two complex-valued N ×N matrices, depending on s, and
suppose

dA

ds
= [A, B] . (8.190)

(This is a well posed linear equation for A if B(s) is given, or a well posed
nonlinear equation if B is some specified function of A.) The quantities
cn = Tr(An) are constants independent of s because

dcn

ds
= n Tr

(
An−1 dA

ds

)
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Fig. 8.6. Energy density isosurfaces for a family of N = 4 monopoles with
tetrahedral symmetry.

= n Tr(An−1(AB −BA))
= 0 (8.191)

using the cyclic property of the trace. It follows that all symmetric poly-
nomials in the (possibly repeated) eigenvalues of A are independent of
s, whether or not A can be diagonalized, and hence that the defining
polynomial (in η) for the eigenvalues

det(η 1N + A(s)) (8.192)

is independent of s. Geometrically, the point set in the η-plane defined
by

det(η 1N + A(s)) = 0 (8.193)
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is independent of s, and each coefficient of this degree N polynomial in
η may be regarded as a constant of integration for the solution A(s) of
(8.190).

The Nahm equation can be written in Lax form. Note first that it
follows from the Nahm equation that

d

ds
(T1 + iT2) = [T1 + iT2,−iT3] (8.194)

so det(η 1N + T1(s) + iT2(s)) is independent of s. But Eq. (8.194) uses
only two components of the Nahm equation, and it does not capture
the intrinsic SO(3) invariance. Fortunately, we may introduce a complex
parameter ξ and consider the linear combination of Nahm matrices

T = T1 + iT2 − 2iT3ξ + (T1 − iT2)ξ2 . (8.195)

Introducing also
T+ = −iT3 + (T1 − iT2)ξ (8.196)

we can verify that the entire Nahm equation is equivalent to

dT

ds
= [T, T+] (8.197)

if this last equation holds for all ξ.
Therefore, for a solution of the Nahm equation, the geometrical object

defined by the equation

P (ξ, η) ≡ det(η 1N + (T1 + iT2)− 2iT3ξ + (T1 − iT2)ξ2) = 0 (8.198)

provides constants of integration, independent of s. For each ξ, the set of
points η satisfying (8.198) is the set of eigenvalues of −T . When (8.198)
is expanded out, for any given solution of the Nahm equation, it is an
Nth-order polynomial in η where the coefficients are polynomials in ξ.
More precisely, (8.198) has the structure

ηN + a1(ξ)ηN−1 + · · · + aN (ξ) = 0 (8.199)

where ar(ξ) is of degree at most 2r. The equation (8.198), or equivalently
(8.199), defines an algebraic curve in the complex (ξ, η) space. This is
known as the spectral curve of the solution of the Nahm equation. If
the Nahm data are those of an N -monopole, then (8.199) is called the
spectral curve of the monopole. The curve has one complex dimension,
but as a real object it is a surface – a Riemann surface.

It is straightforward to deduce the consequence of the reality condition
on the Nahm data, which is that, for all r

ar(ξ) = (−1)rξ2rar(−1/ξ̄) . (8.200)
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Condition (8.200) imposes simple reality constraints on the coefficients of
the polynomials ar(ξ). For example, a1(ξ) must have the form

a1(ξ) = −(c2 − ic1) + 2c3ξ + (c2 + ic1)ξ2 (8.201)

where c1, c2 and c3 are real.
Let us now give some examples of spectral curves of monopoles. We

start by recalling that the Nahm data for an N = 1 monopole centred at
(c1, c2, c3) are Ti = ici, and hence the spectral curve of the monopole is

η − (c2 − ic1) + 2c3ξ + (c2 + ic1)ξ2 = 0 (8.202)

which has the reality property we expect.
For the centred and oriented N = 2 monopoles discussed in the previous

section the spectral curve is

det
(
η 1N + (

i

2
f1τ1 −

1
2
f2τ2)− f3τ3ξ + (

i

2
f1τ1 +

1
2
f2τ2)ξ2

)
= 0 .

(8.203)
On evaluating the determinant this becomes

η2 +
1
4
(f2

1 − f2
2 )(1 + ξ4) +

1
2
(f2

1 + f2
2 − 2f2

3 )ξ2 = 0 (8.204)

which involves just the constants of integration c2
21, c2

23 and c2
13, and re-

duces to

η2 − K2
k

4

(
k2(1 + ξ4)− 2(2− k2)ξ2

)
= 0 (8.205)

for the solution (8.163). For the axially symmetric 2-monopole, with
k = 0, the spectral curve is

η2 +
1
4
π2ξ2 = 0 . (8.206)

As mentioned earlier, there are axially symmetric N -monopole solutions
for all N . Their spectral curves were first obtained by Hitchin [183]. For
N odd the curve is

η(η2 + π2ξ2)(η2 + 4π2ξ2) · · ·
(

η2 +
(

N − 1
2

)2

π2ξ2
)

= 0 . (8.207)

For N even,
(
η2 +

1
4
π2ξ2

)(
η2 +

9
4
π2ξ2

)
· · ·
(

η2 +
(

N − 1
2

)2

π2ξ2
)

= 0 . (8.208)

The N = 4 octahedral monopole has a spectral curve of the form

η4 + c(ξ8 + 14ξ4 + 1) = 0 (8.209)



288 Monopoles

where c = −960µ4. µ4 is the conserved quantity of the reduced system
given by Eq. (8.179), which must take the value given by (8.187) and
(8.185), so

c =
3

1024π2

(
Γ
(1

4

))8

. (8.210)

This coefficient determines the scale of the spectral curve and hence of the
monopole. N = 4 monopoles with tetrahedral symmetry have spectral
curves of the slightly more general form

η4 + ic1ξ(ξ4 − 1)η + c2(ξ8 + 14ξ4 + 1) = 0 (8.211)

where c1 and c2 are real constants of integration of the reduced equations.
The explicit values are given by

c1 = 36aκ3 , c2 = 3κ4 (8.212)

where a is the free parameter in the range (−3−5/4
√

2, 3−5/4
√

2) and κ,
which is a function of a, is the real half-period of the elliptic function
satisfying (8.189). For the special value a = 0, the spectral curve of the
octahedral monopole with c1 = 0 and c2 = c is recovered.

Two more examples of highly symmetric monopoles are the N = 3
monopole with tetrahedral symmetry and the N = 7 monopole with
icosahedral symmetry. Their spectral curves are, respectively,

η3 +
Γ
(

1
6

)3
Γ
(

1
3

)3

48
√

3π3/2
iξ(ξ4 − 1) = 0 (8.213)

and

η7 +
Γ
(

1
6

)6
Γ
(

1
3

)6

64π3
ξ(ξ10 + 11ξ5 − 1)η = 0 . (8.214)

These curves were calculated [187, 195] by explicitly solving the Nahm
equation in a similar manner as described above for the octahedral N = 4
monopole. Since the Nahm data are known, we can numerically compute
the energy density of these monopoles, producing the surfaces displayed
in Fig. 8.7. A numerical construction of the Higgs field of the tetrahedral
N = 3 monopole reveals [196] that the number of zeros of the Higgs field
is greater than three. In Fig. 8.8 we plot the three components of the
Higgs field along a line which passes through the origin and a vertex of
the tetrahedron. We see that there are two zeros of the Higgs field along
this line; the first is at the origin and the second is associated with a vertex
of the tetrahedron. By tetrahedral symmetry there are five zeros in total,
four on the vertices of a tetrahedron and one at the origin. The zero
at the origin has negative multiplicity (termed an antizero), that is, the
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Fig. 8.7. Energy density isosurfaces for (a) the N = 3 monopole with tetrahe-
dral symmetry, (b) the N = 7 monopole with icosahedral symmetry.

local winding around this point is that of an antimonopole. So the total
number of zeros when counted with multiplicity is three, as it must be for a
monopole with N = 3. There is a particular evolution of three monopoles
which instantaneously forms the tetrahedral 3-monopole. The zeros of the
Higgs field can be tracked during this evolution, producing a consistent,
though elaborate, picture of their dynamics, including zero-antizero pair
production and annihilation [196]. Other Platonic monopoles also appear
to contain antizeros [391] but this phenomenon is still not well understood.

We close this section by explaining the geometrical significance of spec-
tral curves. The derivation of a spectral curve from Nahm data does
not make this very clear, but the same curve arises in other approaches
to the Bogomolny equation for monopoles, for example, in the twistor
space methods of Ward et al., and in Hitchin’s approach [183, 184] to
monopoles based on scattering data. We discuss the geometry here, and
the scattering data in the next section.

Hitchin’s approach requires that (ξ, η) are coordinates on the tangent
bundle of the Riemann sphere, denoted TCP1. That is, ξ is the standard
inhomogeneous, complex coordinate on the Riemann sphere CP1, and η
is the complex coordinate in the tangent plane to the sphere at ξ. (η is
normalized so that the tangent vector from ξ to an infinitesimally close
point ξ+∆ξ on the sphere is η = ∆ξ.) The tangent bundle to the Riemann
sphere can be interpreted as the space of oriented straight lines in R3 –
Hitchin’s mini-twistor space. This is because an oriented line is specified
by giving, first, its direction in R3, which defines a unit vector or point on
the sphere; and, second, the point of intersection with a (complex) plane
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Fig. 8.8. The three components of the Higgs field along a line which passes
through the origin and a vertex of the tetrahedron associated with the N = 3
monopole with tetrahedral symmetry.

orthogonal to the direction vector. In more conventional terms, the point
(x1, x2, x3) lies on the line (ξ, η) if

η − (x2 − ix1) + 2x3ξ + (x2 + ix1)ξ2 = 0 . (8.215)

Note that ξ is a dimensionless, angular variable, whereas η is a linear
variable that scales with |x|.

This interpretation of ξ and η means that we should include the value
ξ = ∞, since that is just the direction opposite to ξ = 0. To investigate
the neighbourhood of ξ =∞ we make the change of variables

ξ =
1
ξ̃

, η = − η̃

ξ̃2
, (8.216)

where the second formula is motivated by the derivative of the first. In this
way, any spectral curve becomes a curve in TCP1. It is in fact compact
in TCP1. Clearly, while ξ is finite, the N roots η of P (ξ, η) = 0 are finite.
As ξ →∞, the roots η diverge, but in the coordinates (ξ̃, η̃) the N roots
η̃ are finite in a neighbourhood of ξ̃ = 0.

Not all compact curves of the form (8.199), and satisfying the reality
conditions (8.200), occur as the spectral curves of monopoles. This is
because their Nahm data are constrained to satisfy the boundary condi-
tions given in (8.138). Hitchin has given a criterion for a curve to be a
spectral curve, in terms of the triviality of the restriction to the curve
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of a standard bundle over the twistor space TCP1. This criterion can
be made more explicit in terms of integrals of holomorphic differentials
around closed 1-cycles on the spectral curve. Such integral constraints
appeared in the investigations of Corrigan and Goddard [96]. They were
given in a general form by Ercolani and Sinha [121], extending an analysis
of the spectral curves of N = 2 monopoles by Hurtubise [199].

Recently, the constraints found by Ercolani and Sinha have been some-
what simplified, and the connection to the work of Corrigan and Goddard
clarified [192]. The general holomorphic differential on a curve P (ξ, η) = 0
of the form (8.199) in TCP1 can be written as

Ω =
(β0ηN−2 + β1(ξ)ηN−3 + · · · + βN−2(ξ)) dξ

∂P/∂η
, (8.217)

where each βj is a polynomial of degree at most 2j with arbitrary coeffi-
cients. As there are (N − 1)2 arbitrary coefficients in total it follows that
the curve, and hence any spectral curve of a monopole of charge N , has
genus g = (N − 1)2, a result of Hitchin [183]. The condition for a curve
to be a spectral curve, given in [192], is as follows. There must exist a
primitive 1-cycle C on the curve (i.e. not a multiple of another 1-cycle),
such that for all Ω of the form (8.217)

∮

C
Ω = −2β0 . (8.218)

Not only the spectral curve but also the homology class represented by this
cycle C give a geometrical characterization of the monopole. However,
the physical significance of C is not really understood.

The geometrical interpretation of the spectral curve of a monopole in
terms of lines in R3 allows one to anticipate the form of the spectral
curve of a symmetric monopole, and conversely to rule out the existence
of monopoles with given symmetries for small values of N . A rotation R
about the origin in R3 is represented by a Möbius transformation on ξ,
and the derivative of this on η. The SU(2) Möbius transformation

ξ )→ (d + ic)ξ + (b− ia)
−(b + ia)ξ + d− ic

, η )→ η

(−(b + ia)ξ + d− ic)2
(8.219)

corresponds to a rotation by θ about the unit direction (n1, n2, n3), where

n1 sin
θ

2
= a , n2 sin

θ

2
= b , n3 sin

θ

2
= c , cos

θ

2
= d . (8.220)

If this transformation leaves the spectral curve equation P (ξ, η) = 0 in-
variant (i.e. if it multiplies the left-hand side only by a constant) then
the curve is invariant under this rotation. A monopole invariant under a



292 Monopoles

subgroup K ⊂ SO(3) has a spectral curve which is invariant in this sense
under K.

It is not difficult to directly compute the consequences of K-invariance
if K is an uncomplicated subgroup of SO(3). For example, the spectral
curve of an N -monopole with cyclic symmetry CN about the x3-axis must
be invariant under

ξ )→ e2πi/Nξ , η )→ e2πi/Nη (8.221)

and this implies that all terms in P (ξ, η) have the same total degree, mod
N . Since the leading term is ηN , all terms must be of degree 0 mod N .

For the Platonic groups, the symmetry groups T , O and Y of the tetra-
hedron, octahedron/cube and icosahedron/dodecahedron, respectively,
the construction of invariant curves in TCP1 is facilitated by using the
Klein polynomials. Recall that these are discussed and listed in Chapter
6, and consist of invariant polynomials in ξ associated with the vertices,
edge mid-points and face centres of the Platonic solids.

Using the tetrahedral Klein polynomials, one sees that a tetrahedrally
symmetric monopole with N = 3 must have a spectral curve of the form
(8.213), involving Te. The coefficient of Te was recalculated in [192], using
the constraint (8.218) and it was found that the cycle C is the unique
primitive cycle that is invariant under the action of the tetrahedral group.

Similarly, it can be shown that no octahedrally symmetric monopole
can exist for N = 2 or N = 3, and that if an octahedrally symmetric
N = 4 monopole exists, then when it is centred and suitably oriented, it
must have a spectral curve of the form

η4 + c(ξ8 + 14ξ4 + 1) = 0 (8.222)

with c real, where we recognize the Klein polynomial Of associated with
the faces of an octahedron (see Eq. (6.45)). We have seen above that by
solving the Nahm equation, it is possible to show that a unique octahe-
drally symmetric 4-monopole does exist, with the special value of c given
in (8.210).

Similar arguments for other monopoles with Platonic symmetries and
N small are given in [187], and developed in [195]. In these examples,
the Nahm equation is again solved in terms of elliptic functions. This has
a simple explanation in terms of the geometry of the associated spectral
curves. As mentioned above, the spectral curve of an N -monopole has
genus (N − 1)2, but if the monopole is symmetric under a group K then
the relevant quantity is g̃, the genus of the quotient of the spectral curve
by the symmetry group. This genus can be less than (N − 1)2, and in
particular if g̃ = 1, as it is for the above Platonic examples, then the
Nahm equation can be solved in terms of elliptic functions.
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The geometrical interpretation of spectral curves also helps with the
understanding of a unit charge monopole and configurations of N well
separated monopoles. Recall that the point (x1, x2, x3) lies on the line
with TCP1 coordinates (ξ, η) if Eq. (8.215) is satisfied. Conversely, given
a fixed point (x1, x2, x3), the solutions (ξ, η) of (8.215) determine the set
of all oriented lines through it. Now we saw from the Nahm equation that
the spectral curve of an N = 1 monopole with centre (c1, c2, c3) is

η − (c2 − ic1) + 2c3ξ + (c2 + ic1)ξ2 = 0 , (8.223)

so this spectral curve consists precisely of all the oriented lines through
the monopole centre.

We shall refer to the spectral curve (8.223) as the star at (c1, c2, c3).
Not surprisingly, an N -monopole which consists of N well separated unit
charge monopoles (whose existence was established by Taubes) has a spec-
tral curve which is approximately a product of stars. As an example,
consider the tetrahedrally symmetric N = 4 monopoles. Among these
are configurations with unit charge monopoles at the vertices of a large
tetrahedron, say at (b, b, b), (b,−b,−b), (−b, b,−b) and (−b,−b, b). The
product of stars at these points is

η4 + 16ib3ξ(ξ4 − 1)η + 4b4(ξ8 + 14ξ4 + 1) = 0 . (8.224)

This is of the same form as the genuine spectral curve of the tetrahedrally
symmetric 4-monopole (8.211), except that the constants (c1, c2), which
are given by (8.212), are not exactly expressible as (16b3, 4b4). However,
this parametrization becomes increasingly accurate in the limit b→ ±∞.

8.8 Rational maps and monopoles

We have shown how Nahm data and spectral curves can be used to encode
information about a monopole. Yet another transformation converts a
monopole into a rational map from the Riemann sphere to itself. Let z
be the standard complex coordinate on S2. Recall from Chapter 6 that a
rational map R : S2 )→ S2 is given by a function z )→ R(z) where R(z) is
a ratio of polynomials

R(z) =
p(z)
q(z)

(8.225)

and p and q have no common root (i.e. no common linear factor). A
rational map, being a function of z alone, is holomorphic. Poles of R
are simply the points mapped to ∞ on the target S2, and a change of
coordinates shows that there is no singularity at ∞ on the domain S2. R
is a map of topological degree N if either p or q has degree N , and the
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other polynomial has degree N or less. This is because these conditions
imply that the equation

p(z)
q(z)

= c (8.226)

has N roots, counted with multiplicity, for generic values of c.
We shall describe below, in detail, how a monopole is transformed to a

rational map. Here let us point out one remarkable feature of this trans-
formation, namely, it is one-to-one and onto. The moduli space of framed
charge N monopoles is diffeomorphic to a space of based rational maps.
Given a rational map, there is a unique monopole which corresponds to it.
Moreover, some of the monopole’s properties – for example, some of its
symmetries – can be determined directly from the map. In principle, the
monopole fields can be reconstructed from the map. This reconstruction
has been implemented numerically, and we describe the procedure at the
end of this section.

Actually, two different ways are known of transforming a monopole to
a rational map. The first is due to Donaldson [110], the second to Jarvis
(following a suggestion of Atiyah) [225]. This reflects the one weakness
of the transformation, namely, that it does not respect all the Euclidean
symmetries of R3. To define Donaldson’s map for a monopole it is nec-
essary to choose a direction in R3 – following convention we shall choose
the positive x3 direction. Another rational map would be obtained from
the same monopole if another direction were chosen, but it is not known
how to compute one map from the other. More formally, there exists an
SO(3) action on the space of Donaldson rational maps, but this action is
not known explicitly. Only the action of the SO(2) subgroup which pre-
serves the x3-axis is known. In a similar way, the Jarvis map depends on
the choice of an origin in R3, and it is not known how the map changes
if the origin is shifted. The relationship between Donaldson maps and
Jarvis maps is also unknown, except in certain limiting cases.

Starting with the Higgs and gauge fields of a monopole {Φ, Ai}, the
Donaldson map is obtained as scattering data for Hitchin’s equation [183]

(D3 − iΦ)v = 0 . (8.227)

(In fact, Donaldson originally established a natural bijection between ra-
tional maps and Nahm data of monopoles. The direct relationship to
monopole fields via Hitchin’s equation was pointed out by Hurtubise
[200].) v(x3) is a complex two-component (SU(2)-spinor) function de-
fined along a line in the x3 direction. D3 is the covariant derivative and
Φ the Higgs field along this line. The line is labelled by the Cartesian
coordinates (x1, x2) that are constant along it. We combine these into
the complex parameter z = x1 + ix2.
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If Φ is the Higgs field of an N -monopole, then for large |x3| it is gauge
equivalent to

Φ =
(

1− N

2|x3|

)
iτ3 + O

( 1
|x3|2

)
. (8.228)

Asymptotically, iΦ has eigenvalues ±1, so Hitchin’s equation has solutions
that are exponentially growing or decaying as |x3| → ∞. Since (8.227)
is a first order equation for a two-component function, the solution space
has two complex dimensions, and the generic solution grows exponentially
as both x3 →∞ and x3 → −∞.

It is always possible to find one solution that decays exponentially as
x3 → ∞. This solution is unique up to a multiplicative constant. We
may normalize it so that in the gauge (8.228) it has the asymptotic form

v(x3) ∼
(1

0

)
(x3)N/2e−x3

. (8.229)

The power correction to the exponential is due to the long range N/(2|x3|)
term in (8.228). This same solution, in the same gauge, has the asymp-
totic form as x3 → −∞

v(x3) ∼ a
(1

0

)
|x3|N/2e−x3

+ b
(0

1

)
|x3|N/2ex3

(8.230)

where a and b are constants. The overall normalization of this solution is
not interesting; the important quantity is the ratio b/a. Repeating this
analysis for all lines in the x3 direction we obtain functions a(z, z̄) and
b(z, z̄), and the function of most interest is

R(z, z̄) =
b(z, z̄)
a(z, z̄)

(8.231)

which is independent of normalization, and can, if desired, be defined in
a gauge invariant way.

So far we have made no use of the Bogomolny equation, 1
2εijkFjk =

DiΦ. But now observe that the operator Dz̄ = 1
2(D1 + iD2) commutes

with Hitchin’s operator D3 − iΦ if the Bogomolny equation is satisfied,
since

[Dz̄, D3 − iΦ] =
1
2
(F13 + iF23 − iD1Φ + D2Φ) = 0 . (8.232)

Asymptotically, as x3 → −∞, Dz̄ approaches the operator ∂z̄ in the gauge
which we have been using. It follows that

∂z̄R = 0 (8.233)
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so that R is a holomorphic function of z, except possibly for poles where
a vanishes. For large |z|, Hitchin’s equation simplifies as the gauge and
Higgs fields approach their vacuum values. b tends to zero as |z| → ∞,
so R → 0. A function R with these properties is necessarily a rational
function of z,

R(z) =
p(z)
q(z)

, (8.234)

although it is not necessarily true that p = b and q = a. The boundary
condition implies that we can include z = ∞ in the domain of the map,
and that R is a based map, satisfying R(∞) = 0.

By considering special cases (e.g. the axially symmetric N -monopole),
and by a continuity argument, it can be verified that for an N -monopole,
R is of degree N . Therefore, q is a polynomial of degree N and p is a
polynomial of degree N − 1 or less. R can be expressed in the normalized
form

R(z) =
p1zN−1 + · · · + pN

zN + q1zN−1 + · · · + qN
. (8.235)

The maps (8.235) manifestly have 2N complex, or 4N real, parameters.
It is helpful to be able to relate the Donaldson map of a monopole to

other information about the monopole. First, consider the N roots of
the polynomial q(z) (the poles of R). These parametrize the lines in the
x3 direction along which Hitchin’s equation has a normalizable solution
(one which decays in both directions asymptotically). Hitchin originally
defined the spectral curve of a monopole as the set of all lines in R3 where
the equation

(Dt − iΦ)v = 0 (8.236)

has a normalizable solution (t is arc length along the line). Such lines
are called spectral lines of the monopole. This set of lines is a complex
curve in TCP1, in fact, the spectral curve. Later, it was established that
the spectral curve defined via the Nahm data (8.198) is the same. The
Donaldson rational map determines the spectral lines in the x3 direction,
that is, in the direction ξ = 0. The polynomial P (0, η), obtained by setting
ξ = 0 in the spectral curve equation, is therefore the same as q(η) (up to
an arbitrary constant multiple). Similarly, the spectral curve determines
the denominator of the Donaldson rational map for lines in any direction,
but there is no simple algorithm for determining the numerator.

We know, heuristically, that spectral lines pass through the central
region of monopoles, near where the energy is concentrated. If the N
roots of q are distinct and well separated (separation ≫ 1), then the
N -monopole consists of N unit charge monopoles whose centres are (ap-
proximately) on the spectral lines in the x3 direction labelled by these
roots. It is also possible to establish where the monopole centres are
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along the lines, in terms of the rational map. Let the roots of q(z) be
{zi : 1 ≤ i ≤ N}. Then the ith monopole is located at [187]

(x1
i + ix2

i , x
3
i ) =

(
zi,

1
2

log |p(zi)|
)

(8.237)

and it is consistent to say that the phase of the ith monopole is given
by ϕi = 1

2 arg p(zi). Note that p(zi) ̸= 0, since p and q have no common
factors.

For the complementary case of monopoles strung out in well separated
clusters along (or nearly along) the x3-axis, the large z expansion of the
rational map R(z) is [17, 195]

R(z) ∼ e2x+iβ

zL
+

e2y+iγ

z2L+M
+ · · · (8.238)

where L is the charge of the topmost cluster with x its elevation above
the (x1, x2) plane and M is the charge of the next highest cluster with
elevation y.

Although the formula (8.237) is only valid for well separated monopoles,
it suggests a definition for the centre of mass of an N -monopole, X, and
for its overall phase, χ, namely

(X1 + iX2, X3) =
1
N

(
N∑

i=1

zi,
1
2

N∑

i=1

log |p(zi)|
)

(8.239)

χ =
1

2N

N∑

i=1

arg p(zi) . (8.240)

Equivalently X1 + iX2 = −q1/N , where q1 is the coefficient of zN−1 in
q(z), and

X3 + iχ =
1

2N
log

N∏

i=1

p(zi) . (8.241)

It can be shown that these definitions make sense even if the roots of q
are not well separated. The quantity

∏N
i=1 p(zi) is another expression for

the resultant of the polynomials p and q that was defined by Eq. (6.15),
so it has a good limit as roots of q coincide.

A centred N -monopole is one for which X = 0. A strongly centred
monopole may be defined as one for which χ = 0 mod π/N as well. A
strongly centred monopole has q1 = 0 and unit resultant. Using twistorial
arguments, it can be established that the strongly centred monopoles are
a globally well defined subset of monopoles, not depending on the choice
of a direction in R3.
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Note that multiplying the rational map of an N -monopole by a constant
phase factor eiα (̸= 1) gives the rational map of a different monopole,
although they differ only in their framing. The resultant of the map
changes by a factor eiNα, since each number p(zi) is multiplied by eiα.
Therefore, multiplying the rational map of a strongly centred N -monopole
by e2πi/N gives another such monopole, differing only in its framing. This
ZN action on strongly centred monopoles is topologically significant, as
we shall see.

In studying the symmetries of a monopole using its Donaldson map it is
necessary to restrict to only those symmetries which preserve the chosen
scattering direction – in this case the x3 direction. The most obvious
example is a rotation around the x3-axis, whose action on the rational
map parameter is z )→ eiθz, where θ is the angle of rotation. The rational
map (and hence the monopole) is symmetric under such a rotation if only
the framing changes. In other words

R(eiθz) = eiαR(z) (8.242)

for some real constant α, depending on θ.
Another symmetry which is compatible with the fixed scattering direc-

tion is the reflection σ : (x1, x2, x3) )→ (x1, x2,−x3). It was shown in [187]
that the action of this reflection on the degree N Donaldson map R = p/q
is

σ :
p

q
)→ p̃

q
(8.243)

where p̃ is the unique degree N − 1 polynomial in z such that

p p̃ = 1 mod q . (8.244)

We shall make use of both the above rotation and reflection symmetries
shortly, when we identify various totally geodesic submanifolds as the
fixed point sets of certain group actions.

The following are examples of Donaldson rational maps. A 1-monopole
has a map

R(z) =
p1

z + q1
. (8.245)

This is strongly centred if R(z) = 1/z. A 2-monopole has a map of the
general form

R(z) =
p1z + p2

z2 + q1z + q2
(8.246)

and is strongly centred if q1 = 0 and (p1(i
√

q2)+p2)(p1(−i
√

q2)+p2) = 1,
which reduces to the condition involving the resultant

p2
1q2 + p2

2 = 1 . (8.247)
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The strongly centred axisymmetric 2-monopole, with its symmetry axis
the x3-axis, has rational map

R(z) =
1
z2

. (8.248)

This map satisfies (8.242) for any angle θ, with α = −2θ. It is also sym-
metric under the action of the reflection symmetry σ, since p̃ = p = 1.
Similarly, the map R(z) = 1/zN is that of a strongly centred axisymmet-
ric N -monopole, with α = −Nθ being the appropriate phase in (8.242).
These Donaldson rational maps make it easy to see that axisymmetric N -
monopoles exist for all N , and that they are essentially unique. Moreover,
for each N , the rational map is about the most elementary function pos-
sible. It is extraordinary that the fields of the axisymmetric monopoles,
which are difficult to compute, transform into these completely elemen-
tary rational maps.

The existence of classes of cyclically symmetric monopoles can also be
easily shown using Donaldson maps. Consider the degree N rational maps
which are invariant under the cyclic group of rotations about the x3-axis,
CN . Such maps are of the form

R(z) =
azl

zN − b
(8.249)

where l is any integer in the range 0 ≤ l ≤ N − 1, and where a and b
are complex constants. Strong centring determines a in terms of b (up to
some discrete phase choice). The phase of b can be changed by a rotation
about the x3-axis (not in CN ). That leaves |b| as the only interesting
parameter.

The monopoles corresponding to maps of the form (8.249) are not quite
trivial to describe. For large |b|, there are N well separated, unit charge
monopoles lying at the vertices of a regular N -gon (in the plane x3 = 0, if
the monopole is strongly centred). The relative phases of the monopoles
depend on the value of l. If l = 0, the strongly centred monopoles have
rational maps

R(z) =
1

zN − b
(8.250)

and as b→ 0, this tends to the map of the axisymmetric N -monopole. The
N -gon of unit charge monopoles contracts onto a toroidal configuration.

If l ̸= 0, then b = 0 is not allowed, as the numerator and denominator of
R would have a common factor of zl. As b→ 0, the monopoles (or some
subset) must go off to infinity. In fact, as b → 0, the map (8.249) tends,
naively, to the form a/zN−l, although not uniformly in z. This is the map
of an axisymmetric (N − l)-monopole. The coefficient a, determined by b
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if the monopole is strongly centred, has a value implying that the (N− l)-
monopole is moving to infinity along the positive x3-axis. It can be shown
that there is a further axisymmetric l-monopole moving to infinity in the
opposite direction. So, as b decreases from infinity to zero, N unit charge
monopoles on the vertices of an N -gon approach each other in the (x1, x2)
plane, they then somehow coalesce, and split up into two approximately
axisymmetric clusters moving in opposite directions along the x3-axis, one
of charge N − l, the other of charge l.

Details of the fields of these cyclically symmetric monopoles are not
known for general N and l, because the Nahm equation, even with cyclic
symmetry imposed, is not easily solved. For N = 3, with l = 0, 1, 2,
approximate Nahm data have been obtained and used to numerically
calculate the Higgs field and plot the energy density. The cases l = 1
and l = 2 are related by the reflection x3 )→ −x3, so we consider just the
former. Figure 8.9 shows a sequence of energy density isosurfaces as b
varies.

The Jarvis rational maps are constructed in a rather similar way to
the Donaldson maps. First, choose a point in R3 – we take this to be
the origin, 0. It is convenient here to redefine the class of based gauge
transformations to be those for which g(0) = 1. That leaves a residual
global SU(2) group acting on fields. Now take an N -monopole solution
of the Bogomolny equation, and consider Hitchin’s equation along each
radial line from this point

(Dr − iΦ)v = 0 . (8.251)

Dr is the radial covariant derivative, and v(r), 0 ≤ r < ∞, is a two-

component complex function. Select the solution v(r) =
(

v1(r)
v2(r)

)

that

is exponentially decaying as r →∞. This is unique up to a multiplicative

constant. From the value of this solution at the origin,
(

v1(0)
v2(0)

)

, we

define the ratio
R =

v1(0)
v2(0)

. (8.252)

Now the lines from the origin are labelled by their direction, a point on the
Riemann sphere, labelled as usual by the complex coordinate z = tan θ

2eiϕ.
By defining R as in (8.252) for all lines we obtain a function R(z, z̄).

The definition of R requires no gauge fixing. A gauge transformation

g(x) which is smooth in R3 replaces
(

v1(0)
v2(0)

)

by g0

(
v1(0)
v2(0)

)

where

g0 is the SU(2) gauge transformation matrix at the origin. The same g0
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Fig. 8.9. Energy density isosurfaces for a family of N = 3 monopoles with cyclic
C3 symmetry.
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occurs for all directions z. Thus based gauge transformations have no
effect on R, but the residual global SU(2) acts non-trivially by an SU(2)
Möbius transformation

R )→ αR + β

−β̄R + ᾱ
, |α|2 + |β|2 = 1 . (8.253)

The Bogomolny equation implies that the angular covariant derivative
Dz̄ commutes with Hitchin’s radial operator Dr − iΦ. In a gauge where
there are no field singularities at the origin, the operator Dz̄ reduces to
∂z̄ as r → 0. It follows that R is independent of z̄, and is therefore
a holomorphic map R : S2 )→ S2. Note that the direction labelled by
z = ∞ is not special, and neither is the value R = ∞, as this can be
changed by a Möbius transformation. The Jarvis map of an N -monopole
is therefore an unbased rational map of degree N , of the form

R(z) =
p(z)
q(z)

. (8.254)

p and q are polynomials of degree no greater than N , with no common
factor, and one of them, at least, has degree N .

The space of such maps has real dimension 4N +2, and this is the same
as the dimension of the moduli spaces of fully framed N -monopoles. Here,
fully framed means that we quotient the solution space of the Bogomolny
equation by gauge transformations that are the identity at the origin.
The three-dimensional group of global gauge transformations SU(2)/± 1
still acts non-trivially. Jarvis has proved that the space of fully framed
monopoles and unbased rational maps are diffeomorphic.

The naturalness of the construction of the Jarvis map implies that
any rotational symmetry of a monopole, about the origin, is captured
by the map. Conversely, the existence of maps with certain rotational
symmetries implies the existence of monopoles with the same symmetries.
Therefore, using the Jarvis maps, it is easier than before to establish the
existence of monopoles with three-dimensional rotational symmetries.

We have already discussed the action of rotations on the space of ra-
tional maps in Chapter 6, but let us recall the main points. An SO(3)
rotation is realized by an SU(2) Möbius transformation of z. A rational
map R : S2 )→ S2 is invariant under a subgroup K ⊂ SO(3) if there is
a set of Möbius transformation pairs {k, Mk} with k ∈ K acting on the
domain S2 and Mk acting on the target S2, such that

R(k(z)) = MkR(z) . (8.255)

The transformation Mk should represent k in the sense that Mk1Mk2 =
Mk1k2 .
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The Jarvis rational map of a centred N = 1 monopole, with a stan-
dard framing, is R(z) = z. This is SO(3)-invariant with Mk = k, since
R(k(z)) = k(z) for any k ∈ SO(3). Hence the monopole is spherically
symmetric.

From Chapter 6 we recall that there is a (unique up to orientation)
degree 3 rational map with tetrahedral symmetry, given by

R(z) =
√

3iz2 − 1
z(z2 −

√
3i)

. (8.256)

Identifying this as a Jarvis map re-establishes the existence of an N = 3
monopole, symmetric under the tetrahedral group T .

Also recall from Chapter 6 the 1-parameter family of degree 4 maps

R(z) = c
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
(8.257)

where c ̸= 0,∞ is a complex constant. These maps are tetrahedrally sym-
metric, the numerator and denominator being tetrahedral Klein polyno-
mials, whose roots (regarded as points on the Riemann sphere) lie on the
vertices of two dual tetrahedra. When c = 1, R(z) has the additional 90◦
rotational symmetry

R(iz) =
1

R(z)
, (8.258)

so R has octahedral symmetry in this case. The existence of these Jarvis
maps therefore shows that there is a 1-parameter family of tetrahedrally
symmetric 4-monopoles (the phase of c only affects the framing), one of
which has octahedral symmetry. These monopoles are, of course, just the
ones we discussed in Section 8.6.

As another example, we mention that there is essentially a unique icosa-
hedrally symmetric degree 7 rational map. In a certain orientation it has
the form

R(z) =
z5 − 3

z2(3z5 + 1)
. (8.259)

The 7-monopole corresponding to this map is the one found by Houghton
and Sutcliffe. Further examples of symmetric rational maps are discussed
in ref. [193]. From some of these can be inferred the existence of sym-
metric monopoles which have not been obtained yet in any other way, for
example, N = 11 and N = 17 monopoles with icosahedral symmetry.

To conclude this section we describe the construction of the monopole
fields from the Jarvis rational map. The starting point is to write the Bo-
gomolny equation in terms of the spherical coordinates r, z, z̄ and observe
that a (complex) gauge can always be chosen so that

Φ = −iAr = − i

2
H−1∂rH, Az = H−1∂zH, Az̄ = 0 (8.260)
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where H(r, z, z̄) ∈ SL(2, C) is a hermitian matrix with unit determinant.
The Bogomolny equation is then equivalent to the single equation for H

∂r

(
H−1 ∂rH

)
+

(1 + |z|2)2

r2
∂z̄

(
H−1 ∂zH

)
= 0 . (8.261)

As we now explain, solutions of this equation are determined by the ra-
tional map, which specifies the boundary condition on H as r → ∞.
Recall that on the 2-sphere at infinity the Higgs field boundary condition
is Φ = Φ∞, where Φ∞ is in the gauge orbit of iτ3 = diag(i,−i).

A 2×2 hermitian matrix H with unit determinant can always be written
in the form

H = exp
{w

2
(2P − 12)

}
(8.262)

where w is real and P is a 2 × 2 hermitian projector, that is, P † = P =
P 2. A motivation for introducing projectors is that they provide a useful
formulation of similar equations that arise in the context of Skyrmions.
Examining the boundary condition on the Higgs field and comparing this
behaviour with Eq. (8.260) for the Higgs field in terms of H, we find
that the leading order behaviour for large r is that the profile function
w is independent of the angular coordinates z, z̄ and the projector P is a
function only of the angular coordinates. We now examine the behaviour
of the functions w(r) and P (z, z̄), valid for large r, in more detail.

Computing the Higgs field we obtain

Φ = − i

2
H−1∂rH = − i

4
dw

dr
(2P − 12) (8.263)

with squared magnitude

|Φ|2 =
1
16

(
dw

dr

)2

= 1 + O
(1

r

)
. (8.264)

Integrating this equation for w we obtain

w(r) = −4r + O(log r) . (8.265)

On substituting the form (8.262) into Eq. (8.261) and using the asymp-
totic expression (8.265) we find that there is a growing term in Eq. (8.261)
in a large r expansion which is proportional to P∂z̄∂zP + ∂z̄P∂zP , or
equivalently ∂z̄(P∂zP ). Since this term must vanish, the projector P
must satisfy

∂z̄(P∂zP ) = 0 . (8.266)

It can be proved that all solutions of (8.266) are of the form

P =
f f †

|f |2 (8.267)
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where f is a two-component column vector whose entries are holomorphic
functions of z. Note that multiplication of f by an overall factor does
not change P , so that f is an element of CP1, and we may write f(z) =
(1, R(z))t, where R(z) is a rational map, in fact, the Jarvis map.

Substituting the asymptotic behaviour (8.265) into Eq. (8.263) we ob-
tain the expression for the Higgs field on the 2-sphere at infinity

Φ∞ = i(2P − 12) =
i

1 + |R|2
(

1− |R|2 2R̄
2R |R|2 − 1

)
. (8.268)

The monopole charge, N , is the winding number of this map, which is
equal to the degree of the rational map R(z). Thus we conclude that the
boundary condition on H is determined in this simple and explicit way
[207] in terms of the degree N rational map R(z).

Note that (8.268) gives us an explicit expression for the Higgs field at
infinity in terms of the rational map. Naively, one may think that this does
not contain very much information, since for example it is always possible
to choose a (singular) gauge in which the Higgs field at infinity is diagonal
and constant. However, the important point is that our expression is
given in an explicit known gauge, and therefore we have removed the
gauge freedom and are left with the physical information in the Higgs
field – and the fact that it is rational.

We still need to prove the equivalence between the rational map f =
(1, R(z))t and the map R(z) introduced earlier as the scattering data
associated with the solution of Hitchin’s equation along radial lines. We
do this now.

In a unitary gauge there is a basis of solutions to Hitchin’s equation
(8.227) which have the leading order, large r behaviour

v(r) ∼ e−λjruj (8.269)

where λj is an eigenvalue of −iΦ∞ and uj is the corresponding eigen-
vector. Of course, λ1 = −λ2 = 1, and the scattering map is determined
by the decaying solution, or more fundamentally by the solution asso-
ciated with the λ1 = 1 eigenspace. Recall that the scattering map is
obtained by evaluating this solution at the origin r = 0. Now, in the
gauge (8.260), Hitchin’s equation is trivialized to ∂rv = 0, so the solu-
tions are r-independent and hence the scattering map is the eigenvector
of −iΦ∞ with eigenvalue 1. Thus all that remains to be shown is that f is
the eigenvector of −iΦ∞ with eigenvalue 1. Using the explicit expression
(8.268) and the definition of the projector (8.267), this is elementary, as

−iΦ∞f = (2P − 12)f =
(

2f f †

|f |2 − 12

)

f = f . (8.270)
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The construction of a monopole from its rational map is now clear.
Choose a rational map R(z) and then compute the solution of Eq. (8.261)
satisfying the boundary condition that for large r

H ∼ exp
{ 2r

1 + |R|2
(
|R|2 − 1 −2R̄
−2R 1− |R|2

)}
. (8.271)

Obviously this construction is not easy to implement explicitly in prac-
tice, since it still requires the solution of a nonlinear partial differential
equation. In this sense it is not as powerful as, say, the Nahm construc-
tion. The advantage is that for the rational map construction the data
are free, in that any rational map is allowed, whereas in the Nahm con-
struction the Nahm data must satisfy complicated constraints, making it
difficult to find explicit Nahm data. There is always an inherent diffi-
culty associated with solving the Bogomolny equation and the difference
between these alternative constructions is whether the main difficulty re-
sides in performing the construction or specifying the data upon which
the construction is performed.

There are simplifying special cases for which we are able to perform the
construction explicitly, the easiest example being the rational map R = z,
which corresponds to the spherically symmetric N = 1 monopole. In this
case the asymptotic dependence, w(r) and P (z, z̄), is valid for all r and
substituting (8.262) into (8.261) gives the following ordinary differential
equation for the profile function

d2w

dr2
+

2
r2

(1− ew) = 0 . (8.272)

The large r behaviour w(r) ∼ −4r, together with the condition w(0) = 0,
which is required for H to be well defined at the origin, determines the
unique solution of (8.272) to be

w(r) = 2 log
( 2r

sinh 2r

)
. (8.273)

This gives the N = 1 monopole fields. Note that there is no freedom in
the profile function once the rational map has been specified.

Given any rational map R(z), the solution of Eq. (8.261) satisfying the
boundary condition (8.271) can be obtained numerically by introducing
an auxiliary time variable, t, choosing a fairly arbitrary initial H, and
then solving the gradient flow equation

H−1 ∂tH = ∂r

(
H−1 ∂rH

)
+

(1 + |z|2)2

r2
∂z̄

(
H−1 ∂zH

)
. (8.274)

As t → ∞, the solution converges to a static, that is t-independent, so-
lution of the original elliptic equation (8.261). This approach has been
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implemented in [208], where further details can be found, together with
the results of the algorithm when applied to some of the symmetric ra-
tional maps discussed earlier.

8.9 Alternative monopole methods

In previous sections we discussed the Nahm transform in great detail, and
also the relationship between monopoles and rational maps. However,
historically, the first N = 2 monopole solutions were constructed using
other sophisticated methods, which we now briefly describe.

One of these alternative approaches is due to Ward. It is known [412]
that a holomorphic vector bundle can be associated with a self-dual Yang-
Mills field in R4. The base space of the bundle is the twistor space of all
null, self-dual planes in a complexified version of R4. The bundle is triv-
ialized over two patches of the base space, and is completely determined
by a transition function on the overlap between these patches. Ward ex-
ploited the observation that BPS monopoles are self-dual Yang-Mills fields
which are invariant under translation in the x4 direction to show that a
monopole can also be associated with a holomorphic bundle. Again, the
monopole is essentially determined by a transition function on the over-
lap of two patches. Ward [413] found a transition function for an N = 2
monopole with axial symmetry, and was also able to implement the steps
required to reconstruct the solution of the Bogomolny equation. Prasad
and Rossi [339, 338] extended the construction to obtain the axisymmetric
monopole for all N .

Ward’s description of this procedure was in terms of bundles over CP3

which have a special form to obtain the required x4-independence of the
gauge fields. However, as later described by Hitchin [183], the dimensional
reduction can be made at the twistor level too, to obtain a direct corre-
spondence between monopoles and bundles over the mini-twistor space
TCP1, which we have described earlier in the section on spectral curves.
It is helpful in connecting with other approaches if we adopt this reduced
description.

As earlier, on TCP1 let ξ be the standard inhomogeneous coordinate
on the base CP1 and η the complex fibre coordinate, with these twistor
coordinates being related to the space coordinates (x1, x2, x3) via the
relation (8.215).

Monopoles correspond to certain rank two vector bundles over TCP1,
which may be characterized by a 2 × 2 patching matrix which relates
the local trivializations over the two patches U1 = {ξ : |ξ| ≤ 1} and
U2 = {ξ : |ξ| ≥ 1}. For charge N monopoles the patching matrix, F , may
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be taken to have the Atiyah-Ward form [23]

F =
(
ξN Γ
0 ξ−N

)

. (8.275)

To extract the Higgs and gauge fields from the bundle requires the patch-
ing matrix to be split as F = H2H

−1
1 on the overlap U1∩U2, where H1 and

H2 are regular and holomorphic in the patches U1 and U2 respectively.
For a patching matrix of the Atiyah-Ward form this splitting can be

done by a contour integral. From the Taylor-Laurent coefficients

∆p =
1

2πi

∮

|ξ|=1
Γ ξp−1 dξ (8.276)

the Higgs and gauge fields can be computed. For example, there is the
elegant formula [337]

|Φ|2 = 1− 1
4
∇2 log D (8.277)

where D is the determinant of the N ×N banded matrix with entries

Dpq = ∆p+q−N−1, 1 ≤ p, q ≤ N . (8.278)

For charge N monopoles the function Γ in the Atiyah-Ward ansatz
(8.275) has the form [420, 96]

Γ =
ξN

P (ξ, η)

(
e(−x2−ix1)2ξ−2x3

+ (−1)Ne(−x2+ix1)2ξ−1+2x3
)

(8.279)

where P (ξ, η) = 0 is the spectral curve.
As an example, we have seen earlier that the N = 1 monopole located

at the origin has the spectral curve P (ξ, η) ≡ η = 0. In this case the
contour integral (8.276) gives

∆0 =
sinh 2r

r
. (8.280)

Since N = 1, the determinant is D = ∆0 and (8.277) gives

|Φ|2 = 1− 1
4
∇2 log

(sinh 2r

r

)
=
(

coth 2r − 1
2r

)2

, (8.281)

reproducing again the Prasad-Sommerfield solution.
Ward’s original construction of the axially symmetric N = 2 monopole

[413] corresponds to the choice

P (ξ, η) ≡ η2 +
1
4
π2ξ2 = 0 (8.282)
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which we recognize as the spectral curve of the axially symmetric 2-
monopole. The concept of a spectral curve had not yet been introduced
at the time of Ward’s construction, so he had to derive this particular
curve as part of his solution.

Ward [414] was also able to derive the general (up to translation and
orientation) N = 2 spectral curve (8.205) and reconstruct certain prop-
erties of the separated 2-monopole. One weakness of Ward’s approach is
that the fields reconstructed from the holomorphic bundle formally satisfy
the Bogomolny equation, but in general it is not possible to prove that
the fields are free from singularities – though in special cases this can be
done by a continuity argument. The extension to N > 2 is also difficult.

At around the same time that Ward produced his two-monopole so-
lutions using twistor methods, a more traditional integrable systems ap-
proach was taken by Forgács, Horváth and Palla [135], and the same
results obtained. This method makes use of the fact that the Bogomolny
equation (in a suitable formulation) can be written as the compatibility
condition of an overdetermined linear system. The linear system can be
solved in terms of projectors and the corresponding Higgs and gauge fields
extracted. Although the general N = 1 and N = 2 monopoles have been
constructed using this approach, it is again difficult to extend this method
to N > 2.

8.10 Monopole dynamics

In the previous sections we have discussed at length the static multi-
monopole solutions of the Bogomolny equation. It is time to say some-
thing about multi-monopole dynamics, and monopole-antimonopole dy-
namics. We shall concentrate on the BPS limit, λ = 0, where most is
known, and which is also the most interesting case, and make a few re-
marks later about the general case where the Higgs field is massive.

Fundamentally, the field dynamics is governed by the second order,
time dependent field equations (8.48) and (8.49). Certain kinds of initial
data can be interpreted as a nonlinear superposition of monopoles and
antimonopoles, possibly together with some background radiation. Such
an interpretation is more art than science, but it becomes fairly clear-cut
for well separated monopoles and antimonopoles. Here, each soliton can
be compared with the exact solution of a Lorentz boosted, unit charge
monopole or antimonopole, and its position and speed can be determined.

Things are clearest if each monopole core can be surrounded by a ball
of radius R ≫ 1 (the monopole core size is of order 1), and R ≪ s,
where s is the minimal separation between a pair of monopoles or anti-
monopoles. Furthermore, the field inside the ball is that of a Lorentz
boosted monopole modified by an amount of order 1/s. The field out-
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side the balls is a small modification of the vacuum field, which can be
expressed approximately as a linear superposition of the long-range fields
of the various monopoles, possibly together with some small amplitude
radiation.

In this situation, one may expect that the monopole motion is fairly well
defined. Each monopole experiences a force due to the combined effect of
the others, and it will accelerate. The fields far from the monopoles obey
the linearized version of the field equations. Here, the electromagnetic
and scalar fields dominate, as these are long range in the BPS limit. The
remaining fields (associated with the massive W± particles) are exponen-
tially small and can be neglected. For slowly moving monopoles, the fields
will be a superposition of the quasi-static fields due to the monopoles –
these being the instantaneous fields of the monopoles at their current po-
sitions – with small corrections due to their motion. In addition there
will be some superposed radiation which is, even if not present initially,
inevitably produced when monopoles accelerate.

The challenge is to compute the accelerations in terms of the monopole
separations and their relative velocities, and hence predict the monopole
trajectories. Practical calculations are easiest if the monopole velocities
remain modest compared to the speed of light. Since the accelerations
are always small for well separated monopoles, this regime is maintained
for some time. Much more challenging is to predict, or understand, what
happens if monopoles or antimonopoles come close together, either be-
cause of the initial conditions or because of the forces acting.

The field equations are at the limit of what can be successfully simulated
numerically. Scalar field dynamics in 3 + 1 dimensions can be simulated,
but non-abelian gauge field dynamics involves more degrees of freedom,
in addition to other complications, and as far as we know there has been
no serious simulation of multi-monopole dynamics in Yang-Mills-Higgs
theory. There has been some numerical study of monopole interactions –
for example, the force between two monopoles at rest has been estimated
by finding the static field that minimizes their energy when their posi-
tions are fixed by a Lagrange multiplier constraint [273]. However, most
progress has come from analytical work.

The static forces in the BPS limit between well separated monopoles
(or a monopole and antimonopole) were calculated in ref. [275]. The
asymptotic field of a unit charge monopole at rest is known. There is a
magnetic Coulomb field, and a long-range Higgs field

b ∼ − 1
2r2

x̂, |Φ| ∼ 1− 1
2r

(8.283)

where r is the distance from the monopole. A second monopole, well sep-
arated from the first, and at distance s, responds only to these asymptotic
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fields. In fact, it responds only to the magnetic field and to the gradient
of the Higgs field, both of which have magnitude 1/2s2. Moreover, near
the second monopole the spherical character of the first monopole’s fields
is irrelevant. It is a sufficient approximation to assume that the second
monopole is embedded in a constant magnetic field and a linearly varying
Higgs field.

Next one seeks a local solution for the second monopole which has a
constant acceleration, and whose asymptotic field is a superposition of
the usual field of the second monopole and the additional field due to the
first. The acceleration is assumed to be of order 1/s2, and the calculation
is carried out to this order, with radiation being neglected.

Let us fix the origin to be the centre of the second monopole at the
initial time t = 0, and suppose that the monopole is initially at rest. If it
then accelerates rigidly, with acceleration a, the fields will have the form

Φ(t,x) = Φ
(
x− 1

2
at2
)

(8.284)

Ai(t,x) = Ai

(
x− 1

2
at2
)

(8.285)

A0(t,x) = ta · A
(
x− 1

2
at2
)

. (8.286)

The first two of these equations are unsurprising. The last results from
Lorentz boosting the static field to velocity ta at time t. This ansatz for
the fields is consistent, because, inserted in the field equations, it leads to
the static equations

DiDiΦ + aiDiΦ = 0 , (Di + ai)Fij = −[DjΦ, Φ] (8.287)

with corrections of O(|a|2) which we neglect. Remarkably, both equations
(8.287) are satisfied if the fields satisfy the modified Bogomolny equation

Bi + DiΦ + aiΦ = 0 . (8.288)

Provided that this equation has a solution representing the second
monopole in the background field of the first, one can calculate a. One
may assume, as in Section 8.2, that asymptotic fields obey DiΦ̂ = 0, so
Bi = biΦ̂ and DiΦ = (∂i|Φ|)Φ̂. Hence, asymptotically, (8.288) reduces to

bi + ∂i|Φ| + ai = 0 (8.289)

(where |Φ| is approximated by 1 in aiΦ). The spherically symmetric
contribution to bi + ∂i|Φ| from the second monopole vanishes. If the first
soliton is a monopole too, then bi + ∂i|Φ| vanishes completely and a = 0.
If the first soliton is an antimonopole, then its fields bi and ∂i|Φ| are equal
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(since ∂i|Φ| is unchanged but bi has the opposite sign). Therefore, for a
monopole-antimonopole pair the monopole experiences an acceleration

a = −2b (8.290)

where b is the magnetic field produced by the antimonopole (which is
radially outwards) at the location of the monopole. In terms of the sepa-
ration s,

|a| =
1
s2

(8.291)

and the acceleration is towards the antimonopole. Similarly the anti-
monopole accelerates towards the monopole. Since a monopole has mass
2π, the result (8.291) can be interpreted as an attractive force of magni-
tude 2π/s2 between the monopole and antimonopole.

Bak, Lee and Lee [28, 29] have refined this calculation by explicitly solv-
ing (8.288) to linear order in |a|. This requires solving a linear equation
in the background of the Prasad-Sommerfield monopole. The solution
has the asymptotic form that we assumed above in the calculation of the
acceleration.

It is not a surprise that for two monopoles, in the BPS limit, there is no
acceleration. After all, we know that the usual Bogomolny equation has
static solutions representing well separated monopoles. The precise form
of (8.291) is more surprising. Since the monopole has charge g = −2π,
we expect a repulsive Coulomb force g2/4πs2 = π/s2 between monopoles,
and an attraction of the same magnitude between a monopole and anti-
monopole. In fact, in the BPS limit, the repulsion is cancelled and the
attraction is doubled, because of the long-range nature of the massless
Higgs field.

On general grounds, one expects a massless scalar field to produce
an attraction between any particles which couple to it. In this sense,
scalar interactions are like gravity, which is mediated by a tensor field.
(In quantum field theory, the exchange of particles of even spin – spin
0 for a scalar, spin 2 for a graviton – leads to attractive forces.) Our
calculation shows that monopoles and antimonopoles experience a scalar
attraction of strength π/s2. It is consistent to say that the monopole and
antimonopole both have scalar charges of strength 2π, in addition to their
magnetic charges. This charge can be read off from the coefficient of the
1/r term in the asymptotic expansion of |Φ|.

Nahm has given a physical reason for the scalar interaction between
monopoles [312]. Recall that the Higgs field of one monopole has the
hedgehog form (8.56) with the asymptotic behaviour (8.80). When a
second monopole or antimonopole is superposed into this field at a sepa-
ration s from the first, it experiences a Higgs field reduced in magnitude
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by 1/2s from the usual vacuum value. The mass of a Prasad-Sommerfield
monopole is normally proportional to the Higgs vacuum value. The sec-
ond monopole therefore has effectively a reduced mass (and a larger size).
This dependence of mass on position leads to forces of the magnitude we
have calculated. In fact, the only Lorentz invariant way a particle may
interact with a scalar field is through a modification of its mass.

A very interesting observation is that the magnetic and scalar charges
determine the interaction of monopoles even when the monopoles are
moving. For two or more Prasad-Sommerfield monopoles, the forces do
not precisely cancel when the monopoles are in relative motion. We shall
show how to calculate these forces in Section 8.12.

Dyons can also be included. By considering the asymptotic Higgs field
of a dyon (8.107), one sees that a dyon of magnetic charge g = −2π and
electric charge q has a scalar charge (g2 + q2)1/2. Generally, there is a
Coulomb force between two dyons. However, two dyons of equal magnetic
charge and equal electric charge, and separation s, experience a net force

g2

4πs2
+

q2

4πs2
− g2 + q2

4πs2
= 0 (8.292)

where the last term is the scalar contribution, and this is consistent with
the existence of exact static solutions for dyons with these charges.

The next two sections of this chapter will be concerned with the mo-
tion of several monopoles or dyons, but no antimonopoles, in the BPS
limit. We conclude here with some remarks about the dynamics in the
monopole-antimonopole sector, where the topological charge is zero, and
about monopoles away from the BPS limit.

We have seen that there is always a long-range attraction between a
monopole and antimonopole. It would not be surprising if a monopole
and antimonopole, released at rest, always annihilated into radiation. Al-
though no simulations of this process have been carried out, this is almost
certainly what happens, for generic initial data. But Taubes has proved
[398] that there exists at least one static solution of the field equations
in this sector. This solution, representing a monopole-antimonopole pair
with a special phase relationship, is unstable. It is a saddle point of the
energy functional, with one unstable mode. We shall discuss this solution
further in Chapter 11.

A scalar charge can be assigned to a monopole away from the BPS
limit. Here the Higgs field has a positive mass mH, and the asymp-
totic Higgs field of a monopole has a Yukawa behaviour. The coefficient
of the Yukawa term e−mHr/r determines the scalar charge. There is a
Yukawa contribution to the force between two monopoles, proportional
to the square of this charge, but it has exponential decay, so at sufficiently
large monopole separations the purely magnetic Coulomb forces (repulsive
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for two monopoles, attractive for a monopole-antimonopole pair) dom-
inate. This is true for both quasi-static processes, and in monopole
dynamics.

8.11 Moduli spaces and geodesic motion

Multi-monopole dynamics for SU(2) monopoles in the BPS limit was the
first example of soliton dynamics to be modelled in terms of geodesics
on a moduli space [279]. Subsequently there has been much progress in
understanding monopole dynamics this way. The method gives reliable
results for the slow motion of monopoles with no restriction on whether
they are far apart or close together.

We recall from Chapter 4 the basic principle. The N -monopole solu-
tions of the Bogomolny equation are the minimal energy static fields in the
sector of the theory with topological charge N . The monopole fields are
identified under based gauge transformations, and are therefore framed.
The set of gauge inequivalent, framed monopoles is a 4N -dimensional
manifold, known as the N -monopole moduli space, and denoted MN . It
is natural to include the single framing parameter as one of the moduli
space coordinates, as its variation with time has the physical effect of
producing net electric charge, and increasing the kinetic energy. The dy-
namical field equations can be interpreted as Lagrangian motion on the
infinite-dimensional field configuration space CN for fields of topological
charge N . This space has a Riemannian metric and potential energy func-
tion, derived from the kinetic and potential parts of the Lagrangian. If
the initial motion is tangent to the moduli space, or close to this, with
modest kinetic energy, then, for energetic reasons, the subsequent mo-
tion remains close to the moduli space. The moduli space has a metric,
obtained by restricting the metric on CN to its submanifold MN . For
motion on or close to MN the metric dominates, as the potential simply
constrains the motion to MN , and is constant when restricted to MN .
The field dynamics is therefore well approximated by geodesic motion on
MN .

Stuart [386] has reformulated this geodesic approximation in a more
precise way, and has rigorously proved the validity of the approximation,
subject to certain limitations. Stuart’s results are rather technical, and
we just indicate them here. Stuart argues that any field configuration
close to the moduli space has a unique orthogonal projection onto the
moduli space. It is therefore characterized by a point in the moduli space
plus a deformation vector orthogonal to it. The deformation vector is
a superposition of the field modes which can be interpreted as radiation
modes in the background of an N -monopole solution of the Bogomolny
equation. Stuart assumes that the initial data are a field in CN close to
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the moduli space, with the initial time derivative of the field – the field
velocity – being a tangent vector to CN having at most a small projection
orthogonal to the moduli space. That is, most of the kinetic energy is
associated with the projection of the field velocity tangent to the moduli
space. Stuart supposes that the field velocity is O(ε), where ε is small,
and then proves that for a time of O(1/ε), the projection of the true field
evolution on to the moduli space MN is well approximated by the geodesic
motion, with errors of order ε. Implied by this is that the orthogonal
motion, representing radiation, remains small during this time. A field
velocity of O(ε) corresponds to monopole speeds of the same order (the
speed of light is 1).

Note that in a time of order 1/ε, the distance travelled in the moduli
space is of order 1. Reducing the initial velocity can increase the accu-
racy of the geodesic approximation, but the approximation has not yet
been proved valid over an infinite time. This is not surprising. Two basic
types of geodesic motion have been observed on the moduli space. One
is a scattering of monopoles, where the time that they are close together
is of order 1/v (where v is a typical initial monopole speed), and the dis-
tance they travel while close together is of order 1. Here we expect only
a small amount of radiation to be produced, and the predictions of the
geodesic approximation for scattering trajectories should be accurate. If
Stuart’s results can be extended to infinite time, for motions in which
the monopoles are far apart except for a time of order 1, then a proof
of the accuracy of the geodesic approximation for monopole scattering
could be obtained. Another type of geodesic is a closed or bounded or-
bit of monopoles. Here the geodesic approximation should fail after a
sufficiently long time. There is steady radiation from a bound orbit, so
the monopoles slowly lose their energy. The backreaction of the radia-
tion might also destabilize the orbit, so that the monopole trajectories
for large times might be very far from the orbit predicted by the geodesic
approximation. There are also intermediate geodesics, of the scattering
type, but where the monopoles remain close together for arbitrary long
times. Here again the geodesic approximation is suspect.

The mathematical theory of the Riemannian geometry of the moduli
spaces MN is treated in great detail in the book by Atiyah and Hitchin
[17]. In particular, they discuss general results that hold for all N . They
show that the metric on M1 is flat, and they present the explicit metric on
M2 and some of its fascinating geodesics. We shall summarize these re-
sults but mostly without proofs, and present some more recent results, in
particular, some special geodesics for N > 2. Some of the latter describe
surprising monopole scattering processes.

The basic properties of MN and its metric that hold for all N are as
follows:
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(i) MN is a connected and complete Riemannian manifold of dimension
4N .

(ii) The metric on MN is hyperkähler.

(iii) MN has a metric decomposition

MN ≃ R3 × S1 × M̃0
N

ZN
(8.293)

where the factor R3×S1 is flat and decouples from M̃0
N , and where

M̃0
N is simply connected and admits an SO(3) isometry group.

Let us make some comments on these. As a differentiable manifold,
MN is the space of (Donaldson) rational maps. From this, all the topo-
logical properties follow. MN is naturally complex, with coordinates the
coefficients of the polynomials in the numerator and denominator of the
rational map. MN is topologically complicated, because the coefficients
are constrained so that numerator and denominator have no common
roots. Thus MN is the complement in a linear space of the variety de-
fined by the equation Res = 0, where Res is the resultant of the numerator
and denominator, given by Eq. (6.15). However, when roots approach co-
incidence, then at least one monopole moves off to infinity, and this is an
infinite distance metrically. So MN is geodesically complete. The metric
has no singularities while the monopoles are at finite separations.

It can be shown that the metric on MN is Kähler with respect to
the complex structure associated with the Donaldson maps. It follows
that there are three independent complex structures, associated with the
three orthogonal directions in R3. Together, these combine to give a
hyperkähler metric on MN . (It is not known explicitly how the second
and third complex structures act on Donaldson maps.)

We have indicated earlier how the decomposition (8.293) arises for Don-
aldson maps. M̃0

N is the space of the strongly centred monopoles. R3

parametrizes the centre of mass coordinate X, and S1 the total phase χ
(with range 0 ≤ χ ≤ 2π). The ZN quotient occurs because if we take the
space S1 × M̃0

N to be the space of rational maps

eiαR0(z) (8.294)

where R0(z) is strongly centred, then such maps are strongly centred
whenever α is an integer multiple of 2π/N .

It is not obvious that MN should be a metric product compatible with
this decomposition. For example, the total inertia (which is the coeffi-
cient multiplying the standard metric on R3) could depend on the relative



8.11 Moduli spaces and geodesic motion 317

positions of the monopoles (parametrized by a point in M̃0
N ). In fact this

does not occur, essentially because of the hyperkähler structure of MN .
A proof is given in [17]. The R3×S1 factor of MN has a fixed, flat metric

ds2 = dX · dX + dχ2 (8.295)

and the metric on M̃0
N is hyperkähler, orthogonal to the R3 × S1 factor,

and independent of X and χ. The SO(3) action on M̃0
N is the action

of the rotation group in R3 keeping the centre fixed. M0
N
∼= M̃0

N/ZN

is called the reduced N -monopole moduli space, and its first homotopy
group π1(M0

N ) is ZN . Except in the trivial case N = 1, where it is a
point, the reduced moduli space has a non-trivial metric. Only for N = 2
is the metric known explicitly, though Hitchin [185] has obtained a rather
general implicit formula for the Kähler potential (associated to any one
of the complex structures) for all N in terms of the Riemann Θ-functions
of the spectral curves of the monopoles.

For N = 1 monopoles, the flat factor (8.295) is the complete metric on
the moduli space. This implies that in the moduli space approximation,
the Lagrangian of a single monopole, which is purely kinetic, is

L = πẊ · Ẋ + πχ̇2 . (8.296)

Since the monopole has mass 2π, the first term represents the usual non-
relativistic kinetic energy of a particle with velocity Ẋ. The final term is
related to electric charge. If we perform the gauge transformation

g(x) = exp(χΦ(x)) (8.297)

on the Prasad-Sommerfield monopole, we change the framing at infinity
by the phase angle χ. If χ is time dependent, and we keep A0 = 0, we
obtain a dyon with electric charge q = −2πχ̇. (Since Ei = Ȧi = −χ̇DiΦ =
χ̇Bi, the electric charge is χ̇ times the magnetic charge.) The expression
(8.296) implies that a non-moving dyon has total energy, or mass

2π +
q2

4π
. (8.298)

This is the correct expression if we take the exact formula for the dyon
mass ((2π)2 + q2)1/2, and expand to quadratic order in q. The geodesic
motion for the Lagrangian (8.296) is with Ẋ and χ̇ constant. This simply
describes a dyon of constant electric charge in uniform motion.

The factor R3×S1 has a similar interpretation for charge N monopoles.
There is a centre of mass X and an overall phase χ. Ẋ is the centre of
mass velocity and χ̇ determines the total electric charge. Both of these
are conserved. The geodesic motion on M0

N decouples from this, and
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describes the relative motion of the monopoles and the time evolution
of their relative electric charges, although the latter only have a precise
meaning when the monopoles are well separated.

Note that the geodesic approximation is only correct up to quadratic
order in velocities. It ignores the changes in the monopole shape due to
Lorentz contraction and to the acquisition of electric charge. This suggests
that the geodesic approximation is a non-relativistic one, requiring both
v ≪ 1 and q ≪ g. This is true, but the monopole velocities can be a
substantial fraction of the speed of light, up to of order one half, before
radiative effects become substantial. Evidence for this is presented in
ref. [293].

The metric on the reduced two-monopole moduli space M0
2 was deter-

mined by Atiyah and Hitchin, as follows. They argued that because of
the SO(3) symmetry, and because of the reflection symmetries of two-
monopole solutions, the metric has the form

ds2 = f2(r) dr2 + a2(r)σ2
1 + b2(r)σ2

2 + c2(r)σ2
3 . (8.299)

σ1,σ2 and σ3 are standard 1-forms on SO(3). In terms of Euler angles,

σ1 = − sinψ dθ + cosψ sin θ dϕ (8.300)
σ2 = cosψ dθ + sinψ sin θ dϕ (8.301)
σ3 = dψ + cos θ dϕ . (8.302)

These angles determine the orientation of the monopole pair, and lie in
the ranges 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 2π. r is a measure of
the separation of the monopoles. There is considerable freedom in the
choice of this radial coordinate, and this can be used to fix f(r). Atiyah
and Hitchin [17] chose f = abc. Following Gibbons and Manton [148],
we choose f = −b/r, as this gives a more intuitive version of the metric
when the monopoles are well separated.

Atiyah and Hitchin next showed that because of the hyperkähler prop-
erty of the metric, one has

2bc

f

da

dr
= (b− c)2 − a2 (8.303)

2ca

f

db

dr
= (c− a)2 − b2 (8.304)

2ab

f

dc

dr
= (a− b)2 − c2 . (8.305)

Remarkably, these equations can be solved explicitly in terms of elliptic
integrals. Let Kk denote the complete elliptic integral of the first kind, as
defined by (8.164), and write the elliptic modulus as k = sin(γ/2). Next
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relate r to γ by the definition r = Kk, with r taking values in the range
1
2π ≤ r <∞, so that γ ∈ [0,π). Then, with our choice of f , the solution
is given by

a =
√

w2w3/w1, b =
√

w3w1/w2, c = −
√

w1w2/w3 (8.306)

where

w1 = − dr

dγ
r sin γ − 1

2
r2(1 + cos γ) (8.307)

w2 = − dr

dγ
r sin γ (8.308)

w3 = − dr

dγ
r sin γ +

1
2
r2(1− cos γ) . (8.309)

The functions a(r), b(r),−c(r) are plotted in Fig. 8.10. The crucial fact
in proving that the above is indeed a solution is the differential equation
satisfied by Kk, which reads

d

dk

(
k(1− k2)

dKk

dk

)
= kKk . (8.310)

The geodesic motion on the Atiyah-Hitchin manifold is not integrable;
nevertheless quite a lot is known about it. Before discussing this, it helps
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Fig. 8.10. The functions a(r), b(r),−c(r) which arise in the N = 2 monopole
metric.
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to have a picture of the geometrical meaning of quantities occurring in the
metric. Figure 8.11 shows a typical centred two-monopole configuration.

Fig. 8.11. A sketch of a centred N = 2 monopole configuration indicating the
meaning of the parameters r, θ,ϕ,ψ that occur in the metric.

It is characterized by three orthogonal, unoriented lines passing through
the centre. The configuration is invariant under 180◦ rotations about the
three axes. r determines the monopole separation. When r is large, the
individual monopoles are approximately spherical, and have separation r.
When r = 1

2π, the minimal value, the monopoles coalesce into a toroidal
configuration, with the 1-axis being the axis of symmetry. The 1-, 2- and
3-axes can be thought of as body-fixed axes. They are also the principal
axes of inertia, and a2(r), b2(r) and c2(r) are, respectively, the moments of
inertia for rotations about these axes. Our choice of Euler angles is such
that (θ,ϕ) specifies the direction in space of the 3-axis, and ψ specifies
the orientation of the 1- and 2-axes in the orthogonal plane.

When r is large, a2 ∼ b2 ∼ r2. These are the moments of inertia we
expect for the motion of point-like monopoles. Rotation about the 3-
axis, for large r, does not move the monopole locations, although there
is kinetic energy, since c2 ∼ 1. The interpretation is that this motion
changes the relative phase of the monopoles, so that they become dyons
with opposite electric charges. When r = 1

2π, the monopole configuration
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is a torus, invariant about the 1-axis; the moments of inertia b2 and c2

are equal, because of the extra symmetry, and a2 = 0 because a rotation
about the 1-axis has no effect on the fields (at most, it produces a gauge
transformation, but there is no associated kinetic energy).

The generic orbit of SO(3) in the Atiyah-Hitchin manifold is given by
SO(3)/(Z2 × Z2), which has quite a large first homotopy group. But
note that there is no singularity at r = 1

2π. Here a = 0, and c = −b,
and the orbit of SO(3) is two-dimensional. The submanifold of M0

2 at
r = 1

2π is S2/Z2, i.e. a copy of RP2, and π1(M0
2) is this Z2. RP2 is the

space of (strongly centred) axisymmetric 2-monopoles, being the manifold
parametrizing the directions of an unoriented axis of symmetry. (The
structure of M0

2 in the neighbourhood of r = 1
2π is best seen after a

change of coordinates; see [148].) Rotations by 180◦ about each of the
principal axes are candidates for the single non-trivial element of π1(M0

2).
However, one of these rotations (the rotation about the 1-axis) has no
effect as r → 1

2π, and is therefore a contractible loop. The other two
rotations become topologically equivalent because of this, and are non-
contractible.

As r → ∞, the monopoles become well separated and the Atiyah-
Hitchin metric simplifies. Ignoring terms that decay exponentially with
r, the asymptotic form of the metric is

ds2 =
(

1 +
m

r

)
(dr2+r2 dθ2+r2 sin2 θ dϕ2)+

(
1 +

m

r

)−1

(dψ+cos θ dϕ)2

(8.311)
where m = −1. This is a version of the Taub-NUT metric but with
a negative value for the mass parameter m. For positive m the metric
(8.311) is regular everywhere, including r = 0, whereas for m = −1 it
has singularities, and even changes signature at r = 1. However, the
singularities are irrelevant in this application, as only the region r ≫ 1 of
this Taub-NUT metric has anything to do with monopoles.

The metric (8.311) has an additional SO(2) symmetry, not possessed
by the Atiyah-Hitchin metric. This implies that the geodesic motion of
well separated monopoles has, asymptotically, an additional constant of
motion, which is not even approximately conserved in a close collision
of monopoles. This constant is the difference between the electric
charges of the monopoles.

The geodesic motion on the modified Taub-NUT space (8.311) is inte-
grable, and described in detail in ref. [148]. The equations of motion are
a variant of the Coulomb problem, and geodesics correspond to trajecto-
ries in R3 describing the relative motion of point-like monopoles or dyons.
There are both bound orbits (ellipses) and unbound orbits (hyperbolae).
These conics are generally in planes that do not pass through the origin.
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Therefore, unlike two electric charges in the Coulomb problem, two dyons
move on conics which are not in the same plane. Note that this motion is
different from that for pure dyons, which just have electric and magnetic
charges. There, each orbit is on a cone but not in any fixed plane. The
difference can be ascribed to the scalar part of the interaction between
BPS dyons.

To investigate general geodesic motion on the Atiyah-Hitchin manifold,
it is convenient, as for Eulerian rigid body motion, to introduce the body-
fixed angular velocity components lm, corresponding to the 1-forms σm,

l1 = − sinψ θ̇ + cosψ sin θ ϕ̇ (8.312)

etc. The Lagrangian for motion on M0
2 becomes

L =
1
2
π
(
f2(r)ṙ2 + a2(r)l21 + b2(r)l22 + c2(r)l23

)
, (8.313)

whose equations of motion give geodesic motion at constant speed on M0
2.

Let us introduce the (scaled) body-fixed angular momenta

M1 = a2l1, M2 = b2l2, M3 = c2l3 . (8.314)

The variational equations obtained from L are

dM1

dt
=

( 1
b2
− 1

c2

)
M2M3 (8.315)

dM2

dt
=

( 1
c2
− 1

a2

)
M3M1 (8.316)

dM3

dt
=

( 1
a2
− 1

b2

)
M1M2 (8.317)

f
d

dt

(
f

dr

dt

)
=

1
a3

da

dr
M2

1 +
1
b3

db

dr
M2

2 +
1
c3

dc

dr
M2

3 . (8.318)

As for a rigid body, one should first solve these generalized Euler equa-
tions, and subsequently find the motion in space (solving for θ,ϕ and ψ
in terms of r, M1, M2 and M3). The only obvious constants of motion are
the energy

E =
1
2
π

(

f2ṙ2 +
M2

1

a2
+

M2
2

b2
+

M2
3

c2

)

(8.319)

and the total angular momentum

M2
tot = M2

1 + M2
2 + M2

3 . (8.320)

Equations (8.315)–(8.318) are not integrable. Temple-Raston [399]
made a numerical study of solutions with a range of initial data, and,
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by using a Poincaré return map on a constant energy hypersurface, found
evidence for chaotic behaviour. Wojtkowski [430] treated the equations
for large r as a small perturbation of the integrable dynamics on Taub-
NUT, and showed, using KAM theory, that although most of the tori
of the Taub-NUT dynamics would be destroyed, many bounded orbits
would remain. Quite what the correct global picture of the dynamics of
these equations is, remains to be clarified. Since an energy hypersurface
is three-dimensional, any surviving torus may separate two parts of this
surface, preventing Arnold diffusion.

While the general geodesic motion is rather complicated, Atiyah and
Hitchin showed that very interesting motion occurs when one considers
simpler solutions. As for a rigid body, the equations simplify if the motion
is with one of the principal axes fixed. In such a motion, two of the quanti-
ties M1, M2 and M3 are zero, and the third is constant. Clearly, equations
(8.315)–(8.317) are satisfied, and (8.318) is solved by quadrature. Even
the case M1 = M2 = M3 = 0 is interesting.

The example with M1 constant and M2 = M3 = 0 is the simplest case.
Suppose the 1-axis is fixed to point along the x1-axis in space. Then the
monopoles move in the (x2, x3) plane, and they repel if M1 ̸= 0 because
da/dr is positive. Geometrically, the geodesic motion is restricted to a
two-dimensional submanifold in M0

2, the Atiyah-Hitchin rounded cone,
sketched in Fig. 8.12, which is a surface of revolution with metric

ds2 = f2(r)dr2 + a2(r)dψ̃2 . (8.321)

Here ψ̃ is a new Euler angle, which measures the rotations about the
1-axis. A crucial point is that the range of ψ̃ is 0 ≤ ψ̃ ≤ π, because a
rotation about the 1-axis by 180◦ brings the field configuration back to
its starting configuration, and this is a contractible loop.

The vertex of the Atiyah-Hitchin cone, at r = 1
2π, is a smooth point,

corresponding to the monopole configuration with axial symmetry about
the x1-axis. It can be verified that the metric near this point is of the
form

dr̃2 + 4r̃2dψ̃2 (8.322)

where r̃ is the proper distance from the vertex. The factor 4 compensates
for the range of ψ̃ being π.

The simplest motion of all on the Atiyah-Hitchin cone is with M1 = 0,
so there is no rotation at all, and only r varies with time. This describes
a head-on collision of monopoles. The geodesic passes straight over the
top of the cone, as shown in Fig. 8.12.

Note that there is a sudden jump in ψ̃ as the geodesic passes through
the vertex (analogous to the jump in polar coordinates for a straight line
motion in R3 which passes through the origin). Since the full range of ψ̃
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Fig. 8.12. The Atiyah-Hitchin cone and a geodesic associated with right-angle
scattering of two monopoles.

is π, the jump in ψ̃ is 1
2π. So the outgoing monopoles are moving along

a line at right angles to the line of the incoming monopoles. This right-
angle scattering of monopoles, first predicted by Atiyah and Hitchin, is
displayed in Fig. 8.13. It is a direct consequence of the geometry of
the Atiyah-Hitchin manifold. A second geodesic surface of revolution is
found by holding the 3-axis fixed (say along the x3-axis in space), so M3

is constant and M1 = M2 = 0. The metric is

ds2 = f2(r)dr2 + c2(r)dψ2 (8.323)

where ψ is the Euler angle already defined, with the range 0 ≤ ψ ≤ π.
The surface defined by (8.323) is approximately a cylinder, since |c| has
only a small variation with r. But notice that this surface is geodesically
incomplete, because it has a boundary at r = 1

2π, consisting of a circle
of circumference 1

2π
2 (since |c(1

2π)| = 1
2π). This apparent problem is

resolved, as Atiyah and Hitchin pointed out, by considering the third
surface, in which the 2-axis is fixed in space (also along the x3-axis). This
surface has metric

ds2 = f2(r)dr2 + b2(r)dψ2 . (8.324)

It is a surface of revolution which broadens out to infinite width as r →
∞, but it is also geodesically incomplete, having a boundary circle of
circumference 1

2π
2 too (since b(1

2π) = 1
2π). These two surfaces in fact

smoothly join together to form a single surface of revolution inside M0
2
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Fig. 8.13. Energy density isosurfaces illustrating the right-angle scattering of
two monopoles.

which is a geodesic submanifold and geodesically complete. This surface
is known as the Atiyah-Hitchin trumpet, and is sketched in Fig. 8.14.

To clarify how this surface arises, consider the field configurations which
occur during the right-angle scattering of monopoles from the x3-axis to
the x2-axis. (The principal body-axes are always along the spatial Carte-
sian axes, but before the scattering it is the 3-axis that is along the x3-axis,
and afterwards it is the 2-axis.) Now consider all the configurations ob-
tained by rotating these about the x3-axis in space. This gives the surface
of revolution discussed above, with ψ the rotation angle. It contains as
generating curves all the geodesics where monopoles approach along the
x3-axis and scatter at right angles into the (x1, x2) plane. The surface
contains a circle of axisymmetric monopole configurations, where the axis
of symmetry lies in the (x1, x2) plane.

Geodesics are of two kinds; they either pass through the trumpet from
one end to the other, or they begin and end at the diverging end of the
trumpet. The former behaviour occurs if |M2| ≤

√
2E/π, the latter if

|M2| >
√

2E/π. Let us describe the physical interpretation of these two
kinds of geodesic, assuming in both cases that the geodesic enters from
the wider end of the trumpet. Asymptotically, we have two monopoles
moving in the (x1, x2) plane and oriented so that the body 2-axis is along
the spatial x3-axis. If their speeds are v, and the impact parameter is h,
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Fig. 8.14. The Atiyah-Hitchin trumpet.

then E = 2πv2 and M2 = 2hv. If h > 1, then the monopoles approach
but they can not pass through the trumpet, and they emerge, with some
scattering angle, in the (x1, x2) plane. If h < 1, then the geodesic passes
through the trumpet. The monopoles emerge along the spatial x3-axis,
and the rotation about this axis implies that they have become dyons with
opposite electric charges. The dyons are moving back-to-back but the an-
gular momentum of the initial motion has been conserved, since the dyon
pair possesses angular momentum associated with the electric-magnetic
interaction. This is a remarkable, truly three-dimensional soliton motion.

Note that if |M2| is slightly greater than
√

2E/π then the monopoles
almost turn into a dyon pair. The monopoles in the (x1, x2) plane turn
into dyons moving along the x3-axis, but these dyons attract, so they
eventually turn round, and convert back to monopoles in the (x1, x2)
plane. The scattering process therefore can take an arbitrarily long time,
and the scattering angle becomes infinitely sensitive to the precise value
of M2 as the critical value is approached.

The Atiyah-Hitchin cone and trumpet have a rather simple description
in terms of the Donaldson rational maps, although the metric information
is hidden. Consider the rational maps

R(z) =
1

z2 − α . (8.325)

These are strongly centred, and invariant under the cyclic group C2, gen-
erated by z )→ −z. A subset of the monopole moduli space defined by
imposing a symmetry is automatically a geodesic submanifold, so the
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set of monopoles with the rational maps (8.325) is a geodesic surface,
parametrized by the complex number α. The maps (8.325) correspond to
monopoles lying on an Atiyah-Hitchin cone. The 1-axis is lined up with
the x3-axis in space here. We see this because when α = 0, which corre-
sponds to the vertex of the cone, the configuration is axially symmetric
about the x3-axis. |α| is a measure of the monopole separation (2|α|1/2 is
in fact the separation of the spectral lines in the x3 direction), and arg α
can be identified with 2ψ̃.

Imposing the reflection symmetry x2 )→ −x2 forces α to be real, and
defines a geodesic on the cone. This geodesic is the right-angle scattering
of monopoles in a head-on collision. When α is large and positive, we
see, considering the zeros of z2−α, that the monopoles lie on the x1-axis;
when α is large and negative, they are on the x2-axis.

The other C2-symmetric, strongly centred 2-monopoles have rational
maps

R(z) =
z/
√
β

z2 − β . (8.326)

Here β may not vanish. The range of arg β may be taken to be 2π. The
change of sign of R as arg β increases by 2π is just a reframing of the
monopole. (One could make the range 4π by going to M̃0

2, the double
cover of M0

2.) For large β, there are two monopoles in the (x1, x2) plane; as
β → 0, there are two monopoles on the x3-axis, as we explained in Section
8.8. The critical circle of values |β| = 1

16π
2 is when the configuration is

axially symmetric about some axis in the (x1, x2) plane. (This axial sym-
metry is not obvious from (8.326), but we know it from the spectral curve
of the axially symmetric 2-monopole (8.206), which tells us that the pair
of spectral lines in any direction orthogonal to the symmetry axis is sepa-
rated by 1

2π.) The rational maps (8.326) therefore parametrize monopole
configurations lying on an Atiyah-Hitchin trumpet, the narrow end corre-
sponding to small β. The orientation is the same as we considered before,
with the 3-axis (or 2-axis) along the spatial x3-axis.

One other special geodesic is known on M0
2. It is a bounded geodesic,

and was discovered by Bates and Montgomery [38]. Note from Fig. 8.10
that at one value of r (≃ 2.3), |a| = |c|. If r is independent of time, and
has this special value, then M2 is constant, and M2

1 +M2
3 is constant too.

In fact, from (8.319), M1 = Mtot cosωt and M3 = Mtot sinωt, where ω is
related to M2. Now it can also be verified that for suitable Mtot, the right-
hand side of (8.318) vanishes, so it is consistent for r to be constant. In
this way we obtain a periodic solution of (8.315)–(8.318). It is a solution
in which the configuration precesses steadily in space about a fixed line.
If the monopoles are thought of as well separated (actually they are not)
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they are moving on two circles, parallel to a fixed plane, as shown in
Fig. 8.15.

Fig. 8.15. The bound orbit configuration of two monopoles, with the axis of
rotation.

There may be other bounded geodesics on M0
2. This is suggested by

the work of Temple-Raston and Wojtkowski, but the situation needs to be
clarified. Note that the RP2 of axisymmetric monopoles is not a geodesic
submanifold of M0

2, so a great circle motion on this RP2 is not a geodesic.
The geodesic motion of more than two monopoles is not understood

in any generality, as no explicit expressions for the metric on the moduli
spaces MN are known, for N > 2. However, there are various special
kinds of monopole motion, often of a rather symmetric kind, which are
understood.

A class of examples comes by considering the Donaldson rational maps
for N -monopoles, with cyclic symmetry CN about the x3-axis [187]. These
rational maps, being defined by imposing a symmetry, give a geodesic
submanifold of MN . Recall from (8.249) that such maps are of the form

R(z) =
αzl

zN − β (8.327)

with l any fixed integer between 0 and N − 1.
We can restrict to maps that are strongly centred, and get a geodesic

submanifold of M̃N . Strong centring determines α in terms of β. In this
way, we find a totally geodesic surface in M̃N , which we denote Σl

N . It is
a surface of revolution, with β as a complex coordinate on it. Rotations
about the x3-axis rotate the argument of β.
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The first non-trivial cases are with N = 2. As we mentioned above, we
obtain the Atiyah-Hitchin rounded cone and the Atiyah-Hitchin trumpet
by picking l = 0 and l = 1, respectively. For N > 2 and l = 0, we obtain
surfaces Σ0

N which are analogues of the Atiyah-Hitchin cone. The point
β = 0 is included in each of these surfaces, so they are simply connected.
For N > 2 and l ̸= 0, we obtain surfaces which are analogous to the
Atiyah-Hitchin trumpet. Here β = 0 is excluded (because there would
otherwise be a common factor zl in numerator and denominator of R), so
the surfaces are not simply connected.

A generating geodesic on each of these surfaces is obtained by imposing
a reflection symmetry, x2 )→ −x2, which restricts β to be real. On Σ0

N ,
there is a geodesic where β runs along the real axis from ∞ to −∞. This
corresponds to π/N scattering of monopoles in the (x1, x2) plane. N unit
charge monopoles approach each other on the vertices of a contracting N -
gon, coalesce instantaneously into a toroidal configuration (when β = 0),
and recede on the vertices of an expanding N -gon rotated by π/N relative
to the first.

On Σl
N , for l ̸= 0, there is a geodesic where β runs along the real axis

from ∞ to 0. The incoming monopoles are on the vertices of an N -gon
in the (x1, x2) plane as before, but their relative phases are different, and
depend on l. As we explained in Section 8.8, the outgoing configuration
(as β → 0) is of two approximately axisymmetric monopole clusters, of
charges l and N − l respectively, moving in opposite directions along the
x3-axis. This truly three-dimensional motion of monopoles has no ana-
logue in any two-dimensional soliton scattering process. Replacing l by
N − l makes essentially no difference, being equivalent to the reflection
x3 )→ −x3. So for N = 4, for example, this analysis establishes three
types of C4-symmetric monopole scattering. In each case the incoming
monopoles are on the vertices of a contracting square. There is planar
scattering for l = 0. For l = 1 there is an outgoing toroidal 3-monopole
and an outgoing single monopole. Finally, for l = 2 there is reflection sym-
metry under x3 )→ −x3, and there are two outgoing toroidal 2-monopoles,
moving oppositely along the x3-axis. This is displayed in Fig. 8.16.

It has not yet been possible to compute the actual metrics on most of
the surfaces of revolution Σl

N . The precise speed at which the monopole
scattering processes we have just described occur, is not known. With-
out knowing the metric, it is also not possible to describe the general
geodesics on Σl

N quantitatively. We may state, however, that for motion
on Σ0

N , the incoming and outgoing monopoles are not electrically charged.
A general geodesic on Σl

N (for l ̸= 0), which passes from one end of the
trumpet to the other, will have incoming monopoles with net orbital an-
gular momentum but no electric charge (the phases are non-trivial but
they are time independent), whereas the outgoing toroidal clusters will be
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Fig. 8.16. Energy density isosurfaces for a family of N = 4 monopoles with
cyclic C4 symmetry.
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oppositely electrically charged (the phase of β rotates steadily as β → 0).
Orbital angular momentum is converted into the electromagnetic angular
momentum of the dyonic clusters which are moving back-to-back.

The spectral curves associated with each of the submanifolds Σl
N , when

reduced by the action of the cyclic symmetry, lead to curves which have
genus greater than 1 (for N > 2) so the Nahm data can not be obtained in
terms of elliptic functions. The Nahm equation in this case is equivalent
[392] to the equations of the periodic Toda chain (a well known integrable
system). Formally, the solution can be expressed in terms of a theta
function but explicit information about the associated period matrix is
not known and this makes it impossible to impose the required boundary
conditions. This formal solution is therefore not useful and gives no in-
formation about the associated monopoles. However, it is possible [393]
to obtain a good approximation to this Nahm data (in terms of elemen-
tary functions) which is sufficiently accurate to be used in a numerical
computation of the energy density. This is how Fig. 8.9 was produced,
which we can now interpret as three-monopole scattering via the geodesic
approximation.

There is another family of geodesics that has been found by considering
cyclically symmetric Donaldson maps [196]. These maps are of the form

R(z) =
αzl + 1

zN
(8.328)

where N/2 < l ≤ N − 1. They are invariant under the combination of
a rotation by π/l about the x3-axis followed by the reflection x3 )→ −x3.
Note that this symmetry implies a cyclic Cl symmetry, whose genera-
tor is a double application of the above transformation. As before, α
parametrizes a geodesic surface of revolution, and the simplest geodesic
has α real and running from −∞ to∞. Because of the nature of the sym-
metry, this is called twisted line scattering of monopoles. All geodesics in
this class describe monopoles which scatter along a line. The initial con-
figuration is of two charge (N − l) monopoles symmetrically approaching
a charge (2l−N) monopole at the origin along the positive and negative
x3-axis. All the monopoles merge into the axially symmetric charge N
monopole when α = 0, and the outgoing configuration is obtained from
the incoming one by a rotation by π/l about the x3-axis. For example,
when N = 3, the only possibility is l = 2, so the incoming and outgoing
configuration is of two monopoles moving along the x3-axis, with a single
monopole at the origin. The monopoles coalesce, instantaneously forming
the axially symmetric 3-monopole when α = 0 (see Fig. 8.17). Note that
the geodesic passes twice through tetrahedrally symmetric 3-monopole
configurations, with one tetrahedron being the dual of the other. The
Nahm data are explicitly known for this family of N = 3 monopoles [196].
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All the known Platonic monopoles can similarly be found as members of
twisted line scatterings [196], but only for N = 3 are the Nahm data
known for the whole 1-parameter family.

Fig. 8.17. Energy density isosurfaces for a family of N = 3 monopoles with
twisted line symmetry.

It is possible to find further examples of geodesic motion of monopoles
by using the Jarvis rational maps. For example, we explained in Section
8.8 that the maps (8.257) describe 4-monopole configurations with tetra-
hedral symmetry – in fact, all of them, for the given orientation. This
set is therefore a geodesic submanifold of M4. We can fix the phase by
requiring the parameter c to be real, and deduce that if c runs from 0 to
∞ then the corresponding monopole motion is a geodesic motion. Figure
8.6 shows how the motion proceeds.

In this example, the metric along the geodesic is precisely known [66],
so the time evolution of the fields along the geodesic is determined if we
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specify the initial velocity. The metric has not been computed either
from the rational maps, or from the monopole fields corresponding to
these maps. The calculation is based on Nahm data. As we mentioned
at the end of Section 8.6, the Nahm data for tetrahedrally symmetric 4-
monopoles are known in terms of elliptic functions. The Nahm data also
depend on the parameter c, so let us write them as Ti(s; c). The natural
formula for the metric on the space of Nahm data here simplifies to the
one-dimensional form g(c) dc2 where

g(c) = −Ω
∫ 2

0

3∑

i=1

Tr
(

dTi

dc

dTi

dc

)
ds (8.329)

and Ω is a constant normalization factor. That this is the correct met-
ric relies on the remarkable theorem of Nakajima [314], who has proved
generally that the natural metric on the moduli space of Nahm data,
for SU(2) N -monopoles, is isometric with the metric on MN which we
defined earlier, and have been using.

In [66], the integral (8.329) is explicitly performed, leading to an expres-
sion for g(c) in terms of elliptic integrals. This expression is rather com-
plicated, but it is smooth, and it has a simple asymptotic form. Changing
to the physical coordinates representing the monopole positions is helpful.
If the monopole positions are 1√

8
(±r,±r,±r) with an even (alternatively,

odd) number of + signs, so the separation of each pair is r, and if r is
large, then the metric is

3
(

1− 2
r
− 288re−2r

)
dr2 (8.330)

with higher order exponentially small corrections.
Another interesting submanifold of M0

N (for all N > 2) on which the
metric is explicitly known is the four-dimensional Atiyah-Hitchin subman-
ifold [53, 197]. The corresponding Nahm data were discussed earlier, and
are given by (8.168). Recall that they involve the same functions as in the
N = 2 case, and for this reason the metric is just a constant multiple of
the Atiyah-Hitchin one. As we mentioned earlier, this submanifold is as-
sociated with a string of N monopoles equally spaced along a line. There
is an SO(3) action on the submanifold, and the one remaining non-trivial
parameter is the inter-monopole distance.

8.12 Well separated monopoles

The complete metric on the N -monopole moduli space MN can not yet
be calculated in detail. Only a few geodesic submanifolds have been
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identified. However, the metric simplifies if all N monopoles are well
separated in space.

We saw in Section 8.11 how the Atiyah-Hitchin metric on the two-
monopole moduli space simplifies to Taub-NUT as the separation in-
creases. The Taub-NUT metric was rederived by Manton [281] by treating
the monopoles (or rather, dyons) as point particles, interacting through
their magnetic, electric and scalar charges. This calculation was general-
ized by Gibbons and Manton to N monopoles [149]. The minimal separa-
tion between any pair of monopoles was assumed to be much greater than
unity. The result is a hyperkähler metric on a 4N -dimensional manifold.
Gibbons and Manton were unable to prove rigorously that this metric is
the asymptotic form of the metric on MN . However, physically it is very
plausible. More recently, Bielawski [54] has investigated the Nahm data
for N well separated monopoles, and defined new Nahm data which sat-
isfy the Nahm equation with modified boundary conditions. The metric
on the moduli space of this modified Nahm data is automatically hy-
perkähler, and is precisely the Gibbons-Manton metric. Since the new
data differ from the true data for N -monopoles by an amount that goes
exponentially fast to zero as the monopoles separate, Bielawski concludes
that the Gibbons-Manton metric is the asymptotic form of the metric on
MN , and differs from it by an amount which is exponentially small in the
monopole separations.

We now present the calculation of the asymptotic metric. We recall
that a BPS dyon can be regarded as a particle with a magnetic charge
g, an electric charge q, and a (positive) scalar charge (g2 + q2)1/2. Its
mass M is also (g2 + q2)1/2. In the normalizations we have chosen for the
SU(2) gauge theory we have g = −2π.

We shall assume that dyon velocities are non-relativistic, and that their
electric charges are small relative to |g|. We suppose that each dyon is a
source for magnetic and electric fields b and e which obey the Maxwell
equations, and a Lorentz scalar field φ obeying the linear, massless wave
equation. The magnetic and electric fields are related to the Yang-Mills
field strength, and the scalar field is related to the difference between |Φ|
and its vacuum value 1.

The magnetic and electric fields can be expressed locally in terms of a
covariant vector and scalar∗ potential in the usual way

−∇× a = b (8.331)
−∇a0 + ȧ = e (8.332)

because of the Maxwell equations ∇·b = 0 and ∇×e+ḃ = 0. Away from
the point sources, it follows from the other Maxwell equations, ∇ · e = 0

∗ scalar here is the conventional terminology but means the time component of a
Lorentz 4-vector.



8.12 Well separated monopoles 335

and ∇×b−ė = 0, that one can introduce dual vector and scalar potentials
ã, ã0 such that

∇× ã = e (8.333)
−∇ã0 + ˙̃a = b . (8.334)

These dual potentials ã and ã0 are only defined up to a gauge transfor-
mation, like a and a0.

Suppose now that one of the dyons has trajectory x(t), and small ve-
locity v(t) = ẋ(t). The Lorentz scalar field at x′ due to the dyon is

φ =
(g2 + q2)1/2

4πs
(1− v2)1/2 (8.335)

where s = (r2 − |r × v|2 + O(v2))1/2 and r = x′ − x. This is the scalar
version of a Liénard-Wiechert potential.

Now it will turn out that the leading term in φ, namely |g|/4πs, has no
effect. This is because there are no forces between static monopoles. It
is therefore a sufficiently good approximation to replace s by r in (8.335)
and then to expand to quadratic order in v and q, which gives

φ =
|g|
4πr

(

1 +
q2

2g2
− v2

2

)

. (8.336)

To write down the vector and scalar potentials, and the dual potentials,
we introduce a local vector potential w(y) for a point Dirac monopole at
rest, satisfying

−∇×w =
1
y2

ŷ (8.337)

and w(y) = w(−y). We do not need to specify the gauge precisely, nor
worry about the singularities of w(y) as we only need to work locally to
understand the interactions of the dyons. A dyon at rest would produce
the usual electric Coulomb potential, and a Dirac monopole potential.
For a dyon in motion, with trajectory x(t) as before, the potentials and
dual potentials at x′, to the accuracy we need, are

a = − q

4πr
v +

g

4π
w

a0 =
q

4πr
− g

4π
v · w

ã = − g

4πr
v − q

4π
w

ã0 =
g

4πr
+

q

4π
v · w . (8.338)

Here r = |x− x′| as before, and w = w(x′ − x).
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Suppose now that a second dyon, with electric charge q′ and mass M ′,
moves along the trajectory x′(t). Its interaction with the first dyon is via
the potentials at x′(t) due to the first, and is described by the Lagrangian

L =
(
−M ′ + (g2 + q

′2)1/2φ
)
(1− v

′2)1/2

− q′v′ · a− q′a0 − gv′ · ã− gã0 . (8.339)

Note that the electric charge is coupled to the usual potentials and the
magnetic charge to the dual potentials. This is an ansatz that leads to a
generalized Lorentz force law on dyons. The effect of the scalar field φ is
to modify the effective rest mass of the second dyon, the coupling being
proportional to the scalar charge of the second dyon. This is the way that
Lorentz scalar fields act on point particles.

If we now substitute the expressions (8.336) and (8.338) for the poten-
tials, set M ′ = (g2+q

′2)1/2, and expand out, keeping terms of order v2, qv
and q2, then L simplifies to

L = −M ′ +
1
2
M0v

′2 − g2

8πr
(v′ − v)2

− g

4π
(q′ − q)(v′ − v) · w +

1
8πr

(q′ − q)2 (8.340)

where M0 = |g| is the monopole mass. The constant term, −M ′, can now
be dropped, as it has no effect on the dynamics.

Note that the interaction terms are symmetric in v, q and v′, q′, so if one
just adds the kinetic term 1

2M0v2, then L becomes a suitable Lagrangian
for the dynamics of both the first and second dyon. Extending this to N
dyons, of charges q1, . . . , qN , with trajectories xi(t) and velocities vi = ẋi,
the Lagrangian is

L =
N∑

i=1

1
2
M0v2

i −
g2

8π
∑

1≤i<j≤N

(vj − vi)2

rji
(8.341)

− g

4π
∑

1≤i<j≤N

(qj − qi)(vj − vi) · wji +
1
8π

∑

1≤i<j≤N

(qj − qi)2

rji
.

Here, rij = |xi − xj | is the separation between dyons i and j and wij =
w(xj −xi) is the (static) Dirac potential at xj due to a source at xi. The
last term is a Coulomb-type potential, but notice that it depends only
on the electric charge differences between the dyons, so that if all dyons
have the same electric charge, and are at rest, then there is no interaction
between them. Note also that the kinetic term can be rewritten as

N∑

i=1

1
2
M0v2

i =
1

2N
M0(v1 + · · ·+vN )2 +

∑

1≤i<j≤N

1
2N

M0(vj−vi)2 (8.342)



8.12 Well separated monopoles 337

and since the interaction terms only involve velocity differences, the sum
of the dyon velocities decouples. The quantity

V =
1
N

(v1 + · · · + vN ) (8.343)

is the centre of mass velocity and is conserved.
The Lagrangian (8.341) is defined on the 3N -dimensional configuration

space of the N dyon positions. It is not purely quadratic in velocities,
that is, purely kinetic, because of the terms linear in velocity (the electric-
magnetic coupling) and because of the Coulomb terms. However, if it were
possible to interpret each electric charge as the velocity in an additional,
internal one-dimensional space associated with each monopole, then the
Lagrangian would be purely kinetic. From the rational map description
of well separated monopoles, we have learnt that there is a phase angle
associated with each monopole and the time derivative of this phase can
in fact be identified with electric charge.

So, we now consider a 4N -dimensional manifold EN which is a TN

(N -torus) bundle over the configuration space of dyon positions, having
local coordinates {xi,ψi}. ψi is an abstract phase angle in the range
0 ≤ ψi ≤ 2π associated with the ith monopole (which we do not attempt
to directly relate either to the rational maps or to the monopole fram-
ings). We suppose that EN is endowed with a TN -invariant metric. The
purely kinetic Lagrangian for motion on EN then possesses N indepen-
dent constants of motion which we shall identify with the electric charges
of the dyons. We shall also require the remaining equations of motion to
be the same as those obtained from the Lagrangian (8.341).

An appropriate ansatz for the Lagrangian on EN is

L =
1
2
gijvi · vj +

1
2
hij(ψ̇i −Wik · vk)(ψ̇j −Wjl · vl) (8.344)

where gij , hij and Wij depend only on the 3N coordinates {xi}, and gij

and hij are symmetric and invertible. Varying with respect to the phases
ψi, we obtain the N constants of motion

qi = −κhij(ψ̇j −Wjl · vl) (8.345)

which, for a suitable choice of the constant κ, may be identified with the
electric charges. Using these constants, we may eliminate the angles from
the Lagrangian L to obtain an effective Lagrangian

Leff =
1
2
gijvi · vj +

1
κ

qiWij · vj −
1

2κ2
hijqiqj (8.346)

where hij is the inverse of hij , and qi are now treated as constant
parameters. Note that Leff is not simply L with the ψ̇j terms replaced
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by qj ; nevertheless the equations of motion derived from L and Leff are
the same.

We now determine gij , hij and Wij by requiring the equations of motion
obtained from Leff to be the same as those obtained from L (8.341). This
means that Leff and L should be the same, except possibly for additive
or multiplicative constants. Therefore the matrix gij must be chosen to
have components

gjj = M0 −
g2

4π
∑

i̸=j

1
rij

(no sum over j) (8.347)

gij =
g2

4π
1
rij

(i ̸= j) (8.348)

and Wij must have components

Wjj = −gκ

4π
∑

i̸=j

wij (no sum over j) (8.349)

Wij =
gκ

4π
wij (i ̸= j) . (8.350)

The symmetry properties of the Dirac potentials imply that Wij is a
symmetric matrix. Simply identifying Leff and L would give a matrix hij

with no inverse. But we may add a constant matrix to hij , and taking
advantage of this, we see that a satisfactory choice is hij = κ2

g2 gij .
We next fix κ so that the Dirac string singularities in the potential w

do not produce physical singularities in the Lagrangian Leff . The required
value is κ = 4π

g . Now, using the values M0 = |g| = 2π, and dropping an
overall factor of 1

2π, we find that the Lagrangian L can be interpreted as
the purely kinetic Lagrangian for motion on EN , where the metric is

ds2 = gijdxi · dxj + g−1
ij (dψi −Wik · dxk)(dψj −Wjl · dxl) (8.351)

with the slightly modified matrix

gjj = 2−
∑

i̸=j

1
rij

(no sum over j)

gij =
1
rij

(i ̸= j) (8.352)

and Wij as before. This is the Gibbons-Manton metric.
It can easily be verified that the matrices gij (as immediately above)

and Wij satisfy the equations

∂

∂xa
i

W b
jk −

∂

∂xb
j

W a
ik = εabc ∂

∂xc
i

gjk (8.353)
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∂

∂xa
i

gjk =
∂

∂xa
j

gik (8.354)

where the upper indices a, b, c denote the Cartesian components. These
conditions were shown by Pedersen and Poon [327], and Papadopoulos
and Townsend [323], following earlier work by Hitchin et al. [186], to be
the conditions for the metric (8.351) to be hyperkähler. The matrices
(8.352) give in fact a rather simple and symmetric, non-trivial solution of
these conditions.

In summary, we have shown using a physical argument that the dy-
namics of N well separated BPS dyons is described by geodesic motion
on a 4N -dimensional manifold EN with metric given by (8.351). This
metric is the asymptotic form of the true metric on MN . The metric is
hyperkähler and TN -invariant. However, it is not complete as there are
singularities at finite positive values of rij , although for well separated
monopoles the singularities are not encountered.

In the case of two monopoles, (8.351) is the Taub-NUT metric (times
a flat factor), and is the asymptotic form of the Atiyah-Hitchin met-
ric. The difference between the Atiyah-Hitchin and Taub-NUT metrics
is exponentially small in the monopole separation. That suggests that
for N monopoles the metric (8.351) should agree with the true met-
ric up to exponentially small terms. This is what Bielawski [54] has
proved. It is an interesting challenge to understand explicitly the nature
of the leading exponential corrections. Physically, they are produced by
the short-range, massive gauge fields that are present, predominantly in
the monopole cores. Rather remarkably, they can be calculated using
ideas from supersymmetric quantum field theory [113].

Since the metric (8.351) is hyperkähler, one might expect to derive it by
the hyperkähler quotient construction. This has been done by Gibbons,
Rychenkova and Goto [150], starting from a flat 8N -dimensional space,
and imposing a TN -invariance.

8.13 SU(m) monopoles

So far we have dealt only with the case of SU(2) monopoles. The kind
of analysis we have described in this chapter can, of course, be extended
to more general gauge groups, where things usually become more compli-
cated. In this section we sketch how the ideas and results are modified
for SU(m) gauge groups and discuss some special situations in which the
problem simplifies. We only consider monopoles satisfying the Bogomolny
equation.

Recall from our general discussion that in a gauge theory where the
non-abelian gauge group G is spontaneously broken by the Higgs field Φ
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to a residual symmetry group H, then the Higgs field on the 2-sphere at
infinity lies in the coset space G/H, so the monopoles have a topological
classification determined by the elements of π2(G/H).

For G = SU(m), the boundary conditions at spatial infinity imply that
Φ takes values in the gauge orbit of some matrix

Φ0 = −i diag (µ1, µ2, . . . , µm) . (8.355)

By convention, it is assumed that µ1 ≤ µ2 ≤ · · · ≤ µm and since Φ is
traceless, µ1 +µ2 + · · ·+µm = 0. This Φ0 is the vacuum expectation value
for Φ and the residual symmetry group H is the invariance group of Φ0

under gauge transformations. Thus, for example, if all the µp are distinct
then the residual symmetry group is the maximal torus U(1)m−1 and this
is known as maximal symmetry breaking. In this case, as discussed in
Chapter 3,

π2

(
SU(m)

U(1)m−1

)
= π1(U(1)m−1) = Zm−1 (8.356)

so the monopoles are topologically characterized by m− 1 integers.
In contrast, the minimal symmetry breaking case is where all but the

first of the µp are identical, so the residual symmetry group is U(m− 1).
Recall from Chapter 3 that

π2

(
SU(m)

U(m− 1)

)
= Z (8.357)

so there is only one topological integer characterizing a monopole. Despite
this, a given solution has m− 1 integers associated with it, which arise in
the following way.

A careful analysis of the boundary conditions [156, 423] indicates that
there is a choice of gauge such that the Higgs field for large r, in a given
direction, is given by

Φ(r) = −i diag (µ1, µ2, . . . , µm)− i

2r
diag (k1, k2, . . . , km) + O(r−2) .

(8.358)
In the maximal symmetry breaking case the topological charges are given
by

np =
p∑

q=1

kq , (8.359)

for 1 ≤ p ≤ m − 1. In the case of minimal symmetry breaking only
the first of these numbers, n1, is a topological charge. Nonetheless, the
remaining np constitute an integer characterization of a solution, which
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is gauge invariant up to reordering of the integers kp. The np are known
as magnetic weights, with the matrix diag (k1, k2, . . . , km) often called the
charge matrix and diag (µ1, µ2, . . . , µm) the mass matrix.

There are some obvious ways of embedding su(2) in su(m), for example,

(
α β

−β̄ −α

)

↪→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
α . . . β
... . . . ...
−β̄ . . . −α

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.360)

Important SU(m) monopoles can be produced by embedding the SU(2)
charge 1 monopole fields, which are known su(2)-valued fields, in su(m).
Some care must be taken in constructing these embedded monopoles to
ensure that the asymptotic behaviour is correct. The SU(2) monopole
may need to be scaled and it may be necessary to add a constant diagonal
Higgs field beyond the plain embedding described by (8.360); details can
be found in refs. [423, 415]. Obviously there is an embedding of the form
(8.360) for each choice of two columns in the target matrix. The embedded
1-monopoles have a single integer kp = 1 and another integer kp′ = −1,
the rest are zero. The choice of columns for the embedding dictates
the values for p, p′, so there are m − 1 different types of fundamental
monopole with one of the magnetic weights np being unity, and the rest
zero, corresponding to the choice p′ = p + 1.

Recall that in the case of minimal symmetry breaking the choice of
order of the kp is a gauge choice. In fact, in the case of minimal symmetry
breaking, the embedded 1-monopole is unique up to position and gauge
transformation. Solutions with n1 = N have N times the energy of this
basic solution and so it is reasonable to call these N -monopoles. There are
of course different types of such N -monopoles corresponding to different
magnetic weights.

For intermediate cases of symmetry breaking the residual symmetry
group is H = U(1)l × K, where K is a rank m − l − 1 semi-simple
Lie group, the exact form of which depends on how the entries in the
mass matrix coincide with each other. Such monopoles have l topological
charges.

The various mathematical methods we have described earlier in this
chapter can be formulated for the case of general gauge groups. Ward
[412] has constructed some explicit SU(3) monopoles via the splitting
of appropriate patching matrices over mini-twistor space. The spectral
curve approach for maximal symmetry breaking has been formulated by
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Hurtubise and Murray [201] and consists of a specification of rank(G) alge-
braic curves in mini-twistor space, satisfying reality and non-singularity
conditions. For higher rank gauge groups the Donaldson rational map
correspondence has been extended by Murray [309] to maps into flag
manifolds and a similar extension exists for the rational maps of Jarvis
[225].

The Nahm transform for general G is outlined in the original work of
Nahm [313] and is discussed further in ref. [201]. Briefly, for G = SU(m),
the Nahm data are triples of antihermitian matrix functions (T1, T2, T3)
of s over the m− 1 intervals (µp, µp+1). The size of the matrices depends
on the corresponding values of np; the matrices (T1, T2, T3) are np × np

matrices in the interval (µp, µp+1). They are required to be non-singular
and to satisfy the Nahm equation (8.113) inside each interval, but there
are complicated boundary conditions at the ends of each of the intervals.
These boundary conditions are designed so that the Weyl equation (8.142)
has the number of solutions required to yield the correct type of monopole
fields.

The simplest case is maximal symmetry breaking in an SU(3) theory.
There are then two types of fundamental monopole, and the charge is a
two-component vector (n1, n2). The simplest multi-monopole is of charge
(1, 1), so (k1, k2, k3) = (1, 0,−1), and its Nahm data were studied by Con-
nell [91]. Since there is only one of each type of monopole, the Nahm data
are one-dimensional over each of the two intervals, so the Nahm equation
is trivially satisfied by constants over each of the two intervals. These
two triples of constants determine the positions of the two constituent
monopoles and the matching condition at the common boundary of the
two intervals determines the relative phase.

The moduli space of these monopoles is eight-dimensional but, as in
the SU(2) case, there is an isometric splitting to factor out the position
of the centre of mass and the overall phase. The relative moduli space,
M̃0

(1,1), is thus four-dimensional. By computing the metric on the space
of Nahm data and using a uniqueness argument, Connell was able to
show that the metric on M̃0

(1,1) is the Taub-NUT metric with a positive
mass parameter. This result was rediscovered some years later [253, 145].
The metric has no singularity and is exact. Recall that asymptotically,
the Atiyah-Hitchin metric is also Taub-NUT, but with a negative mass
parameter, so the asymptotic metric has a singularity outside its region of
validity. This difference in sign results from the fact that in the SU(3) case
the two monopoles are electrically charged with respect to different U(1)
factors in the residual symmetry group. There is thus conservation of the
individual electric charge of each monopole, providing a U(1) symmetry
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in the metric which is absent in the Atiyah-Hitchin metric, since charge
exchange occurs between SU(2) monopoles. This results in a simplified
dynamics of charge (1, 1) monopoles, which bounce back off each other in
a head-on collision in comparison with the right-angle scattering of SU(2)
monopoles.

Similar simplifications can be expected in all cases where there is at
most a single monopole of each type. Thus the 4(m − 2)-dimensional
relative moduli space M̃0

(1,1,...,1) of charge (1, 1, . . . , 1) monopoles in an
SU(m) theory should be tractable. Indeed, Lee, Weinberg and Yi [254]
have computed the asymptotic metric, which is a generalization of Taub-
NUT, and conjectured that it is the exact metric. This is supported
by a computation of the metric on the space of Nahm data by Murray
[310], which gives the same result. Note that this last calculation is not
quite a proof, since although it is believed that the transformation be-
tween the monopole moduli space metric and the metric on Nahm data
is an isometry for all gauge groups and symmetry breaking, it has only
been proved for SU(2) monopoles [314] and for special cases of minimally
broken SU(m) [395]. These and other monopole metrics have also been
obtained by Gibbons, Rychenkova and Goto [150] using the hyperkähler
quotient construction.

There is a method which can be used to give a local construction of
hyperkähler metrics known as the generalized Legendre transform [186].
This can be used, for example, to give yet another derivation [212] of
the Atiyah-Hitchin metric. Using this method, Chalmers [80] was able to
rederive the Lee-Weinberg-Yi metric.

In order to examine if there are any other special choices of gauge
group, symmetry breaking and monopole charges for which there may be
a simplification we need to review a few more details of the Nahm data
boundary conditions.

For ease of notation we shall only describe the case where all the integers
kp except for k1 are negative, and hence np < np−1 for p > 1, since this
will be the case of interest in what follows. Define the function

k(s) =
m∑

p=1

kp θ(s− µp) (8.361)

where θ(s) is the usual step function. In the interval (µp, µp+1), k(s) = np,
so the graph of k(s) is a rectilinear skyline whose shape depends on the
charge matrix of the corresponding monopole. If the graph near µp (for
1 < p < m) is
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✻

❄

✻

❄

−kp

✻

❄

s = µp

np−1

np

k(s)

then as s approaches µp from below it is required that

Ti(s) =

|kp| np⎛

⎜⎜⎜⎝

1
t Ri + O(1) O(t(|kp|−1)/2)

O(t(|kp|−1)/2) T ′
i + O(t)

⎞

⎟⎟⎟⎠

|kp|

np

(8.362)

where t = s−µp and where T ′
i is the limiting value of Ti(s) as s approaches

µp from above. It follows from the Nahm equation (8.113) that the |kp|×
|kp| residue matrices (R1, R2, R3) in (8.362) form a representation of su(2).
The boundary conditions require that this representation is the unique
irreducible |kp|-dimensional representation of su(2).

In summary, at the boundary between two intervals, if the Nahm ma-
trices are np−1×np−1 on the left and np×np on the right, an np×np block
continues through the boundary and there is an (np−1−np)× (np−1−np)
block with a simple pole whose residues form an irreducible representation
of su(2).

These conditions now suggest a simplifying case, since if kp = −1 for all
p > 1 then k(s) is a staircase with each step down of unit height. We shall
refer to this situation as the countdown case since for this situation the
magnetic weights are given by (m− 1, m− 2, . . . , 2, 1). Thus, since all the
one-dimensional representations of su(2) are trivial, the Nahm data have
only one pole, which is at s = µ1. Taking the limiting case of minimal
symmetry breaking, by setting µ1 = −(m − 1) and µ2 = · · · = µm = 1,
we find that the Nahm data are defined on a single interval [−m + 1, 1]
with the only pole occurring at the left-hand end of the interval. This is
very similar to the Nahm data for SU(2) monopoles, except that the pole
at the right-hand end of the interval is lost. This allows a construction
of Nahm data for charge m− 1 monopoles in a minimally broken SU(m)
theory in terms of rescaled Nahm data for SU(2) monopoles, where the
rescaling moves the second pole in the Nahm data outside the interval.
For convenience we now shift s so that the Nahm data are defined over
the interval [−1, m− 1], to agree with our earlier SU(2) notation.
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As an illustration, we present the Nahm data for an SU(m) spherically
symmetric monopole of charge m−1. They are given by Ti(s) = − 1

2(s+1)ρi

where ρ1, ρ2, ρ3 form the standard irreducible representation of su(2) of
dimension m − 1. The associated spectral curves are simply ηm−1 = 0.
Spherically symmetric SU(m) monopoles were first studied by Bais and
Wilkinson [27], Leznov and Saveliev [264], and Ganoulis, Goddard and
Olive [140], using a radial ansatz to reduce the Bogomolny equation to a
Toda equation for the radial profile functions.

The simplest countdown example to consider further is the class of
SU(3) monopoles of charge 2 with minimal symmetry breaking. For k1 =
2 there are two distinct types corresponding to magnetic weights (2, 0)
and (2, 1). (The cases (2, 2) and (2, 0) are equivalent by a reordering of
k2 and k3.) For weights (2, 0) the monopoles are all embeddings of SU(2)
2-monopoles and this case is not interesting as an example of SU(3) 2-
monopoles. For weights (2, 1) this is a countdown case and was first
studied by Dancer [99, 98]. Given the comments above, it is fairly clear
that the appropriate Nahm data are similar to the SU(2) two-monopole
Nahm data (8.155). The functions f1, f2, f3 are almost the same as in
the SU(2) case (8.163), except that the scale factor associated with the
complete elliptic integral Kk, whose value was chosen to place the second
pole at s = 1, is now replaced by a parameter D, whose range is such
that no second pole occurs in the interval, i.e. D < 2

3Kk. Explicitly, the
Nahm data are

T1(s) = − iD dnk(Ds)
2 snk(Ds)

τ1, T2(s) = − iD

2 snk(Ds)
τ2, T3(s) =

iD cnk(Ds)
2 snk(Ds)

τ3.

(8.363)
The moduli space of such monopoles has dimension 12, so after centring

we are left with an eight-dimensional relative moduli space M̃0
(2,1). There

is an isometric SO(3)×SU(2)/Z2 action on M̃0
(2,1). The SU(2)/Z2 action

is a gauge transformation on the Nahm matrices, equal to the identity at
s = −1, while the SO(3) action both rotates the three Nahm matrices as
a vector and gauge transforms them [99]. Taking the quotient of M̃0

(2,1)

by the SU(2)/Z2 action gives a five-dimensional manifold D5 which ad-
mits an SO(3) action, since the SU(2)/Z2 and SO(3) actions on M̃0

(2,1)

commute. The Nahm data for D5 are precisely the orbit under SO(3)
of the 2-parameter family of Nahm data (8.363). Using this, Dancer [99]
computed an explicit expression for the metric on D5 and an implicit form
for the metric on the whole of M̃(2,1). A more explicit form for the metric
on M̃(2,1), in terms of invariant 1-forms corresponding to the two group
actions, together with a study of the corresponding asymptotic monopole
fields, has been given by Irwin [209].
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A totally geodesic two-dimensional submanifold Y of M̃(2,1) is obtained
by imposition of a Z2 × Z2 symmetry, representing monopoles which are
symmetric under reflection in all three Cartesian axes. In fact Y consists
of six copies of the space D5/SO(3). This submanifold was introduced
by Dancer and Leese and the geodesics and corresponding monopole dy-
namics investigated [100, 101]. There are two interesting new phenomena
which occur. The first is that there can be double scatterings, where the
two monopoles scatter at right angles in two orthogonal planes. The sec-
ond is that there are unusual geodesics where two monopoles approach
from infinity but stick together, with the motion taking the configura-
tion asymptotically towards an embedded SU(2) field, which is on the
boundary of the SU(3) monopole moduli space and metrically at infinity.
This kind of behaviour is still not completely understood but the inter-
pretation is that there is a non-abelian cloud [255, 209], whose radius is
related to the parameter D in the Nahm data (8.363). It is the motion of
this cloud which carries off the kinetic energy when the monopoles stick.
Lee, Weinberg and Yi [255] interpret this cloud as the limit of a charge
(2, 1) monopole in a maximally broken theory, in which the mass of the
( , 1) monopole tends to zero, thereby losing its identity and becoming
the cloud.

For the case of charge (2, 1) monopoles in the maximally broken SU(3)
theory, Chalmers has conjectured an implicit form for the metric [80].
This uses the generalized Legendre transform technique, modifying the
similar construction of the Atiyah-Hitchin metric [212].

Nahm data for other SU(m) countdown examples can be obtained
by a modification of SU(2) Nahm data. For example, Platonic SU(m)
monopoles can be studied using the SU(2) Nahm data discussed earlier.
Again, exotic phenomena are found such as double scatterings and patho-
logical geodesics where the monopoles never separate [198].

8.14 Hyperbolic monopoles

In this brief final section we mention another generalization of monopoles,
namely, monopoles in three-dimensional hyperbolic space, H3.

Hyperbolic space has a constant negative curvature, which we denote by
−κ2. Perhaps the most familiar description of H3 is as the interior of the
unit 3-ball. In terms of angular coordinates z, z̄ and a radial coordinate
ρ ∈ [0, 1) the metric is

ds2 =
4

κ2(1− ρ2)2

(
dρ2 + ρ2 4dzdz̄

(1 + |z|2)2
)

= dr2 +
sinh2(κr)

κ2

4dzdz̄

(1 + |z|2)2
(8.364)
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where we have introduced r, the hyperbolic distance from the origin,
through the relation ρ = tanh(κr/2). From the final expression in (8.364)
it is clear that in the zero curvature limit κ→ 0, the metric becomes that
of flat Euclidean space R3, with z, z̄ the standard angular coordinates and
r the usual radial coordinate.

The fact that monopoles on hyperbolic space are interesting was first
recognized by Atiyah [15], who noted that for special values of the curva-
ture, −κ2, hyperbolic monopoles may be interpreted as four-dimensional
instantons with a circle symmetry; this is discussed further in Chapter
10.

Given any three-dimensional Riemannian manifold with metric hij , the
Bogomolny equation on this manifold is

DiΦ =
1
2
√

det h εijkh
jlhkmFlm . (8.365)

The Euclidean case, of course, corresponds to hij = δij . The requirement
that Eq. (8.365) is integrable becomes the geometrical condition that the
manifold has constant curvature. This leaves three possibilities, namely,
flat Euclidean space, hyperbolic space, or the 3-sphere. However, the
last possibility is not compatible with smooth fields carrying magnetic
charge, so hyperbolic space remains as the only natural generalization of
the Euclidean case where there are monopole solutions.

There is a correspondence between hyperbolic monopoles and Jarvis
rational maps, which closely mirrors the Euclidean case. The rational
map is again constructed as the scattering data of Hitchin’s equation
along radial lines out from the origin, and the only difference is that the
metric along this line has now changed, but this is of no real importance.
In terms of the spherical coordinates r, z, z̄ on H3, given in (8.364), the
Bogomolny equation on hyperbolic space is equivalent to the equation

∂r

(
H−1 ∂rH

)
+
κ2(1 + |z|2)2

sinh2(κr)
∂z̄

(
H−1 ∂zH

)
= 0 (8.366)

where the equations for the monopole fields in terms of H are still given
by the Euclidean expressions (8.260), but with r now being hyperbolic
distance. Each solution of this equation is determined by a rational map
through the same boundary condition (8.271) as in the Euclidean case,

Some time ago, Atiyah conjectured that in the limit as the curvature of
hyperbolic space tends to zero, Euclidean monopoles are recovered, but
only recently has this been rigorously established [226]. The proof relies
on Eq. (8.366) and the observation that in the zero curvature limit, κ→ 0,
the Euclidean equation (8.261) is recovered.

The simplest way to present the fields of the spherically symmetric
hyperbolic 1-monopole is via this rational map formalism. The rational
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map is again R = z and the solution of (8.366) is

H = exp
{ −w(r)

2(1 + |R|2)

(
|R|2 − 1 −2R̄
−2R 1− |R|2

)}
(8.367)

where
w(r) = 2 log

(2 + κ)sinh(κr)
κ sinh((2 + κ)r)

. (8.368)

The solution (8.368) reduces to the Euclidean solution (8.273) as κ→ 0.
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Skyrmions

9.1 The Skyrme model

The Skyrme model [377, 379] is a nonlinear theory of pions in three spatial
dimensions, with the Skyrme field, U(t,x), being an SU(2)-valued scalar.
Although not involving quarks, it can be regarded as an approximate, low
energy effective theory of QCD, becoming exact as the number of quark
colours becomes large [428]. Remarkably, and this was Skyrme’s main
motivation for constructing and studying this model, it has topological
soliton solutions that can be interpreted as baryons. These solitons are
called Skyrmions.

The model is defined by the Lagrangian

L =
∫ {

F 2
π

16
Tr(∂µU∂µU� )

+
1

32e2
Tr([∂µUU� , ∂νUU� ][∂µUU� , ∂νUU� ])

}

d3x , (9.1)

where Fπ and e are parameters, whose values are fixed by comparison
with experimental data. These parameters can be scaled away by using
energy and length units of Fπ/4e and 2/eFπ respectively, which we adopt
from now on. In terms of these standard units the Skyrme Lagrangian
can be written as

L =
∫ {

−1
2
Tr(RµRµ) +

1
16

Tr([Rµ, Rν ][Rµ, Rµ])
}

d3x , (9.2)

where we have introduced the su(2)-valued current Rµ = (∂µU)U� . The
Euler-Lagrange equation which follows from (9.2) is the Skyrme field equa-
tion

∂µ

(
Rµ +

1
4
[Rν , [Rν , R

µ]]
)

= 0 , (9.3)

349
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which is a nonlinear wave equation for U(t,x). An interesting feature of
(9.3) is that it is in the form of a current conservation equation ∂µR̃µ = 0,
where R̃µ = Rµ + 1

4 [Rν , [Rν , Rµ]].
One imposes the boundary condition U(x) → 12 as |x| → ∞. The

vacuum, the unique field of minimal energy, is then U(x) = 12 for all x.
The Skyrme Lagrangian has an (SU(2) × SU(2))/Z2

∼= SO(4) chiral
symmetry corresponding to the transformations U &→ O1UO2, where O1

and O2 are constant elements of SU(2). However, the boundary condi-
tion U(∞) = 12 spontaneously breaks this chiral symmetry to an SO(3)
isospin symmetry given by the conjugation

U &→ OUO� , O ∈ SU(2) . (9.4)

In order to make explicit the nonlinear pion theory, we write

U = σ + i∂ ·∞, (9.5)

where ffi denotes the triplet of Pauli matrices, ff = (π1,π2,π3) is the
triplet of pion fields and σ is an additional field determined by the pion
fields through the constraint σ2 + ff · → = 1, which is required since
U ∈ SU(2). Not only the magnitude, but also the sign of σ may be
regarded as determined by the requirement of continuity of the field, and
the boundary conditions ff (∞) = 0, σ(∞) = 1. In terms of the pion
fields, an isospin transformation is ff &→ M∂ , where M is the SO(3)
matrix corresponding to the SU(2) matrix O,

Mij =
1
2
Tr(τiOτjO� ) . (9.6)

Pion particles arise from the quantization of small fluctuations of the
pion field around the vacuum ff = 0, σ = 1. Note that substituting (9.5)
into the Lagrangian (9.2) reveals that the pions are massless. They are
the Goldstone bosons of the spontaneously broken chiral symmetry. An
additional term

Lmass = m2
π

∫
Tr(U − 12) d3x (9.7)

can be included in the Lagrangian of the Skyrme model and gives the
pions a (tree-level) mass mπ. As most of our discussion is independent of
this extra term we do not include it at this stage, but in Section 9.9 we
address the modifications that it generates.

If one restricts to static fields, U(x), then the Skyrme energy functional
derived from the Lagrangian (9.2) is

E =
1

12π2

∫ {
−1

2
Tr(RiRi) −

1
16

Tr([Ri, Rj ][Ri, Rj ])
}

d3x , (9.8)
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where we have introduced the additional factor of 1/12π2 for later conve-
nience. Static solutions of the Skyrme field equation (9.3) are therefore
critical points (either minima or saddle points) of this energy.

At first sight U , at a fixed time, is a map from R3 into S3, the group
manifold of SU(2). However, the boundary condition implies a one-point
compactification of space, so that topologically U : S3 &→ S3, where the
domain S3 is to be identified with R3 ∪ {∞}. As discussed in Chapter
3 the homotopy group π3(S3) is Z, which implies that maps between 3-
spheres fall into homotopy classes indexed by an integer, which we denote
by B. This integer is also the degree of the map U and has the explicit
representation

B = − 1
24π2

∫
εijkTr (RiRjRk) d3x , (9.9)

where Ri = (∂iU)U� , as before. As B is a topological invariant, it is
conserved under continuous deformations of the field, including time evo-
lution. It is this conserved topological charge which Skyrme identified
with baryon number. B is the principal property of a Skyrmion.

The presence of a topological charge is, by itself, not sufficient to en-
sure the existence of stable topological solitons since we also need to evade
Derrick’s theorem [107]. But note that the static Skyrme energy decom-
poses into two components, E = E2 + E4, corresponding to the terms
which are quadratic and quartic in spatial derivatives of the Skyrme field.
Under a rescaling of the spatial coordinates x &→ µx, the energy becomes

e(µ) =
1
µ

E2 + µE4 . (9.10)

The two terms therefore scale in opposite ways, leading to a minimal value
of e(µ) for a finite µ ̸= 0. This implies that any soliton will have a well
defined scale and will neither expand to cover all of space nor contract to
be localized at a single point. Note that for any static solution, and in
particular for a Skyrmion, which is the minimal energy configuration in
a given topological sector, e(µ) must take its minimal value when µ = 1,
so the energy contributions from the quadratic and quartic terms are
exactly equal. From this discussion it is clear why the sigma model (the
Lagrangian consisting of only the first term in (9.2)) does not support
stable solitons. This problem is cured by the addition of the second term
in (9.2), known as the Skyrme term. Clearly any term which is of degree
4 or higher in the spatial derivatives would do equally well in this respect,
but the Skyrme term is the unique expression of degree 4 which is Lorentz
invariant and for which the resulting field equation remains second order
in the time derivative.
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A more geometrical description of the static Skyrme energy exists [282],
which is useful in several contexts. As in nonlinear elasticity theory, the
energy density of a Skyrme field depends on the local stretching associated
with the map U : R3 &→ S3. For this formulation, let us introduce the
strain tensor Dij , defined at each point x ∈ � 3 by

Dij = −1
2
Tr(RiRj) , (9.11)

which is a symmetric, positive definite 3 × 3 matrix, and which can be
thought of as quantifying the deformation induced by the map U . The
image under U of an infinitesimal sphere of radius ε and centre x in R3, to
leading order in ε, is an ellipsoid with principal axes ελ1, ελ2, ελ3, where
λ2

1, λ2
2, λ2

3 are the three non-negative eigenvalues of the matrix Dij . The
signs of λ1, λ2 and λ3 are chosen so that λ1λ2λ3 is positive (negative) if U
is locally orientation preserving (reversing). In terms of these eigenvalues,
the static energy E, and baryon number B, can be computed as integrals
over R3 of the corresponding densities E and B given by

E =
1

12π2
(λ2

1 +λ2
2 +λ2

3 +λ2
1λ

2
2 +λ2

2λ
2
3 +λ2

3λ
2
1) , B =

1
2π2

λ1λ2λ3 . (9.12)

From the simple inequality

(λ1 ± λ2λ3)2 + (λ2 ± λ3λ1)2 + (λ3 ± λ1λ2)2 ≥ 0 , (9.13)

it follows from the formulae (9.12) that E ≥ |B| and therefore the Skyrme
energy satisfies the Faddeev-Bogomolny lower bound [126]

E ≥ |B| . (9.14)

In contrast to monopoles and vortices, this bound can not be saturated
for any non-trivial (i.e. B ̸= 0) finite energy configuration. This is because
the bound is attained only when all the eigenvalues of the strain tensor
have modulus 1 at all points in space – an isometry – and this is obviously
not possible since R3 is not isometric to S3. Note that the bound can be
attained if the spatial domain is taken to be the 3-sphere of unit radius;
we discuss this further in Section 9.9.

After the baryon number and energy, the most significant characteristic
of a static solution of the Skyrme equation is its asymptotic field, which
satisfies the linearized form of the equation. To leading order, the three
components of the pion field ff each obey Laplace’s equation, and σ can
be taken to be unity. More precisely, ff has a multipole expansion, in
which each term is an inverse power of r = |x|, say r� (l+1), times a
triplet of angular functions. The leading term, with the smallest l, obeys
Laplace’s equation, whereas subleading terms may not, because of the
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nonlinear aspect of the Skyrme equation. For the leading term, therefore,
the angular functions are a triplet of linear combinations of the spherical
harmonics Yl,m(θ,ϕ), with m taking integer values in the range −l ≤
m ≤ l. These spherical harmonics can also be expressed in Cartesian
coordinates, which often gives more convenient and elegant formulae for
the asymptotic fields.

One of the few precise results concerning the Skyrme equation (9.3) is
that this multipole expansion can not lead with a monopole term, with
l = 0. The leading term is a dipole or higher multipole. The proof is
as follows [286]. For a static field, the equation implies that the spatial
current

R̃i = Ri +
1
4
[Rj , [Rj , Ri]] (9.15)

has zero divergence and no singularity. Therefore the flux of R̃i through
a large sphere of radius R (centred at the origin) vanishes, that is,

∫

S�
R

R̃in
i dS = 0 , (9.16)

where ni is the unit outward normal. Now, in the asymptotic region,
R̃i can be replaced by Ri, which in turn simplifies to i(∂iπ) · ∞. For a
monopole asymptotic field,

ff =
c
r

(9.17)

where c is a constant vector, so R̃i has the leading asymptotic behaviour
−ic ·∞xi/r3. Then R̃ini = −ic ·∞/r2, so the flux through the sphere is
−4πic ·∞. This vanishes only if c = 0.

Recently, it has been rigorously proved [294] that for any non-vacuum
solution of the Skyrme equation, the multipole expansion is non-trivial.
In other words, the pion field does not vanish to all orders in l, and the
leading term is a multipole satisfying the Laplace equation.

9.2 Hedgehogs

Esteban [123] has proved the existence of a B = 1 Skyrmion, that is,
a minimizer of the energy functional (9.8) within the charge 1 sector,
following earlier work of Kapitansky and Ladyzenskaia [230] in which it
was proved that a minimizer exists within the family of spherically sym-
metric charge 1 Skyrme fields. It is believed to be true, though not yet
proven, that these two minimizers are the same, that is, the minimal
energy Skyrmion in the B = 1 sector is spherically symmetric. Here,
spherically symmetric does not mean that the Skyrme field is just a func-
tion of the radial coordinate r, since it is easily seen that such a field
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must have B = 0. When we refer to a spatial symmetry of a Skyrmion,
such as spherical symmetry, we mean that the field has the equivariance
property that the effect of a spatial rotation can be compensated by an
isospin transformation (9.4). This implies that both the energy density
E , and baryon density B, are strictly invariant under the symmetry.

The spherically symmetric B = 1 Skyrmion was presented in the orig-
inal work of Skyrme and takes the hedgehog form (cf. Section 4.3)

U(x) = exp {if(r)x̂ ·∞} ≡ UH(x) . (9.18)

In terms of ff and σ fields,

ff = cos f(r) x̂ , σ = sin f(r) . (9.19)

The name hedgehog derives from the fact that the pion fields of this
configuration point radially outward from the origin at all points in space,
so Λ̂ = x̂. f is a real radial profile function with the boundary conditions
f(0) = π and f(∞) = 0. The latter condition ensures that U(∞) = 12,
while the former guarantees that U(0) is well defined and that B = 1.
The value of B is confirmed by substituting the hedgehog ansatz into the
expression (9.9) for the baryon number, giving

B = − 2
π

∫ ∫

0
fσsin2 f dr =

1
π

f(0) = 1 . (9.20)

Alternatively, we can easily verify that if f monotonically decreases, then
each point of the target space SU(2) (except U = 12) has exactly one
preimage in R3, with positive Jacobian.

Substituting the hedgehog ansatz (9.18) into the static Skyrme equation
yields the second order nonlinear ordinary differential equation

(r2 + 2 sin2 f)fσσ+ 2rfσ+ sin 2f

(

fσ2 − 1 − sin2 f

r2

)

= 0 . (9.21)

The solution of this equation, satisfying the boundary conditions, can not
be obtained in closed form but it is a simple task to compute it numerically
using a shooting method. The numerical solution is presented in Fig. 9.1.

The energy, given by

E =
1
3π

∫ ∫

0

{

r2fσ2 + 2 sin2 f (1 + fσ2) +
sin4 f

r2

}

dr , (9.22)

is calculated to be E = 1.232, to three decimal places, and so the B = 1
Skyrmion exceeds the Faddeev-Bogomolny bound by approximately 23%.
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Fig. 9.1. The profile function f(r) for the B = 1 Skyrmion.

The Skyrmion described by (9.18) is located at the origin, but it can be
positioned at any point in space and given any orientation by acting with
the translation and rotation groups of R3. The moduli space of charge 1
Skyrmions is therefore six-dimensional. In general, it is to be expected
that the moduli space of a charge B Skyrmion is nine-dimensional, since
in addition to translations and rotations there is also the action of the
three-dimensional isospin group (9.4). However, for B = 1, an isospin
transformation is equivalent to a spatial rotation, which is of course why
the Skyrmion is spherically symmetric, so three moduli are lost.

A linearization of Eq. (9.21) reveals the large r asymptotic behaviour
of the profile function, f ∼ C/r2, for some constant C, which numerically
is found to be C = 2.16. Therefore, the leading order asymptotic fields
are

ff =
C

r2
x̂ , σ = 1 . (9.23)

In other words, from far away a single Skyrmion resembles a triplet of
orthogonal pion dipoles, with dipole strength 4πC. In Section 9.3 we dis-
cuss the asymptotic interactions of well separated Skyrmions, and their
interpretation in terms of dipole-dipole forces.

There are further solutions involving the hedgehog ansatz (9.18). Note
that U is well defined provided f(0) = kπ, where k ∈ � , and a glance at
Eq. (9.20) shows that the field in this case describes a spherically sym-
metric configuration with B = k. The pion field still points radially, but
inwards or outwards. There appear to be solutions of the equation for
the profile function for all values of k [379, 220]. Solutions have been



356 Skyrmions

constructed numerically for several values. The k = −1 solution is the
antiSkyrmion, whose profile function is obtained from that of the
Skyrmion by the replacement f &→ −f. For |k| > 1 these hedgehog solu-
tions do not represent the minimal energy Skyrmions with B = k, and
in fact these solutions are not even bound against break-up into |k| well
separated Skyrmions (or antiSkyrmions if k < 0). For example, the k = 2
hedgehog has an energy E = 3.67 > 1.232 × 2, and has been shown to
have six unstable modes. The hedgehog solutions, for |k| > 1, are there-
fore almost certainly all unstable, saddle points of the energy.
A rigorous proof of the existence of charge B, minimal energy Skyrmions

with |B| > 1 appears to be difficult, and has not yet been found. Their
existence has been established by Esteban [123], but only under the as-
sumption that

EB < EBπ + EB� Bπ , (9.24)

for all Bσ∈ � −{0, B}, where EBπ denotes the infimum of the energy (9.8)
within the space of Skyrme fields with baryon number Bσ. Esteban [123]
was able to prove the weaker inequality

EB ≤ EBπ + EB� Bπ , (9.25)

but the strict inequality is not yet proved in general. The strict inequality
would prevent the break-up of a charge B field into infinitely separated
clusters of charge Bσ and B − Bσ, and would imply that the energy EB

was attained by a Skyrmion solution. In the following section we present
a physical perspective on these inequalities, in terms of the forces between
well separated Skyrmions. Later, we will also describe the solutions that
have been discovered numerically, that are believed to be the minimal
energy Skyrmions.

9.3 Asymptotic interactions

As noted above, the asymptotic field of a single Skyrmion is that of a
triplet of orthogonal dipoles and we can make use of this interpretation
to calculate the asymptotic forces between two well separated Skyrmions
by computing the interaction energy of the pair of dipole triplets. It is
convenient to rewrite (9.23) in the form

πj =
C

r2
x̂j =

pj · x
4πr3

, (9.26)

where we have introduced the three orthogonal dipole moments

pj = 4πCej , (9.27)
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with {ej} being the standard basis vectors of R3. More generally, the
frame of dipoles may be rotated, but their magnitudes are unchanged.
With the energy normalized as in (9.8) the interaction energy of two
individual dipoles, with moments p,q and relative position vector X, is
given by

Edip =
1

24π3
(p · Λ̃)(q · Λ̃)

1
|X| , (9.28)

where ∂̃i = ∂
∂Xi . This is similar to the formula for the interaction energy

of two electric dipoles, but has the opposite sign, because the pion field
is a scalar, so like charges attract.

We can use the translation and isospin symmetries to position the first
Skyrmion at the origin in standard orientation, and the second Skyrmion
at the point X ∈ � 3, with X = |X| ≫ 1, and with an orientation de-
termined by the SU(2) matrix O. The dipole moments of the second
Skyrmion are then qj = Mpj , where M is the SO(3) matrix correspond-
ing to O, as given in (9.6). There is a dipole interaction between pj and
qk only if j = k, so summing the interactions of the three pairs and using
(9.28) we obtain the total interaction energy

Eint =
2C2

3π
(Λ̃ · MΛ̃)

1
X

. (9.29)

To get a better understanding of this, we can reexpress the matrix M
in terms of a rotation through an angle ψ about an axis n̂,

Mij = cosψ δij + (1 − cosψ)n̂in̂j + sinψ εijkn̂k . (9.30)

The interaction energy (9.29) then takes the form

Eint = −2C2

3π
(1 − cosψ)

1 − 3(X̂ · n̂)2

X3
. (9.31)

Clearly, by a suitable choice of the axis n̂, the two Skyrmions can be
made to either repel or attract, corresponding to a positive or negative
interaction energy respectively. The attraction is maximal (that is, the
interaction energy is minimal) if X̂ · n̂ = 0 and ψ = π, in other words,
one Skyrmion is rotated relative to the other through an angle of 180∆

about a line perpendicular to the line joining them. This is known as the
attractive channel. Note that in making this statement we are using the
fact that an isospin rotation of a single Skyrmion is equivalent to a spatial
rotation, so we may think in terms of the latter.

In Section 9.8, where we discuss Skyrmion dynamics, we return to for-
mula (9.31) in relation to setting up initial conditions for several well
separated Skyrmions such that they mutually attract.
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The dipole calculation described above can not serve as a rigorous
derivation of the asymptotic interaction energy of two Skyrmions since
it assumes that a Skyrmion whose field is asymptotically of the dipole
triplet form also reacts to an external field like a dipole triplet. Below we
present a more formal calculation of the interaction energy, closely fol-
lowing the presentation in [365], which confirms the result obtained from
the dipole picture.

In Eq. (9.8) we have expressed the static energy in terms of the right
currents Ri = ∂iUU� , but we could also have chosen to write it in terms
of the left currents Li = U�∂iU , giving an identical expression after the
replacement of Rk by Lk. These two equivalent formulations are useful in
what follows, as are the quantities R̃i and L̃i defined as

R̃i = Ri −
1
4
[Rj , [Rj , Ri]] , L̃i = Li −

1
4
[Lj , [Lj , Li]] . (9.32)

It follows from the Skyrme field equation (9.3) that for a static solution,
both these currents are divergenceless, that is,

∂iR̃i = ∂iL̃i = 0 . (9.33)

To calculate the interaction energy of two well separated Skyrmions we
use the product ansatz of two hedgehog fields

U = U (1)U (2) , U (1) = UH(x) , U (2) = OUH(x − X)O� . (9.34)

In computing the energy of the product field (9.34) it is helpful to note
the following relation

Li = U�∂iU = U (2)� (L(1)
i + R(2)

i )U (2) , (9.35)

where L(1)
i denotes the left current constructed from the field U (1), and

so on. Substituting this expression into the Skyrme energy gives a term
involving only L(1)

i , one involving only R(2)
i and a cross term. The first

two terms each contribute precisely the energy of a single Skyrmion and
the cross term gives the interaction energy which, neglecting terms that
are quadratic in both L(1)

i and R(2)
i , has the leading order contribution

Eint ∼ − 1
12π2

∫

� � Tr(L(1)
i R̃(2)

i + L̃(1)
i R(2)

i − L(1)
i R(2)

i ) d3x . (9.36)

In order to evaluate this integral for large X, we divide R3 into three
regions, I, II and III, given by I = {x : |x| < ρ}, II = {x : |x − X| < ρ}
and III = R3 − I − II, with 2ρ < X. For large X we choose ρ large
enough so that outside region I we can apply the asymptotic expression

L(1)
i ∼ l(1)

i ≡ iC∂i

(
x ·∞
|x|3

)
, (9.37)
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and similarly outside region II

R(2)
i ∼ r(2)

i ≡ iC∂i

(
O(x − X) ·∞O�

|x − X|3

)

. (9.38)

Note that since L̃(1)
i differs from L(1)

i only by a triple product of L(1)
i ’s

(and similarly for R̃(2)
i ) then in the above limits we also have that

L̃(1)
i ∼ l(1)

i and R̃(2)
i ∼ r(2)

i . (9.39)

Furthermore, we also require that ρ is small enough that l(1)
i may be

taken to be constant over region II and r(2)
i constant over region I. This

is achieved by letting ρ → ∞ as X → ∞ in such a way that ρ/X → 0.
Substituting these approximations into (9.36) we arrive at

Eint ∼ − 1
12π2

Tr
{

r(2)
i

∣∣∣∣
x=0

∫

I
(L̃(1)

i − l(1)
i ) d3x

+ l(1)
i

∣∣∣∣
x=X

∫

II
(R̃(2)

i − r(2)
i ) d3x +

∫

� � l(1)
i r(2)

i d3x
}

. (9.40)

Expanding L̃(1)
i in terms of Pauli matrices as

L̃(1)
i = iL̃imτm , (9.41)

we see from Eq. (9.33) that for each m = 1, 2, 3, L̃im are the components
of a divergenceless vector field, which implies that there exists a potential
Zkm such that

L̃im = εijk∂jZkm . (9.42)

Explicitly, it can be checked that this potential is given by

Zkm =
(

sin2 f − sin4 f

r2

)

x̂kx̂m +
rfσ

2

(

1 + 2
sin2 f

r2

)

εkmnx̂n . (9.43)

Thus
∫

I
L̃(1)

i d3x = iτm

∫

∂I
εijkZkmx̂j dS

= iτm

∫

∂I
(δim − x̂ix̂m)

rfσ

2

(

1 + 2
sin2 f

r2

)

dS

∼ −8πiC

3
τi , (9.44)
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where the final line is obtained by making use of the asymptotic expression
f(ρ) ∼ C/ρ2 and keeping only leading order terms in ρ. Next, we have
that

∫

I
l(1)
i d3x = iC

∫

I
∂i

(
x ·∞
|x|3

)
d3x = −iCτm

∫

I
∂i∂m

1
|x| d3x

= − iC

3
τi

∫

I
∇2 1

|x| d3x =
4πiC

3
τi , (9.45)

where the final expression is obtained by using the identity ∇2 1
�x� =

−4πδ(x). Combining these two results we have that
∫

I
(L̃(1)

i − l(1)
i ) d3x ∼ −4πiCτi . (9.46)

From (9.38) we see that

r(2)
i

∣∣∣∣
x=0

= iCOτnO� (δin − 3X̂iX̂n)
X3

, (9.47)

so the first term in (9.40) has been calculated to be

− 1
12π2

Tr
{

r(2)
i

∣∣∣∣
x=0

∫

I
(L̃(1)

i − l(1)
i ) d3x

}

∼ − C2

3πX3
Tr(OτnO� τn − 3X̂iX̂nOτnO� τi)

= −2C2(TrM − 3X̂ · MX̂)
3πX3

, (9.48)

where M is the SO(3) matrix corresponding to O as given in (9.6).
A similar calculation for the second term in (9.40) yields the same result

− 1
12π2

Tr
{

l(1)
i

∣∣∣∣
x=X

∫

II
(R̃(2)

i − r(2)
i ) d3x

}
∼ −2C2(TrM − 3X̂ · MX̂)

3πX3
.

(9.49)

The final term in (9.40) is relatively simple to calculate using an integra-
tion by parts and the relation ∇2 1

�x� = −4πδ(x),

− 1
12π2

Tr
{∫

� � l(1)
i r(2)

i d3x
}

∼ C2

6π2
Mkj

∫

� � ∂i∂j
1

|x − X|∂i∂k
1
|x| d3x

=
2C2(TrM − 3X̂ · MX̂)

3πX3
. (9.50)

Adding together the three terms in (9.40) we arrive at the final answer

Eint ∼ −2C2(TrM − 3X̂ · MX̂)
3πX3

=
2C2

3π
(Λ̃ · MΛ̃)

1
X

, (9.51)
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which agrees with the earlier result obtained from the asymptotic dipole
calculation.

The general form of the interaction energy of two charge 1 Skyrmions
was originally presented by Skyrme [379] and verified by Jackson et al.
[218] and Vinh Mau et al. [408]. Castillejo and Kugler [76] noted that
if the asymptotic interaction energy of two well separated clusters of
Skyrmions, of any charge, is positive, then it can be made negative by
performing an appropriate isospin transformation on one of the clusters.
We have already explicitly seen that this is true in the case of two charge
1 Skyrmions, as illustrated by Eq. (9.31). It may appear that this re-
sult constitutes a proof of the strict inequality (9.24), and hence that
Skyrmions exist for any baryon number, since it is always possible to
arrange that two clusters have a negative interaction energy, and hence
a total energy which is lower than the sum of their individual energies.
However, the flaw in Castillejo and Kugler’s argument is that, to lowest
order, the asymptotic interaction energy may vanish. In this case, the
lowest order contribution to the asymptotic interaction energy can not be
made negative by an isospin rotation and the calculation must be per-
formed to higher order. A similar caveat obviously applies at each order
and so it is not possible to conclude that the interaction energy is nega-
tive, only that it is non-positive. This is another manifestation of the fact
that the weaker energy inequality (9.25) has been proved, but the strict
inequality (9.24), required for the proof of existence of arbitrary charge
Skyrmions, remains unproven at present.

However, further progress on this problem has recently been made.
Now that it has been established that any Skyrmion has a leading mul-
tipole [294], it can be shown that in most cases a pair of well separated
Skyrmions of any baryon number can be oriented and positioned so as to
attract. Unfortunately, the argument breaks down because of the non-
linear terms if the leading multipole of one of the Skyrmions is of high
order, or more precisely, if the orders of the multipoles differ by more than
two. Nevertheless, as Schroers has shown [367], some rigorous conclusions
about the existence of Skyrmions of higher baryon number are possible.

9.4 Low charge Skyrmions

In this section we discuss the properties of minimal energy Skyrmions
with charges 1 ≤ B ≤ 8, constructed using numerical methods. Details of
the numerical codes used to compute these solutions can be found in the
papers cited below, and a detailed discussion appears in [45], to which we
refer the interested reader.

All known solutions appear to be isolated and their only moduli are the
obvious ones associated with the nine-dimensional symmetry group of the
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Skyrme model. Generic solutions therefore have nine moduli, although
solutions with axial or spherical symmetry have, respectively, one or three
fewer.

As we have already noted, for charges B > 1 the minimal energy
Skyrmion is not spherically symmetric. For B = 2, it turns out that it
has an axial symmetry [244, 283, 406]. The energy density has a similar
toroidal structure to that of the charge 2 axisymmetric monopole solution
discussed in the previous chapter, despite the fact that the fields of the
two models are very different. In displaying Skyrmions it is conventional
to plot surfaces of constant baryon density B (baryon density isosurfaces),
where B is the integrand in Eq. (9.9), although energy density isosurfaces
are qualitatively very similar. In Fig. 9.2 we display baryon density iso-
surfaces for the minimal energy Skyrmions of charges 1 ≤ B ≤ 8.

Fig. 9.2. Baryon density isosurfaces for 1 ≤ B ≤ 8. The baryon number and
symmetry of each solution is shown.

There are axially symmetric solutions of the Skyrme equation for B > 2
[244], but these are not the minimal energy solutions, and in fact for
B > 4 they are not even sufficiently bound to prevent break-up into B
single Skyrmions, so they correspond to saddle points.

The Skyrmions presented in Fig. 9.2 have only discrete symmetries for
B > 2. The B = 3 and B = 4 Skyrmions have tetrahedral symmetry
Td and cubic symmetry Oh, respectively [65], and again are very simi-
lar to particular monopoles of the same charge, which we have already
discussed. The associated polyhedra, where the baryon density is concen-
trated, are a tetrahedron and cube, as the figure shows. It is perhaps of
interest to point out that these Skyrmion solutions were computed before
the existence of the corresponding monopoles was known. At the time
it was therefore very surprising to find these highly symmetric Platonic
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Skyrmions emerging from asymmetric initial conditions. Their existence
was a major motivation for the search for Platonic monopole solutions,
and although a deep connection between Skyrmions and monopoles is
still lacking, a link between these two kinds of soliton has been found, via
rational maps, and has led to an improved understanding of the structure
of Skyrmions, as we discuss in detail in the next section.

The B = 5 Skyrmion has a relatively small symmetry, namely D2d. The
associated polyhedron comprises four squares and four pentagons, the top
and bottom of the structure being related by a relative rotation of 90∆.
In case the reader is not familiar with extended dihedral symmetries we
briefly recount them here. The dihedral group Dn is obtained from Cn, the
cyclic group of order n, by the addition of a C2 axis which is orthogonal
to the main Cn symmetry axis. The group Dn can be extended by the
addition of a reflection symmetry in two ways: by including a reflection in
the plane perpendicular to the main Cn axis, which produces the group
Dnh or, alternatively, a reflection in a plane which contains the main
symmetry axis and bisects a pair of the C2 axes obtained by applying
the Cn symmetry to the generating C2 axis, which produces the group
Dnd.

Recall that a charge 5 monopole exists with octahedral symmetry, so
given the similarity between monopoles and Skyrmions it may seem a
little curious that the B = 5 Skyrmion has relatively little symmetry. In
fact, as we discuss further in the next section, there is an octahedrally
symmetric charge 5 solution, but it is a saddle point whose energy is a
little higher than the less symmetric D2d minimum.

The B = 6 and B = 8 Skyrmions also have extended dihedral sym-
metries, this time D4d and D6d respectively. The B = 7 Skyrmion is
icosahedrally symmetric [41], its symmetry group Yh being an extension
of D5d. The baryon density of the B = 7 Skyrmion is localized around
the edges of a dodecahedron, the structure closely resembling the icosa-
hedrally symmetric charge 7 monopole.

The polyhedron associated with the B = 6 Skyrmion consists of two
halves, each formed from a square with pentagons hanging down from all
four sides. To join these two halves, the two squares must be parallel, with
one rotated by 45∆relative to the other. The B = 8 Skyrmion has a similar
structure, except that the squares are replaced by hexagons, and each
half has six pentagons hanging down. The top hexagon is parallel to the
bottom hexagon but rotated by 30∆. The halves of the B = 7 Skyrmion
have pentagons hanging from a pentagon, hence the larger symmetry.

In Fig. 9.3 we display models (not to scale) of the polyhedra associated
with the Skyrmions of charge 5, 6, 7, 8, and in Table 9.1 we present, for
charges 1 to 8, the symmetries and energies per baryon, E/B, of the
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Fig. 9.3. Polyhedral models (not to scale) representing the Skyrmions with
B = 5, 6, 7, 8.

Skyrmions, computed from the numerical solutions of the field equation
[45].

In ref. [41] a phenomenological rule for the structure of the minimal en-
ergy Skyrmions was proposed, called the Geometric Energy Minimization
(GEM) rule. This states that, for B > 2, the polyhedron associated with
the charge B Skyrmion is composed of almost regular polygons meeting at
4(B − 2) trivalent vertices, and the baryon density is concentrated along
the edges of the polygons. Note that there are several equivalent ways in
which the GEM rule can be stated, since, by using the trivalent property
together with Euler’s formula, any one of the three parameters of the
structure, the number of vertices V , faces F , or edges E, determines the
other two. Explicitly, V = 4(B − 2), F = 2(B − 1), E = 6(B − 2). Since
the baryon density isosurface has a hole in the centre of each face, the
GEM rule is consistent with the observation of ref. [65] that the isosur-
face contains 2(B − 1) holes. For 3 ≤ B ≤ 8 we have already described
the Skyrmions, and it is a simple task to confirm that the GEM rule is
obeyed in these cases. However, as B increases, the number of possible
structures satisfying the GEM rule grows rapidly, so that by no means
does it uniquely predict the structure.

For B ≥ 7 it is possible to satisfy the GEM rule with a trivalent poly-
hedron formed from 12 pentagons and 2B−14 hexagons. We will refer to
such structures as fullerene-like and to the conjecture that the Skyrmion’s
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Table 9.1. The symmetry, K, and energy per baryon, E/B, for the numerically
computed minimal energy Skyrmions of charge 1 ≤ B ≤ 8.

B K E/B

1 O(3) 1.2322
2 D∂ h 1.1791
3 Td 1.1462
4 Oh 1.1201
5 D2d 1.1172
6 D4d 1.1079
7 Yh 1.0947
8 D6d 1.0960

baryon density isosurface has this form as the fullerene hypothesis since
precisely the same fullerene (a shortening of Buckminsterfullerene) struc-
tures arise in carbon chemistry, where carbon atoms sit at the vertices of
such polyhedra [137]. It is then plausible [41] that the minimal energy
Skyrmion of charge B has the same symmetry as a fullerene from the
family C4(B� 2). For low charges (B = 7, B = 8) this leads to a unique
prediction for the structures, which are those we have already encoun-
tered, but as the charge increases the number of possible structures again
increases. In particular, for B = 9 there are two possibilities with D2 and
Td symmetries respectively, for B = 10 there are six, for B = 11 there are
15, with a rapid increase for B > 11. However, there is a unique icosahe-
drally symmetric configuration with B = 17 corresponding to the famous
fullerene structure of C60, and given its high symmetry it is not surpris-
ing that the minimal energy B = 17 configuration has this structure. In
Section 9.6 we discuss Skyrmions of higher charge, up to B = 22, and
find that the fullerene hypothesis is valid for all but two charges, where
interesting caveats apply. In the next section we discuss an approximate
analytic description of Skyrmions and see that within this approach at
least one aspect of the GEM rule, namely, that the number of faces is
2(B − 1), can be understood.

9.5 The rational map ansatz

The observed similarities between Skyrmions and monopoles leads nat-
urally to the question whether there is an approximate construction of
Skyrmions from monopoles. Of course, it is not expected that an exact
correspondence exists, since the Yang-Mills-Higgs and Skyrme models
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have a number of very different properties, but for certain monopole so-
lutions a mapping does exist which generates a good approximation to a
related exact Skyrmion solution. As yet, there is no known direct trans-
formation between the fields of a monopole and those of a Skyrmion, but
as we describe in this section, there is an indirect transformation via ra-
tional maps between Riemann spheres. Recall from Chapter 8 that there
is a precise correspondence between charge N monopoles and degree N
rational maps (we have in mind here the Jarvis maps); thus a Skyrme
field constructed from a rational map is indirectly constructed from a
monopole.

One needs an ansatz for a Skyrme field in terms of a rational map, and
the shell-like fullerene structures of the numerically computed Skyrmions
suggest how to proceed. Rational maps are maps from S2 &→ S2, whereas
Skyrmions are maps from R3 &→ S3. The main idea behind the rational
map ansatz, introduced in [193], is to identify the domain S2 of the ra-
tional map with concentric spheres in R3, and the target S2 with spheres
of latitude on S3. It is convenient to use 3-vector notation to present the
ansatz explicitly. Recall that via stereographic projection, the complex
coordinate z on a sphere can be identified with conventional polar coor-
dinates by z = tan(θ/2)eiϕ. Equivalently, the point z corresponds to the
unit vector

n̂z =
1

1 + |z|2 (z + z̄, i(z̄ − z), 1 − |z|2) . (9.52)

Similarly the value of the rational map R(z) is associated with the unit
vector

n̂R =
1

1 + |R|2 (R + R̄, i(R̄ − R), 1 − |R|2) . (9.53)

Let us denote a point in R3 by its coordinates (r, z), where r is the radial
distance from the origin and z specifies the direction from the origin. The
ansatz for the Skyrme field, depending on a rational map R(z) and a
radial profile function f(r), is

U(r, z) = exp(if(r) n̂R(z) ·∞) , (9.54)

where, as usual, ffi= (τ1, τ2, τ3) denotes the triplet of Pauli matrices. For
this to be well defined at the origin, f(0) = kπ for some integer k. We
take k = 1 in what follows. The boundary condition U = 12 at r = ∞ is
satisfied by setting f(∞) = 0. It is straightforward to verify (see below)
that the baryon number of this field configuration is B = N , where N is
the degree of R.

Mathematically, this construction of a map from compactified R3 to
S3, out of a map from S2 to S2, is a suspension; the suspension points on
the domain are the origin and the point at infinity, and on the target the
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points U = −12 and U = 12. Suspension is an isomorphism between the
homotopy groups π2(S2) and π3(S3), which explains why B = N .

An SU(2) Möbius transformation on the domain S2 of the rational map
corresponds to a spatial rotation, whereas an SU(2) Möbius transforma-
tion on the target S2 corresponds to a rotation of n̂R, and hence to an
isospin rotation of the Skyrme field. Thus if a rational map R : S2 &→ S2

is symmetric in the sense defined in Chapter 6 (i.e. a rotation of the do-
main can be compensated by a rotation of the target), then the resulting
Skyrme field is symmetric in the sense defined in Section 9.2 (i.e. a spatial
rotation can be compensated by an isospin rotation).

Note that if we introduce the Hermitian projector

P =
1

1 + |R|2
(

1 R̄
R |R|2

)
, (9.55)

satisfying P 2 = P = P � , then the ansatz (9.54) can be written as

U = exp(if(2P − 12)) , (9.56)

which is similar to the expression (8.262), describing the asymptotic form
of the solution of the Jarvis equation corresponding to the monopole with
rational map R.

The simplest degree 1 rational map is R = z, which is spherically
symmetric. The ansatz (9.54) then reduces to Skyrme’s hedgehog field
(9.18) with f(r) being the usual profile function. In this case the ansatz
is compatible with the static Skyrme equation but in general it is not,
so it can not produce exact solutions, only low energy approximations to
these.

An attractive feature of the ansatz is that it leads to a simple energy
expression which can be minimized with respect to the rational map R
and the profile function f to obtain close approximations to the numer-
ical, exact Skyrmion solutions. To calculate the energy we exploit the
geometrical formulation of the Skyrme model presented in Section 9.1.
For the ansatz (9.54), the strain in the radial direction is orthogonal to
the strain in the angular directions. Moreover, because R(z) is conformal,
the angular strains are isotropic. If we identify λ2

1 with the radial strain
and λ2

2 and λ2
3 with the angular strains, we can easily compute that

λ1 = −fσ(r) , λ2 = λ3 =
sin f

r

1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣ . (9.57)

From Eq. (9.12), the baryon number is

B = −
∫

fσ

2π2

(sin f

r

1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)2 2i dzdz̄

(1 + |z|2)2 r2 dr , (9.58)
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where 2i dzdz̄/(1 + |z|2)2 is equivalent to the usual area element on a
2-sphere sin θ dθdϕ. Now the part of the integrand

( 1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)2 2i dzdz̄

(1 + |z|2)2 (9.59)

is precisely the pull-back of the area form 2i dRdR̄/(1 + |R|2)2 on the
target sphere of the rational map R; therefore its integral is 4π times the
degree N of R. So (9.58) simplifies to

B = −2N

π

∫ ∫

0
fσsin2 f dr = N , (9.60)

where we have used the boundary conditions f(0) = π, f(∞) = 0. This
verifies again that the baryon number of the Skyrme field generated from
the ansatz is equal to the degree of the rational map.

Substituting the strains (9.57) into the expression (9.12) for the energy
density yields the energy

E =
1

12π2

∫ {
fσ2 + 2

sin2 f

r2
(fσ2 + 1)

( 1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)2

(9.61)

+
sin4 f

r4

( 1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)4} 2i dzdz̄

(1 + |z|2)2 r2 dr ,

which can be simplified, using the above remarks about baryon number,
to

E =
1
3π

∫ ∫

0

(
r2fσ2 + 2B sin2 f(fσ2 + 1) + I sin4 f

r2

)
dr . (9.62)

I denotes the purely angular integral

I =
1
4π

∫ ( 1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)4 2i dzdz̄

(1 + |z|2)2 , (9.63)

which only depends on the rational map R.
Note the following pair of inequalities associated with the expression

(9.62) for the energy E. The elementary inequality
(∫

1 dS
)(∫ ( 1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)4

dS
)
≥
(∫ ( 1 + |z|2

1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣

)2

dS
)2

,

(9.64)
where dS = 2i dzdz̄/(1 + |z|2)2, implies that I ≥ B2. Next, by using a
Bogomolny-type argument, we see that

E =
1
3π

∫ ∫

0

{(

rfσ+
√
I sin2 f

r

)2

+ 2B sin2 f(fσ+ 1)2 (9.65)

− 2(2B +
√
I)fσsin2 f

}

dr
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so

E ≥ 1
3π

(2B +
√
I)
∫ ∫

0
(−2fσsin2 f) dr =

1
3π

(2B +
√
I)
[
−f +

1
2

sin 2f
]∫

0
(9.66)

and so
E ≥ 1

3
(2B +

√
I) . (9.67)

Combined with the earlier inequality for I, we recover the usual Fadeev-
Bogomolny bound E ≥ B. The bound (9.67) is stronger than this for
fields given by the rational map ansatz, but there is no reason to think
that true solutions of the Skyrme equation are constrained by this bound.

To minimize E one should first minimize I over all maps of degree B.
The profile function f minimizing the energy (9.62) may then be found
by a simple gradient flow algorithm with B and I as fixed parameters. In
Section 9.6 we discuss the results of a numerical search for I-minimizing
maps among all rational maps of degree B, but in this section we first
consider the simpler problem in which we restrict the map to a given
symmetric form, with symmetries corresponding to one of the numeri-
cally known Skyrmion solutions. If these maps still contain a few free
parameters, I can be minimized with respect to these. This procedure is
appropriate for all baryon numbers up to B = 8, for which we know the
symmetries of the numerically computed Skyrmions, and there is sufficient
symmetry to highly constrain the rational map.
For B = 2, 3, 4, 7 the symmetries of the numerically computed Skyrmions

are D∂ h, Td, Oh, Yh respectively. From the general discussion and specific
examples of Chapters 6 and 8, we see that in each of these cases there is
a unique rational map with the given symmetry. We recall that they are

R = z2, R =
z3 −

√
3iz√

3iz2 − 1
, R =

z4 + 2
√

3iz2 + 1
z4 − 2

√
3iz2 + 1

, R =
z7 − 7z5 − 7z2 − 1
z7 + 7z5 − 7z2 + 1

.

(9.68)
Using these maps, and computing the optimal profile functions f(r), one
obtains Skyrme fields whose baryon density isosurfaces are indistinguish-
able from those presented in Fig. 9.2. In Table 9.2 we list the energies
per baryon of the approximate solutions obtained using the rational map
ansatz, together with the values of I and I/B2, in order to compare with
the bound I/B2 ≥ 1.

Recall that the Wronskian of a rational map R(z) = p(z)/q(z) of degree
B is the polynomial

W (z) = pσ(z)q(z) − qσ(z)p(z) (9.69)

of degree 2B − 2, and observe that the zeros of the Wronskian give inter-
esting information about the shape of the Skyrme field constructed using
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Table 9.2. Approximate Skyrmions obtained using the rational map ansatz.
For 1 ≤ B ≤ 8 we list the symmetry of the rational map, K, the value of
I, its comparison with the bound I/B� ≥ 1, and the energy per baryon E/B
obtained after computing the profile function which minimizes the Skyrme energy
function.

B K I I/B2 E/B

1 O(3) 1.0 1.000 1.232
2 D∂ h 5.8 1.452 1.208
3 Td 13.6 1.509 1.184
4 Oh 20.7 1.291 1.137
5 D2d 35.8 1.430 1.147
6 D4d 50.8 1.410 1.137
7 Yh 60.9 1.242 1.107
8 D6d 85.6 1.338 1.118

the ansatz (9.54). Where W is zero, the derivative dR/dz is zero, so
the strain eigenvalues in the angular directions, λ2 and λ3, vanish. The
baryon density, being proportional to λ1λ2λ3, therefore vanishes along the
entire radial line in the direction specified by any zero of W . The energy
density will also be low along such a radial line, since there will only be
the contribution λ2

1 from the radial strain eigenvalue. The ansatz thus
makes manifest why the Skyrme field baryon density contours look like
polyhedra with holes in the directions given by the zeros of W , and why
there are 2B−2 such holes, precisely the structure seen in all the plots in
Fig. 9.2. This explains the GEM rule F = 2(B − 1), and although there
is no firm rational map explanation of the other aspects of the GEM rule,
we will make some further comments on them in the following section.

As an example, consider the icosahedrally symmetric degree 7 map in
(9.68). The Wronskian is

W (z) = 28z(z10 + 11z5 − 1) , (9.70)

which is proportional to the Klein polynomial Yv, and it vanishes at the
twelve face centres of a dodecahedron [237]. This explains why the baryon
density isosurface of the B = 7 Skyrmion displayed in Fig. 9.2 is localized
around the edges of a dodecahedron.

For the remaining charges, B = 5, 6, 8, the Skyrmions have extended
dihedral symmetries, so we need to consider degree B rational maps with
dihedral symmetries Dn, and their extensions by reflections to Dnd and
Dnh. Constructing Dn-symmetric maps does not require the general group
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theory formalism discussed in Chapter 6 since it is simple to explicitly
apply the two generators of Dn to a map. In terms of the Riemann sphere
coordinate z the generators of the dihedral group Dn may be taken to be
z &→ e2πi/nz and z &→ 1/z. The reflection required to extend the symmetry
to Dnh is represented by z &→ 1/z̄, whereas z &→ eπi/nz̄ results in the
symmetry group Dnd.

Explicitly, an s-parameter family of Dn-symmetric maps is given byΩ

R(z) =
∑s

j=0 ajzjn+u

∑s
j=0 as� jzjn

, (9.71)

where u = B mod n and s = (B −u)/n. Here as = 1 and a0, . . . , as� 1 are
arbitrary complex parameters. Clearly, these maps satisfy the conditions
for symmetry under Dn,

R(e2πi/nz) = e2πiu/nR(z) , R(1/z) = 1/R(z) , (9.72)

and imposing a reflection symmetry constrains each complex coefficient
aj to be either real, or pure imaginary. In the case of Dnh symmetry, all
coefficients aj are real, whereas for Dnd symmetry aj is real or imaginary
depending on whether (s − j) mod 2 is, respectively, 0 or 1.

Consider now the B = 5 maps with D2d symmetry. Setting B = 5 and
n = 2 in the above gives u = 1 and s = 2, so there is a family of degree 5
maps with two real parameters,

R(z) =
z(a + ibz2 + z4)
1 + ibz2 + az4

, (9.73)

with a and b real. Additional symmetry occurs if b = 0; R(z) then has
D4h symmetry, the symmetry of a square. There is octahedral symmetry
if, in addition, a = −5. This value ensures the 120∆ rotational symmetry

R
(

iz + 1
−iz + 1

)
=

iR(z) + 1
−iR(z) + 1

. (9.74)

The octahedral map R(z) = z(z4 − 5)/(−5z4 + 1) has Wronskian

W (z) = −5(z8 + 14z4 + 1) , (9.75)

which is proportional to Of , the face polynomial of an octahedron. Using
(9.73) in the rational map ansatz for the Skyrme field gives a structure
which is a polyhedron with eight faces. In the special case a = −5, b = 0,
this polyhedron is an octahedron, and the angular integral is I = 52.1;
however, a numerical search over the parameters a and b shows that I
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is minimized when a = −3.07, b = 3.94, taking the value I = 35.8.
The approximate Skyrmion generated from the map with these parameter
values has a baryon density isosurface which is virtually identical to that
of the numerically computed solution displayed in Fig. 9.2. From this
analysis we therefore understand that there is an octahedrally symmetric
B = 5 solution, but that it is a saddle point with an energy higher than
that of the less symmetric D2d Skyrmion. There is a further, higher
saddle point at a = b = 0, where the map (9.73) simplifies to R(z) =
z5, and gives a toroidal Skyrme field. Although many minimal energy
Skyrmions are highly symmetric, symmetry is not the most important
factor in determining the structure of the minimal energy solution, and
less symmetric configurations sometimes have lowest energy.

Another example of a symmetric saddle point is the B = 7 configuration
with cubic symmetry. The relevant rational map is given by R(z) =
(7z4 + 1)/(z7 + 7z3) and has Wronskian W (z) = −21z2(z4 − 1)2. Each
root of this Wronskian is a double root (including the one at infinity) and
they lie at the face centres of a cube. A baryon density isosurface for this
saddle point configuration is therefore qualitatively similar to that of the
minimal energy B = 4 Skyrmion. This cubic B = 7 saddle point will play
a role in a scattering process discussed in Chapter 10.

The analysis of the relevant dihedrally symmetric B = 6 and B = 8
maps is similar to the B = 5 case, the only difference being that just one
real parameter appears, so the energy minimization is easier. These maps
can be found in ref. [193].

Given the rational map describing a Skyrmion it is possible to infer
information regarding its asymptotic fields. For a Skyrmion which is
symmetric under a group K, its pion fields will be invariant under combi-
nations of rotations by elements of K and isospin rotations given by some
(not necessarily irreducible) real three-dimensional representation of K,
which we denote by ρ. Now the dipole fields of a single Skyrmion, being
spherically symmetric, are also K-symmetric by restriction, and the cor-
responding representation ρ is the defining representation of K, regarded
as a subgroup of SO(3), which we denote by ρ̂, so ρ̂(k) = k. By comparing
ρ and ρ̂ it is possible to determine whether a given Skyrmion looks from
far away like a single Skyrmion or antiSkyrmion, that is, like a triplet of
orthogonal dipoles. This information is important in understanding the
interaction between Skyrmion solutions and will be used in Section 9.8
when we discuss Skyrmion dynamics and scattering.

As an example, consider the tetrahedrally symmetric B = 3 Skyrmion
described by the map R(z) = (z3 −

√
3iz)/(

√
3iz2 −1). A straightforward

calculation reveals that ρ = ρ̂ = F , that is, the pion fields transform via
the same three-dimensional irreducible representation of the tetrahedral
group as the hedgehog fields of a single Skyrmion or antiSkyrmion. In



9.6 Higher charge Skyrmions 373

order to distinguish between these last two possibilities we can compute
the value of the rational map along the three Cartesian directions, finding
R(0) = 0, R(1) = −1, R(i) = i, which demonstrates that the asymptotic
dipole fields are those of an antiSkyrmion, since the pion fields are ob-
tained from those of a Skyrmion by the reflection π2 &→ −π2.

The fact that the B = 3 Skyrmion is asymptotically like an anti-
Skyrmion can be understood more naively by a simple addition of the
dipole moments of its constitutent single Skyrmions. First consider two
single Skyrmions brought together along the x1-axis. They are in the
attractive channel if the first is in standard orientation and the second
is rotated by 180∆ around the x3-axis. This gives triplets of dipole mo-
ments p = 4πC(e1, e2, e3) and q = 4πC(−e1,−e2, e3). Their sum is
4πC(0,0, 2e3), implying that the toroidal B = 2 Skyrmion has only a
single dipole, with roughly twice the usual strength. Now bring in a third
Skyrmion, along the x3-axis, and rotated by 180∆around the x1-axis, giv-
ing the dipole moments r = 4πC(e1,−e2,−e3). The total of the dipoles
is p + q + r = 4πC(e1,−e2, e3), precisely those of an antiSkyrmion.

A similar analysis suggests that the B = 4 cubic Skyrmion will have
no dipoles, since it can be constructed from two B = 2 tori. These have
a single dipole each, which by an appropriate relative isospin rotation
can be made to cancel. The symmetry of the degree 4 cubic map (9.68)
is consistent with this result, since the representation ρ is the sum of a
one- and two-dimensional irreducible representation of O, whereas ρ̂ is
a three-dimensional irreducible representation. The fact that the B = 4
Skyrmion has no dipole fields explains why it is so tightly bound, and
why it interacts only weakly with other Skyrmions.

For the dodecahedral B = 7 Skyrmion the naive dipole picture appears
to fail, since the combination of the B = 4 cubic Skyrmion, with no
dipole fields, and the B = 3 tetrahedral Skyrmion, with antiSkyrmion
dipole fields, suggests that the B = 7 Skyrmion has the dipole fields of
an antiSkyrmion. However, the representation analysis of the degree 7
dodecahedral map (9.68) reveals that although both ρ and ρ̂ are three-
dimensional irreducible representations of Y , they are not the same (one is
F1 and the other is F2). Hence the asymptotic fields can not be those of a
single antiSkyrmion (or Skyrmion). In fact, there are no dipole moments
at all. The reason why the simple dipole picture fails in this case is not
yet understood.

9.6 Higher charge Skyrmions

In the preceding section, for each charge B ≤ 8, the map R was selected
so that the symmetry of the resulting Skyrme field matched that of the
numerically computed Skyrmion. Recently, an alternative approach to
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Table 9.3. Results from the simulated annealing of rational maps of degree B.
For 9 ≤ B ≤ 22 we list the symmetry of the rational map, K, the minimal
value of I, the value of I/B� (which is bounded below by 1), and the energy per
baryon E/B obtained after computing the profile function which minimizes the
Skyrme energy functional.

B K I I/B2 E/B

9 D4d 109.3 1.349 1.116
10 D4d 132.6 1.326 1.110
11 D3h 161.1 1.331 1.109
12 Td 186.6 1.296 1.102
13 O 216.7 1.282 1.098
14 D2 258.5 1.319 1.103
15 T 296.3 1.317 1.103
16 D3 332.9 1.300 1.098
17 Yh 363.4 1.257 1.092
18 D2 418.7 1.292 1.095
19 D3 467.9 1.296 1.095
20 D6d 519.7 1.299 1.095
21 T 569.9 1.292 1.094
22 D5d 621.6 1.284 1.092

constructing the appropriate rational map R, based on energy minimiza-
tion rather than symmetry, has been applied for all charges B ≤ 22 [45].
In this approach, no assumption is made as to the possible symmetry
of the minimal energy Skyrmion, which has the advantage that full nu-
merical simulations of the Skyrme equation need not first be performed
(although it is obviously useful to have these results for comparison, as
we discuss later). The main task is to search for the rational map of de-
gree B that minimizes I, which may be viewed as an interesting energy
function on the space of rational maps. This is still quite difficult numer-
ically but has been performed using a simulated annealing algorithm, a
Monte-Carlo based minimization method which has a major advantage
over other conventional minimization techniques in that changes which
increase the energy are allowed, enabling the algorithm to escape from
local minima that are not the global minimum.

For B ≤ 8 the simulated annealing algorithm reproduces the ratio-
nal maps discussed previously (whose properties are listed in Table 9.2),
providing a nice numerical check on both the minimizing rational map
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strategy and also the full field simulations – since these produce very
similar configurations.

The results of the simulated annealing algorithm applied to a general
rational map of degree 9 ≤ B ≤ 22 are presented in Table 9.3. In each
case, we tabulate the identified symmetry group K, the minimum value of
I, the quantity I/B2 (which is strikingly uniform at around 1.25–1.35),
and the value of E/B for the profile function which minimizes the energy
functional (9.62) for the particular map.

By minimizing within certain symmetric families of maps, where the
symmetries are not shared by the minimal energy map, it is possible to
find other critical points of I. In Table 9.4 we present the results of an
extensive search for such minimal energy maps with particular symme-
tries, usually dihedral groups or those groups suggested by the extensive
tables of fullerenes presented in ref. [137], which lends further weight to
the conclusion that the maps presented in Table 9.3 are in fact the global
minima for the energy functional I. These results do, however, turn up
the possibility that in certain cases the I-minimizing map may not nec-
essarily be the one which represents the true Skyrmion, since some of the
I values in Tables 9.4 and 9.3 are very close. For the moment we will
denote the maps in Table 9.4 by ∗, and conclude at least that they are
not global minima of I, but represent other critical points.

For most charges there is a sufficient gap between the minimal value of
I and that of any other critical point to be confident that the minimal
map corresponds to the Skyrmion. However, for charges B = 10, 16, 22 a
glance at Tables 9.3 and 9.4 reveals that there are different maps (with
different symmetries) whose associated Skyrme fields have energies which
differ by less than 0.1%. Given that the rational map ansatz is an ap-
proximation which tends to overestimate the energy by around 1%, it is
not clear which of these maps will best describe the angular form of the
minimal energy Skyrmion. This question has been addressed using full
field simulations [45] in which various initial conditions, consisting of a
number of well separated Skyrmion clusters, are relaxed. Although it is
difficult to make definitive statements, the results suggest that for these
three charges the maps presented in Table 9.4, rather than in Table 9.3,
represent the minimal energy Skyrmions. The case B = 14 is anomalous,
in that the rational map describing the Skyrmion, which again is not the
I-minimizing map, is not currently known. The solution obtained from
full field simulations (believed to be the minimal energy configuration) is
rather elongated, so the rational map approximation to this configuration
probably has a substantially higher energy, since it assumes a spherical
shape. This explains why it is likely that the rational map which describes
the more spherical version of this Skyrmion is not the I-minimizing map.
There is a technical reason why we are unable to compute this map,
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Table 9.4. Same as for Table 9.3, but for other critical points of I. Notice
that the I values for the B = 10 configurations with D� and D� d symmetry, for
B = 13 with D� d, B = 16 with D� , and B = 22 with D� are extremely close to
the corresponding values in Table 9.3, suggesting the possibility of local minima
or low-lying saddle points.

B K I I/B2 E/B

9* Td 112.8 1.393 1.123
10* D3 132.8 1.328 1.110
10* D3d 133.5 1.335 1.111
10* D3h 143.2 1.432 1.126
13* D4d 216.8 1.283 1.098
13* Oh 265.1 1.568 1.140
15* Td 313.7 1.394 1.113
16* D2 333.4 1.302 1.098
17* Oh 367.2 1.271 1.093
19* Th 469.8 1.301 1.096
22* D3 623.4 1.288 1.092

which is that the associated Skyrmion has very little symmetry, in fact
only C2, and this is already contained within the symmetry group of the
I-minimizing map, which is D2.

Taking into account the above comments, we present, in Table 9.5,
the symmetry K, and energy per baryon E/B, for all minimal energy
Skyrmions with B ≤ 22. These values were computed by relaxation of
the full Skyrme energy function with initial conditions created from the
corresponding rational map (see ref. [45] for further details). We also list
the energy E, the ionization energy I = EB� 1 + E1 − EB, which is the
energy required to remove a single Skyrmion, and the binding energy per
baryon given by ∆E/B = E1 − (E/B), which is the energy required to
separate the solution into single Skyrmions divided by the total baryon
number.

In Fig. 9.4 we plot baryon density isosurfaces (to scale) for each of the
Skyrmions with 7 ≤ B ≤ 22, and also display models (not to scale) of the
associated polyhedra. For all charges except B = 9 and B = 13 (which
we discuss below) the Skyrmions are fullerene-like, and the associated
polyhedra can be found in the classification of fullerenes [137].

A particularly interesting example is the B = 17 Skyrmion, which has
the icosahedrally symmetric structure of the famous C60 Buckyball, as
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Table 9.5. A summary of the symmetries and energies of the Skyrmion config-
urations which have been identified as the energy minima. Included also are the
ionization energy I – that required to remove one Skyrmion – and the binding
energy per Skyrmion ∆E/B – the energy required to split the charge B Skyrmion
into B charge 1 Skyrmions divided by the total number of Skyrmions. (*) This
symbol indicates Skyrmions whose angular form differs from that of the minimal
energy solutions within the rational map ansatz. (**) The values quoted for
B = 14 are computed using an initial configuration with D� symmetry.

B K E/B E I ∆E/B

1 O(3) 1.2322 1.2322 0.0000 0.0000
2 D∂ h 1.1791 2.3582 0.1062 0.0531
3 Td 1.1462 3.4386 0.1518 0.0860
4 Oh 1.1201 4.4804 0.1904 0.1121
5 D2d 1.1172 5.5860 0.1266 0.1150
6 D4d 1.1079 6.6474 0.1708 0.1243
7 Yh 1.0947 7.6629 0.2167 0.1375
8 D6d 1.0960 8.7680 0.1271 0.1362
9 D4d 1.0936 9.8424 0.1578 0.1386

10* D3 1.0904 10.9040 0.1706 0.1418
11 D3h 1.0889 11.9779 0.1583 0.1433
12 Td 1.0856 13.0272 0.1829 0.1466
13 O 1.0834 14.0842 0.1752 0.1488

14** C2 1.0842 15.1788 0.1376 0.1480
15 T 1.0825 16.2375 0.1735 0.1497
16* D2 1.0809 17.2944 0.1753 0.1513
17 Yh 1.0774 18.3158 0.2108 0.1548
18 D2 1.0788 19.4184 0.1296 0.1534
19 D3 1.0786 20.4934 0.1572 0.1536
20 D6d 1.0779 21.5580 0.1676 0.1543
21 Td 1.0780 22.6380 0.1522 0.1542
22* D3 1.0766 23.6852 0.1850 0.1556
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Fig. 9.4. Baryon density isosurfaces for 7 ≤ B ≤ 22, and the associated sym-
metry groups and polyhedral models (not to scale).
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indicated earlier. It is formed from 12 pentagons and 20 hexagons and is
the structure with isolated pentagons having the least number of vertices.
The decomposition which determines the relevant rational map is

18|Y = Eσ
2 ⊕ Gσ⊕ 2Iσ, (9.76)

whose single two-dimensional component Eσ
2 demonstrates that there is a

unique Y -symmetric degree 17 map. In fact, the map is [193]

R(z) =
17z15 − 187z10 + 119z5 − 1

z2(z15 + 119z10 + 187z5 + 17)
, (9.77)

and it is Yh-symmetric.
In general, even in highly symmetric cases there will still be a few

parameters in the family of symmetric maps of interest. For example, the
decomposition

6n + 4|T = nEσ⊕ (n ⊕ 1)Eσ
1 ⊕ (n ⊕ 1)Eσ

2 , (9.78)

valid for any non-negative integer n, shows that there is an n-parameter
family of tetrahedral maps of degree B = 6n + 3, corresponding to the
middle component in the above. For n = 0, 2, 3 (B = 3, 15, 21) this family
includes the minimal energy map, and for n = 1 (B = 9) it includes a
map which is very close to minimal. Thus it seems possible that other
members of this family will be minimal maps, for example, for B = 27.
The explicit form of all the relevant rational maps for B ≤ 22 can be
found in ref. [45].

The charge B = 9 and B = 13 Skyrmions are not fullerene-like. Their
symmetry groups, D4d and O, both contain C4 subgroups, and this is
incompatible with the trivalent vertex structure of a fullerene. As can
clearly be seen in Fig. 9.4, these Skyrmions both contain tetravalent ver-
tices, which can be obtained from fullerenes by a process known as sym-
metry enhancement (see Fig. 9.5).

Fig. 9.5. An illustration of symmetry enhancement.
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Consider part of a fullerene with the form shown in Fig. 9.5(a), consist-
ing of two pentagons and two hexagons with a C2 symmetry. The symme-
try enhancement process shrinks the edge common to the two hexagons
(the thick line) to zero length, resulting in the coalescence of two vertices.
The object formed is shown in Fig. 9.5(b). It has a tetravalent vertex
connecting four pentagons and the symmetry is enhanced to C4. We
find, empirically, that pairs of symmetry enhancement processes occur on
antipodal edges of a fullerene structure.

There is a C28 fullerene with D2 symmetry (denoted 28:1 in ref. [137])
that contains two of the structures shown in Fig. 9.5(a). If symmetry
enhancement is performed on both, then the resulting object is precisely
the D4d configuration of the B = 9 Skyrmion described earlier. There are
also D2-symmetric C44 fullerenes (denoted 44:75 and 44:89 in ref. [137])
with an equal number of pentagons and hexagons (12 of each), and a very
symmetric configuration can be obtained by symmetry enhancement at
all six possible vertices, which results in the cubic B = 13 Skyrmion.

In the context of fullerenes it is, of course, impossible for vertices to
coalesce since they correspond to the positions of the carbon atoms, but
for Skyrmions the vertices represent concentrations of the baryon density
and they need not be distinct; it just appears that in most cases it is
energetically favourable to have distinct vertices. Note that, by an exam-
ination of the baryon density isosurface by eye, it can often be difficult to
identify whether a given vertex is trivalent or tetravalent, since the edge
length which must be zero for symmetry enhancement could be small, but
non-zero.

Although we do not have a general global characterization of the ver-
tices of the polyhedron associated with a rational map (as we do for the
face centres, via the Wronskian) it is possible, by a local analysis of the
rational map, to check whether a given point is a local baryon density
maximum and to obtain its valency. By using the freedom to perform
rotations of both the domain and target 2-spheres it is always possible to
choose the given point to be z = 0 and the rational map to have a local
expansion

R(z) = α(z + βzp+1 + O(zp+2)) , (9.79)

where α and β are real positive constants. (The derivative of the map
is non-zero at z = 0, since the baryon density is assumed to be non-zero
there.)

Substituting the expansion (9.79) into the expression for the angular
contribution to the baryon density (9.59) we obtain the following result.
If p = 1 then z = 0 is not a vertex. If p > 2 and α > 1 then z = 0 is
a p-valent vertex, with the baryon density being a local maximum there.
The remaining case of p = 2 is a little more subtle. In many cases,
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all the local maxima of the baryon density correspond to vertices of the
polyhedron. However, in some cases (the lowest charge example being
B = 5) some of the maxima are at edge midpoints. Such edges may
consequently appear thicker than others. The rational map description of
such a bivalent maximum is the p = 2 case, and a local maximum requires
that α >

√
1 + 3β.

To illustrate this analysis, consider the cubic B = 13 Skyrmion. For
computing O-symmetric degree 13 maps the relevant decomposition is

14|O = 2Eσ
2 ⊕ Eσ

1 ⊕ 2Gσ. (9.80)

From the 2Eσ
2 component there is a 1-parameter family of maps, with the

explicit form

R(z) =
z(a + (6a − 39)z4 − (7a + 26)z8 + z12)
1 − (7a + 26)z4 + (6a − 39)z8 + az12

, (9.81)

whose minimal value of I occurs at a = 0.40 + 5.18i. This gives a
Skyrme field whose baryon density is virtually identical to the one shown
in Fig. 9.4. The associated polyhedron is similar to a cube, each face
of which consists of four pentagons with a tetravalent bond. In order
for them to fit together, with all the other bonds being trivalent, each
of the six faces must be rotated slightly relative to the one diametri-
cally opposite, which removes the possibility of the cube having reflection
symmetries and symmetry group Oh. The polyhedron has 24 pentagonal
faces, as opposed to the 12 pentagons and 12 hexagons that would have
been expected of a fullerene structure. Expanding the map (9.81) about
z = 0 gives

R(z) = az + z5(7a2 − 32a − 39) + · · · , (9.82)

and since |a| > 1, a comparison with Eq. (9.79) confirms that the point
z = 0 is a tetravalent vertex. The B = 9 minimizing map also contains
tetravalent vertices (this time two of them) and this can be checked in a
similar way.

A more global characterization of the vertices would be useful. Usually
they correspond to local maxima of the integrand defining I in Eq. (9.63).
This density depends on the modulus of the rational map and its deriva-
tive, but there is generally no simple formula for finding its maxima.
However, in particularly symmetric cases the vertices can be identified
with the zeros of the Hessian. Explicitly, the Hessian is the polynomial

H(z) = (2B − 2)W (z)W σσ(z) − (2B − 3)W σ(z)2 , (9.83)

where W (z) is the Wronskian. It has degree 4(B− 2), which is consistent
with the GEM rule for the number of vertices. For example, for the
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icosahedral rational map describing the minimal energy B = 7 Skyrmion,

R(z) =
z7 − 7z5 − 7z2 − 1
z7 + 7z5 − 7z2 + 1

, (9.84)

the Hessian is

H(z) = −8624(z20 − 228z15 + 494z10 + 228z5 + 1) , (9.85)

which is proportional to the Klein polynomial Yf associated with the
vertices of a dodecahedron [237].

9.7 Lattices, crystals and shells

So far we have only discussed Skyrmions with a finite baryon number,
but in fact the lowest known value for the energy per baryon, E/B, oc-
curs for an infinite crystal of Skyrmions. As we have seen, for certain
relative orientations, well separated Skyrmions attract. At high density
it is expected that the Skyrmions will form a crystal, though a crystal
structure has not yet been seen dynamically for a finite baryon number,
probably due to the fact that so far only simulations up to B = 22 have
been performed.

To study Skyrmion crystals one imposes periodic boundary conditions
on the Skyrme field and works within a unit cell (equivalently, 3-torus)
T3. The first attempted construction of a crystal was by Klebanov [235],
using a simple cubic lattice of Skyrmions whose symmetries maximize the
attraction between nearest neighbours. After relaxation, Klebanov’s crys-
tal has an energy 1.08 per baryon. Other symmetries were proposed which
lead to slightly lower, but not minimal, energy crystals [160, 221]. Fol-
lowing the work of Castillejo et al. [75] and Kugler and Shtrikman [248],
it is now understood that it is best to arrange the Skyrmions initially as a
face-centred cubic lattice, with their orientations chosen symmetrically to
give maximal attraction between all nearest neighbours. Explicitly, the
Skyrme field is strictly periodic after translation by 2L in the x1, x2 or
x3 directions. A unit cell is a cube of side length 2L, with Skyrmions in
standard orientation on the vertices, and further Skyrmions at the face
centres, each rotated by 180∆ about the axis which is normal to the face.
With this set-up each Skyrmion has twelve nearest neighbours which are
all in the attractive channel. Inside one unit cell, the total baryon num-
ber is B = 4. If we fix the origin at the centre of one of the unrotated
Skyrmions, this configuration has the combined spatial plus isospin sym-
metries generated by

(x1, x2, x3) &→ (−x1, x2, x3) , (σ,π1,π2,π3) &→ (σ,−π1,π2,π3) ; (9.86)
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(x1, x2, x3) &→ (x2, x3, x1) , (σ,π1,π2,π3) &→ (σ,π2,π3,π1) ; (9.87)

(x1, x2, x3) &→ (x1, x3,−x2) , (σ,π1,π2,π3) &→ (σ,π1,π3,−π2) ; (9.88)

(x1, x2, x3) &→ (x1 + L, x2 + L, x3) , (σ,π1,π2,π3) &→ (σ,−π1,−π2,π3) .
(9.89)

Symmetry (9.86) is a reflection in a face of the cube, (9.87) is a rotation
around a three-fold axis along a diagonal, (9.88) is a four-fold rotation
around an axis through opposite face centres, and (9.89) is a translation
from the corner of the cube to a face centre.

At low densities (large L), the Skyrmions are localized around their
lattice positions, each having an almost spherical isosurface where σ = 0,
separating the core of the Skyrmion (σ < 0) from its tail (σ > 0). Since
the Skyrmions are well separated, the average value of σ in a unit cell,
⟨σ⟩, is close to one.

As the density is increased (that is, L reduced) the energy decreases
and there is a phase transition to a crystal of half-Skyrmions. At this
point the symmetry is increased by the addition of the generator

(x1, x2, x3) &→ (x1 + L, x2, x3) , (σ,π1,π2,π3) &→ (−σ,−π1,π2,π3) ,
(9.90)

a translation half-way along the cube edge. Note that this symmetry
involves a chiral SO(4) rotation, rather than just an SO(3) isospin trans-
formation as before. The previous translational symmetry (9.89) can be
obtained by applying this new generator, together with this generator
rotated by 90∆.

This phase is where the minimal energy Skyrme crystal occurs. The
σ < 0 and σ > 0 regions are perfect cubes of side length L, with σ = 0 on
all the faces. Each cube has identical pion field distributions and baryon
number 1

2 . For this configuration, ⟨σ⟩ = 0, and there is a restoration
of chiral symmetry. The minimum of the energy occurs at L ≈ 4.7.
A variational method, based on a truncated Fourier series expansion of
the fields, approximates the energy per baryon to be E/B = 1.038, and
a recent numerical calculation [42], using far larger grids than previous
studies [75], gives a very similar value of E/B = 1.036. In Fig. 9.6 we plot
a baryon density isosurface for the Skyrme crystal. Each lump represents
a half-Skyrmion and the total baryon number shown is 4. The fields
obtained either numerically, or by optimizing the Fourier series, are very
well approximated by the analytic formulae [75]

σ = c1c2c3 , (9.91)

π1 = −s1

√

1 − s2
2

2
− s2

3

2
+

s2
2s

2
3

3
and cyclic , (9.92)
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Fig. 9.6. A baryon density isosurface for a portion of the Skyrme crystal.

where si = sin(πxi/L) and ci = cos(πxi/L). This approximation to the
Skyrme crystal field has the right symmetries and is motivated by an
exact solution for a crystal in the two-dimensional O(3) sigma model,
which has a similar form but with the trigonometric functions replaced
by Jacobi elliptic functions.

Table 9.5 shows that the energy per baryon of the shell-like Skyrmions is
decreasing as B increases, but is still some way above that of the Skyrme
crystal. The asymptotic value of E/B for the shell-like structures for
large B can be compared with the value for the crystal by studying yet
another periodic arrangement of Skyrmions, a two-dimensional lattice,
rather than a three-dimensional crystal.

In very large fullerenes, where hexagons are dominant, the twelve pen-
tagons may be viewed as defects inserted into a flat structure, to generate
the curvature necessary to close the shell. Energetically, the optimum
infinite structure is a hexagonal lattice, that is, a graphite sheet – the
most stable form of carbon thermodynamically. The reason that closed
shells are preferred for a finite number of carbon atoms is that the penalty
for introducing the pentagonal defects is not as severe as that incurred
by having dangling bonds at the edges of a truncated graphite sheet. A
prediction of the fullerene approach to Skyrmions is the existence of a
Skyrme field analogous to a graphite sheet. This configuration would
have infinite energy, since it has infinite extent in two directions, but its
energy per baryon should be lower than that of any of the known finite
energy Skyrmions, and will be the asymptotic value approached by large
fullerene-like Skyrmions.
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Such a hexagonal Skyrme lattice can be constructed using the ansatz
of ref. [42]

U(x1, x2, x3) = exp
(

if

1 + |R|2 (Rτ� + R̄τ+ + (1 − |R|2)τ3)
)

, (9.93)

a variant of the rational map ansatz. Here τ� = τ1 ± iτ2, R is a mero-
morphic, periodic function of z = x1 + ix2, and f is a real function of x3

chosen so that the Skyrme lattice physically occupies the (x1, x2) plane.
The direction of the vector of pion fields is determined by R(z), whereas
the magnitude of the vector also depends on the profile function f , and
hence on the height above or below the lattice. If Ω1 and Ω2 are the
fundamental periods of R(z), then

U(z + nΩ1 + mΩ2, x
3) = U(z, x3) ∀ n,m ∈ � . (9.94)

Let T2 denote the associated torus, the parallelogram in the complex
plane with vertices 0, Ω1, Ω2, Ω1 + Ω2 and opposite edges identified.

To understand the boundary conditions on f we need to recall our
motivation. The lattice is being thought of as an infinite limit of the
shell-like Skyrmions containing pentagons and hexagons. Thus, below
the lattice is the outside of the shell, where U → 12. Above the lattice
is the inside of the shell, where the Skyrme field is approaching the value
associated with the centre of the Skyrmion, so U → −12. We therefore
require

f(−∞) = 0 , f(∞) = π . (9.95)

This implies that the Skyrme lattice is a novel domain wall, separating
differing vacua.

To compute the baryon number and energy of the Skyrme field (9.93) it
is again convenient to use the geometrical strain formulation. The strain
in the direction normal to the lattice is orthogonal to the two strains
tangential to the lattice, which are equal. λi may be interpreted as the
strain in the xi direction, and it is easy to show that

λ1 = λ2 = 2J sin f , λ3 = fσ, (9.96)

where
J =

1
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣ . (9.97)

Therefore, the energy and baryon densities (9.12) are

E =
1

12π2

(
fσ2 + 8J2(fσ2 + sin2 f) + 16J4 sin4 f

)
, (9.98)

B =
2
π2

J2fσsin2 f . (9.99)
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We now compute the baryon number B in a fundamental region of the
lattice, x3 ∈ (−∞,∞) and (x1, x2) ∈ � 2. Since R is a map from T2 to S2,
its degree, k, is the integral over T2 of the pull-back of the area 2-form
on S2, dRdR̄/(1 + |R|2)2, that is

k =
1
π

∫

� � J2 dx1dx2 , (9.100)

since R is a holomorphic function of z. Using (9.99) it is now easy to see
that the baryon number is equal to the degree k, since

B =
2
π2

∫ ∫

�∫
fσsin2 f dx3

∫

� � J2 dx1dx2 =
k

π

[
f − 1

2
sin 2f

]∫

�∫
= k ,

(9.101)
using (9.100) and the boundary conditions (9.95).

To calculate the energy E in the fundamental region it is useful to
introduce a scale parameter µ, write u = x3/µ and set f(x3) = g(u).
Then, if A is the area of the fundamental torus T2, integrating the density
(9.98) gives

E =
∫ ∫

�∫
dx3

∫

� � E dx1dx2 =
A

µ
E1 +

1
µ

E2 + µE3 +
µ

A
E4 , (9.102)

where

E1 =
1

12π2

∫ ∫

�∫
gσ2 du , E2 =

2k

3π

∫ ∫

�∫
gσ2 sin2 g du ,

E3 =
2k

3π

∫ ∫

�∫
sin2 g du , E4 =

4 I
3π2

∫ ∫

�∫
sin4 g du . (9.103)

E depends on the map R only through the quantity

I = A
∫

� � J4 dx1dx2 , (9.104)

a combination independent of A. The scale µ and area A are fixed in
terms of the Ei’s, by minimizing (9.102). Requiring ∂E

∂µ = ∂E
∂A = 0 gives

µ =
√

E2/E3 , A =
√

E2E4/E1E3 , (9.105)

and hence the minimized energy is

E = 2(
√

E1E4 +
√

E2E3) . (9.106)

To proceed further we choose R(z) to be an elliptic function with a
hexagonal period lattice. The simplest is the Weierstrass function ℘(z)
satisfying

℘σ2 = 4(℘3 − 1) , (9.107)
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which has periods Ω1 = Γ(1
6)Γ(1

3)/(2
√

3π) and Ω2 = Ω1 exp(πi/3). Ob-
viously we can scale both the elliptic function and its argument and still
have a hexagonal period lattice; hence we take

R(z) = c℘(z/α) , (9.108)

where c and α are arbitrary real constants. For computational purposes
it is actually more convenient to work with a rectangular fundamental
torus, (x1, x2) ∈ [0,αΩ1] × [0,α

√
3Ω1], whose area is A =

√
3α2Ω2

1. As
this torus contains two fundamental parallelograms and the ℘-function
has one double pole in each, then by counting preimages, we see that the
degree of the map from the rectangular torus to the sphere is k = 4.

E is minimized by choosing c so as to minimize I. The minimal value
is I ≈ 193, when c ≈ 0.7. (Recall that I is independent of α.)

We now make the simplifying ansatz that g(u) is the sine-Gordon kink
profile function

g(u) = 2 tan� 1 eu , (9.109)

which is a reasonably good choice, and has the advantage that all the
integrals in (9.103) can be performed exactly. The results are

E1 =
1

6π2
, E2 =

32
9π

, E3 =
16
3π

, E4 =
16 I
9π2

, (9.110)

from which we find that the scale and area are

µ =
√

2
3

, A =
8
3
√
I , (9.111)

and using (9.106), that the energy is

E =
4

3π2

√
2
3
(
√
I + 8π) . (9.112)

Recalling the numerical value of I, and that B = k = 4, we thus find an
energy per baryon

E/B = 1.076 . (9.113)

The true lattice has been determined by numerical relaxation, using the
ansatz above, involving the Weierstrass function and sine-Gordon kink
profile, to give a starting approximation [42]. Its energy is found to be

E/B = 1.061 . (9.114)

In Fig. 9.7 we display a surface of constant baryon density for this hexag-
onal Skyrme lattice. The structure is clearly visible, the baryon density
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Fig. 9.7. A baryon density isosurface for a portion of the Skyrme lattice.

having a hole in the centre of each of the hexagonal faces. Note that
the displayed region contains exactly eight full hexagons and has baryon
number 4, so each hexagon may be thought of as having baryon number
1
2 . This is the expected limit of the polyhedron structures discussed ear-
lier, where a charge B Skyrmion has 2(B − 1) faces. Other lattices, such
as a tetravalent square lattice, can be created by choosing a Weierstrass
function different from (9.107), but these have energies which are slightly
higher than the trivalent hexagonal lattice.

Since the energy per baryon of the Skyrme lattice exceeds that of the
Skyrme crystal it is reasonable to expect that above some critical charge,
the minimal energy Skyrmion will resemble a portion of the crystal rather
than a shell constructed from the planar lattice by inserting pentagonal
defects. As the crystal is basically a stack of B = 4 cubes, B = 32 is
the first charge at which any sizeable, symmetric chunk of the crystal
can emerge. Attempts have been made [35] to construct Skyrme fields by
cutting out a portion of the crystal and interpolating its surface fields to
the vacuum, but these all have rather high energies.

An alternative to either a single-shell or crystal structure is a two-shell
structure. This has been investigated [290] using yet another variant of
the rational map ansatz,

U(r, z) = exp(θ(r0−r)if1(r)n̂R� (z) ·∞+θ(r−r0)if2(r)n̂R� (z) ·∞) , (9.115)

where θ(r) is the Heaviside step function and r0 is a radius where the two
shells meet. The two profile functions, f1 and f2, satisfy the boundary
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conditions f1(0) = 2π, f1(r0) = f2(r0) = π, f2(∞) = 0, and the angular
distributions of the fields on the two shells are determined by two rational
maps R1 and R2, with degrees k1 and k2 respectively. The baryon number
of this configuration is B = k1 + k2. The multi-shell generalization is
obvious.

Some two-shell and three-shell configurations for B = 12, 13, 14 have
been studied, and also used as initial configurations in a numerical relax-
ation of the full Skyrme energy. In most cases they relax to a single-shell
structure, with energy a bit higher than that described in Section 9.6,
so they probably describe saddle points. Note that two-shell configura-
tions have U = 12 at the origin, so can not relax to the minimal energy
single-shell Skyrmions discussed in Section 9.6, for which U = −12 there.

The two-shell ansatz with baryon number k1 +k2 has an interpretation
in terms of k1 + k2 individual Skyrmions on a single shell, which is often
the end point of a numerical relaxation. To see this, consider U(r, z)
for a given value of z, and compare the values of U at the two radii
where f1(r) = 3

2π and f2(r) = 1
2π. If these values are close, the field

configuration along this radial line can be relaxed to be approximately
constant, but if they are antipodal then the radial gradient energy is
large and may be interpreted as due to a single Skyrmion at r = r0, with
angular location z. The condition that the values of U are antipodal is
that R1(z) = R2(z), since the rational maps then have the same value but
the profile functions have opposite sign, that is, sin f1 = −1 , sin f2 = 1.
If R1 = p1/q1 and R2 = p2/q2 then the antipodal condition is

p1(z)q2(z) − p2(z)q1(z) = 0 , (9.116)

which is a polynomial equation of degree k1 + k2. The k1 + k2 roots
determine the angular locations of the Skyrmions on the shell r = r0.

In summary, there are a number of alternatives to a single-shell struc-
ture for Skyrmions and what is remarkable is that none of these alterna-
tives appears to give minimal energy Skyrmions for B ≤ 22. However,
single-shells can not be the whole story for large enough baryon number.

9.8 Skyrmion dynamics

In the preceding sections we have been concerned with static Skyrmions,
but in this section we turn to Skyrmion dynamics and scattering. To
begin with, we describe how some of the static, symmetric, minimal en-
ergy Skyrmions can be formed from the collision of well separated single
Skyrmions [40].

The time dependent Skyrme field equation is solved using a finite dif-
ference method (see ref. [45] for a detailed discussion), which is most
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conveniently implemented using a nonlinear sigma model formulation.
Explicitly, the Skyrme field is parametrized by the unit 4-vector φ =
(σ,π1,π2,π3), in terms of which the Lagrangian density becomes

L = ∂µφ·∂µφ− 1
2(∂µφ·∂µφ)2+ 1

2(∂µφ·∂νφ)(∂µφ·∂νφ)+λ(φ·φ−1) , (9.117)

with the Lagrange multiplier λ introduced in order to enforce the con-
straint φ · φ = 1.

The Euler-Lagrange equation is

(1 − ∂µφ · ∂µφ)∂α∂
αφ − (∂νφ · ∂µ∂νφ− ∂µφ · ∂α∂

αφ)∂µφ

+ (∂µφ · ∂νφ)∂µ∂νφ− λφ = 0 , (9.118)

where λ can be calculated by contracting (9.118) with φ and using the
second derivative of the constraint, giving

λ = −(∂µφ · ∂νφ)(∂µφ · ∂νφ) − (1 − ∂µφ · ∂µφ)∂νφ · ∂νφ . (9.119)

The simplest possible scattering event involves the head-on collision
of two Skyrmions in the attractive channel. As discussed in Section
9.3, an initial configuration can be constructed using the product ansatz
U = U (1)U (2) for well separated Skyrmions, each of which may also be
independently Lorentz boosted. An example that has been calculated has
an initial configuration consisting of two Skyrmions with positions

X1 = (0, 0, a) , X2 = (0, 0,−a) , (9.120)

where a = 1.5; the second Skyrmion is rotated relative to the first by a
180∆ rotation around the x2-axis, and each Skyrmion is Lorentz boosted
towards the other with a velocity v = 0.3, in order to speed up the inter-
action.

Figure 9.8 shows an isosurface plot of the baryon density at regular time
intervals. We see that the initially well separated Skyrmions deform as
they come together, before coalescing into a toroidal configuration very
close to the exact minimal energy B = 2 Skyrmion. The torus then
breaks up, with the result that the Skyrmions scatter at right angles.
This right-angle scattering was predicted analytically [283] and is a fa-
miliar property of two-soliton scattering; for example, we have already
seen that monopoles and vortices exhibit this behaviour. The Skyrmions
then attract once more and pass through the torus again. This almost
elastic process repeats itself a number of times, with a little energy being
radiated each time, eventually settling down to the exact static solution.

In order to discuss attractive configurations of B > 2 Skyrmions we first
introduce some notation. Take the positions of the single Skyrmions to be
Xi for i = 1, . . . , B, and define the relative position vectors Xij = Xi−Xj .
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Fig. 9.8. Baryon density isosurfaces at increasing times during the head-on
collision of two Skyrmions.

Suppose the orientation of the Skyrmion at Xi relative to that at Xj is
obtained by a rotation by 180∆ about an axis with unit vector nij . Then
all pairs will mutually, maximally attract if Xij · nij = 0 (no sum) for all
i ̸= j.

Three Skyrmions can scatter close to the tetrahedral B = 3 Skyrmion.
In choosing Skyrmion initial configurations, the analogous monopole scat-
tering is a good guide. Recall from Chapter 8 that the tetrahedral 3-
monopole is formed during the C3-symmetric scattering in which three
monopoles are initially on the vertices of a large contracting equilateral
triangle. We therefore take three well separated Skyrmions in such a
configuration, with

X1 = (−a,−a,−a) , X2 = (−a, a, a) , X3 = (a,−a, a) . (9.121)

The first Skyrmion is in standard orientation, and the orientations of the
second and third are fixed by taking

n12 = (1, 0, 0) , n13 = (0, 1, 0) . (9.122)

This implies that n23 = (0, 0, 1), so all pairs are in the attractive channel,
since Xij · nij = 0 for all i ̸= j.

Again we choose a = 1.5, and this time each Skyrmion is boosted to
have an initial velocity of v = 0.17 towards the centre of the triangle. The
evolution of this configuration is shown in Fig. 9.9.
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Fig. 9.9. Baryon density isosurfaces at increasing times during the scattering
of three Skyrmions with approximate C� symmetry.
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We should point out that the C3 symmetry is slightly broken by the
product ansatz implementation of the initial data, U = U (1)U (2)U (3),
which is clearly asymmetric under permutations of the indices. If a were
larger, the product ansatz would be closer to having exact cyclic symme-
try.

The Skyrmions deform as they coalesce, and each behaves slightly differ-
ently. The dynamics is, nonetheless, remarkably similar to the monopole
case, except for the influence of the varying potential energy, in that the
Skyrmions form an approximately tetrahedral configuration, which then
splits into a single Skyrmion and a charge 2 torus.

We have seen a second scattering process passing through the tetrahe-
dral 3-monopole – the twisted line scattering of three collinear monopoles.
A similar scattering process also occurs for three collinear Skyrmions with
appropriate orientations [40].

Recall that four monopoles on the vertices of a contracting regular
tetrahedron scatter through the cubic charge 4 solution. There is an
analogous four-Skyrmion scattering process. To the B = 3 system given
by (9.121) and (9.122), we add a fourth Skyrmion at X4 = (a, a,−a) with
orientation given by n14 = (0, 0, 1). This completes a regular tetrahedron.
The additional relative orientations are n24 = (0, 1, 0) and n34 = (1, 0, 0),
so still we have Xij ·nij = 0 for all i ̸= j, and all Skyrmion pairs maximally
attract. Once more we take a = 1.5, but this time no initial Lorentz boosts
are required, because of the strong attractions.

The evolution of this configuration is displayed in Fig. 9.10. The mutual
attractions cause the Skyrmions to coalesce and form a cubic configura-
tion. This then splits up, and the Skyrmions are found on the vertices
of a tetrahedron dual to the initial one. Again the product ansatz imple-
mentation results in the tetrahedral symmetry being only approximately
attained. Aside from this technicality, however, the scattering process is
once again a close copy of what happens for monopoles.

Another configuration is four Skyrmions on the corners of the square

X1 = (a, a, 0) , X2 = (a,−a, 0) , X3 = (−a,−a, 0) , X4 = (−a, a, 0) .
(9.123)

If
n12 = (1, 0, 0) , n13 = (0, 0, 1) , n14 = (0, 1, 0) , (9.124)

then n23 = (0, 1, 0) , n24 = (0, 0, 1) , n34 = (1, 0, 0) which implies that all
pairs mutually attract. The dynamics of this configuration is exhibited
in Fig. 9.11 for initial conditions with no Lorentz boost. The initial D4-
symmetric configuration scatters through the B = 4 cube and emerges as
two B = 2 tori; yet another well known monopole process.

Given that N -monopole dynamics at low energy can be well approxi-
mated by geodesic motion on the monopole moduli space, a natural ques-
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Fig. 9.10. Baryon density isosurfaces at increasing times during the scattering
of four Skyrmions with approximate tetrahedral symmetry.

tion is whether a similar moduli space approximation exists for Skyrmions.
Since there are weak forces between Skyrmions, the moduli space of the
exact minimal energy Skyrmion of charge B does not contain adequate
degrees of freedom to describe all the required low energy configurations.
It is at most nine-dimensional, corresponding to the action of transla-
tions, rotations and isospin rotations on the otherwise unique solution.
Another manifold MB, whose coordinates parametrize a suitably larger
set of low energy field configurations, is required. Ideally, dimMB = 6B,
since this is the dimension of the space of B well separated Skyrmions
with all possible orientations.

An obvious candidate for MB is the parameter space of field configura-
tions obtained using the product ansatz for B Skyrmions. This is certainly
6B-dimensional and adequately describes well separated Skyrmions, but
it is not acceptable since the product ansatz fails near the minimal energy
charge B Skyrmion. For example, the product ansatz for two Skyrmions
satisfactorily defines M2 when the Skyrmion separation is large compared
to the Skyrmion size, and the energy initially decreases in the attractive
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Fig. 9.11. Baryon density isosurfaces at increasing times during the scattering
of four Skyrmions with approximate D� symmetry.

channel as the separation is reduced, as we have seen from the calcu-
lation of the asymptotic interaction energy in Section 9.3. However, as
the separation is reduced further the interaction energy obtained from
the product ansatz begins to increase [218] and a product of coincident
Skyrmions does not resemble the minimal energy B = 2 torus.

A more promising definition [284] of M2 is as the unstable manifold of
the spherically symmetric B = 2 hedgehog solution, which we discussed
in Section 9.2. This saddle point solution may be thought of as two co-
incident Skyrmions, with one wrapped around the other. (It is also well
approximated in the product ansatz by two coincident Skyrmions with
the same orientation.) It has six unstable modes, and six zero modes,
three translational and three rotational. Of the six unstable modes, three
correspond to rotating one of the Skyrmions with respect to the other,
while three are associated with separating the Skyrmions. The union of
gradient flow curves descending from the B = 2 hedgehog in all possible
positions and orientations is a 12-dimensional manifold. A generic curve
will end at the minimal energy B = 2 torus, but a submanifold of curves
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will end at infinitely separated Skyrmions. Curves close to this submani-
fold will go out to well separated Skyrmions and then return to the torus.
This definition of M2 will therefore include well separated Skyrmions in
all possible orientations, but it will also include the low energy configu-
rations where the Skyrmions are close together.

An attempt has been made to construct M2 numerically [409] by solv-
ing the gradient flow equation

R0 −
1
4
[Ri, [Ri, R0]] = ∂i(Ri −

1
4
[Rj , [Rj , Ri]]) . (9.125)

Particularly interesting is one of the steepest and shortest gradient flow
trajectories, where the constituent Skyrmions of the hedgehog simulta-
neously separate a little, and twist, then recombine into the torus. A
systematic construction of some two-dimensional submanifolds of M2 has
been carried out, and with the action of the nine-dimensional symmetry
group this is effectively a construction of some 11-dimensional subman-
ifolds of M2. The 10-dimensional attractive channel of two Skyrmions
has also been found using the gradient flow, starting with well separated
Skyrmions. However, it is difficult numerically to implement gradient
flow in regions where the Skyrmions are well separated. As a technical
simplification, in this region the product ansatz can be used. In fact for
well separated Skyrmions the gradient flow equations within the product
ansatz can be solved exactly [211]. In conclusion, the work in [409] and
[211] shows that it is feasible, if difficult, to construct M2 using numerical
gradient flow.

Given the manifold M2 one can now attempt to define a truncated
dynamics on it by restriction of the Skyrme Lagrangrian. Note that,
unlike the moduli space approximation for monopoles, there will be both a
non-trivial metric and potential energy function on M2. These have been
partly calculated in ref. [409]. The potential is easy to calculate along any
gradient flow curve. The metric coefficient along a gradient flow curve can
be inferred from the rate at which the potential energy decreases. Several
of the remaining metric coefficients are (spin and isospin) moments of
inertia of the configurations generated during the gradient flow. The
topography of M2 is a valley within the infinite-dimensional configuration
space of B = 2 Skyrme fields, with the attractive channel being an almost
flat submanifold of this. The highest point in M2 is the B = 2 hedgehog,
whose energy is about one and a half times that of either the torus or
well separated Skyrmions. So at really low energies the region near the
hedgehog will not be explored, even though this is the solution on which
the whole construction of M2 is based. The fact that the valley is not
precisely flat, because of the weak inter-Skyrmion forces, means that the
motion can not be assumed to be vanishingly slow. For example, the
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attraction of two Skyrmions may build up modest speeds even if they
start at rest.

In principle, MB could be the unstable manifold of the charge B hedge-
hog solution. The product ansatz suggests that this solution has 6B − 6
unstable modes and six zero modes. However, a practical implementation
is even less feasible.

In the simpler case of a (2+1)-dimensional Baby Skyrme model, a rather
differently defined moduli space involving both a metric and a potential
function has been constructed to study the classical dynamics of two
solitons [388], and yields results which are in good agreement with full field
simulations. The Baby Skyrme model may be considered as a deformation
of the O(3) sigma model, for which a precisely defined moduli space, M, of
static Bogomolny lump solutions exists. M, with a deformed metric, is a
suitable approximate moduli space for the deformed theory. The potential
is approximated by evaluating the energy of sigma model lumps using the
Baby Skyrmion potential energy function. Unfortunately the Skyrme
model can not be treated in this way as there is no known deformation of
the model to a nearby one with Bogomolny equations.

A related aspect of Skyrmion dynamics is of interest, namely, an ana-
lysis of the vibrational modes of minimal energy Skyrmions. This leads to
a model of the linearization of the moduli space MB, near the Skyrmion.
The low frequency vibrational modes provide a coordinate independent
description of the configuration space around the static solution. Calcu-
lating the frequencies of the lowest-lying vibrational modes also provides
a first step in an attempt to quantize the Skyrmion within a harmonic
approximation. We will not discuss the quantization aspect, but we will
discuss how the vibrational modes of Skyrmions provide yet another link
to monopoles.

A numerical computation of the vibration frequencies, and the classifi-
cation of degenerate modes into irreducible representations of the symme-
try group of the static Skyrmion, has been performed for charges B = 2
and B = 4 [34], and a qualitative analysis has been given for B = 7 [36].
The method employed is to solve a semi-linearized form of the time depen-
dent Skyrme equation, with as initial condition a rather general, slightly
perturbed Skyrmion. The frequencies of the normal modes are found by
Fourier transforming the fields at a given spatial location with respect to
time. The spectrum obtained can be divided into two parts, correspond-
ing to vibration frequencies below and above that of the breather mode,
which is the oscillation corresponding to a change in the scale size of the
Skyrmion. We are more interested in the lower-lying modes below the
breather, since they can be identified with variations of the parameters
in the rational map describing the static Skyrmion.

To be specific, let us consider the vibrations of the cubic B = 4
Skyrmion, whose modes lie in multiplets transforming under real irre-
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ducible representations of the octahedral group O. The computations of
ref. [34] reveal that there are nine modes below the breather, which trans-
form under the representations E, A1, F2, F2, in order of increasing fre-
quency.

Recall that the rational map of degree 4 with octahedral symmetry is

R0(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
. (9.126)

The general variation of this map, in which we preserve the leading coef-
ficient, 1, of the numerator as a normalization, is

R(z) =
z4 + αz3 + (2

√
3i + β)z2 + γz + 1 + δ

(1 + λ)z4 + µz3 + (−2
√

3i + ν)z2 + σz + 1 + τ
(9.127)

where α,β, γ, δ,λ, µ, ν,σ, τ are small complex numbers. We now calculate
the effect of the transformations of the octahedral group. For example, the
90∆ rotation, represented by the transformation R(z) &→ 1/R(iz) leaves
R0 fixed, but transforms the more general map R(z) to

R̃(z) =
(1 + λ)z4 − iµz3 + (2

√
3i − ν)z2 + iσz + 1 + τ

z4 − iαz3 − (2
√

3i + β)z2 + iγz + 1 + δ
. (9.128)

Normalizing this by dividing top and bottom by 1 + λ, and ignoring
quadratic and smaller terms in the small parameters, we get

R̃(z) =
z4 − iµz3 + (2

√
3i − ν − 2

√
3iλ)z2 + iσz + 1 + τ − λ

(1 − λ)z4 − iαz3 + (−2
√

3i − β + 2
√

3iλ)z2 + iγz + 1 + δ − λ
.

(9.129)
Hence, the transformation acts linearly on the nine parameters α, . . . , τ
via a complex 9 × 9 representation matrix that can be read off from this
expression. As we want to deal with a real representation, we consider
this as a real 18 × 18 matrix. The only contribution to the trace of this
matrix is associated with the replacement of λ by −λ in the leading term
of the denominator. Since λ has a real and imaginary part, the character
of the 90∆ rotation in this representation is −2.

Similar calculations for elements of each conjugacy class of the octa-
hedral group give the remaining characters and allow us to identify the
irreducible content of this representation as 2A1 ⊕ 2E ⊕ 2F1 ⊕ 2F2.

To determine which of these irreducible representations correspond to
true vibrations we need to remove those corresponding to zero modes. To
find the zero mode representation associated with isospin rotations of the
Skyrme field, we consider the infinitesimal SU(2) Möbius deformations

R0(z) &→ (1 + iε)R0(z) + εσ

−ε̄σR0(z) + (1 − iε)
(9.130)
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where ε is real, and εσ complex. Under the transformations of the oc-
tahedral group a computation of the characters reveals that these vari-
ations transform as A1 ⊕ E. Similarly, the variations which correspond
to translations and rotations transform under the octahedral group as
F1 ⊕ F1. From the above 18-dimensional representation we therefore
remove A1 ⊕ E ⊕ F1 ⊕ F1 to obtain the representation of the true vi-
brations. This has the irreducible components A1 ⊕ E ⊕ F2 ⊕ F2, and is
nine-dimensional. These irreducible representations are precisely the ones
obtained from the Fourier analysis of the field vibrations, given earlier.

As we saw, a number of scattering events through the symmetric min-
imal energy Skyrmions have a remarkable similarity to monopole scat-
terings. These monopole-like, Skyrmion scattering processes correspond
precisely to the extension of the low-lying vibrational modes (which we
refer to as monopole modes) to large amplitude, splitting the minimal
energy Skyrmion into clusters of lower charge. Each monopole mode cor-
responds to a different cluster decomposition and it is often possible to
identify the correspondence by comparing the symmetries of the scat-
tering process and the vibration mode. A more sophisticated approach
is to use the irreducible representation of each vibration mode to iden-
tify the mode with an explicit rational map deformation. Via the Jarvis
correspondence between monopoles and rational maps, the extension of
this deformation to large parameter values determines a monopole con-
figuration with well separated clusters. The cluster decomposition of the
Skyrmion can thus be identified.

As an example, the one-dimensional A1 mode in the vibrational spec-
trum of the B = 4 Skyrmion is represented by the 1-parameter family of
rational maps

R(z) = c
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
, (9.131)

with c close to 1. Extending c to arbitrary positive values, and using the
Jarvis correspondence, we recognize this family of tetrahedrally symmet-
ric maps as describing the dynamics of four monopoles which approach
and separate on the vertices of dual tetrahedra and pass through the cubic
4-monopole. Therefore this vibrational mode, extended to large ampli-
tude, will separate the B = 4 Skyrmion into four single Skyrmions on the
vertices of a tetrahedron, which is one of the attractive channel scatterings
that we have already discussed. We denote this process by 1 + 1 + 1 + 1
to signify the charges of the clusters into which the Skyrmion separates.
The other B = 4 attractive channel scattering we have considered is the
D4-symmetric scattering, which emerges as 2 + 2, that is, two B = 2
tori. This cluster decomposition corresponds to the two-dimensional vi-
brational representation E. The two remaining three-dimensional repre-
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sentations correspond to the cluster decompositions 3+1, in which a sin-
gle Skyrmion collides with the tetrahedral B = 3 Skyrmion preserving
cyclic C3 symmetry throughout, and the final decomposition is 2 + 1 + 1,
which is a D3d twisted line scattering in which two single Skyrmions col-
lide symmetrically with a B = 2 torus. All these scattering processes have
been computed using full field simulations, verifying the above picture.

The Jarvis rational maps of degree B have 4B + 2 parameters. For
general B one therefore expects the minimal energy Skyrmion to have
4B − 7 monopole vibrational modes below the breather, where the nine
zero modes describing translations, rotations and isospin rotations have
been subtracted off. As another example, for the B = 3 tetrahedral
Skyrmion, there are five monopole modes, and a rational map symmetry
analysis [193] suggests that they form an irreducible doublet and triplet
of the tetrahedral group. The two distinct modes correspond to the two
possible cluster decompositions, 2 + 1 and 1 + 1 + 1, and the correspond-
ing processes are the C3-symmetric and D2d twisted line scatterings as
seen for monopoles in Chapter 8. The Skyrmion collision for the first of
these has already been described earlier in this section and the twisted
line scattering is described in ref. [40]. For B = 2, the monopole mode
separates the two Skyrmions and the corresponding collision process is
right-angle scattering.

In summary, we see that there is a strong correlation between the low-
lying vibrational modes of a Skyrmion and the zero modes of the asso-
ciated monopole. An analysis of rational maps clarifies the correlation.
Furthermore, an extension of these modes to large amplitude shows a
correspondence between monopole dynamics, studied within the geodesic
approximation, and attractive channel Skyrmion scattering, which has
been confirmed using full field simulations. These results suggest that
a (4B + 2)-dimensional moduli space of Skyrme fields, which includes
the nine exact zero modes of a general Skyrmion, may model low energy
Skyrmion dynamics. However, no precise construction of a suitable mani-
fold of Skyrme fields directly from rational maps, or from monopole fields,
has yet been achieved.

9.9 Generalizations of the Skyrme model

In arriving at the Skyrme model as a low energy effective theory from
QCD in the limit in which the number of colours, Nc, is large, one finds
that the Skyrme field takes values in SU(Nf), where Nf is the number
of flavours of light quarks. So far we have only considered the case of
Nf = 2, which is physically the most relevant since the up and down
quarks are almost massless, and the SU(2) flavour symmetry between up
and down quarks is only weakly broken in nature; but the model with
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SU(3) flavour symmetry, to allow for the strange quark, with appropriate
additional symmetry breaking terms to take account of the higher strange
quark mass, is also a reasonable approximation and allows the possibility
to study strange baryons and nuclei within the Skyrme model, and also
scattering processes involving ordinary baryons and strange mesons. The
basic fields (of the linearized model) now describe pions, kaons, and the
eta meson. There is still just one topological charge, identified as baryon
number, arising from the homotopy group π3(SU(3)) = Z. In the ab-
sence of any symmetry breaking mass terms, the three flavour Skyrme
Lagrangian is given by the usual expression (9.2), but with U ∈ SU(3).
There is also a Wess-Zumino term, which we discuss below, but this only
plays a role in the quantization of Skyrmions and can be ignored for the
present discussion of classical solutions.

Obviously, solutions of the SU(3) model can be obtained by a sim-
ple embedding of SU(2) Skyrmions, and current evidence suggests that
these are the minimal energy solutions at each charge. However, there
are also solutions which do not correspond to SU(2) embeddings, and
although they have energies which are slightly higher than the embedded
Skyrmions, they are still low energy configurations, and they have sym-
metries that are very different from the SU(2) solutions and so may be
of some interest.

An example of a non-embedded solution is the dibaryon of Balachan-
dran et al. [30], which is a spherically symmetric solution with B = 2.
Explicitly, the Skyrme field is given by

U(x) = exp
{

if1(r)Λ · x̂ + if2(r)
(

(Λ · x̂)2 − 2
3
13

)}
, (9.132)

where Λ is a triplet of su(3) matrices generating so(3) and f1, f2 are real
profile functions satisfying the boundary conditions f1(0) = f2(0) = π
and f1(∞) = f2(∞) = 0. Substituting this ansatz into the static Skyrme
equation leads to two coupled ordinary differential equations for f1 and
f2. Solving these numerically yields an energy per baryon of E/B = 1.19,
which is about 1% higher than the energy of the embedded SU(2) torus
of charge 2.

Recently, an extension of the rational map ansatz has been proposed
[206], to create SU(Nf) Skyrme fields from rational maps of the Riemann
sphere into CPNf� 1. Explicitly, the ansatz extends the SU(2) projector
form (9.56) to

U = exp
(

if
(

2P − 2
Nf

1Nf

))
, (9.133)

where P is now an Nf×Nf Hermitian projector, constructed from a vector
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v with Nf components via

P =
v ⊗ v�

|v|2 , (9.134)

and f(r) is a real radial profile function with the usual boundary con-
ditions. The vector v(z) : S2 &→ � � Nf� 1 appears to be a rational map
from the Riemann sphere into CNf, but it is only defined projectively due
to the relation (9.134). In fact, we can use this projective property to
take v to be a vector in which all components are polynomials in z, and
the degree of this projector, which is equal to the baryon number of the
resulting Skyrme field, is given by the highest degree of the component
polynomials. When Nf = 2 this ansatz coincides with the usual SU(2)
ansatz after the identification v = (q, p)t, where R = p/q is the usual
rational map and we have made use of the equivalence CP1 ∼= S2.

Although there are some difficulties with this ansatz [394], it can be
used to produce some low energy field configurations and to understand
the existence of certain symmetric Skyrme fields, which do not exist at
the same charge in the SU(2) model.

The SU(Nf) Skyrme model has a global SU(Nf)/ZNf symmetry corre-
sponding to the conjugation U &→ OUO� , where O ∈ SU(Nf). In terms
of the ansatz (9.133) this symmetry is represented by the target space
transformation

v &→ Ov . (9.135)
The identification of K-symmetric maps (and hence K-symmetric Skyrme
fields) is analogous to the SU(2) case. The set of target space rotations
accompanying spatial rotations needs to form an Nf -dimensional repre-
sentation of K, so the simplest situation in which a degree B symmetric
map exists is when

B + 1|K = XNf ⊕ · · · , (9.136)
where B + 1|K is the restriction of the (B + 1)-dimensional irreducible
representation of SU(2) to the subgroup K, and XNf denotes any Nf -
dimensional irreducible representation of K. In this case a basis for XNf

consists of Nf polynomials in z of degree B, which can be taken to be the
Nf components of the vector v.

To illustrate these ideas let us consider B = 6 Skyrme fields with icosa-
hedral symmetry in the SU(3) model. The relevant decomposition is

7|Y = F2 ⊕ G . (9.137)

The presence of the three-dimensional F2 shows that there is an icosahe-
drally symmetric degree 6 map from CP1 into CP2. Explicitly, this map
is given by

v(z) = (z6 + 3z, 1 − 3z5,
√

50z3)t (9.138)
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and is Yh-symmetric. Thus there is an icosahedrally symmetric B =
6 Skyrme field in the SU(3) model, whereas, as we have seen earlier,
the lowest charge for which there is an icosahedrally symmetric SU(2)
Skyrmion is B = 7.

Substituting the ansatz (9.133) into the Skyrme Lagrangian leads to
an energy function on the space of rational maps into CPNf� 1, and an
essentially independent energy function for the profile function. In the
case of Nf = 3 and B = 6 a numerical search for the minimizing map
produces the map above [206], suggesting that the minimal energy non-
embedded SU(3) Skyrmion of charge 6 may be Yh-symmetric. The profile
function is also easily determined numerically. Numerical investigations
of the full SU(3) Skyrme model need to be performed to find the precise
solutions of lowest energy, but this has yet to be done.

We now turn to a different generalization, the Skyrme model on a 3-
sphere, in which the domain R3 is replaced by S3

L, the 3-sphere of radius
L, but the Skyrme field is still a map to the target space SU(2). The
baryon number is the degree of U . This generalization has been studied
in ref. [291], and in a more geometrical context in ref. [282], where it
was also shown that the geometrical strain formulation discussed earlier
can be used to define a Skyrme energy functional for a map between any
three-dimensional Riemannian manifolds. By taking the limit L → ∞ the
Euclidean model is recovered, but it is possible to gain some additional
understanding of Skyrmions by first considering finite values of L.

Let µ, z be coordinates on S3
L, with µ the polar angle (the co-latitude)

and z the Riemann sphere coordinate on the 2-sphere at polar angle µ.
Take f, R to be similar coordinates on the unit 3-sphere S3

1 , which we
identify with the target manifold SU(2).

In general, a static field is given by functions f(µ, z, z̄) and R(µ, z, z̄),
but various simplifications are possible. To find the B = 1 Skyrmion we
consider an analogue of the hedgehog field, an SO(3)-symmetric map of
the form

f = f(µ) , R = z , (9.139)
whose energy is

E =
1
3π

∫ π

0

{

L sin2 µ
(

fσ2 +
2 sin2 f

sin2 µ

)
+

sin2 f

L

(sin2 f

sin2 µ
+ 2fσ2

)}

dµ .

(9.140)
Among these maps there is the 1-parameter family of degree 1 conformal
maps

tan
f

2
= ea tan

µ

2
, (9.141)

where a is a real constant. These may be pictured as a stereographic
projection from S3

L to R3, followed by a rescaling by ea, and then an in-
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verse stereographic projection from R3 to S3
1 . Substituting the expression

(9.141) into the energy (9.140), and performing the integral gives

E =
L

1 + cosh a
+

cosh a

2L
. (9.142)

If a = 0 then (9.141) is the identity map with energy

E =
1
2

(
L +

1
L

)
. (9.143)

Note that if L = 1 then E = 1, so the Faddeev-Bogomolny bound is
attained. We can therefore be certain that, in this case, the B = 1
Skyrmion is given by the identity map. We mentioned earlier that the
bound could only be attained by a mapping which is an isometry, and
this occurs when L = 1, the domain then being isometric to the target
space.

Computing a to minimize the energy (9.142), for a fixed, general value
of L, results in

cosh a =
√

2L − 1 . (9.144)

For L <
√

2 this is clearly unattainable, and in fact the minimum occurs
at a = 0. This shows that, for L <

√
2, the identity map is stable with

respect to conformal transformations, though actually a stronger result,
that the identity map is stable against any deformation for L <

√
2, is

true [282]. The identity map is thus very likely the Skyrmion. The energy
density of the identity map is distributed evenly over the 3-sphere, so no
point of either the domain or target spheres is singled out as special.
The unbroken symmetry group is the diagonal SO(4) subgroup of the
full symmetry group, which may be interpreted either as spatial or chiral
SO(4) rotations.

For L >
√

2 there are two roots of equation (9.144), related by the
symmetry a &→ −a, but they give geometrically equivalent solutions since
this sign change can be undone by making the replacement µ &→ π − µ,
which exchanges poles on S3

L. The energy is

E =
√

2 − 1
2L

, (9.145)

which is clearly less than (9.143). If a is positive, there is a preferred
point in S3

L, which corresponds to the point at infinity in R3, where the
energy density is minimal, and the image of this point is a preferred point
in S3

1 . The unbroken symmetry is therefore SO(3) isospin symmetry, as
in the Euclidean case, and chiral symmetry is broken. The energy density
is maximal at the antipodal point. These conformal maps are not the
exact Skyrmion solutions for L >

√
2, but they are expected to be close,
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and have the same symmetry. In the Euclidean limit L → ∞ the radial
variable should be identified as the combination r = Lµ, in which case the
expression for the energy (9.140) reproduces the result for the hedgehog
profile function (9.22). In the limit, the conformal map with ea ∼

√
8L,

that is, f(r) = 2 tan� 1(
√

2r), has energy E =
√

2, which is higher than
the value E = 1.232 of the minimizing hedgehog profile function, but the
Skyrme field is qualitatively similar.

In summary, we see that on a small 3-sphere the energy density of a B =
1 Skyrmion is uniformly distributed over S3

L and the unbroken symmetry
group is SO(4), but as the radius of the 3-sphere is increased beyond the
critical value L =

√
2 there is a bifurcation to a Skyrmion localized around

a point and chiral symmetry is broken. Thus a phase transition occurs,
as in the Skyrme crystal, when one moves from conditions of high to low
baryon density, with a corresponding breaking of chiral symmetry. This
may have relevance to the physical issue of whether quark confinement
occurs at the same time as chiral symmetry breaking as very dense quark
matter becomes less dense.

For charge B > 1 the rational map ansatz can again be applied to
produce low energy Skyrme fields which approximate the minimal energy
Skyrmions on S3

L [246], by taking R(z) to be a degree B rational map and
f(µ) the associated energy minimizing profile function. This produces
fields which tend to those of the Euclidean model as L → ∞ and for all
cases except B = 2, this ansatz produces the lowest energy configurations
yet discovered. The energy is particularly low if one chooses the optimal
value of L, which depends on B. For B = 2 an exact solution is known
[219] which has lower energy than the O(2) symmetric field obtained from
the rational map ansatz with R = z2. This solution has a doubly axially
symmetric form with the larger symmetry O(2)×O(2), a subgroup of the
O(4) symmetry group of the 3-sphere Skyrme model that is lost in the
Euclidean limit.

Finally, in introducing the Skyrme model in Section 9.1 we already
mentioned that a possible modification of the model is the addition of the
pion mass term (9.7). The qualitative results of our previous discussions
are unchanged by its inclusion, but here we briefly mention the small
quantitative differences it generates. The most important effect is that
the Skyrmion becomes exponentially localized, in contrast to the algebraic
asymptotic behaviour of the Skyrme field in the massless pion model. This
is because the modified equation for the hedgehog profile function,

(r2 + 2 sin2 f)fσσ+ 2rfσ+ sin 2f

(

fσ2 − 1 − sin2 f

r2

)

− mπ
2r2 sin f = 0 ,

(9.146)
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has the asymptotic Yukawa-type solution

f(r) ∼ A

r
e� mπ r . (9.147)

Clearly the energy of a single Skyrmion with mπ > 0 will be slightly
higher than with mπ = 0, because the pion mass term is positive for all
fields. For higher charge Skyrmions, the rational map approach works as
before, but the profile function will again be slightly modified, leading to
slightly higher energies.

9.10 Quantization of Skyrmions

Quantization is a vital issue for Skyrmions, more so than for the other
solitons we have discussed, because Skyrmions are supposed to model
physical baryons and nuclei, and a single baryon is a spin half fermion.
We consider here both the SU(2) and SU(Nf) Skyrme models in R3.

We first briefly discuss the Wess-Zumino term [424], which is an ad-
ditional contribution to the action of the SU(Nf) Skyrme model given
by

SWZ = − iNc

240π2

∫
εµναβγTr(RµRνRαRβRγ) d5x , (9.148)

where the integration is performed over a five-dimensional region whose
boundary is four-dimensional space-time. The Wess-Zumino term does
not contribute to the classical energy, but it plays an important role in
the quantum theory. Its introduction breaks the time reversal and parity
symmetries of the model down to the combined symmetry operation

t &→ −t , x &→ −x , U &→ U� , (9.149)

which appears to be realized in nature, unlike these individual symmetry
operations. A topological argument shows that Nc must be an integer,
and Witten [428] argued that it should be identified with the number of
quark colours, based on considerations of flavour anomalies in the quark
and Skyrme models.

To determine whether a Skyrmion should be quantized as a fermion
we can compare the amplitudes for the processes in which a Skyrmion
remains at rest for some long time T , and in which the Skyrmion is
slowly rotated through an angle 2π during this time. The sigma model
and Skyrme terms in the action do not distinguish between these two
processes, since they involve two or more time derivatives, but the Wess-
Zumino term is only linear in time derivatives and so can distinguish them.
In fact it results in the amplitudes for these two processes differing by a
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factor (−1)N� , which shows that the Skyrmion should be quantized as a
fermion when Nc is odd, and in particular, in the physical case Nc = 3
[428].

For Nf = 2 the above analysis does not apply, since the Wess-Zumino
term vanishes for an SU(2)-valued field. To determine the appropriate
quantization of an SU(2) Skyrmion one may follow the approach of Finkel-
stein and Rubinstein [132], who showed that it is possible to quantize a
soliton as a fermion by lifting the classical configuration space to its simply
connected covering space. In the SU(2) Skyrme model, this is a double
cover for any value of B. To treat a single soliton as a fermion, states
should be multiplied by a factor of −1 when acted upon by any operation
corresponding to a circuit around a non-contractable loop in the config-
uration space. Equivalently, the wavefunction has opposite signs on the
two points of the covering space that cover one point in the configura-
tion space. These authors also showed that the exchange of two B = 1
Skyrmions is a loop which is homotopic to a 2π rotation of a Skyrmion,
in agreement with the spin-statistics result. It was verified by Williams
[426] that a 2π rotation of a single Skyrmion is a non-contractible loop,
thus requiring the Skyrmion to be quantized as a fermion. This result was
generalized by Giulini [154], who showed that a 2π rotation of a charge
B Skyrmion is a non-contractible loop if B is odd and contractible if B
is even.

A practical, approximate quantum theory of Skyrmions is achieved by
a rigid body quantization of the spin and isospin rotations. Vibrational
modes whose excited states usually have considerably higher energy are
ignored. For the B = 1 Skyrmion, this quantization was carried out
by Adkins, Nappi and Witten [7], who showed that the lowest energy
states (compatible with the Finkelstein-Rubinstein constraints) have spin
half and isospin half, and may be identified with states of a proton or
neutron.

The quantization of the B = 2 Skyrmion was first discussed by Braaten
and Carson [64], using a rigid body quantization. Their analysis was ex-
tended by Leese, Manton and Schroers [261], who also allowed the toroidal
Skyrmion to break up in the direction of the lowest vibrational mode,
which corresponds to the attractive channel. Both calculations find that
the lowest energy quantum state has isospin zero and spin 1, as expected
for the deuteron. The second calculation gets closer to the usual physical
picture of the deuteron as a rather loose proton-neutron bound state.

For higher charge Skyrmions symmetric under a discrete group K, the
moduli space of zero modes is (SO(3) × SO(3))/K, where in this case
K really denotes the group and not its double cover. K can be replaced
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by its double cover, Kσ, if the SO(3) factors in the above quotient space
are promoted to SU(2). A quantization of the zero modes can be per-
formed by quantizing on this quotient space, but there are a number of
inequivalent ways to do this labelled by the irreducible representations of
Kσ. It is most convenient to define the wavefunctions on SU(2)× SU(2),
and require them to be eigenstates of the operations corresponding to the
elements of Kσ. The Finkelstein-Rubinstein constraints are imposed by
requiring the eigenvalues to be ±1 depending on whether the particular
element of Kσcorresponds to a contractible or non-contractible loop. This
has been performed [64, 74, 411, 210] for charges B ≤ 8, and gives the cor-
rect quantum numbers (spin, isospin and parity) for the experimentally
observed ground states of nuclei in all cases except B = 5 and B = 7.
A further study, making use of the topological properties of the space of
rational maps, has allowed an extension of this analysis up to B = 22
[247]. The fact that some results do not agree with the experimental data
is probably due to the restricted zero mode quantization, which does not
allow any vibrational or deformation modes, and assumes a rigid rotor
approximation so that the symmetry of the static solution is maintained
even in the presence of spin.

9.11 The Skyrme-Faddeev model

Some time ago, Faddeev [125] suggested that stable closed strings may ex-
ist as topological solitons in a modified O(3) sigma model which includes
a fourth order derivative term, with the topology arising due to the twist-
ing of a planar soliton along the length of the string. Each slice normal
to the string carries the localized planar soliton. The Skyrme-Faddeev
model, which realizes this idea, involves a map n : R3 &→ S2, and can be
obtained from the Skyrme model simply by restricting the field values to
an equatorial 2-sphere of the usual SU(2) target space. Explicitly, the
field of the model is a real three-component vector n = (n1, n2, n3), with
unit length, n ·n = 1. The associated restricted Skyrme field is U = in ·∞.
Substituting this into the Skyrme Lagrangian (9.2) results in

L =
∫ {

∂µn · ∂µn − 1
2
(∂µn × ∂νn) · (∂µn × ∂νn)

}
d3x , (9.150)

which is the Skyrme-Faddeev Lagrangian. Its first term is that of the
O(3) sigma model and the higher order derivative Skyrme term is, as
usual, required to give the possibility of configurations which are stable
under a spatial rescaling.

In order for a field configuration to have finite energy the vector n
must tend to a constant value at spatial infinity, which we may take to
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be the vector nΛ = (0, 0, 1). Finite energy field configurations have a
topological classification, but the novel aspect of this model is that the
topological charge is not a topological degree, as it is for the solitons
we have considered so far in this book, such as vortices, monopoles or
Skyrmions.

The boundary condition again compactifies space to S3, so that at any
given time the field is a map n : S3 &→ S2. Since π3(S2) = Z, there is
an associated integer topological charge N , the Hopf charge, which gives
the soliton number. This charge can not be the degree of the mapping,
since the domain and target spaces have different dimensions. Instead,
one definition is the following. Let ω denote the area 2-form on the target
S2 and let f = n�ω be its pull-back under n to the domain S3. Since ω is
closed, f is closed. Then, due to the triviality of the second cohomology
group of the 3-sphere, H2(S3) = 0, this pull-back must be an exact 2-
form, say f = da. The Hopf charge is constructed by integrating the
Chern-Simons 3-form over S3,

N =
1

4π2

∫

S�
f ∧ a . (9.151)

This integral is independent of the choice of a, because if a &→ a + dα,
then the change of N is

∆N =
1

4π2

∫

S�
f ∧ dα =

1
4π2

∫

S�
(d(fα) − (df)α) = 0 (9.152)

because df = 0, and by Stokes’ theorem the integral of d(fα) vanishes
over a closed 3-manifold.

An important point to note is that the Hopf charge can not be written
as the integral of any density which is local in the field n. For this reason
it is useful to consider an alternative interpretation of N. Generically, the
preimage of a point on the target S2 is a closed loop in S3. Now if a field
has Hopf number N then the two loops consisting of the preimages of
any two distinct points on the target S2 will be linked exactly N times.
In Fig. 9.12 we schematically represent the preimages of two points for a
configuration with N = 1.

Solitons have been found in the Skyrme-Faddeev model for a range of
values of N . They are string-like, but not all of a simple shape. Recall that
the position of a lump or Skyrmion is sometimes defined to be the point
in space at which the field takes the value antipodal to the vacuum value.
Here, the position of a soliton is the curve in space which is the preimage
of the vector −nΛ = (0, 0,−1). Displaying this closed string is a useful
way to represent the solution. Alternatively, a thickened version of the
soliton may be represented by the preimage of the circle of vectors with
n3 = const. The Skyrme-Faddeev model has a global O(3) symmetry, but
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Fig. 9.12. A sketch showing two loops corresponding to the preimages of two
points on the target 2-sphere. The loops are linked exactly once, indicating that
the configuration has Hopf charge N = 1.

the choice of a vacuum value nΛ breaks this to an O(2) symmetry, which
rotates the (n1, n2) components. As usual, when we refer to a symmetry
of a configuration we mean that the effect of a spatial transformation can
be undone by acting with an element of the unbroken global symmetry
group of the theory, in this case O(2). This implies that both the n3

component (which determines the position of the soliton) and the energy
density are strictly invariant under the symmetry operation.

Not only is there a topological Hopf charge in this model, but there
is also a lower bound on the energy in terms of the charge N [405, 249].
Explicitly,

E > c|N |3/4 (9.153)

where c = 16π233/8 ≈ 238. This energy bound is rather unusual in that a
fractional power of the topological charge occurs, reflecting the fact that
this bound is not obtained from the usual Bogomolny-type argument, but
relies on a sophisticated use of Sobolev inequalities for its derivation. As
such, the above value for the constant c may not be very tight. We will
comment further on this shortly.

As pointed out in ref. [405], spherically symmetric fields automatically
have zero Hopf charge, so it is not immediately obvious how to write
down even the simplest field configurations which have non-zero values
of N. However, a toroidal field can be constructed for any N , based on
Faddeev’s original idea. One may think of this field as a two-dimensional
Baby Skyrmion which is embedded in the normal slice to a circle in space
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and has its internal phase rotated through an angle 2πN as it travels
around the circle once. The construction can be implemented in toroidal
coordinates if the size of the circle is fixed in advance, and was the method
used in the numerical investigations [127, 155], which established the ex-
istence of axially symmetric solitons with charges N = 1 and N = 2,
but it is rather cumbersome. A more elegant approach to constructing
field configurations with non-zero Hopf charge makes use of the observa-
tion [302] that a field with Hopf charge N can be obtained by applying
the standard Hopf projection H : S3 &→ S2 to a map U between 3-spheres
with winding number N – in other words, a Skyrme field. Precisely, let
U(x) be a Skyrme field, that is, any smooth map from R3 into SU(2)
which satisfies the boundary condition that U tends to the identity as
|x| → ∞. Let U have baryon number (degree) B. By writing the matrix
entries of U in terms of complex numbers Z0 and Z1 as

U =
(

Z0 −Z̄1

Z1 Z̄0

)

, (9.154)

where |Z0|2 + |Z1|2 = 1, the image of the Hopf map H can be written in
terms of the column vector Z = (Z0, Z1)t as

n = Z�σZ . (9.155)

It is easy to see that n is a real 3-vector of unit length and satisfies
the boundary condition n(∞) = nΛ . Furthermore, it can be shown that
the Hopf charge of the configuration constructed in this way is equal to
the baryon number of the Skyrme field U , that is, N = B.

A useful supply of Skyrme fields for this purpose can be obtained using
the rational map ansatz, as described in Section 9.5. Recall that this
involves a rational map R(z) and profile function f(r). In particular,
choosing the map R(z) = zN gives an axially symmetric field n of Hopf
charge N , which has the same qualitative properties as those constructed
by hand using toroidal coordinates. Note that in the case N = 1 the
Skyrme field is spherically symmetric, but the Hopf projection breaks
this, so that the vector n has only an axial symmetry. To determine
the position of any approximate soliton constructed using this method
we need to calculate the points in R3 at which n = (0, 0,−1). Equation
(9.155) shows that this is equivalent to finding where Z0 = 0. In the
rational map ansatz, Z0 = 0 if f(r) = 1

2π and also |R(z)| = 1. For the
family of maps R = zN the second condition gives |z| = 1, the equatorial
circle on the Riemann sphere. Therefore the position of the soliton is
a circle in the (x1, x2) plane, whose radius is determined by the first
condition.
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Fig. 9.13. Isosurface plots for the N = 1 soliton displaying (a) the thickened
locus of the position, (b) the energy density, (c) linking structure between two
independent points on the target 2-sphere, and (d) a comparison between the
position and energy density. Notice that the linking number is indeed 1 and that
the energy density is not toroidal, but rather its maximum occurs at a point
inside the locus of the position.

Using these axially symmetric configurations as initial data in a full
three-dimensional numerical relaxation [43], it is found that for N = 1
and N = 2 the minimal energy soliton fields are very close to the initial
data. In Fig. 9.13 and Fig. 9.14 we present, for the N = 1 and N = 2
solitons respectively, the position, the energy density, the linking number
(by plotting the preimages of the points n = (−1, 0, 0) and n = (0,−1, 0)),
and the position and energy density isosurface together for comparison.

The energy of the N = 1 soliton has been computed several times
[155, 43, 179, 419], using a variety of numerical schemes, and within the
accuracy of the numerical calculations it is E ≈ 545. Note that this is more
than double the bound (9.153) with the quoted value of c, in agreement
with our earlier remark that this value is probably not optimal. Ward
[418] has argued (but it has not yet been proven) for the stronger value
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Fig. 9.14. The same quantities as in Fig. 9.13, but for the N = 2 soliton. Notice
that the locus of the position and the energy density are both toroidal, but that
the energy density is peaked inside the position.

c = 32π2
√

2 ≈ 447. This is better from the point of view of the N = 1
soliton, since its energy would then only exceed the bound by roughly 20%,
as would the energies of the higher charge solitons [43]. Ward’s value is
arrived at by considering the Skyrme-Faddeev model on S3

L rather than
R3, in analogy with the discussion of Skyrmions on a 3-sphere. As in the
Skyrme model, there is a special radius of the sphere, in this case� L =

√
2,

for which an exact solution can be obtained, which corresponds to the
identity map from S3

L to S3
1 followed by the standard Hopf projection.

The energy of this solution, which is possibly an absolute minimum for a
soliton of unit charge, is precisely the value of c proposed by Ward. Thus
if the Skyrme-Faddeev model mimics the result in the Skyrme model,
where the topological energy bound is attained at the special radius, and
is otherwise exceeded, then this energy is a natural candidate for the
optimal constant c. Other aspects of the Skyrme model on a 3-sphere also

� The fact that the special radius is not L = 1 is simply due to our choice of coeffcients
in front of the two terms in the Lagrangian (9.150).
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find parallels in the Skyrme-Faddeev model. For example, the identity
map followed by the Hopf projection is an unstable solution if the radius
L exceeds a critical value, which in the normalization we have chosen is
L > 2.

Returning to solitons of the Skyrme-Faddeev model in flat space, for
N > 2 the results of the numerical relaxation show that the minimal
energy solution does not have the axially symmetric form described above.
For example, the position of the N = 3 soliton has the structure of a
twisted loop; this is displayed in the first plot of Fig. 9.15. Faddeev

Fig. 9.15. The position of the soliton for (a) N = 3, (b) N = 6, (c) N = 7.

and Niemi [127] conjectured that the string-like solitons in this model
would form knotted configurations for large enough values of N. This was
verified numerically in ref. [43] (and later in ref. [179]) where both links
and knots were found as the minimal energy solutions at various Hopf
charges. The second and third plots of Fig. 9.15 show the position of the
soliton for N = 6 and N = 7. The N = 7 soliton has the form of a trefoil
knot, while the N = 6 soliton is composed of two linked loops which each
resemble the N = 2 soliton. The total Hopf charge is here N = 6 because
there is an additional two units of charge associated with the double
counting of the linking number of two preimages, when the preimage of a
single point itself has disconnected, linked components. The fact that the
linking number is not simply additive, as this example demonstrates, is
probably the physical reason why the energy bound (9.153) grows slowly,
as a fractional power of the Hopf charge N.

As with Skyrmions, it is expected that the configuration space of the
Skyrme-Faddeev model is very complicated, leading to many solutions
which are local energy minima but not global minima, in addition to
saddle point solutions. In fact, because of the string-like nature of the
solutions, it is very likely that the difficulties associated with finding the
global minimum at each charge will be much worse than in the Skyrme
model. It has already been demonstrated [419] that even the space of
N = 2 field configurations has quite a complicated structure.

Further numerical and analytical studies are required to fully inves-
tigate the soliton solutions which are expected to exist for higher Hopf
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charge, and to determine whether more complicated knots and links arise
as the minimal energy solutions. There is physical motivation for this,
since it has been proposed that the Skyrme-Faddeev model arises as a
dual description of strongly coupled SU(2) Yang-Mills theory [128], with
the solitonic strings possibly representing glueballs.

Finally, we note that in the model with Lagrangian

L =
∫

{(∂µn × ∂νn) · (∂µn × ∂νn)}3/4 d3x , (9.156)

exact solutions describing axially symmetric Hopf solitons can be found
explicitly [12]. This rather strange model, involving a fractional power
in the Lagrangian density, is scale invariant. The solitons are therefore
similar to lumps in the O(3) sigma model, in that they have a zero mode
associated with changes in the scale of the soliton, which might lead to
soliton collapse in a finite time in dynamical situations.



10
Instantons

10.1 Self-dual Yang-Mills fields

This chapter is concerned with instantons, which are topological solitons
of pure Yang-Mills theory defined in four-dimensional Euclidean space-
time. If we regard instantons as static solitons in four space dimensions
then they are the same kind of soliton that we have been discussing
throughout this book, and in particular there are a number of similarities
with static sigma model lumps in two space dimensions, which are often
regarded as lower-dimensional analogues of Yang-Mills instantons. In-
stantons would be dynamical, particle-like solitons in a (4+1)-dimensional
Yang-Mills theory, but we will not pursue this interpretation.

The physical motivation for considering four-dimensional Euclidean
space is that in quantum field theory in (3+1)-dimensional Minkowski
space-time one is led to the computation of path integrals which need to
be analytically continued in order to be well defined. This continuation,
known as a Wick rotation, is implemented by the replacement of the time
coordinate t !→ it, which converts the Minkowski metric to the Euclidean
one. We will denote Euclidean time by the coordinate x4, and regard it as
a fourth space coordinate in a static theory. The reason classical solutions
are important is that they dominate the path integral, and in particular
the instanton solutions generate non-perturbative quantum effects.

Let us consider an SU(2) gauge theory with su(2)-valued gauge poten-
tial Aµ, µ = 1, . . . , 4, and associated field tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (10.1)

Pure Yang-Mills theory is defined by the action

S = −1
8

∫
Tr(FµνFµν) d4x . (10.2)

416
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Here, and in the remainder of this chapter, we use the Euclidean metric
with signature (+,+,+,+), and repeated indices are summed over with
the naive summation convention. Note that the action S is non-negative,
and so is equivalent to an energy for a static field.

Variation of this action produces the Yang-Mills field equation for the
stationary points,

DµFµν = 0 . (10.3)

Let F = 1
2Fµνdxµ ∧ dxν be the 2-form field strength. Then, because

F is defined on a four-dimensional manifold, its Hodge dual ⋆F is also a
2-form. In components the dual is defined by

⋆Fµν =
1
2
εµναβFαβ , (10.4)

where εµναβ is the alternating tensor, and we use the convention that
ε1234 = −1. Using the fact that Tr(FµνFµν) = Tr(⋆Fµν

⋆Fµν), the action
(10.2) can be rewritten as

S = − 1
16

∫ {
Tr((Fµν∓⋆Fµν)(Fµν∓⋆Fµν))±2 Tr(Fµν

⋆Fµν)
}

d4x . (10.5)

The first term is a total square, and hence non-negative, so we see that
this rearrangement leads to the lower bound

S ≥ π2|N | , (10.6)

where we have defined the quantity

N = − 1
8π2

∫
Tr(Fµν

⋆Fµν) d4x . (10.7)

Recall from Section 3.5 that the second Chern number of an SU(2) gauge
field in R4 is

c2 =
1

8π2

∫

R4
Tr(F ∧ F ) . (10.8)

N is just the second Chern number expressed in terms of the components
of the field tensor.

We are concerned with finite action fields, which means that the field
strength must tend to zero as |x| → ∞. This implies that as |x| → ∞ the
gauge potential tends to a pure gauge, that is

Aµ = −∂µg∞(g∞)−1 (10.9)

for some g∞(x) ∈ SU(2), defined on the 3-sphere at spatial infinity. As
we explained in Section 3.5, N is an integer in this case, and is equal to
the degree of the map g∞ : S3

∞ !→ SU(2).
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One may also regard the gauge potential as a connection on an SU(2)
bundle over S4, with field strength F . The fact that we can equally
well regard the action as defined on S4 or R4 is because it is conformally
invariant, so the field equation is the same in either case. (Recall a similar
situation in Chapter 6 where we considered the conformally invariant O(3)
sigma model both in the plane and on the unit 2-sphere.) The integer N
is then the second Chern number of the bundle. The map g∞ between
3-spheres arises as the transition function specifying how the connection
defined over almost the whole of S4 is glued on to a connection defined
over a small neighbourhood of the point on S4 representing the point at
infinity in R4, and its degree is again N .

From (10.5) it is immediately clear that the bound (10.6) is attained
only by fields which are either self-dual or anti-self-dual

Fµν = ±⋆Fµν . (10.10)

Finite action solutions of the (anti-)self-dual Yang-Mills equation are
called (anti-)instantons and are global minima of the action within the
space of charge N fields. Such fields automatically satisfy the second
order Yang-Mills equation (10.3), because of the Bianchi identity. N is
positive for non-trivial self-dual fields and is interpreted as the number
of instantons. Generically a solution will have an action density which is
localized around N points in R4. (|N | is the number of anti-instantons if
N < 0.)

The general instanton solution for N = 1 was first found by Belavin et
al. [47]. This, and some particular multi-instanton solutions were later
constructed by ’t Hooft [402], using an ansatz that had been proposed
previously [93, 425] to simplify the Yang-Mills equations. To present this
ansatz we introduce the antisymmetric tensor σµν , with 2×2 Pauli matrix
values, defined by

σi4 = τi, σij = εijkτk, i, j ∈ {1, 2, 3} , (10.11)

which has the property that it is anti-self-dual, 1
2εµναβσαβ = −σµν . The

self-dual gauge potential is constructed from a real scalar field ρ via

Aµ =
i

2
σµν∂ν log ρ . (10.12)

(With the sign of σi4 reversed, σµν would be self-dual and one would
obtain an anti-self-dual gauge potential.) Substituting this ansatz into
the self-dual Yang-Mills equation (10.10) leads to the Laplace equation in
R4

∂µ∂µρ = 0 . (10.13)
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The 1-instanton is generated by the one-pole solution

ρ(x) = 1 +
λ2

|x − a|2 , (10.14)

where a ∈ R4 is an arbitrary constant 4-vector and |x|2 = xµxµ denotes
the standard Euclidean norm. The positive real constant λ is arbitrary
and represents the width of the instanton, in the sense that the action
density is maximal at the point x = a and decays algebraically with the
distance from this point in such a way that the action inside the 4-ball
|x − a| ≤ λ is 1

2π2, precisely half the total. Note that it may appear
that the gauge potential obtained from this ansatz is singular at a but in
fact this singularity is merely a gauge artifact and can be removed by a
suitable gauge transformation.

The five real parameters a, λ are easily understood as a consequence of
the translational and conformal symmetries of the self-duality equation,
in analogy with our discussion of sigma model lumps in Chapter 6.

As in our definition of the monopole moduli space, where we included an
additional U(1) factor corresponding to an overall phase, it is convenient
to include a constant SU(2) gauge transformation within the definition
of the instanton moduli space, leading to an additional three real param-
eters specifying the SU(2) orientation of the instanton. Thus, with this
addition, the moduli space M1 is eight-dimensional.

Although there are no dynamical aspects associated with instantons it
is still of interest to study the instanton moduli spaces and their met-
rics [111, 112]. For instantons on R4 these moduli spaces are concrete
examples of hyperkähler manifolds [186]. The metric on moduli space is
defined by restricting the natural metric on the configuration space of the
gauge theory to the submanifold of instantons. Let Aµ be an instanton
and let Xµ and Yµ be two tangent vectors to the space of instantons.
Explicitly, Xµ (and similarly Yµ) must be a solution of the linearized self-
dual equation, that is, DA

µ Xν − DA
ν Xµ must be self-dual. Xµ must also

be orthogonal to the gauge orbits, which is equivalent to the requirement
that it satisfies the background gauge condition

DA
µ Xµ = 0 . (10.15)

Then the metric is defined by

g(X, Y ) = −
∫

R4
Tr(XµYµ) d4x . (10.16)

The moduli space M1 is R4 × (R4)∗, where (R4)∗ is R4 with the origin
removed. The group SU(2), parametrizing the global orientation of the
instanton, acts by rotations on the factor (R4)∗, and the quotient is the
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upper half space in R5, with coordinates a ∈ R4 and λ > 0. The metric
on M1 is the flat metric of R8, and is incomplete at the origin because
the point-like instanton with λ = 0 is not a true solution of charge 1.

Note that this is the metric for one instanton on R4. Although the
self-dual condition is conformally invariant, the metric on the instanton
moduli space is not, essentially because the metric is related to instanton
dynamics which would take place in (4+1)-dimensions. The moduli space
metric for one instanton on S4 has been calculated [166], and is relatively
complicated.

By an index theorem calculation it was shown by Atiyah, Hitchin and
Singer [19] and by Schwarz [368] that the N -instanton moduli space, MN ,
has dimension 8N . When all the instantons are far apart, the 8N param-
eters may be interpreted as eight parameters for each of the N instantons,
giving the positions, scales and SU(2) orientations of each. For instantons
on R4, the metric on MN is hyperkähler, and Maciocia [271] has shown
that (up to a constant factor) the hyperkähler potential K has the simple
form

K =
∫

R4
|x|2Tr(FµνFµν) d4x . (10.17)

Again, MN is incomplete because one or more instantons can collapse to
zero size.

The ’t Hooft ansatz can be used to construct some charge N instantons
by taking the solution of the Laplace equation (10.13) to have N distinct
poles,

ρ(x) = 1 +
N∑

j=1

λ2
j

|x − aj |2
, (10.18)

with arbitrary widths and positions, producing a (5N + 3)-dimensional
family of charge N instantons when the overall SU(2) orientation is in-
cluded. Only for N = 1 does this ansatz capture the most general instan-
ton solution. For example, for N = 2 there are only 13 parameters here
instead of the 16 in the general solution. Note that the gauge potential
produced by the ’t Hooft ansatz tends rapidly to zero at spatial infinity;
in addition there are N singularities which can each be removed by a
gauge transformation g : S3 !→ SU(2) of unit degree, defined on a small
3-sphere surrounding the singularity. The topological charge is therefore
N .

The ’t Hooft ansatz was generalized by Jackiw, Nohl and Rebbi [215],
who noticed that (10.18) could be extended by acting with the conformal
group to produce the JNR ansatz

ρ(x) =
N∑

j=0

λ2
j

|x − aj |2
, (10.19)
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in which the number of poles is one greater than the number of instantons.
The topological charge is still N , because each singularity contributes one
unit to the charge, but one unit is subtracted because of the behaviour
of the gauge potential at infinity. The ’t Hooft form of ρ (10.18) can be
recovered from (10.19) in the limit in which λ0 = |a0| and the location of
the first pole, a0, is sent to infinity. Although the JNR ansatz appears to
yield a (5N + 8)-dimensional family of instantons, note that the logarith-
mic derivative in (10.12) means that the multiplication of ρ by a constant
does not alter the gauge potential, so only the ratios of the weights λj/λ0,
j = 1, . . . , N , are relevant, reducing the parameter count to 5N + 7.

If N = 1 then all the additional parameters of the JNR extension are
redundant, since the ’t Hooft ansatz together with global gauge rotations
already produces the general 8-parameter instanton. Explicitly, the two-
pole JNR ansatz with

ρ(x) =
λ2

0

|x − a0|2
+

λ2
1

|x − a1|2
(10.20)

produces an instanton which is gauge equivalent to a ’t Hooft instanton
with its position and scale given by

a =
λ2

0a1 + λ2
1a0

λ2
0 + λ2

1
, λ =

λ0λ1

λ2
0 + λ2

1
|a0 − a1| , (10.21)

and its SU(2) orientation defined by the direction of the line through the
poles a0 and a1.

Similarly, for the special case of N = 2, where the parameter count of
5N + 7 appears to exceed the 16 dimensions of the moduli space M2, it
turns out that one of the degrees of freedom corresponds to a gauge trans-
formation, which makes one parameter redundant, leaving precisely the
required number for the general solution. This is most easily understood
using a nice geometrical description of the two-instanton moduli space,
due to Hartshorne [173]. In this description each charge 2 instanton is
uniquely associated with a circle in R4 together with an ellipse, which is
in the same plane as the circle and interior to it, and furthermore satisfies
the Poncelet condition that there exists a triangle with vertices on the
circle and sides tangent to the ellipse. This pair of conics, an example
of which is shown in Fig. 10.1, is the gauge invariant two-instanton data.
The conics and the associated triangle are related to the JNR parameters
as follows. The three poles a0, a1 and a2 are the vertices of the triangle.
Let b0, b1 and b2 be the points on the sides of this triangle at which the
sides are tangent to the interior ellipse. Then the ratios of the weights
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are given by the formula

λ2
i

λ2
j

=
|ai − bk|
|aj − bk|

, (10.22)

where i, j, k are three distinct elements of the set {0, 1, 2}.

a

a

a

0

1

2

b

b

b

2

1

0

Fig. 10.1. The circle and ellipse associated with a 2-instanton, and one of the
family of triangles with vertices on the circle and tangent to the ellipse.

Given the two conics, Poncelet’s theorem states that there is a whole 1-
parameter family of triangles with vertices on the circle and sides tangent
to the ellipse. Given that the conics are the gauge invariant data, this
means that JNR data associated with two triangles in the same family
yield gauge equivalent instantons. The infinitesimal motion of the triangle
within the family corresponds to moving each pole ai around the circle by
an angle proportional to λ2

i . It is this freedom to move the poles around
the circle which accounts for the one redundant parameter in the JNR
two-instanton data.

For instantons on S4 the Hartshorne picture is similar. One should
regard S4 as embedded in R5. The circle and ellipse are coplanar in R5

and still satisfy the Poncelet condition. The circle lies on S4 whereas the
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ellipse is in the interior. For an instanton in R4 whose JNR poles are
collinear, the Hartshorne circle degenerates to a line and the ellipse is not
really visible in R4; however, this is just the case where the circle on S4

passes through the point corresponding to the point at infinity in R4. If
one of the JNR poles is also at infinity, then this corresponds to the ’t
Hooft ansatz.

Let us now return to the situation where the Hartshorne circle in R4

does not degenerate to a line. The two instantons being well separated
corresponds to the ellipse having a high eccentricity. For example, suppose
the ellipse almost touches the circle at the points a1 and a2, in which
case λi ≪ λ0 for i = 1, 2. Let us normalize the weights so that λ0 =
1. Then this configuration describes a superposition of two charge 1
instantons with approximate positions a1 and a2 and widths λ1|a1 − a0|
and λ2|a2−a0| respectively. The SU(2) orientation of the ith instanton is
associated with the direction of the line through the poles ai and a0, for
i = 1, 2.

A particularly symmetric 2-instanton arises if the three JNR poles have
equal weights and are located at the vertices of an equilateral triangle. In
this case the instanton is SO(2)-symmetric, because the two conics are
a pair of concentric circles with the ratio of their radii equal to 2. From
this description the symmetry is obvious. In terms of the JNR data a
rotation simply maps one member of the Poncelet family of triangles into
another, hence producing only a gauge transformation.

A generalization of this symmetric placement of JNR poles, with equal
weights, can be made to produce instantons of higher charge with dis-
crete symmetries, such as those of the Platonic solids. For example, for
N = 3 there are four poles and if these are taken to have equal weights
and to be located at the vertices of a regular tetrahedron in a subspace
R3 ⊂ R4, such as the slice x4 = 0, then clearly such an arrangement has
tetrahedral symmetry and involves an arbitrary scale, giving the size of
the tetrahedron. The generalization to other Platonic symmetry groups is
obvious; for example, the first JNR instanton with cubic symmetry occurs
for N = 5, when the six poles are placed at the vertices of an octahedron.
However, for the case of the cubic group there are symmetric instantons
of lower charge, in fact N = 4, but these are not of the JNR type, since it
is not possible to place five distinct points in R3 or R4 with cubic symme-
try. Later in this chapter we discuss how general symmetric instantons
can be obtained, including those which are not of the JNR type, such as
an icosahedrally symmetric 7-instanton and the above-mentioned cubic
4-instanton.

In summary, for N = 1 and N = 2 the JNR ansatz produces the most
general charge N instanton but for N > 2 it only generates a (5N +
7)-dimensional submanifold of the 8N -dimensional moduli space. The
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missing moduli, whose number for large N grows like 3N , may be thought
of as independent SU(2) orientations for each instanton.

Historically, the first multi-instanton solutions were found by Witten
[427] before the discovery of the ’t Hooft solutions. Witten’s approach
involves searching for instantons which have a four-dimensional cylindrical
symmetry, that is, an SO(3) rotational symmetry about the x4-axis. The
metric of R4 − R1 in cylindrical coordinates,

ds2 = (dx4)2 + dr2 + r2(dθ2 + sin2 θ dϕ2) (10.23)

with r = |x| > 0, becomes that of H2 × S2 by dividing by 1
2r2. x4 and

r are coordinates on H2, the hyperbolic plane with curvature −1
2 in the

upper half plane model, and SO(3) acts on θ and ϕ in the standard way.
As a result of this conformal equivalence

R4 − R1 ∼ H2 × S2 , (10.24)

the symmetry reduction of four-dimensional Yang-Mills theory leads to
an abelian Higgs model in H2.

Explicitly, in the Witten ansatz, the Cartesian components of the SU(2)
gauge potential are

Ai =
1
2

(
φ2 + 1

r2
εiakxk +

φ1

r3
(δiar2 − xixa) + ar

xixa

r2

)

ta

A4 = a4
xa

2r
ta . (10.25)

Here, ta = iτa and φ1, φ2, a4 and ar are arbitrary functions of x4 and r.
Witten argued that the ansatz is the most general one for fields invariant
under combined rotations and rigid gauge transformations, since it uses all
the available tensors. Witten’s insight was later verified by an analysis of
symmetric gauge fields along the lines described in Section 4.3 [136]. This
analysis clarifies that a4 and ar are the components of a gauge potential
on H2, the space of SO(3) orbits, and that (φ1, φ2) can be combined as
φ = φ1+iφ2, a complex Higgs field on H2. It also clarifies why the reduced
gauge group is U(1).

Using the ansatz, the self-dual Yang-Mills equation reduces to the Bo-
gomolny equations for vortices in the abelian Higgs model on H2, which
we discussed in Section 7.14.3. These equations are

D4φ + iDrφ = 0

B − 1
r2

(1 − φ̄φ) = 0 (10.26)

where B = ∂4ar − ∂ra4. The equations can again be solved by reduc-
ing them to the Liouville equation. The charge N instanton that Witten
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found is obtained from a degree N + 1 rational map in the complex co-
ordinate y = x4 + ir. There is a reality condition which relates the poles
and zeros of the rational map, together with a residual gauge invariance,
leading to 2N real degrees of freedom in the solution. In addition there
are three degrees of freedom for the gauge orientation. These instantons
are in fact a special case of ’t Hooft instantons in which the pole positions
are restricted to lie on the x4-axis [277]. The 2N degrees of freedom are
then the widths of the N unit charge instantons and their locations along
the axis.

In the following section we describe a construction which, in principle,
can be used to obtain the general charge N instanton by solving a purely
algebraic system.

10.2 The ADHM construction

The integrability of the self-dual Yang-Mills equation was first recognized
by Ward [412], who demonstrated that the twistor transform of Penrose
could be used to provide a correspondence between instantons and certain
holomorphic vector bundles over the twistor space CP3 [420]. There are
two alternative methods for constructing the appropriate bundles; the
first involves obtaining the bundle as an extension of line bundles and
leads to the Atiyah-Ward construction [23, 95], whereas the second is the
method of monads which was applied by Atiyah, Drinfeld, Hitchin and
Manin [18] to yield the ADHM construction.

The ADHM construction was formulated in terms of local data by
physicists [94, 84], where it becomes a prescription that generates the
gauge potential of the general charge N instanton from matrices satis-
fying certain algebraic, but nonlinear, constraints. It is this form of the
ADHM construction which we now present.

The ADHM data for an SU(2) N -instanton combine into a matrix

M̂ =
(

L
M

)
(10.27)

where L is a row of N quaternions and M is a symmetric N × N ma-
trix of quaternions. In other words, each element of the matrix M̂ is a
quaternion of the form q =

∑4
µ=1 qµeµ, where qµ ∈ R, e4 = 1 denotes

the quaternionic identity element and e1, e2, e3 satisfy the quaternion re-
lations e2

1 = e2
2 = e2

3 = −1 and e1e2 = e3 = −e2e1, etc. We use a 2 × 2
Pauli matrix representation of the quaternions in which e4 is the identity
matrix and ej = −iτj for j = 1, 2, 3. With this choice it is clear that a
pure quaternion, that is, a quaternion q for which q4 = 0, can be identi-
fied with an element of su(2), which is an important aspect of the ADHM
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construction. On the other hand, a real quaternion q4e4 is identified with
the real number q4.

To be valid ADHM data the matrix M̂ must satisfy the nonlinear reality
constraint

M̂ †M̂ = R0 , (10.28)

where † denotes the quaternionic conjugate transpose and R0 is any real
non-singular N × N matrix. (The operation † transposes the matrix
and replaces each entry q = q1e1 + q2e2 + q3e3 + q4e4 by its conjugate
q† = −q1e1 − q2e2 − q3e3 + q4e4.)

The first step in constructing the instanton from the ADHM data is to
form the matrix

∆(x) =
(

L
M − x1N

)
, (10.29)

where 1N denotes the N ×N identity matrix and x is the quaternion cor-
responding to a point in R4 via x = xµeµ. The second step is then to find
the (N+1)-component column vector Ψ(x) of unit length, Ψ(x)†Ψ(x) = 1,
which solves the equation

Ψ(x)†∆(x) = 0 . (10.30)

The final step is to compute the gauge potential Aµ(x) from Ψ(x) using
the formula

Aµ(x) = Ψ(x)†∂µΨ(x) . (10.31)

This defines a pure quaternion which can be regarded as an element of
su(2) as discussed above.

In order for all these steps to be valid, the ADHM data must satisfy an
additional invertibility condition, which is that the columns of ∆(x) span
an N -dimensional quaternionic space for all x. In other words,

∆(x)†∆(x) = R(x) (10.32)

where R(x) is a real N × N invertible matrix for every x.
There is a freedom in choosing Ψ(x) given by Ψ(x) !→ Ψ(x)q(x), where

q(x) is a unit quaternion, satisfying q†q = 1. The unit quaternions can
be identified with SU(2) and from Eq. (10.31) we see that this freedom
corresponds to a gauge transformation.

It is relatively straightforward to verify that the above procedure yields
a self-dual gauge field, as we now show.

From the definition (10.31) it follows that the gauge field tensor is given
by

Fµν = ∂µΨ†∂νΨ + Ψ†∂µΨΨ†∂νΨ − ∂νΨ†∂µΨ − Ψ†∂νΨΨ†∂µΨ , (10.33)
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which can be rearranged, using the fact that Ψ has unit length, as

Fµν = ∂µΨ†(1N − ΨΨ†)∂νΨ − ∂νΨ†(1N − ΨΨ†)∂µΨ . (10.34)

Note that the operator 1N − ΨΨ† projects onto the quaternionic sub-
space orthogonal to Ψ. Using the definition of R in Eq. (10.32) and the
orthogonality property (10.30) this projector can be rewritten as

1N − ΨΨ† = ∆R−1∆† , (10.35)

so that the field tensor becomes

Fµν = ∂µΨ†∆R−1∆†∂νΨ − ∂νΨ†∆R−1∆†∂µΨ . (10.36)

Differentiating Eq. (10.30) provides the identity ∂µΨ†∆ =−Ψ†∂µ∆, whose
application, together with its conjugate, to the above expression leads to

Fµν = Ψ†∂µ∆R−1∂ν∆†Ψ − Ψ†∂ν∆R−1∂µ∆†Ψ . (10.37)

Now
∂µ∆ = −eµ1̃N , (10.38)

where 1̃N is the constant real (N + 1)×N matrix whose first row is zero
and whose remaining N × N block is the identity matrix. We therefore
arrive at the final expression

Fµν = −Ψ†1̃NR−1(eµe†ν − eνe
†
µ)1̃†NΨ , (10.39)

where we have used the fact that R−1 is a real matrix and hence commutes
with the quaternion eµ. The purely tensorial part of this expression is the
combination

ηµν = eµe†ν − eνe
†
µ , (10.40)

which, as is easily checked using the quaternion or Pauli matrix algebra,
is self-dual, ⋆ηµν = ηµν , and therefore the construction yields a self-dual
gauge field as stated.

Let us now check that the number of real parameters in the ADHM
data is 8N , as required to produce the general N -instanton solution. In
the ADHM matrix M̂ there are 4N real parameters in the row vector
L and 2N(N + 1) real parameters in the symmetric matrix M . The
constraint (10.28) removes 3

2N(N − 1) of these, three for each of the
upper triangular entries of the matrix R as a consequence of setting
the pure quaternion part to zero. There is a further redundancy in the
ADHM data corresponding to the transformation

∆(x) !→
(

q 0
0 O

)
∆(x)O−1 , (10.41)
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where O is a constant real orthogonal N ×N matrix, q is a constant unit
quaternion and the decomposition into blocks is as in Eq. (10.29). The
transformation rotates the components of the vector Ψ, as can be seen
from its definition (10.30), but this does not change the gauge potential
derived from the formula (10.31). There are 1

2N(N − 1) parameters in
the matrix O ∈ O(N), and three in the unit quaternion q, but we do not
subtract out these last three since they are balanced by the three which
occur in the overall SU(2) orientation. The final tally reads

4N + 2N(N + 1) − 3
2
N(N − 1) − 1

2
N(N − 1) = 8N , (10.42)

as required.
For the simple case of N = 1 the ADHM data may be taken to have

the form
M̂ =

(
λ
a

)
, (10.43)

where λ is real and positive and a is an arbitrary quaternion. The ADHM
constraint (10.28) is then trivially satisfied and this generates an instanton
with width λ and position in R4 corresponding to a. For N = 2 and
N = 3 the general solution of the ADHM constraints can also be found
[84, 245], but for N > 3 it is difficult to obtain explicit solutions and
the general solution is not known. In the following section we describe
how some explicit ADHM data can be found by searching for particularly
symmetric instantons.

As a final point, the tangent vectors required to compute the moduli
space metric can also be determined within the ADHM formalism, al-
lowing the metric to be calculated on the space of ADHM data. This
approach is similar to that described in Chapter 8, where the monopole
moduli space metric was in some examples calculated as a metric on the
space of Nahm data. Stated more formally, the natural metric on the
space of (N + 1)×N matrices satisfying the ADHM constraints, modulo
the O(N) action, is isometric to the natural metric on MN , the space of
N -instantons modulo gauge transformations [271].

10.3 Symmetric instantons

Symmetric instantons within the ADHM formulation are described in
detail in ref. [376]. We will describe the main aspects here, and give a
few examples. We are interested in instantons which are symmetric under
the action of a finite rotation group K ⊂ SO(3) acting on the coordinates
(x1, x2, x3) of R3 ⊂ R4 and leaving x4 alone. As in our previous discussion
of symmetric Skyrmions, it is convenient to work with the double group of
K, which we continue to denote by K. Now we can exploit the equivalence
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of SU(2) and the group of unit quaternions to represent an element of
K by a unit quaternion, which fits with the quaternionic representation
of a point x ∈ R4 used in the ADHM construction. Explicitly, a spatial
rotation acts by conjugation by a unit quaternion k

x !→ kxk−1 , (10.44)

which clearly fixes the x4 (real) component and transforms the pure part
by the SO(3) rotation corresponding to the SU(2) element represented
by k. The ADHM data of an N -instanton are K-symmetric if for every
k ∈ K the spatial rotation (10.44) leads to gauge equivalent ADHM data.
Recalling the redundancy (10.41), the requirement is that for every k

(
L

M − kxk−11N

)
=
(

q 0
0 Ok

)(
L

M − x1N

)
k−1O−1 , (10.45)

where, as earlier, O ∈ O(N) and q is a unit quaternion, both being k-
dependent. The set of matrices O(k), as k runs over all the elements
of K, forms a real N -dimensional representation of K, and similarly
the set of quaternions q(k) forms a complex two-dimensional represen-
tation. The procedure to calculate K-symmetric ADHM data is there-
fore first to choose a real N -dimensional representation and a complex
two-dimensional representation of K and then to find the most general
matrices L and M compatible with Eq. (10.45). Hopefully, these matrices
then contain just a few free parameters to make the ADHM constraint
(10.28) tractable, yet non-trivial.

Although we have already pointed out that the simplest example of
a tetrahedrally symmetric 3-instanton can be obtained easily within the
JNR approach, it is instructive to see how the more general symmetric
ADHM scheme works in this simple case [191, 376].

The relevant representations for the T -symmetric 3-instanton are (fol-
lowing our earlier notation) the three-dimensional representation F and
the two-dimensional representation E′. The tetrahedral group is gener-
ated by a 180◦ rotation about the x3-axis, which in the double group
becomes the unit quaternion k1 = e3, together with a 120◦ rotation
about the line x1 = x2 = x3, which becomes the unit quaternion k2 =
1
2(1 − e1 − e2 − e3). In F these two elements are represented by

O1 =

⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ , O2 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , (10.46)

respectively, whereas the two-dimensional representation E′ is the restric-
tion 2|T so that the two generators are simply represented by q1 = k1 and
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q2 = k2. It is then a simple matter to verify that the ADHM matrix

M̂ =

⎛

⎜⎜⎝

e1 e2 e3

0 e3 e2

e3 0 e1

e2 e1 0

⎞

⎟⎟⎠ (10.47)

satisfies the constraint (10.28) and the symmetry condition (10.45) for
both these generators of the tetrahedral group, with the explicit matrices
given above. An arbitrary scale can be introduced by multiplying M̂ by a
constant real number, and this 1-parameter family precisely corresponds
to the family of instantons generated using the JNR ansatz by placing
the four poles on the vertices of a tetrahedron centred at the origin, as
described earlier.

A more complicated example is the ADHM data of a 7-instanton with
icosahedral symmetry [376]. In this case, the appropriate representations
of Y are the real, reducible seven-dimensional representation F2 ⊕G and
the complex two-dimensional representation E′

2. The icosahedral (double)
group is generated by the three elements in the group of unit quaternions

k1 = e2, k2 = −1
2
(e1 + τe2 − τ−1e3), k3 = e1 , (10.48)

where τ = 1
2(
√

5 + 1) is the golden mean.
In E′

2 the three generators are represented by

q1 = e2, q2 = −1
2
(e1 − τ−1e2 + τe3), q3 = e1 , (10.49)

(note the replacement τ !→ −τ−1). In F2 and G they are represented
by

O1 =

⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ , O2 = −1
2

⎛

⎝
1 τ−1 −τ

τ−1 τ 1
−τ 1 −τ−1

⎞

⎠ ,

O3 =

⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ , (10.50)

and

O′
1 =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠ , O′
2 =

1
4

⎛

⎜⎜⎝

−1
√

5 −
√

5 −
√

5√
5 3 1 1

−
√

5 1 −1 3
−
√

5 1 3 −1

⎞

⎟⎟⎠ ,
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O′
3 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ , (10.51)

respectively. The reader may then verify that the constraint and symme-
try conditions with these matrices are satisfied by the ADHM data

M̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 e1 e2 e3 0 0 0
0 0 0 0 e1 e2 e3

0 0 0 0 0 τe3 τ−1e2

0 0 0 0 τ−1e3 0 τe1

0 0 0 0 τe2 τ−1e1 0
e1 0 τ−1e3 τe2 0 0 0
e2 τe3 0 τ−1e1 0 0 0
e3 τ−1e2 τe1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.52)

We have again centred the instanton at the origin in R4, and still have
the freedom to multiply M̂ by an arbitrary real scale factor.

Other symmetric ADHM data can be constructed in a similar fash-
ion; for example, the ADHM data of a cubic 4-instanton are presented
in [260]. It would be amusing to investigate instantons in R4 that are
symmetric under one of the Platonic symmetry groups of R4, especially
the symmetries of one of the exotic polytopes (the 24-cell, the 120-cell or
the 600-cell) that have no R3 analogues.

In fact, the original motivation for searching for the symmetric instan-
tons described above stems from a connection with Skyrmions, to which
we now turn.

10.4 Skyrme fields from instantons

In Chapter 9 we discussed two methods of constructing approximate
charge B Skyrmions, the product ansatz and the rational map ansatz,
but both of these approximations have disadvantages.

The problem with the product ansatz is that it is only a good descrip-
tion of B well separated, unit charge Skyrmions; it can also be used to
approximate the hedgehog, saddle point solution, but not to get close to
the minimal energy Skyrmion. The rational map ansatz suffers from the
opposite deficiency, in that it provides a good approximation to Skyrmions
of minimal energy, and also to some low energy saddle point solutions, but
does not contain any degrees of freedom to allow the individual Skyrmions
to separate. (This is perhaps just a defect of the ansatz as we have pre-
sented it. There may be a cleverer ansatz which lets the Skyrmions sep-
arate as the rational map parameters vary, just as monopoles separate
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when the parameters of a Jarvis rational map vary.) In this section we
describe a third method which can be used to construct charge B Skyrme
fields, including well separated Skyrmions in arbitrary positions and ori-
entations, and good approximations to the minimal energy solutions. This
approach uses Yang-Mills instantons.

The Skyrme fields from instantons scheme was first proposed in [21]
and involves computing the holonomy of SU(2) instantons in Euclidean
R4 along lines parallel to the x4-axis. Explicitly, the prescription for the
Skyrme field is to take

U(x) = P exp
(∫ ∞

−∞
A4(x, x4) dx4

)
(10.53)

where P denotes path ordering and Aµ is the gauge potential of a Yang-
Mills instanton in R4, and where x = (x1, x2, x3). Since A4 takes values
in the Lie algebra su(2), its exponential is valued in the group SU(2), so
that U(x) : R3 !→ SU(2), as required for a static Skyrme field.

More precisely, the end points −∞ and ∞ should both refer to the single
point on S4 corresponding to the point at infinity in R4. The holonomy
is then along a closed loop in S4, and is almost gauge invariant. The
only effect of a gauge transformation g(x) is to conjugate U(x) by a fixed
element g(∞). This corresponds to an isospin rotation of the Skyrme
field. Also, the boundary condition U → 12 as |x| → ∞ is satisfied in this
scheme, because the loop on S4 tends to zero size in this limit. In practice,
ensuring the holonomy is along a closed loop means that sometimes an
additional factor should be included in the formula (10.53), namely the
transition function that connects ∞ back to −∞. For an instanton given
by the ’t Hooft ansatz, the formula (10.53) is complete as it stands, but
for the JNR ansatz, an additional factor of −1 is required. In an axial
gauge, where A4 = 0, the holonomy would be entirely contained in the
transition function at infinity.

There is no real need for the Yang-Mills field to be an instanton. How-
ever, by restricting the scheme to instantons one obtains a quite large,
but still finite-dimensional family of interesting Skyrme fields. Such fields
are never exact solutions of the Skyrme equation but some can be good
approximations to minimal energy Skyrmions and other important field
configurations.

If Aµ is a self-dual Yang-Mills field with instanton number (second
Chern number) N then it follows from general topological considerations
that the resulting Skyrme field has baryon number B = N . This can
also be verified using specific examples, and the general result follows by
continuity. The construction yields an (8N − 1)-dimensional family of
Skyrme fields from the 8N -dimensional moduli space of charge N instan-
tons; one parameter is lost since a translation of the instanton in the x4
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direction does not change the Skyrme field, due to the integration over
the x4 coordinate.

As the basic example, the charge 1 instanton, given by the one-pole ’t
Hooft ansatz (10.14) with width λ and position a = 0, generates a Skyrme
field of the hedgehog form (9.18) with a profile function given by

f(r) = π

⎡

⎣1 −
(

1 +
λ2

r2

)−1/2
⎤

⎦ . (10.54)

Instantons are scale invariant, so the parameter λ is arbitrary and can
be chosen to minimize the energy of the resulting Skyrme field. The
appropriate value of the scale is λ2 = 2.11, and then the energy is E =
1.243, which is only 1% above that of the true Skyrmion solution.

The main difficulty with this construction is the computation of the
holonomy, due to the fact that the integration is path ordered. To com-
pute the path ordered exponential (10.53) one must introduce the quantity
Ũ(x, x4) and solve the (matrix) ordinary differential equation

∂Ũ

∂x4
= A4Ũ (10.55)

along the real line x4 ∈ (−∞,∞), with x regarded as a parameter, and
with the initial condition Ũ(x,−∞) = 12. The Skyrme field U(x) is then
obtained as the end point of the x4-flow, that is, U(x) = Ũ(x,∞). In
general, the direction of A4 in the su(2) algebra will vary with x4, so
Eq. (10.55) represents a complicated set of coupled equations whose so-
lution can not be obtained in closed form, even if the instanton gauge
potential is given explicitly, which it sometimes is, but not always. How-
ever, a simplification arises if A4 is proportional to a fixed element of the
algebra for all x4, since the holonomy is then essentially abelian, with the
result that the solution of (10.55) can be obtained by elementary integra-
tion. This is the case for the 1-instanton, leading to the explicit hedgehog
profile expression (10.54). For more general instantons, although the inte-
gration can not be performed analytically it can be done numerically, by
solving an ODE at each spatial point where the Skyrme field is required.

In this scheme, the charge 2 instantons generate a 15-dimensional fam-
ily of Skyrme fields which includes configurations with two well separated
Skyrmions with arbitrary positions, orientations and scales (which can
be fixed by minimization of the energy as in the charge 1 sector). This
accounts for fourteen of the instanton parameters and the final one, which
corresponds to the x4-separation of the two instantons, has little effect.
As described earlier, a particularly symmetric 2-instanton arises if the
three JNR poles have equal weights and are located at the vertices of
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an equilateral triangle in the spatial slice x4 = 0. In this case, the in-
stanton and resulting Skyrme field is axially symmetric. With a suitable
scale for the equilateral triangle this instanton produces a good approx-
imation to the minimal energy axially symmetric B = 2 Skyrmion. An
approximation to the spherically symmetric B = 2 hedgehog solution can
also be obtained, this time by placing the three poles on the x4-axis, and
minimizing the energy within this class. These examples show that the
15-dimensional space of Skyrme fields generated by instantons are a good
candidate for a finite-dimensional truncation of the charge 2 sector of the
Skyrme model. Furthermore, this 15-dimensional manifold appears to
contain a 12-dimensional submanifold obtained as the unstable manifold
of the hedgehog, and this is likely to be qualitatively very similar to the 12-
dimensional manifold constructed using the gradient flow in the full field
configuration space starting with the exact B = 2 hedgehog solution, as
described in Chapter 9. For further details see ref. [22]. A 10-dimensional
submanifold of the instanton-generated Skyrme fields, corresponding to
two Skyrmions in the attractive channel, was actually used to study the
quantization of the B = 2 Skyrmion in [261], producing a reasonable
model of the deuteron. The relevant instantons have a Hartshorne circle
and ellipse in a spatial plane, with coincident centres, and hence a triplet
of reflection symmetries.

Recall from Chapter 9 that for B > 2 the minimal energy Skyrmions
have discrete symmetries. This naturally leads to the question whether
suitable symmetric instantons exist to generate Skyrme fields with these
symmetries, and motivated the original study of symmetric instantons.
The explicit ADHM data presented in the previous section provide the
answer for the examples of the tetrahedrally symmetric 3-Skyrmion and
the icosahedrally symmetric 7-Skyrmion. The holonomies of these sym-
metric instantons yield good approximations to the Skyrmions, provided
the scales are chosen optimally [260, 376].

By considering infinitesimal variations of the ADHM data in the neigh-
bourhood of the tetrahedrally symmetric 3-instanton it is possible to
classify many of the vibrational modes of the associated minimal energy
3-Skyrmion (in fact, 23 modes in total, including nine zero modes and
the breather mode), in a similar way as described in Chapter 9 using
the rational map ansatz. This calculation [191] reproduces the results of
the rational map approach, which provided the lowest-lying vibrational
modes below the breather, and provides further modes which match the
next lowest set of vibrational modes computed from full field simulations.

As discussed in Chapter 9, there is a close analogy between Skyrmion
and monopole scattering through symmetric configurations. As a partic-
ular example, this analogy suggests that there should be a Td-symmetric
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scattering of seven Skyrmions, in which the field passes through the icosa-
hedrally symmetric 7-Skyrmion twice (in different orientations) and the
cubic charge 7 saddle point once. Such a scattering can be approx-
imated using instanton holonomies created from a 1-parameter family
of Td-symmetric 7-instantons, where variation of the parameter is inter-
preted as time evolution, in a similar manner to the geodesic description
of monopole scattering. The ADHM data of an appropriate family of
tetrahedral 7-instantons were derived in [376], which of course contain
the icosahedral ADHM data (10.52) as a special case, and also contain
a cubic instanton which is equivalent to one obtained by placing eight
equal weight JNR poles on the vertices of a cube. The associated dynam-
ics of the generated Skyrme field is displayed in Fig. 10.2 as a sequence
of baryon density isosurfaces.

At the start (picture 1) there are clearly six unit charge Skyrmions
on the Cartesian axes and a Skyrmion at the origin. As the Skyrmions
approach (picture 2), the one at the origin shrinks until it disappears com-
pletely (picture 3). The Skyrmions then merge until the B = 7 dodecahe-
dron is formed (picture 5), after which the configuration deforms until it
turns into a cube (picture 8). This process is then reversed, rotated by 90◦
around the x1-axis, so that the dual dodecahedron is formed (picture 11),
and the Skyrmions finally separate again along the Cartesian axes (picture
15). The true dynamical evolution depends upon the initial speeds of the
incoming Skyrmions, which affects the amount of energy lost through radi-
ation as the process evolves. If the incoming speeds are great enough then
the whole scattering process displayed in Fig. 10.2 should take place. Ra-
diation effects will mean that for most low speeds the incoming Skyrmions
will eventually get trapped at one of the dodecahedra, and perhaps if the
Skyrmions are initially static then only the first portion of the scattering
process will occur and the cube may never be formed. Full field simu-
lations with initial conditions given by the instanton-generated Skyrme
field verify that the true dynamical evolution does follow the sequence
described above, so the instanton-generated Skyrme fields provide an ac-
curate approximation to the Skyrmion scattering process.

The Skyrmions from instantons scheme also gives an approximation to
the Skyrme crystal, as the holonomy of an instanton on T4 [296], but un-
fortunately there is no known explicit expression for the relevant periodic
instanton or Skyrme field.

Recall that in earlier chapters we commented that sine-Gordon kinks
represent a toy model for Skyrmions in two dimensions lower, and planar
sigma model lumps are similarly an analogue of Yang-Mills instantons.
It is amusing that these two analogies can be linked by the instanton
holonomy construction, in that good approximations to sine-Gordon kinks
can be obtained by computing the holonomy of lumps in the O(3) sigma
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Fig. 10.2. Baryon density isosurfaces for a family of B = 7 Skyrme fields ob-
tained from a family of N = 7 instantons.
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model when formulated as a U(1) gauge theory [389].

10.5 Monopoles as self-dual gauge fields

In the previous section we have described an approximate connection
between Skyrmions and instantons, but in fact there is an exact link
between monopoles and anti-self-dual gauge fields which has been known
for longer [77, 276].

Consider a gauge potential Aµ in R4 which has a translational symme-
try, so that it is independent of the coordinate x4, and rename the com-
ponent along the direction of symmetry A4 = Φ. The result is a gauge
potential Ai and scalar field Φ defined in R3, with Φ transforming as an
adjoint Higgs field under x4-independent gauge transformations. More-
over, with this dimensional reduction the anti-self-dual Yang-Mills equa-
tion (10.10) becomes the Bogomolny equation (8.86) for monopoles in R3.
Note that no anti-instanton can correspond to a monopole via this iden-
tification since the property of finite action required for an anti-instanton
prevents a translationally invariant gauge potential, which trivially has
infinite action. However, rather remarkably, the spherically symmetric
1-monopole can be derived from the anti-self-dual version of the ’t Hooft
ansatz (10.12) by taking the solution of the Laplace equation (10.13) to
be

ρ =
sinh 2r

r
e2ix4

, (10.56)

where r is the three-dimensional radial coordinate. There are a couple
of remarks to make about this construction. The first is that although ρ
depends on x4, the gauge potential defined by the logarithmic derivative
(10.12) is independent of x4, as required here. The second remark is that
in the construction of anti-instantons the solution of the Laplace equation
is required to be real, which is not the case here. However, it turns out
that the fields generated by the solution (10.56), although complex, can
be made real via a complex gauge transformation, and then the fields
are precisely those of the standard 1-monopole. Unfortunately, no real
multi-monopoles can be constructed from the ’t Hooft ansatz.

An alternative approach to constructing the 1-monopole in R3 involves
an infinite chain of anti-instantons in R4 [78], with particular locations
and scales so that the infinite sum can be calculated in closed form and
yields a monopole in a certain limit. The apparent non-trivial periodicity
in x4 disappears in the limit, and the field becomes independent of x4.
This also has a lower-dimensional analogue, with an exact sine-Gordon
kink produced by an infinite chain of sigma model lumps [390].

There is a close relationship between finite action anti-instantons and
monopoles in hyperbolic space, as pointed out by Atiyah [15]. In the above
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we considered anti-self-dual gauge fields with a translational symmetry
but Atiyah’s observation is based on anti-self-dual gauge fields with a
rotational symmetry. To be explicit, consider a gauge potential in R4

symmetric under a circle action, say, rotations in the (x3, x4) plane. The
fixed set of the circle action is the (x1, x2) plane. If this is removed, then
the circle action is free, and there is a conformal equivalence between
(R4 − R2)/S1 and hyperbolic 3-space H3, which can be understood in
terms of coordinates as follows. Write the Euclidean metric on R4 in the
form

ds2 = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

=
r2

R2

[
R2
((dx1)2 + (dx2)2 + dr2

r2

)
+ R2dθ2

]
, (10.57)

where R is a positive constant parameter, and we have introduced polar
coordinates r, θ in the (x3, x4) plane, with r > 0 and 0 ≤ θ < 2π. Now
drop the conformal factor r2/R2. The first term in the square brackets
is the metric on hyperbolic 3-space of curvature −1/R2, in terms of its
standard description as the upper half space in R3, and the remaining
term is the metric on the circle of radius R, which can be removed by
quotienting by the circle action. Note that r = 0 is the boundary (at
infinity) of H3, which is why this plane must be deleted in the conformal
identification.

In analogy with the dimensional reduction by a translation symmetry,
one may here perform the dimensional reduction by the circle symmetry,
generated by the vector field ∂θ. Since the Yang-Mills equation is confor-
mally invariant, the dropping of the conformal factor r2/R2 has no effect.
After defining Aθ = Φ, the anti-self-dual Yang-Mills equation (10.10) be-
comes the Bogomolny equation for monopoles in H3 (8.365). There do
exist circularly symmetric finite action anti-instantons and these yield
hyperbolic monopoles. Now the anti-instanton extends smoothly to the
(removed) (x1, x2) plane, and here a rotation by α can be compensated by
a gauge rotation by pα for some integer p. For consistency, the curvature
of the hyperbolic space must be −1/p2. This procedure has been per-
formed explicitly [79, 315] to yield the spherically symmetric 1-monopole
in hyperbolic space, but it is not a practical method for constructing
multi-monopoles.

Instead, the ADHM construction restricted to circularly symmetric
anti-instantons can be interpreted as a set of difference equations [62]
whose solutions can be used to obtain hyperbolic monopoles, in a similar
way that solutions of the Nahm equation give Euclidean monopoles. In
fact, this set of difference equations is an integrable, lattice discretiza-
tion of the Nahm equation [311], and the continuum limit in which the
lattice spacing tends to zero corresponds to the zero curvature limit, so
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the appearance of the Nahm equation on one side of the transform and
Euclidean monopoles on the other is consistent.

The connection between circularly symmetric Yang-Mills fields in R4

and monopoles in H3 has suggested a method to prove the existence of
solutions of the second order Yang-Mills field equation which are nei-
ther self-dual nor anti-self-dual [375]. In parallel with the above descrip-
tion of S1-invariant anti-self-dual gauge fields as Bogomolny hyperbolic
monopoles, there is a similar correspondence at the level of the second
order field equations. Adapting the methods of Taubes, mentioned in
Chapter 8 and to be described in more detail in Section 11.4, to prove
the existence of non-Bogomolny solutions of the Yang-Mills-Higgs equa-
tions in Euclidean R3, Sibner, Sibner and Uhlenbeck [375] were able to
prove a similar result in hyperbolic space H3, and hence prove the ex-
istence of circularly symmetric solutions of the second order Yang-Mills
equation in R4 which are not (anti-)self-dual. These unstable solutions
are expected to be composed of instanton-anti-instanton pairs, though
no explicit solutions are available, even numerically, to investigate their
detailed properties.

An intermediate object between an anti-instanton and a monopole is
a non-trivially periodic anti-instanton, or caloron [172, 116]. This is an
anti-self-dual gauge field which is periodic in one spatial direction, in
other words an anti-instanton on R3 × S1. The name caloron refers to
the relevance of Yang-Mills fields on R3 × S1 to the quantum theory at
finite temperature. As the period tends to infinity an anti-instanton on R4

can be recovered, and as the period tends to zero a monopole is obtained.
The Nahm transform applies equally well to calorons as to monopoles and
recently progress has been made in explicitly constructing calorons and
understanding their structure in terms of monopole constituents [141].

As we have seen, a simple dimensional reduction of the integrable anti-
self-dual Yang-Mills equation leads to the integrable Bogomolny equation
for monopoles. The Nahm equation, which is also integrable, can be
interpreted in a similar fashion as the dimensional reduction of the self-
dual Yang-Mills equation under three translational symmetries. Ward
[417] pointed out that other well known integrable systems, such as the
sine-Gordon equation, can also be obtained as dimensional and algebraic
reductions of self-dual Yang-Mills, and suggested that the self-dual Yang-
Mills equation might be a master integrable system from which many (if
not all) integrable equations could be derived. Since this original sugges-
tion, a plethora of known integrable equations (and some new ones) have
been proved to fit into this scheme – see for example the book on this
topic by Mason and Woodhouse [297] – though some higher-dimensional
integrable systems such as the KP equation do not appear to fit in a natu-
ral way. In this context it is often necessary to begin with the self-duality
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equation in (2+2)-dimensions, which is still real, rather than in (4+0)-
dimensions. The intermediate case of (3+1)-dimensions is not tractable
since the Hodge dual introduces a factor i, which means there can be no
real self-dual gauge fields in ordinary Minkowski space.

10.6 Higher rank gauge groups

In this chapter we have restricted our discussion to SU(2) instantons,
but this gauge group can obviously be replaced by one of higher rank,
such as SU(m), SO(m) or Sp(m), and not only do instantons still exist,
classified by a single integer, the second Chern number, but the ADHM
construction can be applied in essentially the same manner. In the case
of SU(m), the moduli space of N -instantons has dimension 4mN and is
always a hyperkähler manifold. If 0 < N < 1

2m then all N -instantons can
be obtained by a simple embedding of instantons of a smaller gauge group,
but if N ≥ 1

2m this is no longer the case and there are non-embedded
instantons. Similar results apply for other gauge groups.

For SU(m) N -instantons on the 4-torus T4 there is a duality, because
the Nahm transformation maps this space of instantons to the space of
instantons on the dual torus (with periods replaced by their inverses)
where the gauge group and instanton number are also swapped, that is,
the mapping is to SU(N) m-instantons [63].

The instanton holonomy construction has also been applied to SU(m)
instantons [144, 204] to obtain approximations to known spherically sym-
metric SU(m) Skyrmions, which have some amusing properties [163, 205].



11
Saddle points – sphalerons

11.1 Mountain passes

For much of this book we have been seeking and studying stable soliton
solutions in various field theories. Occasionally we have found unstable
solutions of the field equations, for example, the hedgehog solutions of
the Skyrme equation for |B| > 1. These were usually minima of the
energy within a subclass of fields with a certain symmetry, but saddle
points of the energy in the space of all field configurations. One might
say that these saddle points were found accidentally. In this chapter we
shall describe a more systematic, topological, approach to saddle point
solutions. We shall also comment on their interpretation and physical
significance.

The basic idea is the following [267]. Suppose on a connected, compact
manifold X, there is defined a bounded, twice differentiable potential
energy function V . Think of V as the height on X. Suppose that V has
two isolated local minima, at x0 and x1. Then there is also a saddle point
of V at some point of X. This saddle point is the “mountain pass” between
x0 and x1. One can show its existence by considering all the paths from
x0 to x1. Along each path c, V has a maximal value Vc attained at some
point xc. Let V∗ be the infimum over all paths c of the values Vc. Then
there is a sequence of paths c1, c2, . . . such that limn→∞ Vcn = V∗, and
among these is a subsequence, such that limn→∞ xcn = x∗ exists. At the
limiting point x∗, which is the mountain pass, V = V∗. x∗ is the highest
point along a path from x0 to x1, but it is the lowest possible such highest
point. See Fig. 11.1 for a sketch of this situation. An important extension
of this result is the following. Suppose π1(X) is non-trivial. Let x0 be
the isolated point on X where V has its minimum. Consider all the paths
on X, beginning and ending at x0, in some particular homotopy class of
π1(X) that is not the identity class. Thus the loops are non-contractible.

441
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Fig. 11.1. Sketch of a contour plot of a function V, showing two local minima
at x0 and x1, and a saddle point at x∗. The maximum of V along the path c is
at xc.

On each path c, again find the point where V attains its maximum Vc.
Then find the infimum V∗ of the values Vc. Since X is compact, this
infimum is attained. There is a path (not unique) from x0 to x0, along
which the maximal value of V is V∗ at a point x∗. x∗ is a saddle point of
V on X.

Note that x∗ can not be either x0 or x1 in the first example. If it were,
then there would be a path from x0 to x1 along which V is constant (since
the maximal and minimal values of V along the path would be equal). So
the minima of V at x0 and x1 would not be isolated. Similarly, x∗ can not
be x0 in the second example. If it were, there would be a non-contractible
loop in X, based at x0, along which V was constant. Again, the minimum
of V at x0 would not be isolated.

The arguments leading to these saddle points of V each suggest that at
x∗, V has just one unstable direction. Indeed, consider the (symmetric)
matrix of second derivatives of V at x∗. Provided its eigenvalues are all
non-zero, then there is precisely one negative eigenvalue. If there were two
or more negative eigenvalues, then a path through x∗ could be deformed
so that the potential energy along the path would be everywhere lower
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than V∗, contradicting the definition of x∗.
Of course, V could have unstable saddle points where the second deriva-

tive matrix has more than one negative eigenvalue. But such saddle points
will not be found by considering a set of non-contractible loops (or paths
between two points). One may find them by considering a set of non-
contractible spheres Sn, all belonging to a given class of πn(X). However,
the analysis relating the existence of the saddle points to the homotopy
groups is trickier.

The argument, as presented so far, is for a function V defined on a
compact manifold X. One would like to extend the argument to the
potential energy function E of some field theory. This was first achieved
by Taubes [398]. The manifold X is replaced by the field configuration
space C. It is much trickier to prove rigorously that saddle points of E
exist, using the mountain pass idea. However, one can try the method,
and see what saddle points are suggested. In this way, genuine saddle
point solutions of certain field theories have been discovered.

Most of the required ingredients are present in field theory. Although
C is not generally connected, the connected components are labelled by
elements of π0(C), or equivalently by the topological charge(s) of the fields,
and we can apply our techniques to one of these components. Although
each component of the configuration space C is infinite-dimensional, the
potential energy E is formally differentiable. The derivative is the first
variation of E (the left-hand side of the Euler-Lagrange field equation)
and it vanishes at a stationary point. The second variation operator,
or Hessian, is well defined there, and has a finite number of negative
eigenvalues. However, there are some possible problems. C is generally
not compact. As a result, we may not be able to find a saddle point
by taking a limit of a sequence of field configurations. As the limit is
taken, the field energy may split into two or more clusters moving away
to infinite separation. This is a real problem in certain field theories,
but not others. Each case needs to be considered carefully. Another
problem is that the minima and saddle points of E may not be isolated.
This can happen if the theory has a large symmetry group. Saddle point
solutions may still exist, but one needs to use more refined topological
arguments to establish their existence. In particular, in gauge theories,
one needs to avoid the infinite-dimensional degeneracy associated with the
topologically complicated group of gauge transformations. Gauge fixing
helps, but must be carried out in a continuous way as one varies the field.
This is not always possible.

We shall now consider a number of examples of field theories where
non-contractible loops of field configurations can be constructed, in some
cases leading to the existence of saddle point solutions of the field equa-
tions. Such saddle points in field theory are called “sphalerons” [241] –
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from the ancient Greek σφαλερos (sphaleros), meaning “unstable”, or
“ready to fall”. They are static, but unstable, finite energy solutions.
Sphalerons, like solitons, have a localized and smooth energy density.
Following Taubes [398], we shall only use ideas from homotopy theory in
the following discussion. However, there is also the possibility of using
homology ideas and Morse theory [303] to investigate minima and saddle
points. See refs. [20, 61] for the application of homology ideas to the study
of instanton moduli spaces, and ref. [16], where the Yang-Mills action is
used as a Morse function in the context of Yang-Mills theory defined over
a Riemann surface.

11.2 Sphalerons on a circle

This example [292, 24] is one of the simplest to understand, though per-
haps not as physically interesting as the examples we consider later.

Let φ(x) be a real scalar field defined in one space dimension, with
“space” a circle of length 2πL. We take x to lie in the range 0 ≤ x ≤ 2πL,
and impose the periodic boundary condition φ(2πL) = φ(0). The possible
time dependence of φ is unimportant here, and is suppressed. Consider
the φ4 theory, whose potential energy function is

E =
1
2

∫ 2πL

0

(
(∂xφ)2 + (1 − φ2)2

)
dx , (11.1)

and whose static field equation is

d2φ

dx2
+ 2(1 − φ2)φ = 0 . (11.2)

The configuration space C consists of all field configurations φ(x) defined
on the circle, with finite energy. There are two distinct classical vacua,
the constant fields φ = 1 and φ = −1, which we denote by V+ and V−.
Both have zero energy.

A path c(µ) in C connecting V+ and V− is a 1-parameter, continuous
family of finite energy configurations {φ(x; µ) : 0 ≤ µ ≤ 1} with φ(x; 0) =
1, φ(x; 1) = −1. All such paths lie in one homotopy class. For a given
path c we define Ec to be the maximal energy along it,

Ec = max
µ∈[0,1]

E(µ) . (11.3)

We seek the minimum, among all paths, of Ec.
A candidate path c0 is the set of constant fields

φ(x; µ) = 1 − 2µ , (11.4)
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with energies

E(µ) = πL
(
1 − (1 − 2µ)2

)2

= 16πL(µ(1 − µ))2 . (11.5)

The maximal energy along c0 is Ec0 = πL, attained at µ = 1
2 .

For small L, Ec0 is the minimal value of Ec for any path c, and the
constant field φ = 0 is the sphaleron solution. However, for large L,
there is a different type of path which connects the vacua, but climbs to a
lesser height. Schematically, the path is as in Fig. 11.2. Out of V+, a kink-
antikink pair is produced; the pair separate and move half-way around
the circle in opposite directions, then annihilate, leaving the vacuum V−.

-1

0

1

Fig. 11.2. Sketch of a path connecting the two vacua. Out of the vacuum V+ a
kink-antikink pair is produced; the pair separate and move half-way around the
circle in opposite directions, then annihilate, leaving the vacuum V−.

Via this path, the energy barrier between the vacua is approximately
8
3 , twice the energy of a single φ4 kink on the infinite interval. This is
independent of L, and less than πL when L is large.

We can find the critical length of the circle where φ = 0 ceases to be
the mountain pass between vacua by counting the number of unstable
modes. Let φ(x) = η(x) be a small perturbation of the solution φ = 0.
To quadratic order in η, the energy is

E = πL +
1
2

∫ 2πL

0

(
(∂xη)2 − 2η2

)
dx
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= πL +
1
2

∫ 2πL

0
η

(

− d2

dx2
− 2

)

η dx . (11.6)

The eigenvalue equation for the modes is

−d2η

dx2
− 2η = νη , (11.7)

subject to the boundary condition η(2πL) = η(0). A negative value of
ν corresponds to an instability. The modes are cos(nx/L), n = 0, 1, . . .,
and sin(nx/L), n = 1, 2, . . ., with

ν =
n2

L2
− 2 . (11.8)

Notice that the lowest mode is singly degenerate, but the higher modes
are doubly degenerate. For L < 1/

√
2, only the lowest mode η = const

is an unstable mode; for L > 1/
√

2 there are more unstable modes. This
shows that L = 1/

√
2 is the critical length.

We can verify this directly by solving the static field equation (11.2) and
finding the sphaleron solution. In addition to the three constant solutions
φ = 1, φ = 0 and φ = −1, there are non-constant solutions

φ(x) =

√
2

1 + k2
k snk

⎛

⎝
√

2
1 + k2

x

⎞

⎠ , (11.9)

which satisfy the periodicity condition if

L =
√

2(1 + k2)Kkn

π
(11.10)

where n ∈ Z. These solutions can also be translated without changing
their energy. The non-constant solutions exist only if L > 1/

√
2, and their

number increases as L increases. We plot their energies, together with
the energy of the solution φ = 0, in Fig. 11.3. Notice that for L > 1/

√
2

the solution of lowest energy, aside from the vacua φ = ±1, is always the
solution (11.9) with k determined by Eq. (11.10) with n = 1. This is the
sphaleron for L > 1/

√
2. It represents a kink and antikink separated by

πL, and thus on opposite sides of the circle.
The reason for the existence of the sphaleron of this type is physically

clear. A kink and antikink attract and will annihilate if possible. When
they are on opposite sides of the circle they are in unstable equilibrium;
the energy decreases if they are brought together either on one side of
the circle or the other, but since they are exactly opposite there is no
tendency to move in either direction. The other non-constant solutions,
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Fig. 11.3. The energies of the φ = 0 and sphaleron solutions with n = 1, 2, 3,
as a function of the period 2πL, for the φ4 theory on a circle.

for larger values of L, have the interpretation of a chain of alternating
kinks and antikinks, equally spaced around the circle. Any perturbation
of the relative positions of the kinks and antikinks reduces the energy, so
there are several unstable modes.

A more detailed analysis of these various solutions, giving the precise
number of unstable modes and some of the corresponding eigenvalues ν,
is given in ref. [265].

11.3 The gauged kink

Let φ(x) be a complex-valued scalar field defined on the whole real line
R, with potential energy function

E =
1
2

∫ ∞

−∞

(
∂xφ̄∂xφ + (1 − φ̄φ)2

)
dx . (11.11)

The vacuum manifold is the circle |φ| = 1, so the classification of solutions
is rather different than in the real φ4 theory. The vacuum is any constant
solution φ(x) = c, with |c| = 1. The field equation

d2φ

dx2
+ 2(1 − φ̄φ)φ = 0 (11.12)

has a kink solution φK(x) = tanhx which connects φ = −1 at x = −∞
to φ = 1 at x = ∞. However, unlike in the real theory, there is no reason
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to think this is topologically stable. The field for x ≪ 0 can be deformed
around the vacuum manifold from the value −1 to 1, keeping the field for
x ≫ 0 unchanged. In this way the kink can be deformed to the vacuum
φ(x) = 1. The energy E can be made to monotonically decrease during
this process.

Since the kink can be unwound to produce the vacuum in two opposite
ways, this seems to imply that the kink solution of the complex φ4 theory
is a sphaleron, a mountain pass along a non-contractible loop from the
vacuum to the vacuum. To check this, consider small variations away
from the kink. Varying Reφ can only increase the energy (since the kink
is stable in the real φ4 theory) so we consider just a variation of η = Im φ
(which is in an orthogonal direction in field configuration space). Thus,
set φ(x) = φK(x) + iη(x). The energy, to quadratic order in η, is

E =
4
3

+
1
2

∫ ∞

−∞
η

(

− d2

dx2
− 2 sech2x

)

η dx . (11.13)

To study the instability of φK, we look at the eigenvalue equation
(

− d2

dx2
− 2 sech2x

)

η = νη . (11.14)

This is a classic example of an integrable stationary Schrödinger equation,
and it has the one negative mode

η(x) = sech x (11.15)

with eigenvalue ν = −1. The kink is therefore unstable.
There is still a problem with interpreting the kink as a sphaleron in this

theory. The unstable mode is normalizable, so it only deforms the kink
near the origin. The effect of lowering the energy towards zero, using this
mode, is to produce a field configuration φ(x) which is close to −1 for
x ≪ 0, whose value slowly winds round the semicircle |φ| = 1, Imφ > 0
(or the semicircle |φ| = 1, Im φ < 0) in some large finite interval of x,
and which is close to 1 for x ≫ 0. Via this mode, the sphaleron does not
actually decay to the vacuum solution φ = 1. To reach the vacuum, the
field at large negative x must be changed from −1 to 1. However, for this
to occur in a finite time, an infinite kinetic energy is needed even though
there is no potential barrier to cross. Thus the sphaleron can not really
decay to the vacuum.

This difficulty is avoided in the gauged φ4 theory [55], with a complex
field φ and a U(1) gauge potential aµ. The full Lagrangian is

L =
1
2

∫ ∞

−∞

(
f2
01 + DµφDµφ − (1 − φ̄φ)2

)
dx , (11.16)
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where f01 = ∂0a1 − ∂1a0 is the electric field and Dµφ = ∂µφ− iaµφ is the
covariant derivative of φ. The potential energy of static fields is

E =
1
2

∫ ∞

−∞

(
D1φD1φ + (1 − φ̄φ)2

)
dx . (11.17)

In the gauge a1 = 0, the static field equation is as in the ungauged
theory, and the solution is φK(x) = tanh x as before. However, this is
now a genuine sphaleron.

To study the mode of instability of this solution, it is convenient to
use the gradient flow equations (2.169) and (2.170), with κ = 1. These
can be linearized by setting φ = φK + iη and a1 = a, and ignoring terms
quadratic in η and a. The resulting equations are

∂0η = ∂1(∂1η − φKa) − (∂1φK)a + 2(1 − φ2
K)η (11.18)

∂0a = φK(∂1η − φKa) − (∂1φK)η . (11.19)

Using the expressions on the right-hand side of (11.18) and (11.19), one
can check that

φK∂0η − ∂1∂0a = 0 . (11.20)
This confirms that the flow (i∂0η, ∂0a) is orthogonal to (iφKα, ∂1α), an
infinitesimal gauge transformation of φK with arbitrary parameter α(x).

We now seek an exponentially growing solution of these equations of
the form η(t, x) = η(x)e−νt, a(t, x) = a(x)e−νt, with ν negative, which
must also satisfy

φKη − ∂1a = 0 . (11.21)
The coupling of η to a means that (11.15) is no longer a solution, but by
trying a variable power of sechx one finds the solution

η(x) = τ(sech x)τ , a(x) = −(sech x)τ (11.22)

with ν = −τ , where τ = 1
2(
√

5 + 1) is the golden mean. This appears to
be the only unstable mode of the kink sphaleron. The mode deforms the
kink into a field configuration which is close to being gauge equivalent to
the vacuum. A subsequent change of the phase of φ is no longer associated
with infinite kinetic energy, because we can choose a0 so that D0φ = 0
even though ∂0φ is non-zero.

An alternative way to consider this example is to change gauge. Require
that φ = 1 both at x = −∞ and x = ∞, for all field configurations. One
vacuum solution is the trivial configuration

φ(x) = 1 , a1 = 0 . (11.23)

There is another, topologically non-trivial vacuum, with a unit net wind-
ing,

φ(x) = eiα(x) , a1 = ∂1α , (11.24)
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where limx→−∞ α(x) = −2π, limx→∞ α(x) = 0. (Vacua with multiple
windings are obtained by replacing −2π by −2πn here.) Although α is
not completely determined by these boundary conditions,

∫ ∞

−∞
a1 dx = 2π (11.25)

in all cases.
The trivial vacuum and the unit winding vacuum both have zero en-

ergy. There is no path connecting them which consists only of vacuum
configurations. Paths connecting them have to pass over a mountain pass,
and this is the kink sphaleron. Note that in the gauged theory, the kink
can be presented in a gauge where limx→±∞ φ(x) = 1. Since this involves
a phase rotation by π at x = −∞, in this gauge

∫ ∞

−∞
a1 dx = π , (11.26)

the value intermediate between the values for the two vacua. Now recall
from Section 3.6 that the Chern-Simons number of an abelian gauge field
defined on R is

y1 =
1
2π

∫ ∞

−∞
a1 dx . (11.27)

The vacua we have been discussing have y1 = 0 and y1 = 1, respectively.
The sphaleron that lies in between has y1 = 1

2 , and deforming it by the
unstable mode either increases or decreases y1, depending on the direction.

There is one further, important remark. We have been discussing topo-
logically distinct vacua, but need to stress that these are gauge equivalent,
by a “large” gauge transformation, and so are physically the same. The
path from one vacuum to the neighbouring vacuum, via the sphaleron,
is not really a path with distinct end points, but instead a closed, non-
contractible loop. The Chern-Simons number of a vacuum field (satisfying
the boundary conditions on φ) must have an integer value, and a path with
topologically distinct vacua at the ends corresponds to a non-contractible
loop because it can not be deformed continuously into a path consisting
entirely of vacuum fields.

The analogy with a pendulum is perhaps helpful. Suppose θ = 0 is
the stable position of the pendulum. Then a continuous path from θ = 0
to θ = 2π is not a path with distinct end points, but rather a non-
contractible closed loop that must have passed at least once through the
unstable position θ = π.

We shall see below that in other gauge theory examples, the sphaleron
is the mountain pass between topologically distinct vacua, or really, a
mountain pass along a non-contractible loop, and has fractional Chern-
Simons number.
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11.4 Monopole-antimonopole dipole

In the SU(2) Yang-Mills-Higgs theory with adjoint Higgs field there are,
as we saw in Chapter 8, magnetic monopole solutions of positive and
negative charge. In the BPS limit, where the forces between monopoles
cancel, there are also multi-monopole solutions, which are solutions of the
Bogomolny equation Bi = −DiΦ. So far, the only solution in the zero
charge sector that we have presented is the vacuum solution, which is
gauge equivalent to Φ = iτ3, Ai = 0. In pioneering work in 1982, Taubes
[398] used a topological argument together with rigorous analysis to show
that there is at least one more static solution in this sector, a configuration
of a monopole and antimonopole in unstable equilibrium, which satisfies
the second order field equations. Similar methods have been applied in
a number of other theories to find such unstable solutions, now often
referred to as “sphalerons”.

Taubes considered the SU(2) Yang-Mills-Higgs theory in the BPS limit,
though this is not essential, as the Bogomolny equation plays only a minor
(and approximate) role. The true configuration space of the theory is
C = A/G0, where A is the space of all finite energy field configurations, and
G0 is the space of based gauge transformations g(x), satisfying g(0) = 1.
This quotient space C is the same as the space of fields satisfying the radial
gauge condition Ar = 0. C is homotopic to the space Maps(S2 (→ S2),
which can be identified with the space of Higgs fields at infinity. No
topological information is carried by the Higgs and gauge field in any
bounded region. The group of rigid gauge transformations acts on C, and
hence on the target space S2. One may partly remove this freedom by
fixing the Higgs field in one direction. Then C is homotopically the space
of based maps from S2 to S2.

As we have discussed before, the connected components of C are labelled
by an integer N , since

π0(C) = π0(Maps(S2 (→ S2)) = π2(S2) = Z , (11.28)

using the result (3.12). N is the degree of the map, and is the net
monopole number.

The basic solution in the component C1 is the monopole, and in C−1

the antimonopole. If one constructs a field in C0 which is a superposition
of a well separated monopole and antimonopole, then it is always possible
(since C0 is connected) to bring the monopole and antimonopole together
and annihilate them.

Note that the loop space of C0 is topologically non-trivial. Indeed, using
(3.12),

π1(C0) = π1(Maps0(S
2 → S2)) = π3(S2) = Z , (11.29)
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where Maps0 denotes the based maps of degree zero, and similarly we
have that π1(CN ) = π1(MapsN (S2 → S2)) = Z for maps of general degree
N . One may choose the generator of π1(C0) to be a non-contractible loop
in C0, beginning and ending at the vacuum. To construct it, create a
monopole-antimonopole pair out of the vacuum, and separate the pair.
Then rotate the monopole by 2π keeping the antimonopole fixed, and
finally bring the monopole and antimonopole together again until they
annihilate. The rotation can also be regarded as changing the relative
phase of the monopole and antimonopole.

Now the energy of a monopole-antimonopole pair is dominated by the
Coulomb force, and in the BPS limit there is both a magnetic and scalar
contribution. At large separation s, the energy of the pair is

2M − 2g2

4πs
, (11.30)

where M = 2π is the mass of a single monopole and g = −2π is its
magnetic charge (and 2π its scalar charge). This formula is only an ap-
proximation. Nevertheless, Taubes constructed a non-contractible loop
in C0, with precise formulae for the fields along it, along which the energy
remains strictly less than 2M throughout. The energy starts at zero,
increases to approximately 2M − 2g2

4πs when the pair is separated by s,
remains approximately constant at this value as the monopole is rotated,
and decreases to zero as the pair annihilates.

Consider the space of all loops in the same homotopy class, beginning
and ending at the vacuum. The maximal energy along each loop is well
defined, as is the infimum of the maximal energies. The infimum is less
than 2M , because of the explicit example above. It is greater than zero,
because only trivial loops can have arbitrarily small energy. Taubes could
finally prove that the infimum is attained, by showing that the only way it
could fail to be attained is if the monopole and antimonopole drifted away
to infinite separation. But that is impossible because it would require
energy 2M .

The conclusion is that there is an unstable static solution in the theory,
with one mode of instability, and energy less than 2M . Although this
argument says little about what the solution is like, it is expected to
be a monopole-antimonopole pair, with the monopole rotated relative to
the antimonopole by π, and the pair relaxed to the smallest separation
possible.

Rüber, with Nahm, constructed the solution explicitly by a combination
of analytic and numerical methods [355]. They realized that the rotation
could be done around the line joining the monopole and antimonopole,
and that the entire loop could be constructed using axisymmetric fields.
We will not give the ansatz for the fields, but the ansatz for the loop of



11.4 Monopole-antimonopole dipole 453

maps S2 (→ S2 has its first part of the form θ̃ = f(θ), ϕ̃ = ϕ, where f
evolves as in Fig. 11.4 as the monopoles separate. Since at the end of this
first part f(1

2π) = π, the equator maps to a point, and in the second part
of the loop one can now rotate the Southern hemisphere by 2π (ϕ̃ = ϕ+α
for θ > 1

2π, α runs from 0 to 2π). Then in the final part of the loop the
earlier evolution of f can be reversed.

Fig. 11.4. Sketch of the first part of the evolution of the function f(θ), which
occurs in the loop of maps between 2-spheres.

The unstable solution is related to the half-way point along this loop.
Its Higgs field at infinity is based on a map similar to

θ̃ = 2θ , ϕ̃ = ϕ
(

θ <
1
2
π
)

,

θ̃ = 2π − 2θ , ϕ̃ = ϕ + π
(

θ >
1
2
π
)

(11.31)

(actually, precisely this map, but the gauge Ar = 0 is not chosen). It
consists of a monopole-antimonopole pair close together, with neither
object much distorted. The solution is axially symmetric and also has
a reflection symmetry in the plane separating the monopole from the
antimonopole.

Kleihaus and Kunz [236] have repeated the numerical work of Rüber
and Nahm and extended it beyond the BPS limit. They find that the
monopole-antimonopole static solution persists, and the energy and other
properties change continuously as the Higgs mass increases. In the BPS
limit, the solution has energy 1.70M , and the zeros of the Higgs field
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have separation s = 2.12. At this separation, the naive energy, taking
into account the Coulomb effects, would be 1.53M . The actual energy
is greater, as there is a short range repulsion balancing the Coulomb
attraction. The solution has a net magnetic dipole moment of magnitude

p = 14.8 (11.32)

as can be determined from the asymptotic, abelian magnetic field. p can
be interpreted as the charge |g| = 2π times a length l = 2.36, which is
not much different from the separation of the Higgs zeros.

One could study the instability of this solution by using gradient flow.
There is presumably a solution of the gradient flow equations descending
from this solution to the vacuum, starting with a relative twist, which
allows the monopole-antimonopole pair to annihilate. In the fully dy-
namical theory, a small perturbation of the solution would initiate mo-
tion towards the vacuum, but energy conservation would make the motion
oscillatory. Because the relative phase would oscillate, like a pendulum
disturbed from its unstable vertical position, the solution would involve
an oscillating electric dipole moment, as well as a varying magnetic dipole
moment. Energy would ultimately radiate away and the solitons would
again annihilate.

The non-triviality of the homotopy groups of MapsN (S2 (→ S2) im-
plies the existence of non-contractible loops and spheres of ever higher
dimension in CN . However, the moduli space of Bogomolny monopoles
MN also carries non-trivial topology. In fact, because of the Jarvis con-
struction, MN is the space of rational maps in MapsN (S2 (→ S2). It has
been proved by Segal [370] that for n ≤ N , the nth homotopy group of the
space of rational maps is isomorphic to the nth homotopy group of
the space of all maps. So the space of Bogomolny monopoles captures
the topology of the space of all finite energy configurations of charge N ,
for these values of n. As an example, any non-contractible loop in C2 can
be deformed to lie entirely in M2 (where it corresponds to an end-over-
end rotation, one or more times, of the charge 2 toroidal monopole). Thus
one has to go to non-contractible spheres in CN of dimension N or higher
to capture unstable solutions. Such solutions have not been constructed,
but one can imagine, for example, an unstable cluster in C1, consisting of
an antimonopole sandwiched between two monopoles.

11.5 The electroweak sphaleron

The standard model of the electromagnetic and weak interactions is a
U(2) gauge theory, with a complex doublet of Higgs fields. U(2) is not
simple, and the SU(2) and U(1) gauge fields are coupled at different
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strengths to the Higgs field. The ratio of the strengths is determined
by the weak mixing angle Θw. The particles of the theory (ignoring
fermions) are the charged W± bosons, the neutral Z boson, the photon
and the neutral, scalar Higgs particle (which is yet to be discovered).

The classical equations of the electroweak theory have a sphaleron solu-
tion [241]. Mathematically, it is easiest to discuss it in the limit Θw = 0,
where the U(1) field decouples, and the W± and Z bosons have equal
masses. The theory then just involves an SU(2) gauge field Aµ and the
Higgs field

Φ =
(

Φ1

Φ2

)
. (11.33)

The potential energy function is

E =
∫ (

−1
2
Tr(FijFij) +

1
2
(DiΦ)†DiΦ +

λ

4
(1 − Φ†Φ)2

)
d3x , (11.34)

where λ > 0. Note the factor 1
2 in the Yang-Mills part. U has its minimum

where Φ†Φ = 1, so the vacuum manifold is a 3-sphere of radius 1. The
Higgs boson to W boson mass ratio is 2

√
2λ.

Since there are no nonlinear constraints on the Higgs field, the topology
of a field configuration, or family of them, is captured by the Higgs and
gauge field at spatial infinity. As before, we fix the radial gauge condition
Ar = 0, which completely determines a field configuration aside from a
rigid gauge rotation. The Higgs field at infinity defines a map Φ∞ : S2 (→
S3. SU(2) acts transitively on S3 (by left action of SU(2) on itself) so
we can fix the gauge even more completely by imposing a base point
condition that in the spatial direction (0, 0, 1), say, Φ∞ always takes the
value

(0
1

)
.

The field configuration space C is thus topologically equivalent to the
space of based maps, Maps(S2 (→ S3). This space is connected, and
any single map can be deformed to the constant map Φ∞ =

(0
1

)
, as a

consequence of π0(Maps(S2 (→ S3)) = π2(S3) = I. Therefore, there is no
topological charge associated with a field configuration of the electroweak
theory, so the theory has no topological solitons. In particular, there are
no monopoles.

However, the space Maps(S2 (→ S3) is far from topologically trivial. In
particular,

π1(Maps(S2 (→ S3)) = π3(S3) = Z , (11.35)

so there are non-contractible loops in C. It is easy to construct such a
loop [280] – easier than in the case of the monopole-antimonopole pair
of the previous section. One just takes the image of S2 to be a 2-sphere
resting on S3 and slides it over the equator, as in Fig. 11.5. In total, this
gives a topologically non-trivial map from S3 to S3.
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Fig. 11.5. A loop of maps from S2 to S3, parametrized by µ ∈ [0,π].

Let us use polar coordinates θ, ϕ on S2, and let the parameter along the
loop be µ, in the range 0 ≤ µ ≤ π. A family of maps parametrized by µ,
realizing the loop sketched in Fig. 11.5 is

Φ∞(θ, ϕ; µ) =
(

sinµ sin θ eiϕ

e−iµ(cos µ + i sinµ cos θ)

)
. (11.36)

This family is a generating loop of the homotopy group π1(C), since it
covers the generic point of S3 exactly once, so the degree of the map
S3 (→ S3 is 1.

We now need to smoothly extend Φ∞ to a set of Higgs and gauge fields
defined throughout R3. We first need a gauge field at infinity, satisfying

DθΦ∞ = 0 , DϕΦ∞ = 0 (11.37)

to ensure the total energy is finite. Suitable expressions are

A∞
θ = −∂θU

∞(U∞)−1 , A∞
ϕ = −∂ϕU∞(U∞)−1 (11.38)

where U∞ is the matrix

U∞ =
(

Φ̄∞
2 Φ∞

1
−Φ̄∞

1 Φ∞
2

)
(11.39)

with Φ∞
1 and Φ∞

2 the two components of (11.36). U∞ has the property
that

U∞
(

0
1

)
= Φ∞ . (11.40)
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Then a suitable ansatz for the fields throughout R3 is

Φ(r, θ, ϕ; µ) = (1 − h(r))
(

0
e−iµ cos µ

)
+ h(r)Φ∞(θ, ϕ; µ)

Aθ(r, θ, ϕ; µ) = f(r)A∞
θ (θ, ϕ; µ)

Aϕ(r, θ, ϕ; µ) = f(r)A∞
ϕ (θ, ϕ; µ) (11.41)

with Ar = 0. The profile functions h and f must satisfy the boundary
conditions

h(∞) = 1 , h(0) = 0
f(∞) = 1 , f(0) = 0 (11.42)

to obtain the desired field at infinity and to avoid singularities at the
origin.

The energy of these fields can be computed as a function of the param-
eter along the loop, µ. It depends of course on the profile functions. The
starting and finishing point of the loop is the vacuum, so the energy is
always zero for µ = 0 and µ = π. Moreover, for most choices of h and f ,
the maximal energy along the loop occurs when µ = 1

2π [280].
One can now use the ansatz (11.41) to find a candidate sphaleron.

One should really find the maximal energy along all loops, and seek the
minimum of this. We make a restricted minimization, over fields of the
form (11.41). We impose µ = 1

2π and then minimize the energy over
the space of radial profile functions h, f .

The principle of symmetric criticality helps here. The fields (11.41),
with µ = 1

2π, are actually SO(3)-symmetric and have an additional re-
flection symmetry. This is seen most easily by regarding the Higgs field
as a quartet of real scalar fields, acted on by a global SO(4) group. The
SU(2) gauge group may be regarded as the subgroup SU(2)L of this
SO(4). The functions h and f are the only undetermined quantities after
imposing these symmetries. The energy density is spherically symmetric,
and the energy reduces to the following expression in terms of h and f ,

E = 4π
∫ ∞

0
E dr ,

where

E = 4f ′2 +
8
r2

f2(1 − f)2 +
r2

2
h′2 + (1 − f)2h2 +

λ

4
r2(1 − h2)2. (11.43)

The variational equations of this dimensionally reduced theory, defined
on a half-line, are

(r2h′)′ = 2(1 − f)2h − λr2(1 − h2)h (11.44)

r2f ′′ = 2f(1 − f)(1 − 2f) − r2

4
(1 − f)h2 . (11.45)
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They can not be solved analytically, but Burzlaff has established rigor-
ously that a smooth solution satisfying the boundary conditions exists
[70]. A unique solution, depending on λ, has also been found numeri-
cally. Numerical results for h and f are shown in Fig. 11.6 for λ = 1

2 ,
corresponding to MH = 2MW. The energy as a function of λ is shown in
Fig. 11.7. It increases from 1.52 × 4π to 2.70 × 4π as λ increases from 0
to ∞, and is 1.98 × 4π when λ = 1

2 .
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Fig. 11.6. The electroweak sphaleron profile functions h(r) and f(r) for the
value λ = 1

2 .

By the principle of symmetric criticality, this method undoubtedly finds
a solution of the full field equations, and it was for this solution that
the name “sphaleron” was invented. The solution is unstable, by the
argument given earlier, because for the obtained profile functions the
energy maximum along the loop does occur at µ = 1

2π. The solution
was actually known before its topological significance in the electroweak
theory was realized. It was found by Dashen, Hasslacher and Neveu [103]
and rediscovered by Boguta [58], in the context of hadronic models. Its
instability had also been noted [242, 70].

The Chern-Simons number of the sphaleron is 1
2 . Conceptually, this is

for the following reason. Regard the loop parameter µ, suitably rescaled,
as a Euclidean time x4 running from −∞ to ∞, with x4 = 0 corresponding
to µ = 1

2π. The fields along the loop can be regarded as a single field
configuration defined in R4. The gauge field at infinity is a pure gauge A =
−dU∞(U∞)−1 (when the component A4 is included), and the complete
gauge field is a vacuum to vacuum transition. The fact that U∞(θ, ϕ; µ)
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Fig. 11.7. The sphaleron energy, in units of 4π, as a function of the parameter
λ, plotted on a logarithmic scale.

covers all of S3 once means that the second Chern number of the gauge
field is c2 = 1, so it is topologically the same as a unit charge instanton.
Now recall that c2 is the change of the Chern-Simons number y3, so for
a suitable gauge choice y3 increases from 0 to 1 as x4 increases from −∞
to ∞.

Now the loop is reflection symmetric, with U∞ at µ = 1
2π covering an

equatorial S2 of S3 and the fields at finite radius respecting the reflection
symmetry. Therefore for any profile functions h and f , satisfying the
appropriate boundary conditions, the Chern-Simons number of the µ =
1
2π field configuration is y3 = 1

2 . In particular, the sphaleron has y3 = 1
2 .

The result can be checked [241, 433] using the standard formula for
the Chern-Simons number (3.85). However, one must first change gauge
so that A = 0 at infinity. The required gauge transformation is one
defined throughout R3, and approaching (U∞)−1 at infinity. Such a gauge
transformation is possible preserving the SO(3) symmetry, but breaking
the reflection symmetry.

Note that dynamically, there is no instanton in the electroweak theory.
This is because Derrick’s theorem rules out a stationary point of the
action for a Yang-Mills field coupled to a Higgs field in R4. Conversely,
the pure Yang-Mills theory in R4 has an instanton interpolating between
vacua, and the R3 slice through the middle is similar to the gauge field of
the sphaleron, with Chern-Simons number 1

2 , but pure Yang-Mills theory
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in R3 has no true sphaleron solution, again by Derrick’s theorem. In
fact, there is no well defined energy barrier that an instanton traverses.
Because an instanton has an arbitrary scale, the energy of its central R3

slice has an arbitrary value, being small for a large instanton and large
for a small instanton.

Let us now consider a further aspect of the sphaleron. One should
verify that the constructed solution has one unstable mode. The study of
the relevant second variation operator has been carried out by Yaffe [433],
and also by Kunz and Brihaye [250] and Akiba et al. [9]. For λ < 18.1
there is precisely one unstable mode, but for λ > 18.1 there are more.
The picture is rather as for sphalerons on a circle. The most symmetric
solution has an increasing number of negative modes as a parameter (here
λ) increases. There is still a sphaleron with one negative mode, for all
λ, but it bifurcates off from the symmetric solution at λ = 18.1. This
deformed sphaleron, which was also found by Kunz and Brihaye, and
by Yaffe, still has SO(3) symmetry, but it no longer has the reflection
symmetry. Consequently, its Chern-Simons number differs from 1

2 . Also,
for the deformed sphaleron, Φ does not vanish at the origin, whereas for
the original sphaleron it does. The deformed sphaleron is the maximal
energy configuration along a non-contractible loop, whose fields are more
complicated than those of (11.41) [239].

The discovery of the deformed sphaleron solves a paradox. The theory
at λ = ∞ effectively constrains the Higgs field to the vacuum manifold
Φ†Φ = 1 (except, perhaps, at isolated points). The SU(2) gauged sigma
model, with a nonlinear scalar field satisfying this constraint, is known
to have a solution – the weak Skyrmion [119]. The weak Skyrmion has
lower energy than the original λ = ∞ sphaleron, and a different structure.
However, it is precisely the limiting form of the deformed sphaleron, with
energy 2.54 × 4π.

Our discussion of the sphaleron and its properties has so far been in
terms of dimensionless fields and dimensionless units. Using the more
standard formulation of the electroweak Lagrangian, together with the
experimental data, one can determine the physical energy and size of the
sphaleron. In our formulae, the unit of length is 1/gv and the unit of
energy is v/g, where v and g are the usual parameters of the electroweak
theory. The physical masses of the W and Higgs bosons (ignoring radia-
tive corrections) are MW = 1

2gv and MH =
√

2λgv. Experimentally, the
particle masses are [170]

MW = 80.4 GeV , MZ = 91.2 GeV , Mphoton = 0 , MH > 114 GeV ,
(11.46)

and a precision study of radiative effects suggests that MH < 200 GeV.
By definition, sin2 Θw = 1 − M2

W/M2
Z = 0.223, and g2 sin2 Θw/4π =
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7.30 × 10−3 is the fine structure constant. Therefore, the energy unit
4πv/g is 4.91 TeV, and the length unit (gv)−1 is (161 GeV)−1, which
corresponds to 1.22 × 10−3 fm. We deduce that the sphaleron energy
ranges from 7.5 TeV for λ = 0 up to 13.3 TeV as λ approaches infinity.
The deformed sphaleron has energy a few per cent less for large λ.

It is interesting to study how the sphaleron, if it were produced, would
decay. This is done by perturbing the sphaleron by its unstable mode and
solving the time dependent field equations numerically. The task is sim-
plified because the fields remain SO(3)-symmetric, although the reflection
symmetry is broken. The sphaleron is converted into a fireball of radia-
tion. By Fourier analysing the outgoing waves, and using semi-classical
quantization ideas, it can be estimated that the sphaleron decays into ap-
proximately eight Higgs particles and 14 each of W+, W− and Z bosons
[176]. These would subsequently decay into fermions. Understanding the
change in the Chern-Simons number during this process is rather delicate
[129].

The inclusion of the U(1) gauge field, required for any non-zero value
of Θw, complicates the sphaleron solution. It is no longer consistent
to impose SO(3) symmetry, but the solution retains an axial symmetry
together with a reflection symmetry. For small values of Θw one can treat
the U(1) effects perturbatively [241, 224]. The energy of the sphaleron
is lowered by less than 1%. The sphaleron acquires a small asymptotic
U(1) field which can be interpreted as a magnetic dipole field. The dipole
moment is

p =
2π

3
1

g2v
tan Θw

∫ ∞

0
r2h2(r)(1 − f(r)) dr , (11.47)

whose value, for λ = 1
2 , is approximately p = 47 tan Θw/g2v. For com-

parison, the magnetic dipole moment of a W boson is 2 sinΘw/v.
This perturbative approach is a very good approximation for Θw up

to 30◦ (the experimental value is about 28◦). It fails to be a good ap-
proximation as Θw approaches 90◦. In this limit (and keeping λ of order
1), the sphaleron has a prolate (cigar-shaped) axisymmetric form [251].
Being also a magnetic dipole, it is possible to interpret the sphaleron
as effectively a monopole-antimonopole pair [182] even though the elec-
troweak theory does not support isolated monopole solutions. The best
description of the field is not entirely clear, because the numerics are dif-
ficult for Θw close to 90◦. However, it appears that the monopole and
antimonopole are connected by a Z-string.

In summary, the electroweak theory has a sphaleron solution. Provided
the Higgs particle exists with a mass less than 200 GeV, the parameter
λ is of order 1, so the deformed sphaleron does not come into play. The
non-zero value of Θw has a rather small effect on the sphaleron and its
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energy. The best current estimate for the sphaleron energy is that it is
in the range 9–10 TeV, the exact value depending on the Higgs mass. It
is likely that the theory has several further unstable solutions of higher
energy. One such solution, related to a non-contractible 2-sphere in C,
and with an energy slightly less than double that of the sphaleron, has
been found by Klinkhamer [240].

The physical significance of the electroweak sphaleron is a controversial
matter, and goes rather beyond the scope of this book, since fermions play
a decisive role. For a review, see [354]. One possibility, rather vaguely
formulated, is that the energy 9–10 TeV is a threshold beyond which non-
perturbative phenomena become important. Thus in particle collisions
just above current accelerator energies (e.g. e+e− annihilation at centre
of mass energies of order 500 GeV), one expects to produce a small number
of W or Z bosons, together with Higgs particles and photons. At higher
energies more of these would be produced, and possibly coherently in the
form of a sphaleron. This would subsequently decay in a recognizable
way, as a rather symmetric fireball. The argument against this is that
the small weak coupling constant g2/4π makes production of many W’s
etc. unlikely, and the probability of producing these particles coherently
so that they form the sphaleron, even approximately, is utterly negligible.
The alternative argument is that when many particles are produced at
high energy, an enormous number of Feynman diagrams are relevant and
the usual perturbative rules of quantum field theory are no longer valid.
Instead one should rely more on semi-classical methods, and they make
classical solutions more significant [345, 122].

While sphaleron production in high energy collisions may be unlikely,
there is more consensus that sphalerons can be easily produced in a high
temperature situation, such as prevailed in the early universe. Numerical
evidence suggests that at high temperature, a field evolves randomly, and
approximately classically, subject to Boltzmann statistical mechanics. For
a field to be locally excited and pass over the sphaleron barrier does not
appear to be unlikely. This is shown by keeping track of the Chern-Simons
number in a thermal field simulation, where random jumps by one unit are
seen to occur from time to time [165, 11]. At even higher temperatures,
there may be no suppression of barrier crossing at all [252, 13].

In the absence of fermions, the excitation and decay of the sphaleron is
not terribly significant. However, it has been realized since the pioneer-
ing work of ’t Hooft on instantons [403], that there is a fermion number
“anomaly” [8, 48] associated with vacuum to vacuum transitions in elec-
troweak theory. More precisely, if an electroweak field starts at the vac-
uum, evolves to the sphaleron and then further evolves to the vacuum “on
the other side” – in other words, if the field traverses a non-contractible
loop of the theory, with the Chern-Simons number changing by one unit
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– then there is a net production of one unit of baryon number B for each
of the three generations of quarks, and simultaneously a net production
of one unit of lepton number L for each generation.

Thus in the early universe, or even in particle collisions, there is the
possibility of B violation and L violation, with B − L conserved. The
quantities B and L are conserved according to all perturbative calcula-
tions, and they have not been seen to be non-conserved in any experiment.
However, the presence of a net B in the universe is a great mystery, espe-
cially if the Big Bang produced a universe with B = 0. (The net L of the
universe is unknown, because the number of neutrinos and antineutrinos
can not yet be determined.) Sakharov [361] formulated three conditions
for a fundamental resolution of this mystery. There must exist B violating
processes; there must be C and CP violation, so that there is the possi-
bility of a drift of B preferentially in one direction, from zero towards a
positive value; and there must have been a lack of thermal equilibrium at
certain stages of the cooling universe’s history, so that some net change of
B could have occurred. The electroweak theory satisfies these conditions.
B violating transitions can occur through the production and decay of the
sphaleron; CP violation is encoded in the Cabbibo-Kobayashi-Maskawa
quark mixing matrix, and is experimentally observed; and there could
have been a lack of thermal equilibrium during a phase transition at
which the Higgs field acquired its vacuum expectation value.

There has been much research on the detailed behaviour of field theo-
ries near to phase transitions, and on whether sphaleron production and
decay, or topologically related processes, can occur at a significant enough
rate to explain the current baryon number of the universe. Unfortunately
these investigations are difficult. It appears that because the CP violat-
ing effects are so small in the electroweak theory, these processes do not
appear powerful enough to explain the observed baryon to photon ratio of
∼ 10−10 (they give estimates of ∼ 10−20). More speculative extensions of
electroweak theory, with strong CP violation as in supersymmetric mod-
els, may do the trick. However, there are many such extensions and no
evidence for any one of them being correct.

11.6 Unstable solutions in other theories

There are a number of further field theories where unstable, sphaleron-
type solutions are known to exist, and some where they are known not to
exist. We summarize some of these results here. For a general discussion,
see [134].

The O(3) sigma model in one space dimension, modified by a potential
term, has a sphaleron solution which is a lower-dimensional analogue of
the electroweak sphaleron [308]. The field is a based map S1 (→ S2,
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and the theory has non-contractible loops because π1(Maps(S1 (→ S2)) =
π2(S2) = Z.

In the gauged GL theory in two space dimensions at critical coupling,
discussed in Chapter 7, Jaffe and Taubes [223] have proved that there are
no static classical solutions except the multi-vortex solutions satisfying
the Bogomolny equation, which have minimal energy and are stable. This
result is consistent with the topology. The Higgs field at infinity defines a
map S1 (→ S1, and the space of such maps has components labelled by the
winding number N . For each winding number, the space is contractible,
so there are no non-contractible loops or higher homotopy spheres; thus
no saddle point solutions are expected.

In the CP1 sigma model discussed in Chapter 6, the fields are maps
S2 (→ S2, and the minima of the energy are the rational maps, depending
only on the complex coordinate z. It has been proved [118, 431] that
all finite energy static solutions are of this type, so there are no higher
energy saddle point solutions despite the rich topological structure of
Maps(S2 (→ S2). However, for the CPm sigma model with m > 1 there are
saddle point solutions. Furthermore, unlike in most of the field theories
we have discussed in this book, the static second order field equation
is integrable (in addition to the first order Bogomolny equation being
integrable) and explicit closed form solutions can be obtained for all the
saddle points. Recall from Section 6.1 that the energy function of the
static CPm sigma model in the plane is

E =
∫

Tr(∂iP∂iP ) d2x , (11.48)

whose variation yields the static second order equation

[∂i∂iP, P ] = 0 , (11.49)

where P is the (m + 1) × (m + 1) hermitian projector which provides
coordinates on CPm. The energy minimizing multi-lump solutions are
given by

P = P0 =
f0 f †0
|f0|2

, (11.50)

where f0(z) is a holomorphic (m + 1)-vector. The saddle point solutions
are obtained by introducing the operator ∆, whose action on any vector
f is defined by

∆f = ∂zf −
f (f † ∂zf)

|f |2 (11.51)

where, as before, ∂z denotes differentiation with respect to z. Given the
holomorphic vector f0, let fj = ∆jf0 (j = 1, . . . , m) be the sequence of
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vectors obtained by the repeated application of ∆. Then it can be shown
that each of the associated projectors

Pj =
fj f †j
|fj |2

(11.52)

solves Eq. (11.49). It turns out that the vector fm (after cancelling any
overall factors) is antiholomorphic, so it is again a minimal energy so-
lution. The operator ∆ therefore converts a multi-lump solution into a
multi-antilump solution by its application m times. ∆ can not be applied
more than m times, since it gives zero when applied to an antiholomorphic
vector.

For m > 1 the intermediate solutions are neither holomorphic nor anti-
holomorphic and consist of mixtures of lumps and antilumps arranged in
unstable equilibria. For a more detailed description of these solutions we
refer the reader to the book by Zakrzewski [436]. Note that for m > 1,
all loops in the field configuration space are contractible, because of the
homotopy group relation π3(CPm) = 0. However, π4(CPm) = Z, so it
is probably the existence of non-contractible spheres which underlies the
existence of these saddle point solutions.

We have found various saddle point solutions in the Skyrme model,
for example, the hedgehog solutions of baryon number |B| > 1. Also
there is the octahedral B = 5 solution, and the cubic B = 7 solution.
However, there is no systematic topological classification of these. Since
the configuration space of the Skyrme model is Maps(S3 (→ S3), there are
non-contractible loops, because π1(Maps(S3 (→ S3)) = π4(S3) = Z2. Bag-
ger et al. have attempted to construct sphalerons systematically, using
these non-contractible loops [26, 153]. For B = 0, they considered cre-
ating a Skyrmion-antiSkyrmion pair from the vacuum, separating them,
rotating the Skyrmion by 2π, and annihilating them again. This follows
Taubes’ discussion of the monopole-antimonopole loop, but here the en-
ergy argument is not clear-cut. It is essential that the energy along the
loop remains less than 2M = 2.464, twice the mass of a single Skyrmion.
However, no matter how the Skyrmion is rotated, the energy, as estimated
in the dipole-dipole approximation (and in the absence of electromagnetic
corrections), always reaches 2M . It is possible that a higher order calcu-
lation will lead to a loop whose maximal energy is less than 2M , but this
has not been established. So far, then, there is no convincing evidence
for a Skyrmion-antiSkyrmion pair forming a sphaleron. There definitely
are some unstable solutions of the Skyrme equation in the B = 0 sec-
tor. Any soliton of the Skyrme-Faddeev model can be embedded in the
Skyrme model (by embedding the target S2 as the equator of S3) and is
a solution there. The lowest energy solution of this type has energy 4.4.
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Finally, a challenging problem is to find saddle point solutions of the
pure Yang-Mills equation on R4 or on S4. The equation (and not just the
self-dual equation for instantons) is conformally invariant, so these two
problems are the same. The existence of saddle point solutions was es-
tablished by Sibner, Sibner and Uhlenbeck [375]. They exploited the fact
that the imposition of SO(2) symmetry reduces the Yang-Mills equation
to equations for hyperbolic monopoles. Taubes’ arguments can be applied
here, to again show the existence of a solution representing a monopole-
antimonopole pair in unstable equilibrium. This solution is then also
an SO(2)-invariant sphaleron of the Yang-Mills theory. A more concrete
method for constructing solutions was subsequently discovered by Sadun
and Segert [357]. They noted that SO(5) has an interesting SO(3) sub-
group, and that by imposing this symmetry on fields on S4 the Yang-Mills
equation is reduced to ODEs. Solutions of these ODEs satisfying appro-
priate boundary conditions have been rigorously proved to exist, and they
give solutions of the Yang-Mills equation, by the principle of symmetric
criticality. They have also been obtained numerically [358]. As a result,
a solution is known with energy (action) 5.43×π2 and topological charge
zero. There are probably many more unstable solutions of the Yang-Mills
equation, but there is no systematic topological understanding of them.
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ibid B102, 131 (1981); Soliton theoretic framework for generating mul-
timonopoles, Ann. Phys. 136, 371 (1981); Non-linear superposition of
monopoles, Nucl. Phys. B192, 141 (1981); Solution-generating technique
for self-dual monopoles, ibid B229, 77 (1983).
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Bäcklund transformation, 118
baryon number, 80, 351
Bogomolny bound, 111, 112, 133, 198,

228, 262
Bogomolny equation, 111, 112, 125,

133, 198, 202, 228, 262
bounded monopole geodesic, 327
BPS limit, 250
Bradlow inequality, 229
breather, 123
Buckyball, 376

caloron, 439
centred monopole, 297
Chern forms, 62, 67
Chern numbers, 62, 67
Chern-Simons forms, 69

Chern-Simons number, 70, 459
Chern-Simons vortex, 194, 202
chiral symmetry, 350
chiral symmetry restoration, 383, 404
cocycle condition, 94
conservation laws, 21
covariant derivative, 39
CP1 sigma model, 133
CPm sigma model, 140, 464
critical coupling, 188, 197, 220

deformed sphaleron, 460
Derrick’s theorem, 83
dibaryon, 401
differential forms, 60
Dirac monopole, 241
Dirac quantization condition, 244
domain wall, 124, 385
domain wall junction, 124
Donaldson maps, 294
dyon, 266

electric current, 161
electroweak sphaleron, 454
Euler-Lagrange equation, 16, 25
exterior derivative, 60

Faddeev-Bogomolny bound, 352
field theory, 23
Finkelstein-Rubinstein constraint, 407
framed fields, 252
fullerene, 365
fundamental group, 49

491



492 Index

gauge theory, 32
gauged kink, 447
gauged lump, 156
Gauss’ law, 35, 40
GEM rule, 364
Gibbons-Manton metric, 338
Ginzburg-Landau energy, 35, 159, 160
global monopole, 78
global vortex, 78, 159, 169
Goldstone particles, 32
Goldstone’s theorem, 32
gradient flow, 20
Grand Unified Theory, 250

Hartshorne conics, 421
hedgehog ansatz, 91, 354
Hessian, 381, 443
Higgs mechanism, 43
Higgs particle, 43, 253
Hitchin’s equation, 294, 296
Hodge dual, 417
homotopic, 48
homotopy group, 48
homotopy theory, 47
Hopf charge, 80, 409
hyperbolic monopole, 346
hyperbolic vortex, 236
hypercube representation, 51

I integral, 368
instanton, 416
instanton holonomy, 432
instanton moduli space, 419, 440
integrable system, 118
isometries, 22
isospin transformation, 350
isothermal coordinates, 228
isotropy group, 31

Jarvis maps, 294, 300
JNR ansatz, 420

Killing equation, 21
Killing vector, 22
kink, 78, 110
kink scattering, 120
kink-antikink energy, 114

kink-kink energy, 117
Klein polynomials, 145
knot solitons, 414

Lax form, 286
Lie derivative, 21
linear scalar field theory, 26
Liouville’s equation, 236
Lorentz boost, 114, 119
lump, 80
lump scattering, 137

magnetic weights, 341
mini-twistor space, 289, 307
moduli space dynamics, 102, 202
moduli space volume, 231
monopole, 78, 241, 253
monopole modes, 399
monopole moduli space, 315
monopole scattering, 314
monopole-antimonopole dipole, 451
mountain passes, 441

Nahm data, 274
Nahm equation, 269
Nahm transform, 269
Noether charge, 29
Noether’s theorem, 22, 28
nonlinear kink, 80
nonlinear scalar field theory, 28

O(3) sigma model, 131

periodic sine-Gordon model, 128
periodic sphaleron, 444
phase transition, 383, 405
φ4 kink, 111
π/N scattering, 329
pion dipoles, 355
pion fields, 350
pion mass term, 405
Platonic groups, 145
Poncelet condition, 421
Prasad-Sommerfield monopole, 261
principle of symmetric criticality, 99
product ansatz, 358
pure gauge, 42



Index 493

Q-lump, 154
quantization of Skyrmions, 406
quantum Hall ferromagnets, 154
quaternion, 425

rational map, 58, 293
rational map ansatz, 366
reduced monopole moduli space,

317
rest mass, 113
resultant, 135
right-angle scattering, 185, 218, 324,

390

saddle point, 441
self-dual Yang-Mills, 264, 307, 418
simply connected, 49
sine-Gordon kink, 116
Skyrme crystal, 382
Skyrme fields from instantons, 431
Skyrme lattice, 384
Skyrme model, 349
Skyrme term, 351
Skyrme-Faddeev model, 408
Skyrmion, 80, 349
Skyrmion moduli space, 394
Skyrmion on S3, 403
Skyrmion scattering, 390
Skyrmion vibrational modes, 397
Skyrmion-Skyrmion energy, 357
spectral curve, 286, 289
spectral curve constraints, 291
spectral lines, 296
sphaleron, 441
spontaneous symmetry breaking, 31

standard model, 454
star, 293
strain tensor, 352
strongly centred monopole, 297
SU(m) instanton, 440
SU(Nf) Skyrmion, 400
superconductor, 191, 192, 197
superpotential, 110, 124
supersymmetric theories, 251
suspension, 366
symmetry enhancement, 379

Taub-NUT metric, 321
texture, 81
’t Hooft ansatz, 418, 420
topological charge, 112
topological degree, 55, 56, 59
topology, 47
twisted line scattering, 331

vacuum, 31
Veronese embedding, 78
virial theorem, 86
volume form, 55
vortex, 77, 158, 171
vortex metric, 205
vortex scattering, 215, 218

weak Skyrmion, 460
Wess-Zumino term, 406
Wick rotation, 416
winding number, 49
Wronskian, 144, 369

Yang-Mills field tensor, 39


	Half-title
	Series-title
	Title
	Copyright
	Contents
	Preface
	1 Introduction
	1.1 Solitons as particles
	1.2 A brief history of topological solitons
	1.3 Bogomolny equations and moduli spaces
	1.4 Soliton dynamics
	1.5 Solitons and integrable systems
	1.6 Solitons – experimental status
	1.7 Outline of this book

	2 Lagrangians and fields
	2.1 Finite-dimensional systems
	2.2 Symmetries and conservation laws
	2.3 Field theory
	2.4 Noether’s theorem in field theory
	2.5 Vacua and spontaneous symmetry breaking
	2.6 Gauge theory
	2.7 The Higgs mechanism
	2.8 Gradient flow in field theory

	3 Topology in field theory
	3.1 Homotopy theory
	3.2 Topological degree
	3.3 Gauge fields as differential forms
	3.4 Chern numbers of abelian gauge fields
	3.5 Chern numbers for non-abelian gauge fields
	3.6 Chern-Simons forms

	4 Solitons – general theory
	4.1 Topology and solitons
	4.2 Scaling arguments
	4.3 Symmetry and reduction of dimension
	4.4 Principle of symmetric criticality
	4.5 Moduli spaces and soliton dynamics

	5 Kinks
	5.1 Bogomolny bounds and vacuum structure
	5.2 Phi4 kinks
	5.3 Sine-Gordon kinks
	5.4 Generalizations

	6 Lumps and rational maps
	6.1 Lumps in the O(3) sigma model
	6.2 Lumps on a sphere and symmetric maps
	6.3 Stabilizing the lump

	7 Vortices
	7.1 Ginzburg-Landau energy functions
	7.2 Topology in the global theory
	7.3 Topology in the gauged theory
	7.4 Vortex solutions
	7.5 Forces between gauged vortices
	7.6 Forces between vortices at large separation
	7.7 Dynamics of gauged vortices
	7.7.1 Second order dynamics
	7.7.2 Gradient flow
	7.7.3 First order dynamics

	7.8 Vortices at critical coupling
	7.9 Moduli space dynamics
	7.10 The metric on MN
	7.11 Two-vortex scattering
	7.12 First order dynamics near critical coupling
	7.13 Global vortex dynamics
	7.14 Varying the geometry
	7.14.1 Volume of moduli space
	7.14.2 Toroidal geometry – the Abrikosov lattice
	7.14.3 Vortices on the hyperbolic plane

	7.15 Statistical mechanics of vortices

	8 Monopoles
	8.1 Dirac monopoles
	8.2 Monopoles as solitons
	8.3 Bogomolny-Prasad-Sommerfield monopoles
	8.4 Dyons
	8.5 The Nahm transform
	8.6 Construction of monopoles from Nahm data
	8.7 Spectral curves
	8.8 Rational maps and monopoles
	8.9 Alternative monopole methods
	8.10 Monopole dynamics
	8.11 Moduli spaces and geodesic motion
	8.12 Well separated monopoles
	8.13 SU(m) monopoles
	8.14 Hyperbolic monopoles

	9 Skyrmions
	9.1 The Skyrme model
	9.2 Hedgehogs
	9.3 Asymptotic interactions
	9.4 Low charge Skyrmions
	9.5 The rational map ansatz
	9.6 Higher charge Skyrmions
	9.7 Lattices, crystals and shells
	9.8 Skyrmion dynamics
	9.9 Generalizations of the Skyrme model
	9.10 Quantization of Skyrmions
	9.11 The Skyrme-Faddeev model

	10 Instantons
	10.1 Self-dual Yang-Mills fields
	10.2 The ADHM construction
	10.3 Symmetric instantons
	10.4 Skyrme fields from instantons
	10.5 Monopoles as self-dual gauge fields
	10.6 Higher rank gauge groups

	11 Saddle points – sphalerons
	11.1 Mountain passes
	11.2 Sphalerons on a circle
	11.3 The gauged kink
	11.4 Monopole-antimonopole dipole
	11.5 The electroweak sphaleron
	11.6 Unstable solutions in other theories

	References
	Index

